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Abstract

We study 2D Navier-Stokes equations with a constraint onL2 energy of the solution. We prove
the existence and uniqueness of a global solution for the constrained Navier-Stokes equation on
R

2 andT2, by a fixed point argument. We also show that the solution of constrained Navier-
Stokes converges to the solution of Euler equation as viscosity ν vanishes.
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1. Introduction

The motivation for this paper is twofold. Firstly Cagliotiet.al. in [7] studied the well-
posedness and asymptotic behaviour of two dimensional Navier-Stokes equations in the vorticity
form with two constraints: constant energyE(ω) and moment of inertiaI (ω)

∂ω

∂t
+ u · ∇ω = ν∆ω − νdiv

[

ω∇
(

bψ + a
|x|2
2

)]

,

which can be rewritten as

∂ω

∂t
+ u · ∇ω = νdiv

[

ω∇
(

logω − bψ − a
|x|2
2

)]

, (1.1)

whereω = Curl(u), a = a(ω) andb = b(ω) are the Lagrange multipliers associated to those
constraints and

E(ω) =
∫

R2
ψωdx, I (ω) =

∫

R2
|x|2ωdx, ψ = −∆−1ω.
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They were able to show the existence of a unique classical global-in-time solution to (1.1) for a
family of initial data [7, Theorem 5]. They were also able to prove that the solution to (1.1) con-
verges, as time tends to+∞, to the unique solution of an associated microcanonical variational
problem [7, Theorem 8].

Secondly, Rybka [18] and Caffarelli & Lin [6] study the linear heat equation with constraints.
Rybka studied heat flow on a manifoldM given by

M =
{

u ∈ L2(Ω) ∩C(Ω) :
∫

Ω

uk(x) dx= Ck, k = 1, . . . ,N

}

,

whereΩ denotes a connected bounded region inR
2 with smooth boundary. He proved [18,

Theorem 2.5] the existence of the unique global solution forthe projected heat equation














du
dt = ∆u−∑N

k=1 λkuk−1 in Ω ⊂ R
2,

∂u
∂n = 0 on ∂Ω, u(0, x) = u0,

(1.2)

whereλk = λk(u) are such thatut is orthogonal to Span
{

uk−1
}

. He also showed that the solutions
to (1.2) converges to a steady state as time tends to+∞.
On the other hand Caffarelli and Lin initially establish the existence and uniqueness of a global,
energy-conserving solution to the heat equation [6, Theorem 1.1]. They were then able to extend
these results to more general family of singularly perturbed systems of nonlocal parabolic equa-
tions [6, Theorem 3.1]. Their main result was to prove the strong convergence of the solutions to
these perturbed systems to some weak-solutions of the limiting constrained nonlocal heat flows
of maps into a singular space.

In this paper we consider a problem which links the aforementioned works. We consider
Navier-Stokes equations as in [7], but subject to the same energy constraint as in [6, 18]. Contrary
to [7] we prove global-in-time existence of the solution butonly on a torus, namely in the periodic
case. Surprisingly our proof of global existence does not hold for a general bounded domain,
although the local existence holds. We also prove our resultof global existence of the solution
for R2. We additionally show that, in vanishing viscosity limit, the solution of the constrained
equation (1.3) below, converges to the Bardos solution (see[1]) of the Euler equation (formally
obtained settingν = 0).

We are interested in the Cauchy problem


















du
dt
= −νAu+ ν|∇u|2 u− B(u, u),

u(0) = u0,
(1.3)

whereu ∈ H, and H is a space of divergence free, mean zero vector fields on a torus, see (2.2)
below for a precise definition.

The above problem has a localmaximalsolution for eachu0 ∈ V ∩M, where V is defined in
(2.2) and

M = {u ∈ H : |u| = 1}.
Moreoveru(t) ∈ M for all timest. This result is true both for NSEs on a bounded domain or with
periodic boundary conditions (i.e. on a torus). In a more geometrical fashion, equation (1.3) can
be also written as

du
dt
= −∇ME(u) − B(u, u),
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whereE(u) = 1
2 |∇u|2, u ∈ M and∇ME(u) is the gradient ofE with respect to H-norm projected

ontoTuM. The remarkable feature of this is that on a torus∇ME(u) andB(u, u) are orthogonal
in H. This orthogonality holds for the Navier-Stokes without constraint too, i.e. on a torus∇E(u)
is orthogonal toB(u, u) in H. The fact that this constraint preserves the orthogonality somehow
makes it a natural constraint.

Hence in at least heuristic way

d
dt
E(u(t)) =

〈

∇ME(u(t)),
du
dt

〉

H

= 〈∇ME(u(t)),−∇ME(u(t)) − B(u, u)〉H
= −|∇ME(u(t))|2,

so thatE(u(t)) is decreasing and thus theH1,2 norm of the solution remains bounded.
Next we state the two main results of the paper on a torus.

Theorem 1.1. Let u0 ∈ V ∩M and XT = C([0,T]; V) ∩ L2(0,T; E). Then for everyν > 0 there
exists a global and locally unique solution u∈ XT of (1.3).

The spaceXT with more details and the precise definition of the solution of (1.3) will be
given in the Section 3. Theorem 1.1 will be proved in steps in Sections 3 and 4.

Theorem 1.2. Let u0, uν0 ∈ V ∩ M and uν be the solution of(1.3) (existence and uniqueness
of uν follows from Theorem 1.1). Assume that uν

0 → u0 in V as ν ↓ 0, and thatCurl(uν0) stays
uniformly bounded in L∞(T2). Then for each T> 0, uν converges in C([0,T]; L2(T2)) to the
unique solution u of the limiting equation (namely(1.3)with ν = 0).

We end the introduction with a brief description of the content of the paper. In Section 2, we
introduce a constrained Navier-Stokes equation. In Section 3, a precise definition of the solution
is given, and local existence and uniqueness are proved, together with some basic properties
of the solution. In Section 4, global existence is established. Finally, in Section 5 we prove
Theorem 1.2.

2. Constrained Navier-Stokes equations

2.1. General Notations

LetO be either a bounded domain inR2, R2 or T2. For p ∈ [1,∞] andk ∈ N, the Lebesgue
and Sobolev spaces ofR2-valued functions will be denoted byLp(O,R2) andWk,p(O,R2) respec-
tively, and oftenLp andWk,p whenever the context is understood. The usual scalar product on
L2 is denoted by〈u, v〉 for u, v ∈ L2. The associated norm is given by|u|, u ∈ L2. We also write
Wk,2(O,R2) := Hk and will denote it’s norm by‖ · ‖Hk . In particular the scalar product forH1 is
given by

〈u, v〉H1 = 〈u, v〉 + 〈∇u,∇v〉, u, v ∈ H1,

and thus the norm is
‖u‖H1 =

[

|u|2 + |∇u|2
]1/2

.

In the following two subsections we will introduce some additional spaces. The structure of the
spaces will depend on the choice ofO.
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2.2. Functional setting forR2

We consider the whole spaceR2. We introduce the following spaces:

H = {u ∈ L2(R2,R2) : ∇ · u = 0},
V = H1 ∩H.

(2.1)

We endow H with the scalar product and norm ofL2 and denote it by〈u, v〉H, |u|H respectively
for u, v ∈ H. We equip the space V with the scalar product and norm ofH1 and will denote it by
〈·, ·〉V and‖ · ‖V respectively.

LetΠ : L2 → H be Leray-Helmholtz projection operator which projects the vector fields on
the plane of divergence free vector fields. We denote byA : D(A) → H, the Stokes operator
which is defined by

D(A) = H ∩H2(R2),

Au= −Π∆u, u ∈ D(A).

It is well known thatA is a self adjoint non-negative operator in H. Note that∆ andΠ commute
with each other. Moreover

D((A + I)1/2) = V and 〈Au, u〉 = |∇u|2, u ∈ D(A).

