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Abstract

In this work we study the existence of nodal solutions for the problem

−∆u = λueu
2+|u|p in Ω, u = 0 on ∂Ω,

where Ω ⊆ R2 is a bounded smooth domain and p→ 1+.
If Ω is ball, it is known that the case p = 1 defines a critical threshold between

the existence and the non-existence of radially symmetric sign-changing solutions.
In this work we construct a blowing-up family of nodal solutions to such problem
as p → 1+, when Ω is an arbitrary domain and λ is small enough. As far as we
know, this is the first construction of sign-changing solutions for a Moser-Trudinger
critical equation on a non-symmetric domain.

1 Introduction

Let us consider the equation

∆u+ λueu
2+a|u|p = 0 in Ω, u = 0 on ∂Ω, (1)

where Ω is a bounded smooth domain in R2, λ is a positive parameter and the nonlinear
term h(u) := uea|u|

p
, with a ∈ R and p ∈ [0, 2), is a lower-order perturbation of eu

2

according to the definition given by Adimurthi in [2].

The nonlinearity f(u) = h(u)eu
2

is critical from the view point of the Trudinger
imbedding. Indeed, in view of the Moser-Trudinger inequality (see [25, 29, 24])

sup


∫
Ω

eu
2
dx : u ∈ H1

0 (Ω), ‖u‖2H1
0 (Ω) ≤ 4π

 < +∞, (2)
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the functional

Jλ(u) :=
1

2

∫
Ω

|∇u|2dx− λ
∫
Ω

F (u)dx, u ∈ H1
0 (Ω), (3)

where F (t) =
t∫

0

f(s)ds, is well defined and its critical points are solutions to problem

(1). Adimurthi in [2] proved that Jλ satisfies the Palais-Smale condition in the infinite
energy range (−∞, 2π) but, as observed by Adimurthi and Prashant in [5], the critical
nature of f(u) reflects in the failure of the Palais-Smale condition at the sequence of
energy levels 2πk with k ∈ N (see also [7]).

In [2] Adimurthi proved the existence of a critical point of Jλ if the perturbation h
is large, i.e. a ≥ 0, and if 0 < λ < λ1(Ω), where λ1(Ω) is the first eigenvalue of −∆ with
Dirichlet boundary condition ((see also [1])). Such a critical point is a positive solution
to problem (1). Successively, Adimurthi and Prashant in [6] showed that the condition
a ≥ 0 is necessary to get a positive solution to (1). Indeed, they proved that if the
perturbation h is small, i.e. a < 0, then there are no positive solutions to problem (1)
when the domain Ω is a ball provided λ is small. The case a = 0 in a general domain
Ω has been studied by Del Pino, Musso and Ruf [14] using a perturbative approach.
Indeed they find multiplicity of positive solutions which blow-up in one or more points
of Ω (depending on the geometry) as λ → 0. We point out that a general qualitative
analysis of blowing-up families of positive solutions to problem (1) has been obtained
by Druet in [15] (see also [3, 17, 16]).

As far as it concerns the existence of sign-changing solutions, Adimurthi and Yadava
in [8] proved that problem (1) has a nodal solution when λ is small if there is the further
restriction p > 1 on the growth of the large perturbation h (i.e. a > 0). Actually,
this condition turns out to be optimal for the existence of nodal radial solutions in a
ball. Indeed Adimurthi and Yadava in [9] proved that if a > 0 and Ω is a ball, problem
(1) does not have any radial sign-changing solution when λ is small and p ∈ [0, 1]. If
one drops the radial requirement, Adimurthi and Yadava in [8] proved the existence
of infinitely many sign-changing solutions in a ball whatever λ > 0 is. We point out
that, in the case a = 0, the approach of Del Pino, Musso and Ruf [14] allows to find
sign-changing solutions which blow-up positively and negatively at least at two different
points in any domain Ω as λ→ 0 (even if this is not explicitly said in their work).

According to the previous discussion, it turns out that when a > 0 the case p = 1
defines a critical threshold for the existence of radial sign-changing solutions in the ball.
Indeed, when Ω = B(0, 1), (1) has radially symmetric sign-changing solutions which
blow-up as p → 1+. The precise behavior of such solutions was studied by Grossi and
Naimen in [19]. Therefore, when a > 0, it is natural to ask whether it is possible to find
sign-changing solutions to problem (1) on an arbitrary planar domain Ω which blow-up
at one point in Ω as p→ 1+.

In this paper we give a positive answer. More precisely, let us consider the problem{
−∆u = λueu

2+|u|1+ε
in Ω,

u = 0 on ∂Ω,
(4)
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where ε is a positive small parameter. Set

fε(t) = tet
2+|t|1+ε

. (5)

For a given 0 < λ < λ1(Ω), let u0 be a positive solution of the problem
−∆u0 = λf0(u0) in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω,

(6)

whose existence has been established by Adimurthi in [2]. We make the following as-
sumptions:

(A1) u0 is non-degenerate, i.e. there is no non-trivial solution ϕ ∈ H1
0 (Ω) of the equation

−∆ϕ = λf ′0(u0)ϕ in Ω, ϕ = 0 on ∂Ω. (7)

(A2) u0 has a C1−stable critical point ξ0 ∈ Ω such that u0(ξ0) > 1
2 .

Then, we will show that (4) admits a family of sign-changing solutions which blow-up
at ξ0 with residual mass −u0 as ε→ 0, namely:

Theorem 1.1 For 0 < λ < λ1(Ω), let u0 be a solution of (6) such that (A1) and (A2)
are satisfied. Let also ξ0 be as in (A2). Then there exist ε0 > 0 and a family (uε)0<ε<ε0

of sign-changing solutions to (4) such that:

• max
B(ξ0,r)

uε → +∞ as ε→ 0, for any 0 < r < d(ξ0, ∂Ω).

• uε → −u0 weakly in H1
0 (Ω) and in C1(Ω \ {ξ0}).

Let us make some comments about assumtpions (A1) and (A2).

Remark 1.2 • The solution u0 to problem (6) turns out to be non-degenerate when
Ω is the ball as proved by Adimurthi, Karthik and Giacomoni in [4]. In a work
in progress, Grossi and Naimen are going to prove that the solution is also non-
degenerate when Ω is convex and symmetric (see [20]). Actually, we believe that the
non-degeneracy condition holds true for most domains Ω and positive parameters
λ. Indeed, one could use similar arguments to those used by Micheletti and Pistoia
in [23] for a class of singularly perturbed equations.

• We remind that ξ0 is a C1−stable critical point of u0 if the Brouwer degree
deg (∇u0, B(ξ0, r), 0) 6= 0. In particular, any strict local maximum point of u0

is C1−stable. We point out that by Adimurthi and Druet [3] we can deduce that
assumption (A2) holds true when the parameter λ is small enough.
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• We strongly believe that the condition u0(ξ0) > 1
2 is not purely technical, but it

is necessary to build a solution which blows-up at ξ0. Indeed, we conjecture that,
if u0(ξ0) ≤ 1

2 , there does not exist any sign-changing solution which blows-up at
ξ0 with non-trivial residual mass u0 as ε → 0. We point out that, in a different
setting, a similar condition was proved by Mancini and Thizy [22] for problem (1)
on a ball with p = 1 and a < 0: in fact, they show that the value at the origin
of the residual mass of any non-compact sequence of radially symmetric positive
solutions must be equal to −a

2 (and we get 1
2 , when a = −1).

