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Abstract

We study 2D Navier-Stokes equations with a constraintdenergy of the solution. We prove
the existence and uniqueness of a global solution for thetcained Navier-Stokes equation on
R? andT?, by a fixed point argument. We also show that the solution oktained Navier-
Stokes converges to the solution of Euler equation as vigcoganishes.
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1. Introduction

The motivation for this paper is twofold. Firstly Cagliagt.al. in [7] studied the well-
posedness and asymptotic behaviour of two dimensionaE&tbkes equations in the vorticity
form with two constraints: constant energfw) and moment of inertia(w)

2
66—(;) +u-Vo = vAw—vdiV[wV(bw+a%) ,
which can be rewritten as
2
66—(;)+u-Va)=vdiv[wv(logw—bz//—a%) , (1.2)

wherew = Curl(u), a = a(w) andb = b(w) are the Lagrange multipliers associated to those
constraints and

E(a)):fl//a)dx, I(a))zflxlza)dx, Y =-Atw.
R? R2
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They were able to show the existence of a unique classichbgio-time solution to (1.1) for a
family of initial data [7, Theorem 5]. They were also able toye that the solution to (1.1) con-
verges, as time tends tero, to the unique solution of an associated microcanonicatianal
problem [7, Theorem 8].

Secondly, Rybka [18] and @arelli & Lin [6] study the linear heat equation with constres.
Rybka studied heat flow on a manifold given by

Mz{ue LZ(Q)OC(Q):fuk(x)dx=Ck, k=1,...,N},
Q

whereQ denotes a connected bounded regioRmwith smooth boundary. He proved [18,
Theorem 2.5] the existence of the unique global solutiortferprojected heat equation

dt

=0 onoQ, u(0, X) = U,

du N k-1 2
=Au-— AU in Q c R4,
{ Zk=1 k (1.2)

wherely = A¢(u) are such that; is orthogonal to Spa{mk‘l}. He also showed that the solutions
to (1.2) converges to a steady state as time tenalsdo

On the other hand Garelli and Lin initially establish the existence and unigess of a global,
energy-conserving solution to the heat equation [6, Thadrd]. They were then able to extend
these results to more general family of singularly pertdrigstems of nonlocal parabolic equa-
tions [6, Theorem 3.1]. Their main result was to prove thergjrconvergence of the solutions to
these perturbed systems to some weak-solutions of thergrébnstrained nonlocal heat flows
of maps into a singular space.

In this paper we consider a problem which links the aforeineed works. We consider
Navier-Stokes equations as in [7], but subject to the saremggiconstraint asin [6, 18]. Contrary
to [7] we prove global-in-time existence of the solution baly on a torus, namely in the periodic
case. Surprisingly our proof of global existence does ndd Far a general bounded domain,
although the local existence holds. We also prove our reduyjtobal existence of the solution
for R?. We additionally show that, in vanishing viscosity limitet solution of the constrained
equation (1.3) below, converges to the Bardos solution[(d¢ef the Euler equation (formally
obtained setting = 0).

We are interested in the Cauchy problem

dt
u(0) = uo,

{du = —vAu+ v|Vu>u - B(u, u), (1.3)

whereu € H, and H is a space of divergence free, mean zero vector fieldstorus, see (2.2)
below for a precise definition.
The above problem has a logabximalsolution for eachig € V N M, where V is defined in
(2.2) and
M={ueH:|u =1}

Moreoveru(t) € M for all timest. This result is true both for NSEs on a bounded domain or with
periodic boundary conditions (i.e. on a torus). In a morengetoical fashion, equation (1.3) can
be also written as q

u

i —VMSZ(U) - B(u,u),



where&(u) = %|Vu|2, ue MandV ,&(u) is the gradient o with respect to H-norm projected
onto TyM. The remarkable feature of this is that on a toViys&(u) andB(u, u) are orthogonal
in H. This orthogonality holds for the Navier-Stokes withoanstraint too, i.e. on a tor&s(u)
is orthogonal taB(u, u) in H. The fact that this constraint preserves the orthofiiyrsomehow
makes it a natural constraint.

Hence in at least heuristic way

d du
G0 = (Vaeo. )

= (VmEU()), -V mEU()) — B(u, U))
= -V mEUW)Z,

so that&(u(t)) is decreasing and thus thE-? norm of the solution remains bounded.
Next we state the two main results of the paper on a torus.

Theorem 1.1. Let w € VN M and X% = C([0,T]; V) N L%(0, T; E). Then for every > 0 there
exists a global and locally unique solutioreuXy of (1.3).

The spaceXr with more details and the precise definition of the solutibér{1o3) will be
given in the Section 3. Theorem 1.1 will be proved in stepsdati®ns 3 and 4.

Theorem 1.2. Let w,uy € V. N M and U be the solution of(1.3) (existence and uniqueness
of u” follows from Theorem 1.1). Assume thgtw Up in V asv | 0, and thatCurl(uj) stays
uniformly bounded in £(T?). Then for each T> 0, u’ converges in {0, T]; L%(T?)) to the
unique solution u of the limiting equation (namély3)with v = 0).

We end the introduction with a brief description of the coniaf the paper. In Section 2, we
introduce a constrained Navier-Stokes equation. In Se&ja precise definition of the solution
is given, and local existence and uniqueness are provedihegwith some basic properties
of the solution. In Section 4, global existence is establishFinally, in Section 5 we prove
Theorem 1.2.

2. Constrained Navier-Stokes equations

2.1. General Notations

Let O be either a bounded domainIk?, R? or T2. For p € [1, ] andk € N, the Lebesgue
and Sobolev spaces Bf-valued functions will be denoted (O, R?) andWP(0, R?) respec-
tively, and oftenLP andW*P whenever the context is understood. The usual scalar produc
L? is denoted byu, v) for u,v € L2. The associated norm is given fy,u € L?. We also write
Wk2(0,R?) := H* and will denote it's norm by - [l4«. In particular the scalar product fét is
given by

U, Ve = (U, V) + (Vu, Vv), u,ve HY,
and thus the norm is 12
Il = [Ju® + V]

In the following two subsections we will introduce some didalial spaces. The structure of the
spaces will depend on the choice®@f
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2.2. Functional setting foR?
We consider the whole spa. We introduce the following spaces:

H={ueL?R%R?:V -u=0},

2.1
V =H'nH. D)

We endow H with the scalar product and norniLéfand denote it byu, vy, |uly respectively
for u,v € H. We equip the space V with the scalar product and nori'sénd will denote it by
(-, -yv and|| - |lv respectively.