From now onwards we will denote E := D(A).

2.3. Functional setting for a periodic domain

We denote the bounded periodic domain byT
2 which can be identified to a two dimensional

torus. We introduce the following spaces:

L
2
0 = {u ∈ L2(T2,R2) :

∫

T2
u(x) dx= 0},

H = {u ∈ L2
0 : ∇ · u = 0},

V = H1 ∩ H.

(2.2)

We endow H with the scalar product and norm ofL2 and denote it by〈u, v〉H, |u|H respectively
for u, v ∈ H. We equip the space V with the scalar product〈∇u,∇v〉H and norm‖u‖V , u, v ∈ V.

One can show that in the case ofT
2 V-norm‖ · ‖V , andH1-norm‖ · ‖H1 are equivalent on V.

As before we denote byA : D(A) → H, the Stokes operator which is defined by

D(A) = H ∩ H2(T2),

Au= −∆u, u ∈ D(A).

It is well known thatA is a self adjoint positive operator in H. Moreover

D(A1/2) = V and 〈Au, u〉 = ‖u‖2V = |∇u|2, u ∈ D(A).

In the following subsection we will introduce a tri-linear form which is well defined for any
general domainO and will state some of it’s properties.
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2.4. Preliminaries

From now onwards we denote our domain byO which can be eitherR2 orT2. We introduce
a continuous tri-linear formb : Lp ×W1,q × Lr → R,

b(u, v,w) =
2

∑

i, j=1

∫

O
ui ∂v j

∂xi
w j dx,

wherep, q, r ∈ [1,∞] satisfies
1
p
+

1
q
+

1
r
≤ 1.

We can define a bilinear mapB : V × V → V′ such that

〈B(u, v), φ〉 = b(u, v, φ), for u, v, φ ∈ V,

where〈·, ·〉 denotes the duality betweenV andV′. If u ∈ V, v ∈ E andφ ∈ H then

|b(u, v, φ)| ≤
√

2 |u|
1
2
H ‖u‖

1
2
V ‖v‖

1
2
V |v|

1
2
E |φ|H.

Thusb can be uniquely extended to the tri-linear form (denoted by the same letter)

b : V × E× H→ R.

We can now also extend the operatorB uniquely to a bounded linear operator

B : V × E→ H.

The following properties of the tri-linear mapb and the bilinear mapB are very well estab-
lished in [19] and Appendix A,

b(u, u, u) = 0, u ∈ V,

b(u,w,w) = 0, u ∈ V,w ∈ H1,

〈B(u, u),Au〉H = 0, u ∈ D(A).

The 2D Navier-Stokes equations are given as following:






























∂u(x, t)
∂t

− ν∆u(x, t) + (u(x, t) · ∇)u(x, t) + ∇p(x, t) = 0,

∇ · u(x, t) = 0,

u(x, 0) = u0(x),

(2.3)

wherex ∈ O andt ∈ [0,T] for everyT > 0; u: O → R
2 andp: O → R are velocity and pressure

of the fluid respectively.ν is the viscosity of the fluid (with no loss of generality,ν will be taken
equal to 1 for the rest of the article, except in the Section 5).

With all the notations as defined in the subsections 2.1 and 2.2, the Navier-Stokes equation
(2.3) projected on divergence free vector field is given by



















du
dt
+ Au+ B(u, u) = 0,

u(0) = u0.
(2.4)
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Let us denote the set of divergence freeR
2-valued functions with unitL2 norm, as following

M = {u ∈ H : |u| = 1}.

Then the tangent space atu is defined as,

TuM = {v ∈ H : 〈v, u〉H = 0}, u ∈ M.

We define a linear mapπu : H→ TuM by

πu(v) = v − 〈v, u〉H u,

thenπu is the orthogonal projection from H intoTuM.

Let F(u) = Au+ B(u, u) andF̂(u) be the projection ofF(u) on the tangent spaceTuM, then

F̂(u) = πu(F(u))

= F(u) − 〈F(u), u〉H u

= Au+ B(u, u)− 〈Au+ B(u, u), u〉H u

= Au− 〈Au, u〉H u+ B(u, u) − 〈B(u, u), u〉H u

= Au− |∇u|2 u+ B(u, u).

The last equality follows from the identity that〈B(u, u), u〉H = 0.

Remark 2.1. Since〈B(u, u), u〉H = 0 andu ∈ M, B(u, u) ∈ TuM.

Thus by projecting NSEs (2.4) on the manifoldM, we obtain our constrained Navier-Stokes
equation which is given by



















du
dt
+ Au− |∇u|2 u+ B(u, u) = 0,

u(0) = u0 ∈ V ∩M.
(2.5)

3. Local solution : Existence and Uniqueness

In this section we will establish the existence of a local solution of the problem (2.5) by using
fixed point method. We obtain certain estimates for non-linear terms of (2.5) using preliminaries
from the previous section. After obtaining these estimateswe construct a globally Lipschitz map.
Some ideas in the Subsection 3.1 are based on [5].

We use the following well established [19] result to obtain the estimates.

Lemma 3.1. For any open setΩ ⊂ R
2 and everyv ∈ H1, we have

|v|L4(Ω) ≤ 21/4|v|1/2
L2(Ω)
|∇v|1/2

L2(Ω)
, v ∈ H1(Ω).

In what follows we assume that E,V and H are spaces defined before in Section 2.
6



Lemma 3.2. Let G1 : V → H be defined by

G1(u) = |∇u|2 u, u ∈ V.

Then there exists C> 0 such that for u1, u2 ∈ V,

|G1(u1) −G1(u2)|H ≤ C‖u1 − u2‖V
[‖u1‖V + ‖u2‖V

]2
. (3.1)

Proof. Let us consideru1, u2 ∈ V, then

|G1(u1) −G1(u2)|H =
∣

∣

∣|∇u1|2 u1 − |∇u2|2 u2

∣

∣

∣

H

=

∣

∣

∣|∇u1|2 u1 − |∇u1|2 u2 + |∇u1|2 u2 − |∇u2|2 u2

∣

∣

∣

H

=

∣

∣

∣|∇u1|2 (u1 − u2) + (|∇u1|2 − |∇u2|2) u2

∣

∣

∣

H

≤ |∇u1|2 |u1 − u2|H + [|∇u1| + |∇u2|] [ |∇u1| − |∇u2|] |u2|H
≤ |∇u1|2 |u1 − u2|H + [|∇u1| + |∇u2|] |∇(u1 − u2)| |u2|H
≤ C

[

|∇u1|2 ‖u1 − u2‖V + [|∇u1| + |∇u2|] |∇(u1 − u2)| ‖u2‖V
]

≤ C‖u1 − u2‖V
[

|∇u1|2 + |∇u2| ‖u2‖V + |∇u1| ‖u2‖V
]

,

where we have repeatedly used the fact that V is continuouslyembedded in H. Thus we obtain,

|G1(u1) −G1(u2)|H ≤ C‖u1 − u2‖V [‖u1‖V + ‖u2‖V ]2 .

Lemma 3.3. Let G2 : E→ H be defined by

G2(u) = B(u, u), u ∈ E.

Then there exists̃C > 0 such that for u1, u2 ∈ E,

|G2(u1) −G2(u2)|H ≤ C̃
[

‖u1‖1/2V |u1|1/2E ‖u1 − u2‖V + ‖u2‖V‖u1 − u2‖1/2V |u1 − u2|1/2E

]

. (3.2)

Proof. Let us takeu1, u2 ∈ E, then

|G2(u1) −G2(u2)|H = |B(u1, u1) − B(u2, u2)|H
= |B(u1, u1) − B(u2, u1) + B(u2, u1) − B(u2, u2)|H
= |B(u1 − u2, u1) + B(u2, u1 − u2)|H
= |Π [(u1 − u2) · ∇ u1] + Π [u2 · ∇ (u1 − u2)]|H
≤ |(u1 − u2) · ∇ u1|H + |u2 · ∇ (u1 − u2)|H
≤ |u1 − u2|L4(O)|∇u1|L4(O) + |u2|L4(O)|∇(u1 − u2)|L4(O).