Actually, we can give a more precise description of the asymptotic behavior of the
solution uε as ε→ 0, since it is build via a Lyapunov-Schmidt procedure. For δ, µ > 0,
and ξ ∈ Rn, let us consider the functions

Uδ,µ,ξ(x) = log

(
8µ2δ2

(µ2δ2 + |x− ξ|2)2

)
, (8)

which describe the set of all the solutions to the Liouville equation

−∆U = eU in R2, (9)

under the condition eU ∈ L1(R2) (see [21, 12]). We further consider the projection
PUδ,µ,ξ := (−∆)−1eUδ,µ,ξ , where (−∆)−1 : L2(Ω)→ H1

0 (Ω) is the inverse of−∆. Namely,
PUδ,µ,ξ is defined as the unique solution to{

−∆PUδ,µ,ξ = −∆Uδ,µ,ξ = eUδ,µ,ξ in Ω,

PUδ,µ,ξ = 0 on ∂Ω.
(10)

Intuitively, we want to look for solutions of (4) that look like αPUδ,µ,ξ − u0 for suit-
able choices of the parameters α, δ, µ, ξ. Unfortunately, in order to succesfully perform
Lyapunov-Schmidt reduction, a more precise ansatz is necessary and we are forced to
replace u0 with a better approximation of the solutions. First, the non-degeneracy
assumption (A1) allows to find a positive solution vε ∈ C1(Ω) of (4) such that

vε → u0 in C1(Ω),

as ε→ 0. Then, we consider the function

Vε,α,ξ := vε + αwε,ξ + α2zε,ξ, (11)

where α ∈ (0, 1) is a small positive parameter depending on ε, µ, ξ such that α → 0
as ε → 0, and wε,ξ and zε,ξ are defined as the unique solutions to the couple of linear
problems {

∆wε,ξ + λf ′ε(vε)wε,ξ = 8πλGξf
′
ε(vε) in Ω,

wε,ξ = 0 on ∂Ω,
(12)

and {
∆zε,ξ + λf ′ε(vε)zε,ξ = λ

2f
′′
ε (−vε)(8πGξ − wε)2 in Ω,

zε = 0 on ∂Ω,
(13)
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with Gξ denoting the Green function of Ω with singularity at ξ, namely the distributional
solution to {

−∆Gξ = δξ in Ω,

Gξ = 0 on ∂Ω.
(14)

Problems (12) and (13) are nothing but the linearization of problem (4) around the
solution vε and the R.H.S.’s are the terms of the second order Taylor’s expansion with
respect to α of fε(αPUδ,µ,ξ − Vε,α,ξ) far away from the concentration point ξ (indeed
PUδ,µ,ξ ∼ 8πGξ because of (23)).

Theorem 1.1 follows at once by the following result:

Theorem 1.3 Let λ, u0, ξ0 be as in Theorem 1.1. There exists ε0 > 0 and functions
α, δ, µ : (0, ε0)→ (0,+∞), ξ : (0, ε0)→ Ω and ϕ : (0, ε0)→ H1

0 (Ω) such that:

• uε := α(ε)PUδ(ε),µ(ε),ξ(ε) − Vε,α(ε),ξ(ε) + ϕ(ε) is a solution (4).

• α(ε)→ 0, δ(ε)→ 0, µ(ε)→
√

8e−1, ξ(ε)→ ξ0, and uε(ξ(ε))→ +∞ as ε→ 0.

• ‖ϕ(ε)‖H1
0 (Ω) + ‖ϕ(ε)‖L∞(Ω) = O(e−

log(2u0(ξ0))
ε ).

Let us briefly sketch the main steps of the proof of Theorem 1.3. First, in Section 2,
we choose α = α(ε, µ, ξ) and δ = δ(ε, µ, ξ) such that the function

ωε,µ,ξ := αPUδ,µ,ξ − Vε,α,ξ (15)

is an approximate solution of (4). Then, we look for solutions of (4) of the form ωε,µ,ξ+ϕ
with ϕ ∈ H1

0 (Ω). Clearly, (4) can be written in terms of ϕ as

−∆ϕ− λf ′ε(ωε,µ,ξ)ϕ = R+N(ϕ), (16)

where the error term R is defined by

R = Rε,µ,ξ := ∆ωε,µ,ξ + λfε(ωε,µ,ξ), (17)

and the higher order term N by

N(ϕ) = Nε,µ,ξ(ϕ) := λ
(
fε(ωε,µ,ξ + ϕ)− fε(ωε,µ,ξ)− f ′ε(ωε,µ,ξ)ϕ

)
. (18)

Equivalently, introducing the linear operator

Lϕ = Lε,µ,ξϕ := ϕ− (−∆)−1(λf ′(ωε,µ,ξ)ϕ), (19)

we need to solve
Lϕ = (−∆)−1 (R+N(ϕ)) . (20)

A careful and delicate estimate of the error R will be given in Section 3. The behaviour
of the operator L will be studied in Section 4. On the one hand, for functions supported
away from a suitable schrinking neighborhood of ξ, we will show that L is close to the
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operator L1ϕ := ϕ − (−∆)−1(λf ′0(u0)ϕ), which is invertible on H1
0 (Ω) because of the

non-degeneracy assumption (A1). On the other hand, near the point ξ, L is close to
the operator L0ϕ := ϕ − (−∆)−1(eUδ,µ,ξϕ). This operator appears in the analysis of
several critical problems in dimension 2 (see for example [10, 13, 18]) and its behavior
is well known: although L0 is not invertible, it is possible to find an approximate three-
dimensional kernel Kδ,µ,ξ for L0 by projecting on H1

0 (Ω) the three functions

Z0,δ,µ,ξ(x) =
δ2µ2 − |x− ξ|2

|x− ξ|2 + δ2µ2
, Zi,δ,µ,ξ(x) =

2δµ(xi − ξi)
|x− ξ|2 + δ2µ2

, i = 1, 2.

Such properties transfer to the operator L, which turns out to be invertible on the
subspace K⊥δ,µ,ξ orthogonal to Kδ,µ,ξ in H1

0 (Ω). More precisely, denoting by π and π⊥

the projections of H1
0 (Ω) respectively on Kδ,µ,ξ and K⊥δ,µ,ξ, we will show that π⊥L is

invertible on K⊥δ,µ,ξ. Then, it is natural to split equation (20) as{
ϕ = (π⊥L)−1π⊥ (−∆)−1 (R+N(ϕ)) ,

πLϕ = π (−∆)−1 (R+N(ϕ)) .
(21)

The first equation of (21) will be solved in Section 5, where for any µ > 0, ξ close to ξ0

and any small ε > 0, we will find a solution ϕε,µ,ξ via a contraction mapping argument
on a sufficiently small ball in K⊥δ,µ,ξ ∩ L∞(Ω). Then, recalling that dimKδ,µ,ξ = 3 and
using assumption (A2), we will show in Section 6 that it is possible to choose the three
parameters µ = µ(ε) and ξ = ξ(ε) = (ξ1(ε), ξ2(ε)) so that the second equation in (21)
is also fullfilled. Clearly, for such choice of µ and ξ, the function ϕε,µ(ε),ξ(ε) solves both
the equations in (21) (or, equivalently (16) and (20)), and uε := ωε,µ(ε),ξ(ε) + ϕε,µ(ε),ξ(ε)

is a solution of (4).

It is important to point out that choice of the concentration point ξ(ε) is extremely
delicate since the scaling parameter δ turns out to be much smaller than the parameter
α, whose powers control all the error terms. To overcome this difficulty, we introduce
a new argument based on a precise Pohozaev-type identity. This allows us to bypass
global a priori gradient estimates on the solution ϕε,µ,ξ, which are hard to obtain for
Moser-Trudinger critical problems. Our argument requires a very precise ansatz of the
approximate solution ωε,µ,ξ. In particular, the presence of the correction terms wε,ξ and
zε,ξ in the expression of Vε,α,ξ is not merely technical, but plays a crucial role both in
the estimates of the error term R and in the choice of ξ(ε).