LetII : L2 — H be Leray-Helmholtz projection operator which projects tlector fields on
the plane of divergence free vector fields. We denotéhyD(A) — H, the Stokes operator
which is defined by

D(A) = H N H*(R?),
Au= -ITAu, ueD(A).

It is well known thatA is a self adjoint non-negative operator in H. Note thandIl commute
with each other. Moreover

D((A+DY?) =V and (Au,u) =|VuP ue D(A).
From now onwards we will denote E D(A).

2.3. Functional setting for a periodic domain
We denote the bounded periodic domainTiwhich can be identified to a two dimensional
torus. We introduce the following spaces:
L3 = {u e L¥(T?% R?: sz u(x) dx = 0},
H={uel:V u=0}, (22)
V=H!'nH.

We endow H with the scalar product and normLdfand denote it byu, v)y, |uly respectively
for u,v € H. We equip the space V with the scalar prod@, Vv)y and normj|ully, u,v € V.

One can show that in the caseT# V-norm|| - |ly, andH*-norm|| - ||4: are equivalent on V.

As before we denote b& : D(A) — H, the Stokes operator which is defined by

D(A) = H n H¥(T?),
Au= —-Au, ue D(A).

It is well known thatA is a self adjoint positive operator in H. Moreover
DAY%) =V and (Au,u)=lullZ = [Vu? ueD(A).

In the following subsection we will introduce a tri-linearfn which is well defined for any
general domai® and will state some of it's properties.
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2.4. Preliminaries

From now onwards we denote our domain®yvhich can be eitheR? or T2. We introduce
a continuous tri-linear form : LP x W x L — R,

2 ovl .
b(u,v,w)=2j(;u'%w’dx,

i,j=1
wherep, g, r € [1, o] satisfies
<Ll

+ =+

ol
olpR
S

We can define a bilinear map: V x V — V’ such that
(B(u,v),¢) =b(u,v,¢), foru,v,¢eV,

where(, -) denotes the duality betwe&handV’. If ue V,v € E andg € H then

bk i i
Ib(u, v, $)| < V21Ul VI IVIZ 19l

Thusb can be uniquely extended to the tri-linear form (denotedhgysame letter)
b:VXExH-—-R.
We can now also extend the operaBuniquely to a bounded linear operator
B:VXE—-H.

The following properties of the tri-linear mdpand the bilinear map are very well estab-
lished in [19] and Appendix A,
b(u,u,u) =0, uev,
b(u, w, w) = 0, ueV,weH?,
(B(u,u), Ay =0, ueD(A).
The 2D Navier-Stokes equations are given as following:

5U(6>t<, v vAU(X. 1) + (u(x. 1) - V)u(x. 1) + Vp(x. 1) = 0,

V- u(xt) =0, (2.3)
u(x, 0) = Uo(x),

wherex € O andt € [0, T] for everyT > 0;u: O — R? andp: O — R are velocity and pressure
of the fluid respectivelyv is the viscosity of the fluid (with no loss of generalipywill be taken
equal to 1 for the rest of the article, except in the Section 5)

With all the notations as defined in the subsections 2.1 ahdit?e Navier-Stokes equation
(2.3) projected on divergence free vector field is given by

dt
u(0) = up.

{d_“+Au+ B(u,U) = O, 2.4)



Let us denote the set of divergence fiRevalued functions with unit.? norm, as following
M={ueH:|u =1}
Then the tangent spaceuais defined as,
TiM={veH:(v,u)y=0}, ue M.
We define a linear map, : H - TyM by
mu(V) =V —(V,Un L,
thenn, is the orthogonal projection from H infj, M.
Let F(u) = Au+ B(u, u) andF(u) be the projection oF (u) on the tangent spade.M, then

F(u) = mu(F (u))
= F(u) - (F(u),wyyu
= Au+ B(u,u) — (Au+ B(u,u), uyyu
= Au-— (Au, Uyy U + B(u, u) — (B(u, u), uyy u
= Au— [Vul?u + B(u, u).

The last equality follows from the identity théB(u, u), uyy = 0.
Remark 2.1. Since(B(u, u), uyy = 0 andu € M, B(u,u) € T,M.

Thus by projecting NSEs (2.4) on the manifa¥d, we obtain our constrained Navier-Stokes
equation which is given by

dt
uO)=u eVnM.

du 2
{— + Au— |Vu|cu+ B(u,u) =0, 2.5)
3. Local solution : Existence and Uniqueness

In this section we will establish the existence of a localisoh of the problem (2.5) by using
fixed point method. We obtain certain estimates for nonaliterms of (2.5) using preliminaries
from the previous section. After obtaining these estimatesonstruct a globally Lipschitz map.
Some ideas in the Subsection 3.1 are based on [5].

We use the following well established [19] result to obtdie estimates.

Lemma 3.1. For any open se® c R? and everw € H, we have

1/2 1/2
Vi) < 27V [PV ) v € HH(Q).

In what follows we assume that ¥ and H are spaces defined before in Section 2.
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Lemma 3.2. Let G;: V — H be defined by
Gi(u) = [Vulu, ueV.
Then there exists € 0 such that for g, u; € V,
IG1(ur) — G1(Wp)ln < Clluy — Uallv [Iluglv + luzliv]?. (3.1)
Proof. Let us consideuy, u, € V, then
IG1(Ur) = Ga(Ua)l = [IVusl? Us = VU g,

= [IVua? ug — [Vur? uz + [Vugl iz = [Vl g,

= |IVual? Uy = ) + (VU = [VU) wgl

< [V [Ug = Uzl + [[VUs] + VU] [IVUa] = [VU]] [zl

< VU |us = Ugl + [[VUL] + VU] [V (U — U2)| Ul

<C [lVUll2 llur = Wallv + [[Vua] + VU]l [V(ur - W)l ||U2||v]

< Cllus - Uallv [[Vusf? + VUl [IUally + [V flugly |
where we have repeatedly used the fact that V is continu@mshedded in H. Thus we obtain,

IG1(U1) = G1(U)ln < Cllug — Ually [Iluslly + [luzllv]?®.