Now using Lemma 3.1 and the embedding of V in H, we obtain,

|G2(u1) −G2(u2)|H ≤
√

2 |u1 − u2|1/2H |∇(u1 − u2)|1/2H |∇u1|1/2H |∇
2u1|1/2H

+

√
2 |u2|1/2H |∇u2|1/2H |∇(u1 − u2)|1/2H |∇

2(u1 − u2)|1/2H

≤
√

2C
[

‖u1 − u2‖V‖u1‖1/2V |u1|1/2E

+ ‖u2‖V‖u1 − u2‖1/2V |u1 − u2|1/2E

]

.
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Thus we obtain the following inequality

|G2(u1) −G2(u2)|H ≤ C̃
[

‖u1‖1/2V |u1|1/2E ‖u1 − u2‖V + ‖u2‖V‖u1 − u2‖1/2V |u1 − u2|1/2E

]

.

3.1. Construction of a globally Lipschitz map

Let θ : R+ → [0, 1] be aC∞0 non-increasing function such that

inf
x∈R+

θ′(x) ≥ −1, θ(x) = 1 iff x ∈ [0, 1] andθ(x) = 0 iff x ∈ [3,∞)

and forn ≥ 1 setθn(·) = θ( ·n). Observe that ifh : R+ → R+ is a non-decreasing function, then
for everyx, y ∈ R+,

θn(x)h(x) ≤ h(3n), |θn(x) − θn(y)| ≤ 3n|x− y|.
Set

XT = C([0,T]; V) ∩ L2(0,T; E),

with norm

|u|2XT
= sup

t∈[0,T]
‖u(t)‖2V +

∫ T

0
|u(t)|2Edt.

Let us defineG: E→ H as

G(u) := G1(u) −G2(u) = |∇u|2 u− B(u, u). (3.3)

Lemma 3.4. Suppose G: E→ H is a map defined in(3.3). Let T > 0, define a mapΦn,T : XT →
L2(0,T; H) by

Φn,T(u)(x, t) = θn(|u|Xt)G(u)(x, t). (3.4)

ThenΦn,T is globally Lipschitz and moreover, for any u1, u2 ∈ XT ,

|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) ≤ K(n,T)|u1 − u2|XT T
1
4 , (3.5)

where
K(n,T) = 3n

(

27n3T1/4
+ 9n2

+ 12nT1/4
+ 2

)

,

depends on n and T only.

Proof. Assume thatu1, u2 ∈ XT . Set

τi = inf
{

t ∈ [0,T]; |ui |Xt ≥ 3n
}

, i = 1, 2.

Without loss of generality assume thatτ1 ≤ τ2. Consider

|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) =

[
∫ T

0
|Φn,T(u1) −Φn,T(u2)|2H dt

]
1
2

=

[∫ T

0

∣

∣

∣

∣
θn(|u1|Xt )G(u1) − θn(|u2|Xt )G(u2)

∣

∣

∣

∣

2

H
dt

]

1
2

,

8



for i = 1, 2 θn(|ui |Xt ) = 0 for t ≥ τ2, thus we have

|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) =

[∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt )G(u1) − θn(|u2|Xt )G(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

=

[ ∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt ) [G1(u1) −G2(u1)]

− θn(|u2|Xt ) [G1(u2) −G2(u2)]
∣

∣

∣

∣

2

H
dt

]
1
2

=

[ ∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt )G1(u1) − θn(|u1|Xt )G1(u2)

+ θn(|u1|Xt )G1(u2) − θn(|u2|Xt )G1(u2)

+ θn(|u1|Xt )G2(u2) − θn(|u1|Xt )G2(u1)

+ θn(|u2|Xt )G2(u2) − θn(|u1|Xt )G2(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

.

Using the Minkowski inequality we get,

|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) ≤
[∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt ) [G1(u1) −G1(u2)]
∣

∣

∣

∣

2

H
dt

]
1
2

+

[∫ τ2

0

∣

∣

∣

∣

[

θn(|u1|Xt ) − θn(|u2|Xt )
]

G1(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

+

[∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt ) [G2(u2) −G2(u1)]
∣

∣

∣

∣

2

H
dt

]
1
2

+

[∫ τ2

0

∣

∣

∣

∣

[

θn(|u2|Xt ) − θn(|u1|Xt )
]

G2(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

.

Set

A1 =

[∫ τ2

0

∣

∣

∣

∣

[

θn(|u1|Xt ) − θn(|u2|Xt )
]

G1(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

,

A2 =

[∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt ) [G1(u1) −G1(u2)]
∣

∣

∣

∣

2

H
dt

]
1
2

,

A3 =

[
∫ τ2

0

∣

∣

∣

∣

[

θn(|u2|Xt ) − θn(|u1|Xt )
]

G2(u2)
∣

∣

∣

∣

2

H
dt

]
1
2

,

A4 =

[∫ τ2

0

∣

∣

∣

∣

θn(|u1|Xt ) [G2(u2) −G2(u1)]
∣

∣

∣

∣

2

H
dt

]
1
2

.

and hence
|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) ≤ A1 + A2 + A3 + A4. (3.6)
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Sinceθn is a Lipschitz function with Lipschitz constant 3n we obtain,

A2
1 =

∫ τ2

0

∣

∣

∣

[

θn(|u1|Xt ) − θn(|u2|Xt )
]

G1(u2)
∣

∣

∣

2

H
dt

≤ 9n2
∫ τ2

0

∣

∣

∣ |u1|Xt − |u2|Xt

∣

∣

∣

2

H
|G1(u2)|2H dt.

Again using the Minkowski inequality we get

A2
1 ≤ 9n2

∫ τ2

0
|u1 − u2|2Xt

|G1(u2)|2H dt

≤ 9n2 |u1 − u2|2XT

∫ τ2

0
|G1(u2)|2H dt. (3.7)

Now consider
∫ τ2

0
|G1(u2)|2H dt; using (3.1) we get

∫ τ2

0
|G1(u2)|2H dt ≤ C

∫ τ2

0
‖u2(t)‖6Vdt

≤ C2

[

sup
t∈[0,τ2]

‖u2(t)‖6V
] ∫ τ2

0
dt

≤ C2

[

sup
t∈[0,τ2]

‖u2(t)‖2V
]3

τ2.

Since

|u2|2Xτ2 = sup
t∈[0,τ2]

‖u2(t)‖2V +
∫ τ2

0
|u2(t)|2Edt,

thus
sup

t∈[0,τ2]
‖u2(t)‖2V ≤ |u2|2Xτ2 ,

and using
|u2|Xτ2 ≤ 3n,

we get

∫ τ2

0
|G1(u2)|2H dt ≤ C

[

sup
t∈[0,τ2]

‖u2(t)‖2V
]3

τ2

≤ C|u2|6Xτ2τ2

≤ C(3n)6τ2.

Hence, the inequality (3.7) takes the form

A2
1 ≤ 9n2C |u1 − u2|2XT

(3n)6 τ2,

A1 ≤ (3n)4C |u1 − u2|XT τ
1
2
2 . (3.8)
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Similarly, sinceθn(|u1|Xt ) = 0 for t ≥ τ1 andτ1 ≤ τ2, we have

A2 =

[∫ τ2

0

∣

∣

∣θn(|u1|Xt ) [G1(u1) −G1(u2)]
∣

∣

∣

2

H
dt

]
1
2

=

[∫ τ1

0

∣

∣

∣θn(|u1|Xt ) [G1(u1) −G1(u2)]
∣

∣

∣

2

H
dt

]
1
2

.