2 Construction of the approximate solution

In this section we give the detailed construction of the approximate solution ωε,µ,ξ.
Here and in the rest of the paper, we will assume that (µ, ξ) ∈ U × B(ξ0, σ), where
U b R+ is an open interval containing µ0 :=

√
8e−1, ξ0 is as in the assumption (A2),

and 0 < σ < 1
2d(ξ0, ∂Ω). By (A2), we can also assume

inf
B(ξ0,σ)

u0(ξ) >
1

2
. (22)

6



2.1 The main terms of the ansatz

Let us introduce the main property of the projection of the bubble PUδ,µ,ξ defined in
(10), which gives the main term of the approximate solution close to the blow-up point
ξ. Let Gξ(·) = G(·, ξ) be the Green’s function of −∆ with Dirichlet boundary conditions
introduced in (14) and let H(·, ξ) be its regular part, i.e.

H(x, ξ) := Gξ(x)− 1

2π
log

1

|x− ξ|
.

Lemma 2.1 We have

PUδ,µ,ξ(x) =Uδ,µ,ξ(x)− log(8µ2δ2) + 8πH(x, ξ) + ψδ,µ,ξ(x),

where
‖ψδ,µ,ξ‖C1(Ω) = O(δ2),

uniformly with respect to µ ∈ U , ξ ∈ B(ξ0, σ).
In particular,

PUδ,µ,ξ → 8πGξ in C1
loc(Ω \ {ξ}). (23)

Proof. See for example [11, Proosition 5.1]. �

Next, let us define the main term of the approximate solution in the whole domain
as αPUδ,µ,ξ − vε where α is a positive parameter approaching zero as ε→ 0 and vε is a
non-degenerate solution to (4), whose existence is proved in the following lemma.

Lemma 2.2 Let λ and u0 be as in Theorems 1.1 and 1.3. There exists ε0 > 0, and a
family of functions (vε)0<ε<ε0 ⊆ C1(Ω) such that:

i. vε is a non-degenerate weak solution of (4) for any ε ∈ (0, ε0).

ii. vε → u0 in C1(Ω) as ε→ 0.

iii. There exists c > 0 such that vε(x) ≥ cd(x, ∂Ω) for any x ∈ Ω, ε ∈ (0, ε0).

Proof. Let F : (−1, 1)×H1
0 (Ω)→ H1

0 (Ω) be defined by

F (ε, u) = Fε(u) := u− (−∆)−1(λfε(u)), (24)

where fε is defined as in (5). F is well defined because the Moser-Trudinger inequality
(2) implies that fε(u) ∈ Lp(Ω) for any 1 ≤ p < +∞ and u ∈ H1

0 (Ω). Moreover, it is a
C1-map and its partial derivative DFε(u) : H1

0 (Ω)→ H1
0 (Ω) defined by

DFε(u)[ϕ] = ϕ− (−∆)−1(λf ′ε(u)ϕ)

is a Fredholm operator of index 0 (since the embedding H1
0 (Ω) ↪→ Lp(Ω) is compact).

Now, let u0 be a non-degenerate weak solution of (6) such that (A1) holds true. In
particular, F0(u0) = 0 and DF0(u0) is invertible. Therefore, by the implicit function
theorem, we can construct a C1 curve ε 7→ vε ∈ H1

0 (Ω), defined for |ε| < ε0 such that
v0 = u0, Fε(vε) = 0, and DFε(vε) is invertible for |ε| < ε0. Then i. holds.
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Applying the Moser-Trudinger inequality (2) and standard elliptic estimates, we
obtain ii..

Hopf’s lemma and the compactness of ∂Ω give ∂u0
∂ν ≤ −2c on ∂Ω, for some c > 0.

Then, for ε sufficiently small, we have ∂vε
∂ν ≤ −c, which in turn gives vε(x) ≥ cd(x, ∂Ω)

for x in a neighborhood of ∂Ω. Finally, since vε → u0 uniformly in Ω, and u0 > 0 in Ω,
we get iii.. �

2.2 The correction of the ansatz

We need to correct the ansatz in the whole domain by solving the following two linear
problems (12) and (13):{

∆wε,ξ + λf ′ε(vε)wε,ξ = 8πλGξf
′
ε(vε) in Ω,

wε,ξ = 0 on ∂Ω,

and {
∆zε,ξ + λf ′ε(vε)zε,ξ = λ

2f
′′
ε (−vε)(8πGξ − wε)2 in Ω,

zε = 0 on ∂Ω.

Lemma 2.3 For any 0 < ε < ε0 and any ξ ∈ Ω, there exist wε,ξ, zε,ξ such that (12)
and (13) hold. Moreover, there exists C > 0 such that

‖wε,ξ‖C1(Ω) + ‖zε,ξ‖C1(Ω) ≤ C (25)

for ε ∈ (0, ε0), ξ ∈ Ω.

Proof. The existence of the solutions immediately follows from the non-degeneracy of
the function vε proved in Lemma 2.2. Moreover, since for any p ∈ [1,+∞) one has

sup
ξ∈Ω
‖Gξ‖Lp(Ω) < +∞ and sup

0<ε<ε0

‖vε‖C1(Ω) < +∞,

(25) follows by standard elliptic estimates. �

Finally, we introduce the corrected ansatz as

ωε,µ,ξ := αPUδ,µ,ξ − Vε,α,ξ (26)

with
Vε,α,ξ := vε + αwε,ξ + α2zε,ξ, (27)

where vε is defined in Lemma 2.2 and wε,ξ and zε,ξ as in Lemma 2.3.

2.3 The choice of parameters

It will be necessary to choose the parameters α = α(ε, µ, ξ) and δ = δ(ε, µ, ξ) such that
λfε(ωε,µ,ξ) ∼ αeUδ,µ,ξ when |x− ξ| ∼ δ. We point out that one of the main difficulties in
this problem is that this estimates holds true only at a very small scale.

Let us fix the values of α and δ according to the next lemma. The proof is based on
the contraction mapping theorem and is postponed to the appendix.
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Lemma 2.4 There exist ε0 > 0 and functions α = α(ε, µ, ξ), β = β(ε, µ, ξ) and δ =
δ(ε, µ, ξ), defined in (0, ε0)×U ×B(ξ0, σ) and continuous with respect to µ and ξ, such
that 

λβeβ
2+β1+ε

= α
δ2 ,

2αβ + αβε + εαβε = 1,

β = 4α log 1
δ − Vε,α,ξ(ξ) + αcµ,ξ,

(28)

where cµ,ξ := − log(8µ2) + 8πH(ξ, ξ) and Vε,α,ξ is defined in (11).
Moreover, as ε→ 0, we have that

α(ε, µ, ξ) =
1

2
e−

log(2u0(ξ))+o(1)
ε , (29)

β(ε, µ, ξ) =
1

2α
− u0(ξ) + o(1), (30)

log
1

δ(ε, µ, ξ)
=

1 + o(1)

8α2
, (31)

where o(1)→ 0 as ε→ 0, uniformly for µ ∈ U and ξ ∈ B(ξ0, σ).

Remark 2.5 Note that (29)-(31) and (22) give α(ε, µ, ξ), δ(ε, µ, ξ)→ 0 and β(ε, µ, ξ)→
+∞ as ε→ 0, uniformly for µ ∈ U and ξ ∈ B(ξ0, σ).

From now on we let α = α(ε, µ, ξ), β = β(ε, µ, ξ) and δ = δ(ε, µ, ξ) be as in Lemma
2.4.