O
Lemma 3.3. Let G,: E — H be defined by
Go(u) = B(u,u), uekE
Then there exist€ > 0 such that for y, u, € E,
1Ga(u1) = Ga(up)ln < € [Ilunlly Ul ?llus = Uallv + Ualiviiun = Ually us — wlg?]. (3.2)

Proof. Let us takeus, u; € E, then
IG2(u1) — Ga(Uz)l = [B(ug, Uz) — B(Uz, )|y
= |B(u1, Ug) — B(uy, up) + B(uz, u1) — B(Uz, U2)|4
= |B(u1 — Uz, Up) + B(ug, Up — Up)|y
= [IT[(ur — Uz) - V] + [T [uz - V (Ur — )]l
< I(up = Ug) - Vugly + Juz - V (Ur — W)l
< U1 = Uzl 40)| VUilLa (o) + U2l La0)| V(U1 = W) a0

Now using Lemma 3.1 and the embedding of V in H, we obtain,

G2(u1) — Ga(Ua)lk < V2ug — Wl 2V (U — W)l 21V ual2V2uy
+ V21Ul 2Vl 2V (U — Up) YAV (U — u)l 2
< V2C[lluy ~ Uiy llua Iy *Juslg®
+ ualivlug = ally lus — uplE?).
7



Thus we obtain the following inequality

1/2
v

= 1/2 1/2 1/2
IGa(tr) = Ga(U)lk < € [Ilually ?lualg*llus = Uallv + lIuzllv lluy — ually ?Jus — uglg?].

3.1. Construction of a globally Lipschitz map
Leto: R, — [0, 1] be aC7 non-increasing function such that

inﬂgc g (x) > -1, 6(x) =1iff xe[0,1] andd(x) = O iff x € [3, o)
XeR
and forn > 1 setén(-) = 6(;;). Observe thatih : R, — R, is a non-decreasing function, then

for everyx,y e R,,
Bh(X)N(x) < h(3n), [6n(X) — Oa(y)l < 30X -yl

Set
X7 = C([0,T];V) nL?(0, T; E),

with norm

.
uig, = sup ||u(t)||\2,+f u(t)[2dt.
te[0,T] 0

Letus defings: E — H as
G(u) := G1(u) — Go(u) = |[Vu?u — B(u, u). (3.3)

Lemma 3.4. Suppose GE — H is a map defined i(3.3). Let T > 0, define a ma@n1: X1 —
L2(0, T; H) by
Qn1(U)(X 1) = On(lulx)G(U)(X, 1). (3.4)

Thend, 1 is globally Lipschitz and moreover, for any,u, € Xr,
|Pn7(U1) = Pn1(U2)l201H) < K(N, T)lug - UzleT%, (3.5)

where
K(n, T) = 3n(27n°T4 4 9n? + 12nTY4 + 2),

dependsonnand T only.
Proof. Assume thati;, u, € X1. Set
7 =inf{te [0, T]; Juilx, =3n}, =12

Without loss of generality assume that< r,. Consider

T 2
[Pn.1(U1) = On1(U2)lL20.T;H) = [f |On1(Ur) — Onr(W)IF dt]
0

-1f

On(Ju1lx)G(uz) - 9n(|U2|x1)G(U2)‘Zdtr ,
8



fori =1,26x(uilx) = O fort > 75, thus we have

Ty 2 %
|Dn1(U1) = D1 (U220 T:H) = [f On(Juzlx)G(uz) - 9n(|U2|xt)G(U2)|Hdt]
0

I

~ 6n(luzhe) [G1(u2) ~ Go(w)] [ dtr

T

+ 6n(Ju1lx ) G1(U2) — On(lUzlx, )G1(U2)
+ On(Julx, )G2(U2) — On(lualx,)G2(uz)

On(lulx,) [G1(ur) — Ga(ug)]

On(Ju1lx,)G1(u1) = On(Juzlx )G1(u2)

,
+ (U )GalUiz) — On(lullxl)Gz(UZ)’Hdt] .

Using the Minkowski inequality we get,

N
0
+f
|JO
+f
|JO

R L
+ L ' [On(lu2lx,) — On(Jualx,)] Gz(uz)’Hdt] .

6n(1Uzlx,) [G1(tr) — Ga(u)] ‘idtr

[Pn1(U1) = Pn1(U2)l20T:H) <

[Gn(|U1|X1) - 9n(|U2|xl)] Gl(U2)|idt] ’

bl [Ga() ~ Go(un)] | dtr

Set

A = »fO'Tz [9n(|U1|Xt) - 9n(|U2|Xt)] Gl(u2)||2_|dtr ’
[ 2 12

Ay = ,fo On(lualx,) [G1(u1) — Ga(u2)] |Hdt] ,
(™ 2 1z

Az = »ﬁ [6n(JU2lx,) — On(luslx,)] Gz(u2)|Hdt] ’
[ 2 2

Ay = L‘ On(Juilx,) [G2(u2) — Go(u1)] ’Hdt} '

and hence

|Dn1(U) = Pnr(W)lzTiy < Av+ Az + Ag+ As. (3.6)



Sinced, is a Lipschitz function with Lipschitz constanh3ve obtain,

AZ = jo‘rz |[9n(|U1|x1) — Oh(lu2lx,)] Gl(u2)||2_| dt
< 9n? fOTZ | lualx, - |U2|xt|i IGa(up)If, dt
Again using the Minkowski inequality we get
A2 < o fo 7l - W, Ga() R dt
<O? |uy — Wl fOTZ IG1(up)[? dt.