Sinceθn(|u1|Xt ) ≤ 1 for t ∈ [0, τ1) and using (3.1), we have

A2
2 ≤

∫ τ1

0
|G1(u1) −G1(u2)|2H dt

≤ C2
∫ τ1

0
‖u1 − u2‖2V [‖u1‖V + ‖u2‖V ]4 dt

≤ C2 sup
t∈[0,τ1]

‖u1 − u2‖2V
∫ τ1

0
[‖u1‖V + ‖u2‖V ]4 dt

≤ C2|u1 − u2|2XT
sup

t∈[0,τ1]
[‖u1‖V + ‖u2‖V ]4

∫ τ1

0
dt

≤ C2|u1 − u2|2XT

[

|u1|Xτ1 + |u2|Xτ1
]4
τ1.

Since|ui |Xτi ≤ 3n, i = 1, 2. We get,

A2
2 ≤ C2|u1 − u2|2XT

[

|u1|Xτ1 + |u2|Xτ1
]4
τ1

≤ C2|u1 − u2|2XT
τ1 [3n+ 3n]4

A2
2 ≤ (6n)4C2|u1 − u2|2XT

τ1.

Thus,

A2 ≤ (6n)2C|u1 − u2|XTτ
1
2
1 . (3.9)

Now we consider,

A2
3 =

∫ τ2

0

∣

∣

∣

∣

[

θn(|u2|Xt ) − θn(|u1|Xt )
]

G2(u2)
∣

∣

∣

∣

2

H
dt.

Sinceθn is a Lipschitz function with Lipschitz constant 3n we obtain,

A2
3 ≤ 9n2

∫ τ2

0

∣

∣

∣|u2|Xt − |u1|Xt

∣

∣

∣

2

H

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt.

Using the Minkowski inequality we get

A2
3 ≤ 9n2

∫ τ2

0

∣

∣

∣u1 − u2

∣

∣

∣

2

Xt

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt

≤ 9n2
∣

∣

∣u1 − u2

∣

∣

∣

2

XT

∫ τ2

0

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt. (3.10)
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Now consider
∫ τ2

0

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt; using (3.2) we get

∫ τ2

0

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt ≤ C̃2

∫ τ2

0
‖u2(t)‖3V |u2|Edt

≤ C̃2

[

sup
t∈[0,τ2]

‖u2(t)‖2V
]

3
2
∫ τ2

0
|u2|Edt.

We apply the Hölder inequality to obtain,

∫ τ2

0

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt ≤ C̃2|u2|3Xτ2

[∫ τ2

0
|u2|2Edt

]
1
2
[∫ τ2

0
dt

]
1
2

.

Now since
∫ τ2

0
|u2|2Edt ≤ |u2|2Xτ2 and|u2|Xτ2 ≤ 3n,

∫ τ2

0

∣

∣

∣G2(u2)
∣

∣

∣

2

H
dt ≤ C̃2|u2|3Xτ2 |u2|Xτ2τ

1
2
2

≤ C̃2(3n)4τ
1
2

2 .

Hence, the inequality (3.10) takes form

A2
3 ≤ 9n2C̃2|u1 − u2|2XT

(3n)4τ
1
2

2

A3 ≤ (3n)3C̃|u1 − u2|XTτ
1
4
2 . (3.11)

Sinceθn(|u1|Xt ) = 0 for t > τ1 andτ1 < τ2 we have,

A4 =

[∫ τ2

0

∣

∣

∣

∣
θn(|u1|Xt ) [G2(u2) −G2(u1)]

∣

∣

∣

∣

2

H
dt

]
1
2

=

[∫ τ1

0

∣

∣

∣

∣

θn(|u1|Xt ) [G2(u2) −G2(u1)]
∣

∣

∣

∣

2

H
dt

]
1
2

.

Sinceθn(|u1|Xt ) ≤ 1 for t ∈ [0, τ1] and using (3.2) we have,

A4 ≤
[∫ τ1

0

∣

∣

∣

∣

G2(u2) −G2(u1)
∣

∣

∣

∣

2

H
dt

]
1
2

≤ C̃

[
∫ τ1

0

[

‖u1‖1/2V |u1|1/2E ‖u1 − u2‖V + ‖u1 − u2‖1/2V |u1 − u2|1/2E ‖u2‖V
]2

dt

]
1
2

.

Now by the Minkowski inequality,

A4 ≤ C̃

















[∫ τ1

0
|u1|E‖u1 − u2‖2V‖u1‖Vdt

]
1
2

+

[∫ τ1

0
‖u2‖2V |u1 − u2|1/2E ‖u1 − u2‖Vdt

]
1
2

















≤ C̃

















sup
t∈[0,τ1]

‖u1 − u2‖2V
[

sup
t∈[0,τ1

‖u1‖2V
]

1
2
∫ τ1

0
|u1|Edt

















1
2

+ C̃

















sup
t∈[0,τ1]

‖u2‖2V
[

sup
t∈[0,τ1]

‖u1 − u2‖2V
]

1
2
∫ τ1

0
|u1 − u2|Edt

















1
2

.
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Since

sup
t∈[0,τ1]

‖ui‖2V ≤ |ui |2Xτ1 ,
∫ τ1

0
|u1|2Edt ≤ |u1|2Xτ1 , |ui |Xτ1 ≤ 3n, i = 1, 2,

and by using the Hölder inequality we obtain,

A4 ≤ C̃

















|u1 − u2|2XT
|u1|Xτ1

[
∫ τ1

0
|u1|2Edt

]
1
2
[
∫ τ1

0
dt

]
1
2

















1
2

+ C̃

















|u1 − u2|XT |u2|2Xτ1

[∫ τ1

0
|u1 − u2|2Edt

]
1
2
[∫ τ1

0
dt

]
1
2

















1
2

≤ C̃
[

|u1 − u2|2XT
|u1|2Xτ1τ

1
2

1

]
1
2

+ C̃
[

|u1 − u2|2XT
|u2|2Xτ1τ

1
2

1

]
1
2

≤ C̃|u1 − u2|XTτ
1
4
1 [3n+ 3n] .

Thus
A4 ≤ 6nC̃|u1 − u2|XTτ

1
4
1 . (3.12)

Now using (3.8), (3.10), (3.11) and (3.12) in (3.6), we obtain

|Φn,T(u1) −Φn,T(u2)|L2(0,T;H) ≤ (3n)4C|u1 − u2|XTτ
1
2
2 + (6n)2C|u1 − u2|XTτ

1
2
1

+ (3n)3C̃|u1 − u2|XTτ
1
4

2 + 6nC̃|u1 − u2|XTτ
1
4

1

≤ (3n)4C|u1 − u2|XT T
1
2 + (6n)2C|u1 − u2|XT T

1
2

+ (3n)3C̃|u1 − u2|XT T
1
4 + 6nC̃|u1 − u2|XT T

1
4

= K(n,T)|u1 − u2|XT T
1
4 ,

where
K(n,T) = 3n

(

27n3T1/4
+ 9n2

+ 12nT1/4
+ 2

)

,

is a constant which depends only onn andT. Thus we have proved thatΦn,T is a Lipschitz
function and satisfies (3.2).

3.2. Assumptions and definition of a solution

Assume that E⊂ V ⊂ H continuously andS(t) is a family of bounded linear operators on
space H such that there existC1,C2 > 0 s.t.

A1. For everyT > 0 and f ∈ L2(0,T; H) a functionu = S ∗ f , defined by

u(t) =
∫ T

0
S(t − r) f (r)dr t ∈ [0,T],

belongs toXT and
|u|XT ≤ C1| f |L2(0,T;H). (3.13)
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A2. For everyT > 0 andu0 ∈ V a functionu = S u0 defined by

u(t) = S(t)u0,

belongs toXT and
|u|XT ≤ C2‖u0‖V . (3.14)

Definition 3.5. • A solution of (2.5) on [0,T], T ∈ [0,∞) is a functionu ∈ XT satisfying

u(t) = S(t)u0 +

∫ t

0
S(t − r)G(u(r))dr ∀ t ∈ [0,T],

whereG : E→ H is defined by

G(u) = |∇u|2 u− B(u, u), u ∈ E.