It will be convenient to work on the scaled domain Ω−ξ
δ :=

{
x−ξ
δ , x ∈ Ω

}
. Note

that we have the scaling relation

Uδ,µ,ξ(x) = Ūµ

(
x− ξ
δ

)
− 2 log δ, (32)

where

Ūµ(y) = U1,µ,0(y) = log

(
8µ2

(µ2 + |y|2)2

)
. (33)

Lemma 2.6 As ε→ 0, we have

ωε,µ,ξ(ξ + δy) = β + αŪµ(y) +O(δ|y|) +O(δ2), (34)

uniformly for y ∈ B(0, σδ ), µ ∈ U and ξ ∈ B(ξ0, σ).
Moreover, for any R > 0 it holds also true that

λfε(ωε,µ,ξ)(ξ + δy) = αeUδ,µ,ξ(ξ+δy)(1 +O(α2)), (35)

as ε→ 0 uniformly for y ∈ B(0, R), µ ∈ U and ξ ∈ B(ξ0, σ).
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Proof. Lemma 2.1 and the scaling relation (32) show that, as δ → 0, we have the
following expansion uniformly for ε ∈ (0, ε0), µ ∈ U , ξ ∈ B(ξ0, σ) and y ∈ B(0, σδ ):

ωε,µ,ξ(ξ + δy) = αŪµ + 4α log
1

δ
+ αcµ,ξ − Vε,α,µ(ξ)︸ ︷︷ ︸

=β

+Vε,α,µ(ξ)− Vε,α,ξ(ξ + δy)

+ 8πα(H(ξ + δy, ξ)−H(ξ, ξ)) +O(δ2).

By Lemmas 2.2 and 2.3, we know that Vε,α,µ is uniformly bounded in C1(Ω). Thus

Vε,α,µ(ξ + δy) = Vε,α,µ(ξ) +O(δ|y|).

Similarly, since H ∈ C1(Ω×B(ξ0, σ)), we have

H(ξ + δy, ξ) = H(ξ, ξ) +O(δ|y|).

Then estimate (34) is proved.

Now, let us prove (35). Note that (29)-(31) yield β = O( 1
α), δ = O(e−

1+o(1)

8α2 ), and
βε = 2u0(ξ) + o(1) = O(1). For |y| ≤ R, (34) implies

ωε,µ,ξ(ξ + δy) = β + αŪµ(y) +O(δ).

In particular
ωε,µ,ξ(ξ + δy)2 = β2 + 2αβŪµ(y) +O(βδ), (36)

and

ωε,µ,ξ(ξ + δy)1+ε = (β + αŪµ(y) +O(δ))(β + αŪµ(y) +O(δ))ε

= (β + αŪµ(y) +O(δ))βε
(

1 +
α

β
Ūµ(y) +O(αδ)

)ε
=
(
β1+ε + αβεŪµ(y) +O(δ)

)(
1 +

εα

β
Ūµ(y) +O(εα4)

)
= β1+ε + αβεŪµ(y) + εαβεŪµ(y) +O(εα3).

(37)

Then, using (28) we get

λfε(ωε,µ,ξ)(ξ + δy) = λωε,µ,ξ(ξ + δy)eωε,µ,ξ(ξ+δy)2+ω1+ε
ε,µ,ξ(ξ+δy)

= λβ(1 +O(α2))eβ
2+β1+ε+(2αβ+αβε+αεβε)Ūµ(y)+O(α2)

= λβeβ
2+β1+ε︸ ︷︷ ︸

= α
δ2

e

(2αβ + αβε + αεβε)︸ ︷︷ ︸
=1

Ūµ(y)

(1 +O(α2))eO(α2)

=
α

δ2
eŪµ(y)(1 +O(α2))

= αeUδ,µ,ξ(ξ+δy)(1 +O(α2)),

which proves (35). �

It is also useful to point out the following result which will be used in the next
sections.
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Remark 2.7 Lemma 2.1 and Lemma 2.4 give

0 ≤ αPUδ,µ,ξ ≤ β + u0(ξ) + o(1),

and
−Vα,ε,ξ ≤ ωε,µ,ξ ≤ β + o(1),

uniformly for x ∈ Ω, ε ∈ (0, ε0), µ ∈ U , ξ ∈ B(ξ0, σ).

Notation: In order to simplify the notation, we will write Uε, Ū , Vε, ωε, wε and
zε instead of Uδ,µ,ξ, Ūµ, Vε,α,ξ, ωε,µ,ξ, wε,ξ and zε,ξ, without specifying explicitly the
dependence on the parameters. It is important to point out that all the estimates of
the next sections will be uniform with respect to µ ∈ U and ξ ∈ B(ξ0, σ). This will
allow us to choose freely the values of µ and ξ in Section 6. Consistently, the notation
O(f(x, ε, α, β, δ)) and o(f(x, ε, α, β, δ)) will be used for quantities depending on ε, ξ, µ
(and the parameters α, β, δ of Lemma 2.4) and satisfying respectively

|O(f(x, ε, µ, ξα, β, δ))| ≤ Cf(x, ε, µ, ξ, α, β, δ)) and
o(f(x, ε, µ, ξα, β, δ))

f(x, ε, µ, ξ, α, β, δ)
→ 0,

as ε→ 0, uniformly for µ ∈ U and ξ ∈ B(ξ0, σ).

3 The estimate of the error term

In this section we give estimates for the error term R defined in (17)

R = Rε,µ,ξ := ∆ωε,µ,ξ + λfε(ωε,µ,ξ).

It will be convenient to split Ω into four different regions:

Ω = B(ξ, ρ0) ∪
(
B(ξ, ρ1) \B(ξ, ρ0)

)
∪
(
B(ξ, ρ2) \B(ξ, ρ1)

)
∪
(

Ω \B(ξ, ρ2)
)
, (38)

where ρ0 = ρ0(ε, µ, ξ), ρ1 = ρ1(ε, µ, ξ), ρ2 = ρ2(ε, µ, ξ), are defined by

ρ0 = δe
ε
α , ρ1 = e−

u0(ξ)
2α and ρ2 = e−

ε
α . (39)

Note that
δ � ρ0 � ρ1 � ρ2 � 1, as ε→ 0,

by (29) and (31). Roughly speaking, we have to split the error into four parts: in B(ξ, ρ0)

we have λfε(ωε) = αeUε(1 + o(1)) (see (35)) and we can use a blow-up argument to get
a uniform weighted estimate on R. This estimate does not hold anymore in the set
Ω \ B(ξ, ρ0), which we further split into three parts: the region Ω \ B(ξ, ρ2), where
αGξ = O(ε) and a uniform estimate on R can be obtained via a Taylor expansion of
fε(ωε) (using that ωε = −Vε + 8παGξ + o(α2)), and the two annuli B(ξ, ρ1) \ B(ξ, ρ0)
and B(ξ, ρ2) \ B(ξ, ρ1), where we give quite delicate integral estimates. The last two
regions are treated separately since ωε ≥ c0 > 0 in B(ξ, ρ1) \B(ξ, ρ0), while ωε changes
sign in B(ξ, ρ2) \B(ξ, ρ1) (cfr. Lemma 3.2 and Lemma 3.11).
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3.1 A uniform expansion in B(ξ, ρ1)

In this section we give a more precise version of the expasions in (36)-(37).

Lemma 3.1 For any ε ∈ (0, 1) and x ≥ −1, we have

|(1 + x)1+ε − 1− (1 + ε)x| ≤ εx2.