Now consider(,” |G1(uy)[f dt; using (3.1) we get
T2 2 T2
[ ieaudt<c [ et
0 0

T2
sup ||u2(t)||€} f dt
te[0,72] 0
3

<C?

<C?| sup ||u2(t)||€} 7.
tE[O,T2]
Since .
lualy = sup Il + f |uz(t)Izdt,
tE[O,T2] 0
thus
sup [luz(t)Iff < lualk
tE[O,Tz] 2
and using
luzlx,, < 3n,
we get

3
sup ||U2(t)||\2/] 72
tE[O,Tz]

T2
f IGi(up)|3 dt< C
0

< C|U2|(>5<T2 T2

< C(3n)°7,.

Hence, the inequality (3.7) takes the form

AZ < 9°Clug — Uzly (3n)° 2,

1
A < (3n)4C [ug — U2lx, T22.

10
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Similarly, sincedy(luilx,) = O fort > 71 andr; < 72, we have
2 , 1}
Ay = [ f 16n(1Unlx) [G1(Un) — Ga(w)] [ dt]
0

= [fon |6a(1ualx,) [Ga(un) — Ga(u2)] li dtr :
Sinceby(Jualx,) < 1 fort € [0, 71) and using (3.1), we have
%< [ 1Gu(w) - G
< €2 [ s - alf Dl + ]

T1

2 2 4

< C* sup [jus - Uzllvf [lluglly + lluzllv]® dt
te[0,71] 0

T1
2 2 4
< CPuy — wpl}, sup [lluglly + lluzliv] f dt
0

te[0,71]

2 2 4
< Cug — w2l [|U1|><,1 + |U2|x,1] 1.

Since|ui|xTi <3n,i =1,2 We get,

IA

4
2
|ug — U2l [Iullx,1 + |U2|x,1] 71
2 4
[ug = Ul 71 [3n + 3n]

2 42 2
A2 < (6n) Clug — U2|XTT1.

pec
CZ

IA

Thus, )
Ay < (6n)°Cluy — Upl, 72 (3.9)

2
3 f()

Sincef, is a Lipschitz function with Lipschitz constanih8ve obtain,

Now we consider,

[6n(Uzlx,) — On(lUlx,)] Gz(Uz)‘Zdt,

2 2 2
A% < 9n2f ||U2|)(t - |U1|xt|H|Gz(U2)|Hdt.
0
Using the Minkowski inequality we get
2 2 T2 2 2
A3 <9n |U1 - U2|X‘|GQ(U2)|Hdt
0

< 9n?ju; — u2|§T fo ’ Ga(ua)|/ it (3.10)

11



Now considerf;” |Gg(u2)|i|dt; using (3.2) we get

T2 - T2
f Ga(uy)|dt < G2 f I ugledt
0 0

2 T2
f |up|edt.
0

< C?| sup [lu()lIZ

te[0,72]

We apply the Holder inequality to obtain,

T2 2 <5 3 T2 2 % T2 %
f |Gz(u2)|HdtsC|u2|XT2 [ f |u2|Edt} [ f dt] .
0 0 0

. T2
Now smcefO [upl2dt < |u2|§(r2 and|uzlx,, < 3n,

T2 2 ~ 1
f Ga(ua)fdt < Clugly lualx,, 73
0
< C2(3n)2
Hence, the inequality (3.10) takes form
~ 1
A2 < 9n*C?|uy - upl2 (3n)*r;

~ 1
Az < (3n)3C|u1 - U2|)(T‘l'£1 .
Sincedq(Juilx,) = 0 fort > 71 andr; < 72 we have,

o[
I

Sincedq(Juilx,) < 1 fort € [0, 71] and using (3.2) we have,

AmUTl 2dtr
0 H

k) [Ga(1) ~ Go(u)] | dtr

bnual) [Ga(t) ~ Go(u)] || dtr .

<C

Now by the Minkowski inequality,

+

1
- T1 2
Ao < C“ [ sl - el et
0

2

3 T

f |ugedt
0

f |U1—U2|Edt} .

< 2 2
<C| sup lus — ully [ sup [lually
IE[O,Tﬂ tE[O T1

2
sup |IU2IIV[ SUD lluz — u2llg
te[0,71] te[0,71]

172, 11/2 1/2 1/2 2
f [Iua iy 21ualg 2lus = wally + lluy = Uiy lus = ol 2luzlly | dt] :
0

(3.11)

1
2

T 2 12 :
f U2l lus — vl — uznvdt]
0



Since

T1
2 2 H
sup lul} <Iuf . f w2dt< B . lul, <30 i=12
te[0,71] 0 !

and by using the Holder inequality we obtain,

T
~ 2
< C|luy - Ul lualx, [ f |u1|Edt
0

[
- [ ] ]

~ 1 E
SC[|u1 Wl I rl] +C[|U1—U2|><T|U2|x Tf]

Aq

(NI

<Cluy - u2|xTTi'1 [3n+3n].
Thus )
As < 6nClug — Uplx, 7. (3.12)
Now using (3.8), (3.10), (3.11) and (3.12) in (3.6), we obtai

[Dn7(Us) = D (Wliror sy < (BCIUs — Ul 2 + (BNPCIUy — Ul 7
+(3n)*Clug - uzleTj‘ +6nClu; — U2|XTT%
< (3N)*Cluy — Uglx, T2 + (6n)°Cluy — Uglx, T2
+ (3n)3C Uy — Uslx, T# + 6nCluy — Uply, T4
= K(n, T)lus — Ul T4,
where
K(n,T) =3n (27n3T1/4 +9n2 + 12nTY4 4+ 2)’

is a constant which depends only arandT. Thus we have proved thdi, 1 is a Lipschitz
function and satisfies (3.2). O

3.2. Assumptions and definition of a solution
Assume that E= V c H continuously and(t) is a family of bounded linear operators on
space H such that there ex@t, C, > 0 s.t.