• Let τ ∈ [0,∞]. A function u ∈ C([0, τ),V) is a solution to (2.5) on [0, τ) iff ∀ T < τ,
u|[0,T] ∈ XT and satisfies

u(t) = S(t)u0 +

∫ t

0
S(t − r)G(u(r))dr ∀ t ∈ [0,T].

Define a functionΨn,T : XT → XT by

Ψn,T(u) = S(t)u0 + S ∗Φn,T(u).

Lemma 3.6. u is the unique solution of(2.5) iff u is a fixed point ofΨn,T .

3.3. Local existence

Lemma 3.7. Assume that the assumptions (A1)-(A2) hold. Consider a mapΨn,T : XT → XT

defined by
Ψn,T(u) = S u0 + S ∗ Φn,T(u),

whereΦn,T is as in Lemma 3.4. Then there exists a constant C1 > 0 such thatΨn,T satisfies
following inequality

|Ψn,T(u1) −Ψn,T (u2)|XT ≤ C1K(n,T)|u1 − u2|XT T
1
4 , u1, u2 ∈ XT , (3.15)

where K(n,T) has been introduced in Lemma 3.4. Moreover,∀ ε ∈ (0, 1) ∃ T0 = T0(n, ε) such
that for every u0 ∈ V, Ψn,T is anε-contraction for T≤ T0.

Proof. The mapΨn,T is evidently well defined. Now for anyu1, u2 ∈ XT ,

|Ψn,T(u1) −Ψn,T(u2)|XT =

∣

∣

∣

∣

S(t)u0 + S ∗ Φn,T(u1) − S(t)u0 + S ∗ Φn,T(u2)
∣

∣

∣

∣

XT

=

∣

∣

∣

∣

S ∗ (Φn,T(u1) −Φn,T(u2))
∣

∣

∣

∣

XT

,
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then by treatingS ∗ (Φn,T(u1) − Φn,T(u2)) asu and
[

Φn,T(u1) − Φn,T(u2)
] ∈ L2(0,T; H) as f in

inequality (3.13) and using Lemma 3.4 we get

|Ψn,T(u1) −Ψn,T (u2)|XT ≤ C1|Φn,T(u1) −Φn,T(u2)|L2(0,T;H)

≤ C1K(n,T)|u1 − u2|XT T
1
4 ,

which shows thatΨn,T is globally Lipschitz and satisfies (3.15).

Let us fix n ∈ N andε ∈ (0, 1). Since the constantC1 is independent ofT, we can find a
T0 = T0(n, ε) such that

C1K(n,T0)T
1
4
0 = ε,

and thusΨn,T is anε-contraction forT ≤ T0.

Let ε ∈ (0, 1) then from Lemma 3.7,Ψn,T is anε-contraction forT = T0(n, ε) and thus by
Banach Fixed Point Theorem there exists a uniqueun ∈ XT

1 s.t.

un
= Ψn,T(un).

This implies that
un(t) = [Ψn,T(un)](t), t ∈ [0,T0].

Let us define
τn = inf{t ∈ [0,T0] : |un|Xt ≥ n}.

Remark 3.8. If |un|Xt < n for eacht ∈ [0,Tn
0] thenτn = Tn

0 .

Theorem 3.9. Let R> 0 be given then∃ T∗ = T∗(R) such that for every u0 ∈ V with ‖u0‖V ≤ R
there exists a unique local solution u: [0,T∗] → V of (2.5).

Proof. Let R > 0 and fixε ∈ (0, 1). Let us choose2 n = ⌊C2R
1−ε ⌋ + 1 whereC2 is as defined in

(3.14). Now for these fixedn andε, ∃ T0(n, ε) such thatΨn,T is anε-contraction for allT ≤ T0.
In particular, it is true forT = T0 and hence by Banach Fixed Point Theorem∃! un ∈ XT0 such
that

un
= Ψn,T(un).

Note that we have

|un|XT0
= |Ψn,T(un)|XT0

= |S u0 + S ∗Φn,T(un)|XT0

≤ |S u0|XT0
+ |S ∗Φn,T(un)|XT0

.

1In fact un should have been denoted byun,T but we have refrained from this.
2⌊M⌋ denotes the largest integer less than or equal toM.
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Now from (3.14) and Lemma 3.7 we have,

|un|XT0
≤ C2‖u0‖V + ε|un|XT0

.

Hence
(1− ε)|un|XT0

≤ C2R,

and so

|un|XT0
≤ C2R

1− ε ≤ n.

Now sincet 7→ | · |Xt is an increasing function the following holds,

|un|Xt ≤ n ∀ t ∈ [0,T0].

In particular|un|XT0
≤ n, i.e. |un|XT0

is finite and thusun ∈ XT0.
This implies

θn(|un|Xt ) = 1, t ∈ [0,T0].

Thus fort ∈ [0,T0],

un(t) = S(t)u0 +

∫ t

0
S(t − r)G(un(r))dr.

Soun on [0,T∗(R)], whereT∗ = T0(n, ε), solves (2.5) andT∗ depends only onR.
Thus we have proved the existence of a unique local solution of (2.5) for every initial data

u0 ∈ V, and this unique solution is denoted byu.

3.4. The solution stays on the manifoldM
Lemma 3.10. If u is the solution of(2.5)on [0, τ) then u′ ∈ L2(0,T; H), for every T< τ.

Proof. Let us fixT < τ. Sinceu is the solution of (2.5) on [0, τ) it satisfies

du
dt
= −Au+ |∇u|2 u− B(u, u). (3.16)

We will show that RHS of (3.16) belongs toL2(0,T; H) and henceu′ ∈ L2(0,T; H).

Sinceu ∈ L2(0,T; E), Au ∈ L2(0,T; H). From (3.1) we have

∫ T

0

∣

∣

∣

∣

|∇u(t)|2 u(t)
∣

∣

∣

∣

2

H
dt ≤

∫ T

0
C2‖u(t)‖6Vdt

≤ C2 sup
t∈[0,T]

‖u(t)‖6V
∫ T

0
dt

≤ C2T

[

sup
t∈[0,T]

‖u(t)‖2V
]3

≤ C2T |u|6XT
< ∞,

thus we have shown that|∇u|2 u ∈ L2(0,T; H).
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From (3.2) we have,
∫ T

0

∣

∣

∣

∣
B(u(t), u(t))

∣

∣

∣

∣

2

H
dt ≤ C̃2

∫ T

0
‖u(t)‖3V |u(t)|Edt

≤ C̃2 sup
t∈[0,T]

‖u(t)‖3V
∫ T

0
|u(t)|Edt

≤ C̃2

[

sup
t∈[0,T]

‖u(t)‖2V
]

3
2
[∫ T

0
|u(t)|2Edt

]

1
2
[∫ T

0
dt

]

1
2

≤ C̃2|u|3XT
|u|XT T

1
2 < ∞.

Thus the non linear term from Navier-Stokes also belongs toL2(0,T; H) and hence RHS of (3.16)
belongs toL2(0,T; H) which impliesu′ ∈ L2(0,T; H) for all T < τ.

The following Lemma is taken from [19]. It proves the existence of an absolute continuous
function based on the regularity of the solution and it’s time derivative.