Proof. According to Bernoulli’s inequality we have

(1 + x)ε ≤ 1 + εx (40)

and
(1 + x)1+ε ≥ 1 + (1 + ε)x. (41)

Since x ≥ −1, thanks to (40) we have that

(1 + x)1+ε ≤ (1 + x)(1 + εx) = 1 + (1 + ε)x+ εx2. (42)

Then, the conclusion follows from (41) and (42). �

Lemma 3.2 Set c0 :=
1

2
inf

ξ∈B(ξ0,σ)
u0(ξ). For x ∈ B(ξ, ρ1), we have that

β + αŪ
(x− ξ

δ

)
≥ c0, (43)

for sufficiently small ε. In particular, we have

c0 ≤ ωε ≤ β(1 + o(1)). (44)

Proof. The definitons of U and ρ1 (see (33) and (39)), and (30)-(31) give

β + αŪ
(x− ξ

δ

)
≥ β + αŪ

(ρ1

δ

)
= β − 4α log

ρ1

δ
+ o(1)

= u0(ξ) + o(1),

which implies (43) for sufficiently small ε. To get (44), it is sufficient to apply Lemma
2.6 and Remark 2.7. �

Lemma 3.3 For x ∈ B(ξ, ρ1), we have

ω2
ε(x)+ω1+ε

ε (x) = β2+β1+ε+Ū

(
x− ξ
δ

)
+α2Ū2

(
x− ξ
δ

)
+O

(
εα3

(
1 + Ū2

(x− ξ
δ

)))
.
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Proof. Set y = x−ξ
δ ∈ B(0, ρ1

δ ). Noting that U(y) = O(α−2) and using Lemma 2.6, we
get

ω2
ε(x) = ω2

ε(ξ + δy) =
(
β + αŪ(y) +O(ρ1)

)2
= β2 + 2αβŪ(y) + α2Ū(y)2 +O(βρ1).

Similarly, since Lemma 3.2 gives α
β Ū(y) ≥ −1 + c0

β ≥ −1, by Lemma 3.1 we infer

|ωε|1+ε(x) = β1+ε

(
1 +

α

β
Ū(y) +O(αρ1)

)1+ε

= β1+ε

(
1 + (1 + ε)

(α
β
Ū(y) +O(αρ1)

)
+O

(
ε

(
α

β
Ū(y) +O(αρ1)

)2
))

= β1+ε + (1 + ε)αβεŪ(y) +O(εα3(1 + Ū2(y))).

Then the conclusion follows from the second equation in (28). �

3.2 Expansions in B(ξ, ρ0)

Let us now restrict our attention to the smaller ball B(ξ, ρ0). This allows to control the
term α2Ū2 appearing in the expansion of Lemma 3.3. Indeed, since |Ū(y)| = −4 log |y|+
O(1) as |y| → +∞, we have that

Ū

(
x− ξ
δ

)
= O

( ε
α

)
and α2Ū2

(
x− ξ
δ

)
= O(ε2) for x ∈ B(ξ, ρ0). (45)

Lemma 3.4 For x ∈ B(ξ, ρ0), we have

R(x) = α3eUε(x)

(
2Ū
(x− ξ

δ

)
+ Ū2

(x− ξ
δ

))
+ α4eUε(x)O

(
1 + Ū4

(x− ξ
δ

))
.

Proof. Set y = x−ξ
δ . First by Lemma 2.6, Lemma 3.3, and (28)-(32), we get that

λfε(ωε(x)) = λβ

(
1 +

α

β
Ū(y) +O(αρ1)

)
eω

2
ε(x)+ω1+ε

ε (x)

=
α

δ2

(
1 + 2α2Ū(y) +O(α3(1 + |Ū(y)|))

)
eŪ(y)+α2Ū2(y)+O(εα3(1+Ū2(y)))

= αeUε(x)
(
1 + 2α2Ū(y) +O(α3(1 + |Ū(y)|))

)
eα

2Ū2(y)+O(εα3(1+Ū2(y))).

Now, by (45), we can expand the last exponential term, and find

eα
2Ū2(y)+O(εα3(1+Ū2(y))) = 1 + α2Ū2(y) +O(εα3(1 + Ū2(y))) +O(α4(1 + Ū4(y)))

= 1 + α2Ū2(y) +O(εα3(1 + Ū4(y))).

We can so conclude that

λfε(ωε(x)) = αeUε(x) + α3eUε(x)
(
2Ū(y) + Ū(y)2

)
+ α4eUε(x)O(1 + Ū4(y)). (46)
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Moreover, by (10)-(13), and Lemmas 2.2-2.3 we have

∆ωε = −αeUε +O(1) = −αeUε
(
1 +O(α)e−Uε

)
= −αeUε(1 + o(α3)), (47)

where in the last equality we used that

e−Uε(x) =
(δ2µ2 + |x− ξ|2)2

8δ2µ2
= O(δ2e

4ε
α ) = o(α3),

for x ∈ B(ξ, ρ0). Thanks to (46) and (47), we conclude that

R(x) = α3eUε(x)
(
2Ū(y) + Ū2(y)

)
+ α4eUε(x)O(1 + Ū4(y)).

�

As an immediate consequence of the previous lemma we obtain the estimate:

Corollary 3.5 We have that

R = O

(
α3eUε

(
(1 + Ū4

( · − ξ
δ

)))
in B(ξ, ρ0).

3.3 Estimates on B(ξ, ρ1) \B(ξ, ρ0)

In this region, it is diffcult to provide pointwise estimates of R because the term α2Ū2

appearing in the expansion of Lemma 3.3 becomes very large. Then, we will look for
integral estimates. Specifically we will show that R is (very) small in Lp(B(ξ, ρ1) \
B(ξ, ρ0)), for a suitable choice of p = p(α) > 1, such that p → 1 as ε → 0, uniformly
with respect to ξ ∈ B(ξ0, σ), µ ∈ U .

Lemma 3.6 There exists c1 > 0 such that

0 ≤ λfε(ωε) ≤ αeUε+α
2(1+c1εα)Ū2( ·−ξ

δ
),

in B(ξ, ρ1) \B(ξ, ρ0).

Proof. Since 0 ≤ ωε ≤ β in B(ξ, ρ1) \B(ξ, ρ0), from Lemma 3.3 and (28) we get

λfε(ωε) ≤ λβeβ
2+β1+ε+Ū( ·−ξ

δ
)+α2Ū2( ·−ξ

δ
)(1+O(εα))

=
α

δ2
eŪ( ·−ξ

δ
)+α2Ū2( ·−ξ

δ
)(1+O(εα))

= αeUε+α
2Ū2( ·−ξ

δ
)(1+O(εα)).

�

For c1 as in Lemma 3.6, let us consider the function

Γε(x) := eŪε(x)+α2Ū(x−ξ
δ

)2(1+c1εα). (48)

14



Lemma 3.7 Set p := 1 + α2. There exists c2 > 0 such that

‖Γε‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) = O
(
α−1e

− c2√
α

)
.

Proof. First of all, we observe that for q ∈ (1
2 ,+∞), R > 0, one has∫

R2\B(0,R)
eqUdy ≤

∫
R2\B(0,R)

(8µ2)q

|y|4q
dy =

π(8µ2)q

(2q − 1)R4q−2
. (49)

For x ∈ B(ξ, ρ1) \B(ξ, ρ0), set y = x−ξ
δ ∈ B(0, ρ1

δ ) \B(0, ρ0

δ ). Clearly we have

‖Γε‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) = δ
2−2p
p

(∫
B(0,

ρ1
δ

)\B(0,
ρ0
δ

)
epŪ(y)(1+α2Ū(y)(1+c1εα))dy

) 1
p

. (50)

Set ρ̄ = δe
1

α
3
2 , so that ρ0 � ρ̄� ρ1. For ρ0

δ ≤ |y| ≤
ρ̄
δ , we have

p
(
1 + α2Ū(y)(1 + εc1α)

)
= 1 +O(

√
α) ≥ 2

3
.

Then, for ε small enough, (49) yields∫
B(0, ρ̄

δ
)\B(0,

ρ0
δ

)
epŪ(y)(1+α2Ū(y)(1+c1εα))dy ≤

∫
R2\B(0,

ρ0
δ

)
e

2
3
Ū(y)dy

= O

((ρ0,ε

δ

)− 2
3

)
= O(e−

2ε
3α ).