Al. ForeveryT >0 andf e L2(0, T; H) a functionu = S  f, defined by
T
u(t) = f St-r)f(r)dr te[0,T],
0
belongs toXt and

Ulx, < Calfliz@T;H)- (3.13)
13



A2. For everyT > 0 andup € V a functionu = S w defined by
u(t) = S(t)uo.
belongs taXt and
lulx, < Calluolly- (3.14)

Definition 3.5. e A solution of (2.5) on [0T], T € [0, =) is a functionu € X; satisfying

u(t) = S(tup + fOtS(t -nG(u(r))dr VYte[0,T],

whereG : E — H is defined by

G(u) = |[Vu?u-B(u,u), ueE.

e Lett € [0,]. A functionu € C([0,7),V) is a solution to (2.5) on [Or) if V T < 7,
ulp,1] € Xt and satisfies

u(t) = S(t)up + fOtS(t —-nG(u(r))dr Ytel[0,T].

Define a functioWp 1 : Xt — Xt by
Wnr(U) = S(HUo + S * Dn7(U).

Lemma 3.6. u is the unique solution of2.5)iff u is a fixed point o¥nt.

3.3. Local existence

Lemma 3.7. Assume that the assumptionslj-(A2) hold. Consider a maf¥,t : Xr — Xr
defined by
Ynr(u) =S+ S = Oyr(U),

where®, 1 is as in Lemma 3.4. Then there exists a constant-C0 such that¥, satisfies
following inequality

[P 7(U1) = Yo (Ua)lx, < CIK(N, Ty — Ualx, T#, Uz, Uz € Xr, (3.15)
where K(n, T) has been introduced in Lemma 3.4. MoreoWes; € (0,1) 3 To = To(n, &) such

that for every g € V, ¥, 7 is ane-contraction for T< To.

Proof. The map¥, is evidently well defined. Now for any, up € X,
[Pn1(Us) = Pnr(U2)lx, = ‘S(t)uo + 5% Dnr(Uy) = SO0 + S+ Inr(Le) «
:

_ 's # (Pn(U) - Dot (W)
14



then by treatingS  (®n1(U1) — ®n1(Uz)) asu and[®@,1(ur) — Pn7(U2)] € L?(0, T;H) asf in
inequality (3.13) and using Lemma 3.4 we get
[Pn1(U1) = Pn1(U2)lx, < Cal®n1(Ur) — Pn1(U2)lizoT:H)
< C]_K(n, T)|U1 — UngTT%,

which shows tha®, 7 is globally Lipschitz and satisfies (3.15).

Let us fixn € N ande € (0,1). Since the constai@; is independent o, we can find a
To = To(n, &) such that

1
ClK(n, To)Té1 =g,
and thus¥,, 1 is ane-contraction fofT < To.
O

Lete € (0,1) then from Lemma 3.7, 1 is ane-contraction forT = To(n, ) and thus by
Banach Fixed Point Theorem there exists a unigue Xt * s.t.

u" = Yhr(uh).
This implies that
u'(t) = [Prr (I,  te[0,To].

Let us define
7o = inf{t € [0, To] : [U"|x, > n}.

Remark 3.8. If |u"|x, < nfor eacht € [0, T[] thent, = T].

Theorem 3.9. Let R> 0 be given therl T. = T.(R) such that for everydie V with ||ully < R
there exists a unique local solution {0, T.] — V of (2.5).

Proof. Let R > 0 and fixe € (0,1). Let us choosen = L%J + 1 whereC, is as defined in
(3.14). Now for these fixed ande, 9 To(n, €) such thatV, 1 is ane-contraction for allT < To.
In particular, it is true foflT = To and hence by Banach Fixed Point Theorgin" € Xy, such
that

u" = W),

Note that we have

Uxr, = Pn1 (U)X, = IS W+ S * On7 (Ul
< IS Wiy, +1S * P (U")lx, -

LIn factu” should have been denoted " but we have refrained from this.
2| M] denotes the largest integer less than or equid to

15



Now from (3.14) and Lemma 3.7 we have,

U, < Colltollv + elux, -

Hence
(1- &), < CoR,
and so CR
n 2
[U"xr, < 1-= <n

Now sincet — | - |x, is an increasing function the following holds,
u"lx, <n VYtel0,To.

In particularlu”lxTO <n,i.e. |u”|xTO is finite and thus" € Xg,.
This implies
Hn(lu”|xt) = 1, te [0, To]

Thus fort € [0, Tq], .
u"(t) = S(t)ug + f S(t — r)G(u"(r))dr.
0

Sou"on [0, T.(R)], whereT, = To(n, &), solves (2.5) and .. depends only oRR.
Thus we have proved the existence of a unique local solutid@.6) for every initial data
Up € V, and this unique solution is denoted by O

3.4. The solution stays on the manifaid
Lemma 3.10. If u is the solution of(2.5)on [0, 7) then U € L?(0, T; H), for every T< .

Proof. Let us fixT < 7. Sinceu is the solution of (2.5) on [@) it satisfies

d
d_l': = —Au+ [Vul?u - B(u, u). (3.16)
We will show that RHS of (3.16) belongs t8(0, T; H) and hencer’ € L2(0, T; H).

Sinceu € L?(0, T; E), Aue L?(0, T; H). From (3.1) we have

fo ' Ivu()? u(t)|i|dt < fo ' Clu(t)lly dt

te[0,T]

.
<C? sup ||u(t)||fs,f0 dt
3

<C7T [ sup ||u(t)||\2,}
te[0,T]
< CPTUg, < oo,

thus we have shown thitul?u € L?(0, T; H).

16



From (3.2) we have,
"I8 2at< G2 [ IS uied
fo |Bu), u®)|, dt < fo IO () eclt
. T
<C? sup ||u(t)||\3,f |u(t)|edt
te[0,T] 0

2% T ) r[ T r
tffé‘,%”““’“V} [ fo u(idt fo dt

~ 1
< CPluly, Julx, T2 < co.

<C?

Thus the non linear term from Navier-Stokes also belongg¢@, T; H) and hence RHS of (3.16)
belongs td_?(0, T; H) which impliesu’ € L2(0, T; H) forall T < 7.
O

The following Lemma is taken from [19]. It proves the existerof an absolute continuous
function based on the regularity of the solution and it'sdiderivative.