Lemma 3.11. Let V,H and V′ be the Gelfand triple. If a function u∈ L2(0,T; V) and its
weak derivative u′ ∈ L2(0,T; V′) then u is almost everywhere equal to a continuous function
v : [0,T] → H such that the function[0,T] ∋ t 7→ |v(t)|2H ∈ R is absolutely continuous and

1
2
|v(t)|2H =

1
2
|v(0)|2 +

∫ t

0
〈u′(s), u(s)〉Hds, t ∈ [0,T]. (3.17)

Remark 3.12. In the framework of Lemma 3.11, we can identify v withu and so we get

1
2
|u(t)|2H =

1
2
|u0|2 +

∫ t

0
〈u′(s), u(s)〉Hds, t ∈ [0, τ). (3.18)

Moreover, from Theorem 3.9 and Lemma 3.10

1
2
‖u(t)‖2V =

1
2
‖u0‖2V +

∫ t

0
〈u′(s), u(s)〉Vds, t ∈ [0, τ), (3.19)

where〈·, ·〉V is defined in the Section 2 forR2 as well asT2.

Theorem 3.13. If τ ∈ [0,∞], u0 ∈ M∩ V and u is a solution to(2.5)on [0, τ) then u(t) ∈ M for
all t ∈ [0, τ).

Proof. Let u be the solution to (2.5) andu0 ∈ M ∩ V. Let us defineφ(t) = |u(t)|2H − 1. Thenφ is
absolutely continuous and by Remark 3.12 and (2.5) we have a.e. on [0, τ)

d
dt
φ(t) =

d
dt

[|u(t)|2H − 1] = 2〈u′(t), u(t)〉H

= 2〈−Au(t) + |∇u(t)|2 u(t) − B(u(t), u(t)), u(t)〉H
= −2〈Au(t), u(t)〉H + 2|∇u(t)|2〈u(t), u(t)〉H
= −2|∇u(t)|2 + 2|∇u(t)|2|u(t)|2

= 2|∇u(t)|2(|u(t)|2H − 1) = |∇u(t)|2φ(t).
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This on integration gives

φ(t) = φ(0) exp

[∫ t

0
|∇u(s)|2ds

]

, t ∈ [0, τ).

Sinceu0 ∈ M, φ(0) = 0 and also asu ∈ XT is the solution of (2.5),

∫ t

0
|∇u(s)|2ds≤

∫ t

0
‖u(s)‖2V ds< ∞, t ∈ [0, τ).

Hence we infer that|u(t)|2H = 1 for everyt ∈ [0, τ). Thusu(t) ∈ M for everyt ∈ [0, τ).

Corollary 3.14. Let the initial data u0 ∈ M and u is the solution to(2.5)on [0, τ) then u′(t) is
orthogonal to u(t) in H for every t∈ [0, τ).

Remark 3.15. We can also prove Theorem 3.9 and Theorem 3.13 for any generalbounded
domain. Thus we can establish the existence of a local solution to (2.5) for any general bounded
domain andR2.

4. Global solution: Existence and Uniqueness

In this section we will prove the existence of a global solution of (2.5). Lemma A.1 and the
Remark 4.1 play crucial role in proving the global existenceof the solution. We use stitching
argument to extend our solution from [0,T],T < ∞ on to the whole real line.

We recall the orthogonality property of the Stokes-operator in the following remark.

Remark 4.1. Note that one can show [20] that on a torus the following identity holds

〈B(u, u),Au〉H = 0, ∀ u ∈ V.

Let u be the solution of (2.5). We define the energy of our system by

E(u) =
1
2
|∇u|2.

Then

∇ME(u) = Πu(∇E)

= Πu(Au)

= Au− |∇u|2 u.

Thus, foru ∈ M
|∇ME(u)|2H = |u|2E − |∇u|4. (4.1)

Lemma 4.2. If u is the local solution of(2.5)on [0, τ), then

sup
s∈[0,τ)

‖u(s)‖V ≤ ‖u0‖V .

18



Proof. Let u be the solution of (2.5). Then, from (2.5), Remark 3.12 and Corollary 3.14, for any
t ∈ [0, τ) we have,

1
2
‖u(t)‖2V =

1
2
‖u0‖2V +

∫ t

0
〈u′(s), u(s)〉Vds

=
1
2
‖u0‖2V +

∫ t

0
〈u′(s), u(s)〉H ds+

∫ t

0
〈u′(s),Au(s)〉H ds

=
1
2
‖u0‖2V +

∫ t

0
〈−Au(s) + |∇u(s)|2 u(s) − B(u(s), u(s)),Au(s)〉Hds

=
1
2
‖u0‖2V +

∫ t

0

[

−〈Au(s),Au(s)〉H + |∇u(s)|2〈u(s),Au(s)〉H
]

ds

−
∫ t

0
〈B(u(s), u(s)),Au(s)〉H ds

=
1
2
‖u0‖2V +

∫ t

0

[

−|u(s)|2E + |∇u(s)|4
]

ds.

Now from Theorem 3.13 we know thatu(t) ∈ M for everyt ∈ [0, τ) and hence by using (4.1)
we obtain,

1
2
‖u(t)‖2V =

1
2
‖u0‖2V −

∫ t

0

∣

∣

∣

∣

[∇ME(u)](s)
∣

∣

∣

∣

2

H
ds,

and thus
1
2
‖u(t)‖2V +

∫ t

0

∣

∣

∣

∣
[∇ME(u)](s)

∣

∣

∣

∣

2

H
ds=

1
2
‖u0‖2V .

Hence we have shown that
‖u(t)‖V ≤ ‖u0‖V , t ∈ [0, τ).

Lemma 4.3. Let 0 ≤ a < b < c < ∞ and u∈ X[a,b] , v ∈ X[b,c], such that u(b−) = v(b+). Then
z ∈ X[a,c) where,

z(t) =















u(t), t ∈ [a, b),

v(t), t ∈ [b, c).

Proof. Let us take 0≤ a < b < c < ∞ andu ∈ X[a,b] , v ∈ X[b,c], such thatu(b−) = v(b+). Then
for any 0≤ t1 < t2 < ∞, using the definition of the norm| · |X[t1,t2] , we have

|z|2X[a,c]
= sup

t∈[a,c]
‖z(t)‖2V +

∫ c

a
|z(t)|2Edt

≤ sup
t∈[a,b]

‖z(t)‖2V + sup
t∈[b,c]

‖z(t)‖2V +
∫ b

a
|z(t)|2Edt+

∫ c

b
|z(t)|2Edt
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Now by the definition ofzwe have,

|z|2X[a,c]
≤ sup

t∈[a,b]
‖u(t)‖2V + sup

t∈[b,c]
‖v(t)‖2V +

∫ b

a
|u(t)|2Edt+

∫ c

b
|v(t)|2Edt

= sup
t∈[a,b]

‖u(t)‖2V +
∫ b

a
|u(t)|2Edt+ sup

t∈[b,c]
‖v(t)‖2V +

∫ c

b
|v(t)|2Edt

= |u|2X[a,b]
+ |v|2X[b,c]

.

Now sinceu ∈ X[a,b] and v∈ X[b,c] we have|z|X[a,c] < ∞, and thusz ∈ X[a,c].

We will use the following lemma to prove our main result of existence of the global solution.

Lemma 4.4. Let τ be finite and the initial data u0 ∈ V ∩M. If u : [0, τ] → V is the solution of
(2.5)on [0, τ] andv : [τ, 2τ] → V is the solution of(2.5)on [τ, 2τ] such that u(τ−) = v(τ+), then
z : [0, 2τ] → V defined as

z(t) =















u(t), t ∈ [0, τ],

v(t), t ∈ [τ, 2τ],

is the solution of(2.5)on [0, 2τ] and z∈ X[0,2τ].