(51)

For ρ̄
δ ≤ |y| ≤

ρ1

δ , by (30) and Lemma 3.2, we have

1 + α2Ū(y) (1 + c1εα) = 1 + α(β + αŪ(y)) (1 + c1εα)− αβ (1 + c1εα)

≥ 1

2
+ (c0 + u0(ξ))α+ o(α)

≥ 1

2
+ c0α.

Hence, we get∫
B(0,

ρ1
δ

)\B(0,eα
− 3

2 )
epŪ(y)(1+α2Ū(y)(1+c1εα))dy ≤

∫
R2\B(0,eα

− 3
2 )
ep(

1
2

+c0α)Ū(y)dy

= O
(
α−1e

− 4c0√
α

)
.

(52)

Thus, by (50),(51),(52), we obtain

‖Γε‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) = O

(
δ

2−2p
p α

− 1
p e
− 4c0
p
√
α

)
.

Since (29)-(31) give

δ
2−2p
p = δ

− 2α2

1+α2 = O(1), α
1
p = αα

1−p
p = α(1 + o(1)), e

− 4c0
p
√
α = O(e

− 4c0√
α ),

we get the conclusion. �
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Lemma 3.8 Let p and c2 be as in Lemma 3.7, then

‖R‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) = O(e
− c2√

α ).

Proof. By Lemma 3.6 and Lemma 3.7 we get that

‖λfε(ωε)‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) = O(e
− c2√

α ).

On the other hand, we have

∆ωε(x) = −αeUε(y) +O(1),

so that

‖∆ωε‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) ≤ α‖eUε‖Lp(B(ξ,ρ1)\B(ξ,ρ0)) +O(ρ
2
p

1 )

≤ αδ
2−2p
p ‖eŪ‖Lp(R2\B(0,

ρ0
δ

)) +O(ρ
2
p

1 )

= O

(
αδ2

ρ2
0

)
+O

(
ρ2

1

)
= o(e

− c2√
α ).

�

3.4 Estimates in B(ξ, ρ2) \B(ξ, ρ1)

In B(ξ, ρ2) \B(ξ, ρ1) we can only say that ωε and R are uniformly bounded. Since ρ2 is
very small, we still get integral bounds for R.

Lemma 3.9 We have ωε = O(1) and R = O(1) in Ω \B(ξ, ρ1). In particular,

‖R‖L2(B(ξ,ρ2)\B(ξ,ρ1)) = O(ρ2) = O(e−
ε
α ).

Proof. Let us recall that ωε = αPUε− Vε with Vε = Vε,α,ξ defined as in (11). According
to Lemma 2.2 and Lemma 2.3, we have Vε = O(1) in Ω. Besides Lemma 2.1 gives

αPUε = α log

(
1

(µ2δ2 + |x− ξ|2)2

)
+O(α) = O(α log

1

ρ1
) +O(α) = O(1),

for x ∈ Ω \B(ξ, ρ1). Then, ωε = O(1) and fε(ωε) = O(1) in Ω \B(ξ, ρ1). Similarly

∆ωε = −αeUε +O(1)

= − αδ2µ2

(δ2µ2 + |x− ξ|2)2
+O(1)

= O(δ2ρ−4
1 ) +O(1) = O(1).

Therefore R = O(1). �
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3.5 Estimates in Ω \B(ξ, ρ2)

In Ω\B(ξ, ρ2) we will use that ωε ∼ 8παGξ−Vε. Our choice of Vε will make R uniformly
small, namely of order α3. Note further that the choice of ρ2 gives αGξ = O(ε) on
Ω \B(ξ, ρ2).

Lemma 3.10 As ε→ 0 we have

‖PUε − 8πGξ‖C1(Ω\B(ξ,ρ2)) = O(δ2ρ−3
2 ).

Proof. By Lemma 2.1 we have

PUε = log

(
1

(δ2µ2 + |x− ξ|2)2

)
+ 8πH(x, ξ) + ψδ,µ,ξ

= −4 log |x− ξ|+ 8πH(x, ξ)− 2 log

(
1 +

δ2µ2

|x− ξ|2

)
+ ψδ,µ,ξ

= 8πGξ(x)− 2 log

(
1 +

δ2µ2

|x− ξ|2

)
+ ψδ,µ,ξ

Since ‖ψδ,µ,ξ‖C1(Ω) = O(δ2) as ε→ 0, it is sufficent to observe that

‖ log

(
1 +

δ2µ2

| · −ξ|2

)
‖C1(Ω\B(ξ,ρ2)) = O(δ2ρ−3

2 ).

�

Lemma 3.11 There exists a constant c > 0 such such that

ωε(x) ≤ −c d(x, ∂Ω) < 0,

for any x ∈ Ω \B(ξ, ρ2), provided ε is sufficiently small.

Proof. By Lemma 2.2, Lemma 2.3 and (11) we have

Vε(x) ≥ c(1 +O(α))d(x, ∂Ω) ∀x ∈ Ω,

for some c > 0. Then, Lemma 3.10 implies that

ωε(x) ≤ −c(1 +O(α))d(x, ∂Ω) (53)

in a neighborhood of ∂Ω. By definiton of ρ2, we have that PUε = Gξ + o(1) = O( εα)
in Ω \ B(ξ, ρ2). Then, using again Lemma 2.2 and Lemma 2.3, we get ωε = −u0 +
o(1) uniformly in Ω \ B(ξ, ρ2). Since u0 > 0 in Ω, this toghether with (53) yields the
conclusion. �

Lemma 3.12 In Ω \B(ξ, ρ2), we have R = O(α3(1 +G3
ξ)). In particular,

‖R‖L2(Ω\B(ξ,ρ2)) = O(α3).
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Proof. Since vε > 0 in Ω, ωε < 0 in Ω \ B(ξ, ρ2), and fε ∈ C3((−∞, 0)), for any
x ∈ Ω \B(ξ, ρ2) we can find θ(x) ∈ [0, 1] such that

fε(ωε) = fε(−vε + αPUε − αwε − α2zε)

= fε(−vε) + f ′ε(−vε)(αPUε − αwε − α2zε) +
1

2
f ′′ε (−vε)(αPUε − αwε − α2zε)

2

+
1

6
f ′′′(−vε + θ(αPUε − αwε − α2zε))(αPUε − αwε − α2zε)

3

According to Lemma 2.3 and Lemma 3.10, we have

|zε|+ |wε| = O(Gξ) and αPUε = 8παGξ(1 + o(α3)).

Thus we get

fε(ωε) = −fε(vε) + αf ′ε(vε)(8πGξ − wε) + α2

(
1

2
f ′′(−vε)(8πGξ − wε)2 − f ′(vε)zε

)
+O(α3(1 +G3

ξ)) +O(α3|f ′′′(−vε + θ(αPUδ,µ − αwε − α2zε))|G3
ξ).

A direct computation shows the existence of a constant C > 0 such that

|f ′′′ε (t)| ≤ C(|t|ε−1 + t4)et
2+|t|1+ε ∀t 6= 0.

Since −vε + θ(αPUε − αwε − α2zε) = O(1) uniformly in Ω \B(ξ, ρ2), and since Lemma
3.10 implies −vε + θ(αPUε +αwε +α2zε) ≤ −cd(·, ∂Ω) in a neighborhood of ∂Ω, we get

|f ′′′(−vε + θ(αPUδ,µ − αwε − α2zε))| = O(1 + d(·, ∂Ω)ε−1).

Since Gξ = O(d(·, ∂Ω)) near ∂Ω, we deduce that

fε(ωε) = −fε(vε) + αf ′ε(vε)(8πGξ − wε) + α2

(
1

2
f ′′(−vε)(8πGξ − wε)2 − f ′ε(vε)zε

)
+O(α3(1 +G3

ξ)).

Since by construction we have ∆ωε = −αeUε − ∆vε − α∆wε − α2∆zε, with vε, wε, zε
solving (4) and (12)-(13), we conclude that

R = −αeUε +O(α3(1 +G3
ξ))

= O(δ2ρ−4
2 ) +O(α3(1 +G3

ξ))

= O(α3(1 +G3
ξ)).