Lemma 3.11. Let V,H and V’ be the Gelfand triple. If a function & L2(0,T;V) and its
weak derivative tie L2(0,T;V’) then u is almost everywhere equal to a continuous function
v : [0, T] — H such that the functiof0, T] >t — |v(t)|§| € R is absolutely continuous and

t
VO, = Zv(O)P + fo WS uE)ds te[0,T]. (3.17)

Remark 3.12. In the framework of Lemma 3.11, we can identify v wiittand so we get

t
%|u(t)|ﬁ = %|u0|2+ fo (U'(s),u(s))nds te0,7). (3.18)

Moreover, from Theorem 3.9 and Lemma 3.10
1 2 1 2 ! ’
EIIU(t)IIV = §|IU0|IV + | (U(9),u(g)vds te[0,7), (3.19)
0

where(-, -)y is defined in the Section 2 fd@®? as well asT?.

Theorem 3.13.1f 7 € [0, ], Up € M NV and u is a solution t§2.5)on [0, 7) then Yt) € M for
all't € [0, 7).

Proof. Let u be the solution to (2.5) angh € M N V. Let us defines(t) = [u(t)|Z — 1. Theng is
absolutely continuous and by Remark 3.12 and (2.5) we havea.[Q 1)

S0 = WO - 11 = 200, uO)
= 2(=Au(t) + [Vu(t)l” u(t) — B(u(t), u(t)), u(t))m
= —2(Au(t), u(t))n + 2Vu()Fu(t), u(t)n
= —2/Vu(®)l® + 2\Vu(t) Plu(d)?
= 2[Vu®)P(u)IE - 1) = VUl ¢(1).
17



This on integration gives

t
#(t) = ¢(0) epr; |Vu(s)|2ds}, te[0,7).

Sinceug € M, ¢(0) = 0 and also as € Xt is the solution of (2.5),

t t
f|Vu(s)|2dssf||u(s)||\2,ds< 0, tel0,7).
0 0

Hence we infer thau(t)ﬁ = 1 for everyt € [0, 7). Thusu(t) € M for everyt € [0, 7). O

Corollary 3.14. Let the initial data 4 € M and u is the solution t¢2.5)on [0, 7) then u(t) is
orthogonal to ({t) in H for every te [0, 7).

Remark 3.15. We can also prove Theorem 3.9 and Theorem 3.13 for any gebeualded
domain. Thus we can establish the existence of a local solti (2.5) for any general bounded
domain andR?.

4. Global solution: Existence and Uniqueness

In this section we will prove the existence of a global sauotof (2.5). Lemma A.1 and the
Remark 4.1 play crucial role in proving the global existen€¢he solution. We use stitching
argument to extend our solution from [0], T < oo on to the whole real line.

We recall the orthogonality property of the Stokes-operiatthe following remark.

Remark 4.1. Note that one can show [20] that on a torus the following idgiiolds
(B(u,u), Ay =0, VYueV.

Letu be the solution of (2.5). We define the energy of our system by
1
= Z|Vu)?.
&(u) = SIvul
Then

V pE(U) = y(VE)
= I, (Au)
= Au- |VuPu.

Thus, foru e M
IV mEWIE = Ui - [Vul’. (4.1)

Lemma 4.2. If u is the local solution 0f2.5)on[0, 7), then
sup [[u(s)liv < luollv-

s<[0,7)

18



Proof. Letu be the solution of (2.5). Then, from (2.5), Remark 3.12 ancbCary 3.14, for any
t € [0, 7) we have,

1 1 t
SR = Sllf + f (W (9. uS)Hvds
0
1 t t
= Sl + fo W (9. uSmds+ fo W(9). AUy ds

t
= Sl + [ AU + TP U9 - B, u(S). Augrds

t
= Sl + [ (AU, AU + TS, AU ds
t
- [ B, u9). Augpnds
t
= gl + [ (92 + vu9l*] ds

Now from Theorem 3.13 we know thaft) € M for everyt € [0, 7) and hence by using (4.1)
we obtain,

t
SO = 3ol ~ [ [7seics]ds
and thus L . , L
SO + [ 7o) ds= Fiulf.

Hence we have shown that
lu@®llv < lluolly, te[0,7).

O

Lemma 4.3. LetO<a<b<c<ocoandue Xpap,V € Xpg, such that ¢b~) = v(b*). Then
Z € Xac) Where,

_ju®, teflab),
Z(t)_{v(t), te[b,c).

Proof. Let us take O< a < b < ¢ < co andu € Xjap,V € Xpq, such thau(b™) = v(b*). Then
forany 0< t; < tp < o0, using the definition of the norin [Xg, 1, WE have

C
122, = suplZDIZ + f 2 2t
) te[ac]

< sup 01 + sup ()1 + f iZ(D)2dt + f 202t

te[ab]
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Now by the definition ok we have,
s < SUPIUOIG + SUPIVCIIG + f u(DEdt+ f V(D2

= sup U + f uEdt+ sup IvE)IZ + f V() Rt
te[ab] a te[b,c] b
= |U|X[a,b1 + |V|X[b.c1'

Now sinceu € Xjap and ve Xpq We havezy,, < oo, and thug € X . O

We will use the following lemma to prove our main result ofggice of the global solution.

Lemma 4.4. Lett be finite and the initial datagie V. n M. If u: [0, 7] — V is the solution of
(2.5)on[0, 7] andv : [r, 2r] — V is the solution of(2.5)on [, 27] such that @¢r~) = v(*), then
z:[0,27] — V defined as

_Ju(), tel0,1],
AY = {V(t), te(r,27],

is the solution o0f(2.5)on [0, 27] and ze X0 2.

Proof. Sinceu is the solution of (2.5) on [G] thenu € X and similarly v e Xy 2q =
C([r, 27]; V) N L(r, 27; E). Thus by Lemma 4.3 and the definition@ € X 2,;. Now we are
left to show that : [0, 27] — V defined as

_fu. tefo,q,
Z(t)_{v(t), te[r21],

is the solution of (2.5) on [@7]. In order to achieve this we will have to show ttrgatisfies
(4.2) for everyt € [0, 21].