Proof. Sinceu is the solution of (2.5) on [0, τ] then u ∈ X[0,τ] and similarly v ∈ X[τ,2τ] :=
C([τ, 2τ]; V) ∩ L2(τ, 2τ; E). Thus by Lemma 4.3 and the definition ofz, z ∈ X[0,2τ]. Now we are
left to show thatz : [0, 2τ] → V defined as

z(t) =















u(t), t ∈ [0, τ],

v(t), t ∈ [τ, 2τ],

is the solution of (2.5) on [0, 2τ]. In order to achieve this we will have to show thatz satisfies
(4.2) for everyt ∈ [0, 2τ].

z(t) = S(t)z(0)+
∫ t

0
S(t − r)G(z(r))dr. (4.2)

For t ∈ [0, τ), z satisfies (4.2), sincez(t) = u(t), ∀ t ∈ [0, τ] andu is the solution of (2.5) on
[0, τ].
For t ∈ [τ, 2τ], z(t) = v(t) and since v is the solution to (2.5) on [τ, 2τ],

z(t) = v(t) = S(t − τ)v(τ) +
∫ t

τ

S(t − r)G(v(r))dr.

Now because of continuity ofu and v, v(τ) = u(τ),

z(t) = S(t − τ)
[

S(τ)u0 +

∫ τ

0
S(τ − r)G(u(r))dr

]

+

∫ t

τ

S(t − r)G(v(r))dr.
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Now using the definition ofzwe obtain,

z(t) = S(t)z(0)+
∫ τ

0
S(t − r)G(z(r))dr +

∫ t

τ

S(t − r)G(z(r))dr

= S(t)z(0)+
∫ t

0
S(t − r)G(z(r))dr.

Thuszsatisfies (4.2) on [0, 2τ] and hencez is a solution to (2.5) on [0, 2τ].

Proof of Theorem 1.1.Let us takeu0 ∈ V. PutR = ‖u0‖V . By Theorem 3.9 there exists aT > 0
such that there exists a unique functionu : [0,T] → V which solves (2.5) on [0,T] andu ∈ XT .
Also by Lemma 4.2‖u(T)‖V ≤ R thus again by Theorem 3.9 there exists a unique function
v : [T, 2T] → V which solves (2.5) on [T, 2T] and v∈ X[T,2T]. Now if we define a new function
z : [0, 2T] → V as

z(t) =















u(t), t ∈ [0,T],

v(t), t ∈ [T, 2T],

then by Lemma 4.4,z is also a solution of (2.5) andz ∈ X2T . Moreover‖z(2T)‖V ≤ R. We can
keep doing this and extend our solution further and hence obtaining a global solution of (2.5)
still denoted byu such thatu ∈ XT for everyT < ∞. Each bit of the solution is unique on the
respective domain and hence when we glue two unique bits we get a unique extension and thus
obtain a unique global solution due to it’s construction.

5. Convergence to the Euler equation

In this section we are concerned with the convergence of the solution of the constrained
Navier-Stokes equation, namely



















du
dt
+ νAu− ν |∇u|2 u+ B(u, u) = 0,

u(0) = uν0 ∈ V ∩M,
(5.1)

asν vanishes on a torus. The curl ofu is defined as Curl(u) := D1u2 − D2u1. We will prove
Theorem 1.2 after several preliminary results.

Remark 5.1. Curl is a linear isomorphism between V andL2
0(T2), where

L2
0(T2) :=

{

ω ∈ L2(T2) :
∫

T2
ω(x)dx= 0

}

.

Moreover foru ∈ V and some universal constantsC > 0,Cp > 0

‖∆u‖L2(T2) ≤ C‖∇Curl(u)‖L2(T2), (5.2)

‖∇u‖Lp(T2) ≤ Cp‖Curl(u)‖L∞(T2). (5.3)
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This remark is proved in Appendix B.

Hereafteruν is the solution to (5.1), andων(t, x) := Curl(uν(t))(x). In particular, due to
Remark 5.1 and Theorem 3.13,ων ∈ C([0,T]; L2

0(T
2)) ∩ L2(0,T; H1(T2)). It is then easy to

check thatων is a weak solution to


















dων

dt
+ ∇ · (uν ων) = ν∆ων + ν ‖uν‖2V ων,

ων(0) = ων0 := Curl(uν0) ∈ L2
0(T2).

(5.4)

Proposition 5.2. Let us fix T> 0, and assume thatων0 ∈ L∞(T2). Then

sup
t∈[0,T]

|ων(t)|L∞(T2) ≤ |ων0|L∞(T2) exp
(

ν‖uν0‖2V T
)

, (5.5)

ν

∫ T

0
|∇ων(t)|2L2(T2)dt ≤ 1

2 |ω
ν
0|2L2(T2) + νT‖uν0‖2V |ων0|2L∞(T2) exp

(

2ν‖uν0‖2V T
)

. (5.6)

Proof. Takeh ∈ C2(R), convex, with bounded second derivative. Then, sinceω ∈ C([0,T]; L2
0(T

2))

〈h(ων(t)), 1〉 − 〈h(ων0), 1〉

= ν

∫ t

0

[

−〈h′′(ω(s)), |∇ων|2(s)〉 + ‖uν(s)‖2V 〈h′(ων(s)), ων(s)〉
]

ds

≤ ν
∫ t

0
‖uν(s)‖2V 〈h′(ων(s)), ων(s)〉 ds.

(5.7)

For p ≥ 2,R> 0, take

h(w) ≡ hp,R(w) :=















|w|p, if |w| ≤ R,

Rp
+ p Rp−1(|w| − R) + p(p−1)

2 Rp−2(|w| − R)2, if |w| > R.
(5.8)

Then|h′(w)w| ≤ p h(w) and, since‖uν(s)‖2V ≤ ‖uν0‖2V

〈h(ων(t)), 1〉 ≤ 〈h(ων0), 1〉 + ν p
∫ t

0
‖uν0‖2V 〈h(ων(s)), 1〉 ds. (5.9)

By Gronwall inequality

〈h(ων(t)), 1〉 ≤ 〈h(ων0), 1〉 exp
(

ν p‖uν0‖2V t
)

, t ∈ [0,T]. (5.10)

Since

|ων|L∞ = sup
p,R
〈hp,R(ων), 1〉1/p, (5.11)

we get (5.5).
On the other hand, from the first equality in (5.7), taking nowh(w) = w2/2

1
2 |ω

ν(T)|2L2(T2) + ν

∫ T

0
|∇ων(t)|2L2(T2)dt = 1

2 |ω
ν
0|2L2(T2) + ν

∫ T

0
‖uν(t)‖2V |ων(t)|2L2(T2)dt

≤ 1
2 |ω

ν
0|2L2(T2) + νT‖uν0‖2V |ων0|2L∞(T2)e

2νT‖uν0‖2V ,

where in the last line we used (5.5). Hence (5.6).
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Proposition 5.3. For eachϕ ∈ H2(T2), andν > 0

〈ων(t) − ων(s), ϕ〉 ≤ (t − s)
(

|ων|L∞([0,T]×T2) + 2ν‖uν0‖V(1+ ‖uν0‖2V)
)

|ϕ|H2(T2). (5.12)

Proposition 5.4. Suppose that, uniformly inν, uν0 is bounded inV andCurl(uν0) is bounded in
L∞(T2). Then the sequence uν is precompact in C([0,T]; L2(T2)).

Proof. Let us take and fixϕ ∈ H2(T2). Also fix 0 ≤ s< t ≤ T. Then from the equation (5.4) and
‖uν(t)‖2V ≤ ‖uν0‖2V we get,

|〈uν(t) − uν(s), ϕ〉| ≤ ν
∣

∣

∣

∣

∣

∣

∫ t

s
〈∆uν, ϕ〉 dr

∣

∣

∣

∣

∣

∣

+ ν‖uν0‖2V
∫ t

s
|〈uν, ϕ〉| dr +

∣

∣

∣

∣

∣

∣

∫ t

s
〈uν∇uν, ϕ〉 dr

∣

∣

∣

∣

∣

∣

. (5.13)

By (5.2), (5.6) and the hypotheses on the initial data, the first term in the r.h.s. is bounded by
CT |ϕ|L2(t − s)1/2 for some constantCT independent onν. The second term in the r.h.s. of (5.13)
easily enjoys the same bound. As for the third term in the r.h.s., for anyp > 2, |u|L∞ ≤ Cp(|u|L2 +

|∇u|Lp), so that from (5.3) and (5.5), this term is still bounded byCT |ϕ|L2(t − s)1/2.
Therefore, sinceuν0 is bounded uniformly inL2(T2) by Poincaré inequality, it follows that

uν is equibounded and equicontinuous inL2(T2) and, by Ascoli-Arzelà theorem, precompact in
C([0,T]; L2(T2)).