�
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3.6 The final estimate of the error in a mixed norm

We can summarize the estimates of the previous sections as follows:
In B(ξ, ρ0), Corollary 3.5 gives |R| ≤ α3jε, where

jε(x) := eUε(x)

(
1 + |Ū

(x− ξ
δ

)
|4
)
. (54)

In B(ξ, ρ1)\B(ξ, ρ0), Lemma 3.8 shows that the norm of R in L1+α2
is exponentially

small in α.
Finally, in Ω \ B(ξ, ρ1), Lemma 3.9 and Lemma 3.12 give L2 estimates on R. This

suggests to introduce the norm

‖f‖ε := ‖j−1
ε f‖L∞(B(ξ,ρ0)) +

1

α2
‖f‖

L1+α2 (B(ξ,ρ1)\B(ξ,ρ0))
+ ‖f‖L2(Ω\B(ξ,ρ1)). (55)

The coefficient 1
α2 is chosen in order to match the norm of (−∆)−1 as a linear operator

from L1+α2
(B(ξ, ρ1) \B(ξ, ρ0)) into L∞(B(ξ, ρ1) \B(ξ, ρ0)) (see Corollary B.4).

According to the estimates above we have:

Proposition 3.13 There exists D1 > 0, ε0 > 0 such that

‖R‖ε ≤ D1α
3,

for any ε ∈ (0, ε0), µ ∈ U , ξ ∈ B(ξ0, σ).

We conclude this section by stating some simple properties of the norm ‖ · ‖ε and
the weight jε.

Lemma 3.14 There exists a constant C > 0 such that

‖ · ‖L1(Ω) ≤ C‖ · ‖ε

for any ε > 0, µ ∈ U , ξ ∈ B(ξ0, σ).

Proof. Let f : Ω→ R be a Lebesgue measurable function. Then

‖f‖L1(B(ξ,ρ0)) ≤ ‖f‖ε
∫
B(ξ,ρ0)

jεdx = ‖f‖ε
∫
B(0,

ρ0
δ

)
eŪ (1 + Ū4)dy ≤ C‖f‖ε.

By Hölder’s inequality

‖f‖L1(B(ξ,ρ1)\B(ξ,ρ0)) ≤ ‖f‖L1+α2 (B(ξ,ρ1)\B(ξ,ρ0))
ρ

2α2

1+α2

1 ≤ C‖f‖ε,

and
‖f‖L1(Ω\B(ξ,ρ1)) ≤ ‖f‖L2(Ω\B(ξ,ρ1))|Ω \B(ξ, ρ1)|

1
2 ≤ C‖f‖ε.

Hence, the conclusion follows. �
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Lemma 3.15 For any ε > 0 let ρε, σε be such that ρ2 ≤ σε ≤ σ and δ � ρε ≤ ρ0 as
ε→ 0. Let ϕε of be the solution to{

−∆ϕε = jε in B(ξ, σε) \B(ξ, ρε),

ϕε = 0 on ∂B(ξ, σε) \B(ξ, ρε).

As ε→ 0, we have
‖ϕε‖L∞(B(ξ,σε)\B(ξ,ρε)) = o(1).

Proof. Let us first note that there exists a constant c > 0, such that

δ2jε(ξ + δ ·) = eŪ (1 + Ū4) =
8µ2

(µ2 + | · |2)2

(
1 + log4

(
8µ2

(µ2 + | · |2)2

))
≤ c µ

(µ2 + | · |2)
3
2

in R2. Then, by the maximum principle, we have

|ϕε| ≤ cψ
(
· − ξ
δ

)
in B(ξ, σε) \B(ξ, ρε), (56)

where ψ satisfies −∆ψ = µ

(µ2+|·|2)
3
2

in Aε := B(0, σεδ ) \B(0, ρεδ ),

ψ = 0 on ∂Aε.

Since the function W := − log(µ+
√
| · |2 + µ2) satisfies −∆W = µ

(µ2+|·|2)
3
2

, we have

ψ = a+ b log | · |+W,

for suitable constants a, b ∈ R. Denoting R1 = ρε
δ and R2 = σε

δ one can verify that

a =
W (R2) logR1 −W (R1) logR2

logR2 − logR1
and b =

W (R1)−W (R2)

logR2 − logR1
.

Since

|W + log | · || ≤ Cµ

| · |
= O

(
1

R1

)
,

uniformly in Aε, one has a = O
(

logR2

R1(logR2−logR1)

)
and b = 1 + O

(
1

R1(logR2−logR1)

)
.

Then

ψ = a+ (b− 1) log | · |+O(
1

R1
)

= O

(
1

R1

logR2

logR2 − logR1

)
+O

(
1

R1

)
= O

(
1

R1

1

1− logR1

logR2

)
+O

(
1

R1

)
.

Since
logR1

logR2
=

log ρε
δ

log σε − log δ
≤

log ρ0

δ

log ρ2 − log δ
= O(α),

we conclude that ψµ = O( 1
R1

) = o(1), uniformly in Aε. Then, the conclusion follows by
(56). �
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4 The Linear Theory

Let us consider the linear operator

Lϕ = ϕ− (−∆)−1(λf ′ε(ωε)ϕ)

introduced in (19). In this section we give a priori estimates for the operator L and we
prove its invertibility on a suitable subspace of H1

0 (Ω).

Lemma 4.1 The following expansions hold:

1. λf ′ε(ωε) = eUε(1 +O(ε2)) in B(ξ, ρ0).

2. λf ′ε(ωε) = O(Γε) in B(ξ, ρ1), with Γε as in (48).

3. λf ′ε(ωε) = O(1) in Ω \B(ξ, ρ1).

4. ‖λf ′ε(ωε)χB(ξ,ρ1) − eUε‖ε = o(1) as ε→ 0.

Proof. For x ∈ B(ξ, ρ0), using (28)-(32), Lemma 3.3, (34), and (45), we have that

λf ′ε(ωε) = λ(1 + 2ω2
ε + (1 + ε)ω1+ε

ε )eω
2
ε+ω1+ε

ε

= λβ2(2 +O(α))eβ
2+β1+ε+Ū( ·−ξ

δ
)+O(ε2)

= eUε(1 +O(ε2)).

For x ∈ B(ξ, ρ1), using Remark 2.7, Lemma 3.3 we have

λf ′ε(ωε) = λ(1 + 2ω2
ε + (1 + ε)ω1+ε

ε )eω
2
ε+ω1+ε

ε

= λβ2(2 +O(α))eβ
2+β1+ε+Ū( ·

δ
)+Ū( ·−ξ

δ
)2(1+O(εα))

= O (Γε) .

Claim 3 follows directly from Lemma 3.9. Finally, claim 4 follows by claims 1 and 2,
using also Lemma 3.7 and the estimates

‖eUε‖L1+α(B(ξ,ρ1)\B(ξ,ρ0)) = o(1), ‖eUε‖L2(Ω\B(ξ,ρ1)) = o(1).

�

According to Lemma 4.1, for |x − ξ| ≤ ρ0, L approaches the operator L0ϕ :=
ϕ− (−∆)−1(eUεϕ). Note that

L0ϕ = 0 in Ω ⇐⇒ −∆ϕ = eUεϕ in Ω

⇐⇒ −∆Φ = eŪΦ in
Ω− ξ
δ

, where Φ = ϕ(ξ + δ ·).

Let us recall the following known fact about L0 (see for example [10]).
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Proposition 4.2 All bounded weak solutions of the problem

−∆Φ = eŪΦ in R2 (57)

have the form
Φ = c0Z0 + c1Z1 + c2Z2,

where c0, c1, c2 ∈ R and

Z0(y) :=
µ2 − |y|2

µ2 + |y|2
, Z1(y) :=

2µy1

µ2 + |y|2
, Z2(y) :=

2µy2

µ2 + |y|2
.