Z(t) = S(t)z(0) + ft S(t - r)G(z(r))dr. (4.2)
0
Fort € [0, 1), z satisfies (4.2), sincgt) = u(t), ¥ t € [0, 7] andu is the solution of (2.5) on

[0, 7].
Fort € [1, 27], Z(t) = v(t) and since v is the solution to (2.5) on 2],

Z(t) = v(t) = St - 1)v(r) + f t S(t - r)G(v(r))dr.

Now because of continuity afand v, vf) = u(z),

T t
Z(t) = S(t - 7)[S(r)uo + fo S(r - NG(u(r)dr| + f S(t - r)G(v(r))dr.
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Now using the definition o we obtain,
T t
Z(t) = S(t)z(0) + ﬁ S(t—r)G(z(r))dr + j; S(t - r)G(z(r))dr

t
= S()Z(0) + fo S(t - 1)G(Zr))dr.

Thusz satisfies (4.2) on [®27] and hence is a solution to (2.5) on [@®7].
O

Proof of Theorem 1.1Let us takeug € V. PutR = ||uglly. By Theorem 3.9 there existsTa> 0
such that there exists a unique function[0, T] — V which solves (2.5) on [OT] andu € X.
Also by Lemma 4.2/u(T)|lv < R thus again by Theorem 3.9 there exists a unique function
v : [T, 2T] — V which solves (2.5) onT, 2T] and ve X7 21;. Now if we define a new function
z:[0,2T] » Vas

At) = {u(t), te[0,Tl,

v(t), telT,2T],

then by Lemma 4.4z is also a solution of (2.5) ande Xor. Moreover]|z(2T)|ly < R We can
keep doing this and extend our solution further and hencaimbg a global solution of (2.5)
still denoted byu such thatu € X for everyT < co. Each bit of the solution is unique on the

respective domain and hence when we glue two unique bits ta geique extension and thus
obtain a unique global solution due to it's construction. O

5. Convergence to the Euler equation

In this section we are concerned with the convergence of ahgign of the constrained
Navier-Stokes equation, namely

dt
u@)=uyeVnmMm,

{d_u +vAU-v|Vu?u+ B(u,u) = 0, (5.1)

asv vanishes on a torus. The curl ofis defined as Cunl) := Djup, — Dou;. We will prove
Theorem 1.2 after several preliminary results.

Remark 5.1. Curl is a linear isomorphism between V ahg(’JI‘z), where

L3(T?) := {w € L¥(T?) : f w(X)dx = o}.
T2
Moreover foru € V and some universal constas> 0, C, > 0
IAUllL2(r2y < ClIVCurl(U)lliz(r2), (5.2)

(IVUllLer2y < CpllCurl(U)ll(r2). (5.3)
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This remark is proved in Appendix B.

Hereafteru” is the solution to (5.1), and”(t, x) := Curl(’(t))(x). In particular, due to
Remark 5.1 and Theorem 3.18 € C([0, T]; L3(T?)) N L?(0, T; HY(T?)). It is then easy to
check that” is a weak solution to

dwv L4 4 \4 L4 \4
WJFV'(U W) = vAw +v||u||\2/w, (5.4)
w’(0) = w} = Curl(uy) € L3(T?).
Proposition 5.2. Let us fix T> 0, and assume thaty € L*(T?). Then
sup |w” ()lLe(r2) < lwglis(r2) exp(v||u6||\2, T), (5.5)
te[0,T]
T
(f|wmmammslwmwﬂ+wmwﬁwwwmem@m%ﬁTy (5.6)
0

Proof. Takeh e C%(R), convex, with bounded second derivative. Then, sineeC([0, T]; L3(T?))
t
=y [ [0 @t9). V0 P9y + I W @) ] ds g
t
<v [0 (91 ' (9). o' (9 ds

Forp > 2,R> 0, take

WP, if W <R,
h(w) = h = 5.8
(W) = P (W) {Rp + pRI(W - R) + XERRP2(wi — R, if W > R 8)
Then|l (w)w| < p h(w) and, sincelu’(s)|Z < [lujl3
t
(W), 1) < (0. )+ v [ g (hw'(9). ) ds (5.9)
0
By Gronwall inequality
(h(@'(®). 1) < (h(wp). Dexp(v plugliG t).  te[0.T]. (5.10)
Since
||t = sup(hpr(@”), DYP, (5.11)
p.R
we get (5.5).

On the other hand, from the first equality in (5.7), taking rigw) = w?/2

T T
adﬁﬁmqﬂfwwmﬁmw=a%&m+vnwwmdm&mm
0 0
2 )eZVTHu(V)Il\Z,,

1 2 2
< ElwglLZ(TZ) + VTHUBHV |a)6| (T2

where in the last line we used (5.5). Hence (5.6). O
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Proposition 5.3. For eachy € H?(T?), andy > 0
(W'(t) —w'(9),p) < (t-9) (|‘UV|L"°([O,T]><T2) + 2v]lugllv (1 + ||U6||\2/)) @lHz(T2).- (5.12)

Proposition 5.4. Suppose that, uniformly in, u; is bounded inv and Curl(uf) is bounded in
L*(T?). Then the sequencé is precompact in 0, T]; L%(T?)).

Proof. Let us take and fiy € H2(T?). Also fix 0 < s< t < T. Then from the equation (5.4) and

W @®IZ < [lui3 we get,
t
f(AuV, pydr
S

By (5.2), (5.6) and the hypotheses on the initial data, tte farm in the r.h.s. is bounded by
Crlel2(t — )2 for some constar@r independent om. The second term in the r.h.s. of (5.13)
easily enjoys the same bound. As for the third term in the.r.for anyp > 2, Jul.s < Cp(lul2 +
[VulLe), so that from (5.3) and (5.5), this term is still boundeddayy|, 2 (t — 5)2.