Proof of Theorem 1.2.Fix T > 0. From Proposition 5.3-5.4, from each subsequence we can
extract a further subsequence such thatων → ω in C([0,T]; H−2(T2)) and weakly inL∞([0,T] ×
T

2), uν → u weakly in L∞([0,T]; V) and in C([0,T]; L2(T2)). It is immediate to check that
ω = Curl(u).

Notice thatων0 := Curl(uν0) converges weakly inL∞(T2) to ω0 := Curl(u0). Passing to the
limit in the weak formulation of the equation one then has, for eachϕ ∈ C2([0,T] × T2)

〈ω(t), ϕ(t)〉 − 〈ω0, ϕ(0)〉 −
∫ t

0
〈ω(s), ∂sϕ(s)〉 −

∫ t

0
〈uω,∇ϕ〉 = 0, (5.14)

andω(0) = ω0. Recalling thatω = Curl(u)

〈u(t),∇⊥ϕ(t)〉 − 〈u0,∇⊥ϕ(0)〉 −
∫ t

0
〈u(s), ∂s∇⊥ϕ(s)〉 −

∫ t

0
〈u · ∇u,∇⊥ϕ〉 = 0. (5.15)

Since〈uω,∇ϕ〉 = 〈u · ∇u,∇⊥ϕ〉 holds.
By Bardos uniqueness theorem [1, 9], we conclude thatuν → u.
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Appendix A. Orthogonality of bilinear map to the Stokes operator

Lemma A.1.Let x∈ O, whereO = R
2 or T2 and u∈ D(A), then

〈B(u, u),Au〉H = 0, ∀ u ∈ D(A). (A.1)

Proof. The following proof has been modified [20] forR2.
Let u ∈ D(A) then, by the definition ofB(u, v) andAu,

〈B(u, u),Au〉H =
∫

O
(u(x) · ∇)u(x) · Au(x) dx

=

2
∑

i, j, k= 1

∫

O
(uiDiu j)(−∆u j) dx

= −
2

∑

i, j, k= 1

∫

O
uiDiu jD

2
ku j dx.

Now by integration by parts and the Stokes formula

〈B(u, u),Au〉H = −
















2
∑

i, j, k=1

uiDiu jDku j

















∣

∣

∣

∣

∂O
+

2
∑

i, j, k=1

∫

O
Dk(uiDiu j)Dku j dx

=

2
∑

i, j, k=1

∫

O
DkuiDiu jDku j dx+

2
∑

i, j, k=1

∫

O
uiDk iu jDku j dx.

Now we will show that each of the terms in RHS will vanish. We will consider the first term and
show that it vanishes.

2
∑

i, j, k=1

DkuiDiu jDku j = (D1u1)3
+ D1u2D2u1D1u1 + D1u1(D1u2)2

+ (D1u2)2D2u2

+ (D2u1)2D1u1 + D2u2(D2u1)2
+ D2u1D1u2D2u2 + (D2u2)3

= (D1u1 + D2u2)
[

(D1u1)2
+ (D2u2)2 − D1u1D2u2

]

+ D1u2D2u1(D1u1 + D2u2) + (D1u2)2(D1u1 + D2u2)

+ (D2u1)2(D1u1 + D2u2).

Now since∇ · u = D1u1 + D2u2 = 0, the first term vanishes identically.
The second term vanishes because

2
2

∑

i, j, k=1

∫

O
uiDk iu jDku j dx=

2
∑

i, j, k= 1

∫

O
uiDi(Dku j)2 dx

=

















2
∑

i, j, k=1

ui(Dku j)2

















∣

∣

∣

∣

∂O
−

2
∑

i, j, k= 1

∫

O
Diui(Dku j)2 dx

= −
2

∑

j,k=1

∫

O
(∇ · u)(Dku j)2 dx = 0.

Thus we have shown that for everyu ∈ D(A), 〈B(u, u),Au〉H = 0.
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Appendix B. Some results in the support of Section 5

Remark B.1. If ∇ · u = 0 and Curl(u) = 0, then u is constant by Hodge decomposition. In
particular if u ∈ V andCurl(u) = 0, then u= 0.

Proof of Remark 5.1.We want to show that Curl is a linear isomorphism between V andL2
0(T2).

It is clear that the map
Curl : V ∋ u 7→ ω = Curl(u)∈ L2

0(T2),

is linear and continuous. Hence in order to prove the Remark 5.1 it is sufficient to find a contin-
uous linear map

Λ : L2
0(T2)→ V, (B.1)

such that,

Curl ◦ Λ = id on L2
0(T2), (B.2)

Λ ◦ Curl = id on V. (B.3)

Let ω ∈ L2
0(T2) then by elliptic regularity [11] (applies also forp , 2) there exists a unique

ψ ∈ L2
0(T2) ∩ H2(T2) such that

∆ψ = ω, (B.4)

and the map
L2

0 ∋ ω 7→ ψ ∈ L2
0 ∩ H2,

is bounded. Let us putu = ∇⊥ψ, i.e.

u = (D2ψ,−D1ψ). (B.5)

Thenu ∈ H1(T2) and∇ · u = 0 in the weak sense. Thusu ∈ V. Using all of this we define the
bounded linear mapΛ : L2

0(T2) ∋ ω 7→ u ∈ V. Now we are left to check that (B.2) and (B.3)
holds for thisΛ.

Let us takeω ∈ L2
0(T2) and putu := Λ(ω) ∈ V. Now considering LHS of (B.2),

(Curl ◦ Λ)(ω) = Curl(u)= D2u1 − D1u2

= D2D2ψ − (−D1D1ψ) = ∆ψ = ω,

where we have used the definitions ofψ andu from (B.4) and (B.5). Hence we have established
(B.2).

Now we take v∈ V and putω = Curl(v) ∈ L2
0(T2). Defineψ ∈ L2

0(T2) ∩ H2(T2) by

∆ψ = ω. (B.6)

Observe that
∆ϕ = Curl(D2ϕ,−D1ϕ), ϕ ∈ H2(T2).

Thus by (B.6) and the definition ofu from (B.5) we obtain

Curl(u)= Curl(v),
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whereu = ∇⊥ψ ∈ V.
Therefore using Remark 1u = v, thus proving that Curl is a linear isomorphism between V and
L2

0(T2). It is straightforward to show (5.2). Thus we are left to prove (5.3).

Let us fix p ∈ (1,∞) and takeu ∈ H1,p(T2). Denoteω = Curl(u) ∈ Lp
0(T2). From the first

part of the proof there exists a bounded linear mapΛ : Lp
0(T2)→ H1,p(T2)

Λ : Lp
0 ∋ ω 7→ u ∈ H1,p,

such that
Curl ◦ Λ = id on Lp

0(T2).

In particular, there exists aC′p > 0,

|Λω|H1,p(T2) ≤ C′p|ω|Lp(T2), ω ∈ Lp
0(T2).

Hence
|∇Λω|Lp(T2) ≤ C′p|ω|Lp(T2), ω ∈ Lp

0(T2). (B.7)

Taking nowu ∈ H1,p(T2). Puttingω = Curl(u) so thatΛω = u from (B.7) we infer (B.8),

|∇u|Lp(T2) ≤ Cp|ω|Lp(T2). (B.8)

Now since|ω|Lp(T2) ≤ |ω|L∞(T2) for everyp, we can establish (5.3).
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