Therefore, sincey) is bounded uniformly in_?(T?) by Poincaré inequality, it follows that
u” is equibounded and equicontinuoudif(T?) and, by Ascoli-Arzela theorem, precompact in

C([0, T]; LX(T?)). O

Ku'(t) —u(s), @)l < v . (5.13)

t
f U'vu, gy dr
S

t
+vlluglZ f Ku’, )| dr +
S

Proof of Theorem 1.2Fix T > 0. From Proposition 5.3-5.4, from each subsequence we can
extract a further subsequence such thats w in C([0, T]; H~3(T?)) and weakly inL® ([0, T] x
T?), v — u weakly in L*([0, T]; V) and in C([0, T]; L?(T?)). It is immediate to check that
w = Curl(u).

Notice thatwy := Curl(uj) converges weakly il (T?) to wp := Curl(up). Passing to the
limit in the weak formulation of the equation one then hasglachy € C2([0, T] x T?)

t t
(w(t). ¢(t)) — (w0, ¢(0)) - fo (9. 9sp(9) - fo (U, V) = 0, (5.14)
andw(0) = wop. Recalling thatv = Curl(u)
t t
U). V(1)) — (Uo., V-¢(0)) - fo U(9). 9V (9 ~ fo U-VUVi) =0, (5.15)

Since{uw, Vo) = {(u- Vu, V+¢) holds.
By Bardos uniqueness theorem [1, 9], we concludethab u. O
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Appendix A. Orthogonality of bilinear map to the Stokes opeator
Lemma A.1.Let xe O, whereO = R? or T? and ue D(A), then
(B(u,u), Ay =0, Yue D(A). (A1)

Proof. The following proof has been modified [20] f&7.
Letu e D(A) then, by the definition oB(u, v) andAu,

(B(u, u), Auyy = j(;(u(x)-V)u(x)-Au(x)dx

2
> fo(ui Diuj)(—-Auj) dx

i k=1
2
= — Z fuiDinDﬁuj'dX
i,j k=10

Now by integration by parts and the Stokes formula

2 2
(B(u, u), Aty = —[ Z UiDinDkUj]'ﬁO‘i‘ ka(UiDin)DkUjdX
i 0

i k=1 k=1
2 2
= Z kauiDinDkUjdX+ Z fUkainDkUjdX
i,jk=1v0 i,jk=1Y0

Now we will show that each of the terms in RHS will vanish. Wél wonsider the first term and
show that it vanishes.
2
Dyui Dju;Dyu;j = (D1u1)® + D1tpDous D1y + D1ty (D1up)? + (D1U2)?Daup
ijk=1

+ (D2u1)*D1ly + D2Uz(D2Us)? + D2UyD1Up DUz + (Dauz)®
= (D1uy + Dap) | (D1tr)? + (D2u)? — Dyt Dot |

+ D1upDouy(D1us + Do) + (D1Up)?(D1uy + Douy)

+ (Dou1)?(D1us + Doly).

Now sinceV - u = Diu; + Dou, = 0, the first term vanishes identically.
The second term vanishes because
2

2
2 fUkainDkUjdX= fUiDi(Dkuj)de
i,j,zklzl o Z o

i, k=1
2 2
:[ Z ui(Dkuj)z]‘ﬁO_ Z fDiUi(DkUj)de
ijk=1 i,jk=1"0
2
=-> f(V-u)(Dkuj)zdx = 0.
k=10

Thus we have shown that for evarne D(A), (B(u, u), Auyy = 0. O
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Appendix B. Some results in the support of Section 5

Remark B.1.1f V- u = 0 and Curl(u) = 0, then u is constant by Hodge decomposition. In
particular if u € V andCurl(u) = O, then u= 0.

Proof of Remark 5.1We want to show that Curl is a linear isomorphism between VIg(@?).
It is clear that the map
Curl : V3 um w = Curl(u) € L3(T?),

is linear and continuous. Hence in order to prove the Remdrk & suficient to find a contin-
uous linear map

A L5(T?) -V, (B.1)

such that,
Curlo A = id on L3(T?), (B.2)
Ao Curl=id on V. (B.3)

Letw € Lg(TZ) then by elliptic regularity [11] (applies also fgr # 2) there exists a unique
¥ € L3(T?) N H3(T?) such that
Alﬂ =w, (B4)

and the map
Liswe yelinH?

is bounded. Let us put= V+y, i.e.
u = (D2y, —D1y). (B.5)

Thenu € HY(T?) andV - u = 0 in the weak sense. Thuse V. Using all of this we define the
bounded linear map. : L5(T?) > w — u € V. Now we are left to check that (B.2) and (B.3)
holds for thisA.

Let us takew € L3(T?) and putu := A(w) € V. Now considering LHS of (B.2),

(Curlo A)(w) = Curl(u) = Dauy — D1us
= D2Doy — (-D1D1y) = Ay = w,

where we have used the definitionsiodndu from (B.4) and (B.5). Hence we have established
(B.2).

Now we take ve V and putw = Curl(v) € L3(T?). Definey € L3(T?) N H(T?) by
AY = w. (B.6)

Observe that
Ag = Curl(Dap, —D1y), ¢ € HX(T?).
Thus by (B.6) and the definition affrom (B.5) we obtain

Curl(u) = Curl(v),
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whereu = V4 e V.
Therefore using Remarkd = v, thus proving that Curl is a linear isomorphism between ¥ an
L3(T?). It is straightforward to show (5.2). Thus we are left toye¢5.3).

Let us fixp € (1, o) and takeu € H-P(T?). Denotew = Curl(u) € L5(T?). From the first
part of the proof there exists a bounded linear mapL{(T?) — H-P(T?)

A:LgawHueHl’p,

such that
Curlo A = id on L)(T?).

In particular, there exists@;, > 0,
|Awlregrzy < Chlwliprsy, @ € LE(T?).

Hence
IVAwliery < Cplwliers,  w € LE(T?). (B.7)

Taking nowu € HLP(T?). Puttingw = Curl(u) so thatAw = ufrom (B.7) we infer (B.8),
[VUlLp(r2) < Cplwlp(r?). (B.8)

Now sincelwl o(rz) < |wlL~(2) for everyp, we can establish (5.3). O
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