Remark 4.3 The functions Z0, Z1, Z2 are orthogonal in D1,2(R2), that is∫
R2

∇Zi · ∇Zjdy =

∫
R2

eŪZiZjdy =
8

3
πδi,j . (58)

In the following we denote

Zi,ε(x) := Zi

(
x− ξ
δ

)
and PZi,ε = (−∆)−1Zi,ε, i = 0, 1, 2.

Lemma 4.4 It holds true that

PZ0,ε = Z0,ε + 1 +O(δ2) and PZi,ε = Zi,ε +O(δ), i = 1, 2,

uniformly with respect to µ ∈ U , ξ ∈ B(ξ0, σ).

Proof. See for example Appendix A in [18]. �

Lemma 4.4 shows the smallness of PZi,ε − Zi,ε for i = 1, 2, but not for i = 0. For
this reason, in many cases it is convenient to replace PZ0,ε with the funtion

Z̃ε :=


Z0,ε if |x− ξ| ≤ ρ0,

Z0,ε(ρ0)( log ρ1−log |x−ξ|
log ρ1−log ρ0

) if ρ0 ≤ |x− ξ| ≤ ρ1,

0 if |x− ξ| ≥ ρ1.

(59)

Lemma 4.5 The function Z̃ε satisfies the following properties:

• Z̃ε ∈ H1
0 (Ω) and |Z̃ε| ≤ 1 in Ω.

• ‖∇(Z̃ε − Z0,ε)‖L2(Ω) → 0, uniformly for µ ∈ U and ξ ∈ B(ξ0, σ).

Proof. The first property follows trivially from the definition. Moreover we have

‖∇(Z̃ε − Z0,ε)‖2L2(Ω) ≤
Z0,ε(ρ0)2

(log ρ1 − log ρ0)2

∫
B(ξ,ρ1)\B(ξ,ρ0)

1

|x− ξ|2
dx+ ‖∇Z0,ε‖2L2(Ω\B(ξ,ρ0))

≤ 2πZ0,ε(ρ0)2

log ρ1 − log ρ0
+ ‖∇Z0‖2L2(R2\B(0,

ρ0
δ

))

= O(α2) +O(e−
ε
α )→ 0,
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as ε→ 0. �

We will denote by Kε the subspace of H1
0 (Ω) spanned by PZi,ε, i = 0, 1, 2 and by

K⊥ε the subspaces of H1
0 (Ω) orthogonal to Kε, i.e.

K⊥ε =

{
u ∈ H1

0 (Ω) :

∫
Ω
∇PZi,ε · ∇u dx =

∫
Ω
eUεZi,εu dx = 0, i = 0, 1, 2

}
.

Let π and π⊥ be the projections of H1
0 (Ω) respectively on Kε and K⊥ε . Finally, we

denote
Yε := {f ∈ L1(Ω) : ‖f‖ε < +∞}.

Proposition 4.6 There exist ε0 > 0 and a constant D0 > 0 such that

‖ϕ‖H1
0 (Ω) + ‖ϕ‖L∞(Ω) ≤ D0‖h‖ε, (60)

for any ε ∈ (0, ε0), µ ∈ U , ξ ∈ B(ξ0, σ), h ∈ Yε and ϕ ∈ K⊥ε satisfying

π⊥
{
Lϕ− (−∆)−1h

}
= 0. (61)

Proof. We assume by contradiction that there exists εn → 0, µn ∈ U , ξn ∈ B(ξ0, σ),
hn ∈ Yε and a solution ϕn ∈ K⊥εn of (61) such that

‖ϕn‖H1
0 (Ω) + ‖ϕn‖L∞(Ω)

‖hn‖εn
→ +∞.

Let δn, αn, βn be the parameters in Lemma 2.4 corresponding to εn, µn and ξn. Let also
ρ0,n, ρ1,n, ρ2,n be defined as in (39). We denote ωn := ωεn , Un := Uεn , Zi,n := Zi,εn and
fn := fεn . W.l.o.g we can assume that ‖ϕn‖H1

0 (Ω) + ‖ϕn‖L∞(Ω) = 1 and ‖hn‖εn → 0.

Since ϕn satisfies (61), there exist ci,n ∈ R, i = 0, 1, 2, such that

−∆ϕn − λf ′n(ωn)ϕn = hn +

2∑
i=0

ci,ne
UnZi,n. (62)

Step 1 We have ci,n → 0 as n→ +∞, i = 0, 1, 2.

Let Z̃n := Z̃εn be the function defined in (59). Testing equation (62) against Z̃n, we get

2∑
j=0

cj,n

∫
Ω
eUnZj,nZ̃ndx =

∫
Ω
∇Z̃n · ∇ϕndx−

∫
Ω
λf ′n(ωn)ϕnZ̃ndx−

∫
Ω
hnZ̃ndx. (63)

Since ‖ϕn‖H1
0 (Ω) ≤ 1 and ϕn ∈ K⊥εn , using Lemma 4.5 we get∫

Ω
∇Z̃n · ∇ϕndx =

∫
Ω
∇Z0,n · ∇ϕndx+ o(1) =

∫
Ω
eUnZ0,nϕndx︸ ︷︷ ︸

=0

+ o(1) = o(1),
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as n→ +∞. By Lemma 4.1 and Lemma 3.7, we find∫
Ω
λf ′n(ωn)ϕnZ̃ndx =

∫
B(ξn,ρ0,n)

eUnϕnZ0,ndx+O(ε2
n) +O

(
‖Γε‖L1(B(ξn,ρ1,n)\B(ξn,ρ0,n))

)
=

∫
Ω
eUnϕnZ0,ndx︸ ︷︷ ︸

=0

+o(1) = o(1).

Finally, Lemma 4.5 and Lemma 3.14 give

|
∫

Ω
hnZ̃ndx| ≤ ‖hn‖L1(Ω) ≤ C‖hn‖εn = o(1).

Then (63) rewrites as
2∑
j=0

cj,n

∫
Ω
eUnZj,nZ̃ndx = o(1). (64)

With similar arguments, testing equation (62) against PZi,n for i = 1, 2, we get that

2∑
j=0

cj,n

∫
Ω
eUnZj,nPZi,ndx = −

∫
Ω
λf ′n(ωn)ϕnPZi,ndx−

∫
Ω
hnPZi,ndx

=

∫
Ω
eUnϕnZi,ndx︸ ︷︷ ︸

=0

+o(1) = o(1).
(65)

Note that, as in (58), we have∫
Ω
eUnZj,nZ̃ndx =

∫
B(ξn,ρ0,n)

eUnZj,nZ0,ndx+O

(∫
R2\B(ξn,ρ0,n)

eUn

)

=

∫
B(0,

ρ0,n
δn

)
eUZjZ0dy + o(1)

=
8

3
πδ0j + o(1),

for j = 0, 1, 2. Similarly∫
Ω
eUnZj,nPZi,ndx =

∫
Ω
eUnZj,nZi,ndx+ o(1)

=
8

3
πδij + o(1),

for i = 1, 2, j = 0, 1, 2. Then, (63) and (64) rewrite as

2∑
j=0

cj,n(δij + o(1)) = o(1),

which implies the conclusion.
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Step 2 If h̃n := hn +
(
λf ′n(ωn)χB(ξn,ρ1,n) − eUn

)
ϕn +

∑2
j=0 cj,ne

UnZj,n, then

−∆ϕn = eUnϕn + λf ′n(ωn)χΩ\B(ξn,ρ1,n)ϕn + h̃n in Ω, and ‖h̃n‖εn → 0. (66)

Since ‖hn‖εn → 0, |Zi,n| ≤ 1, and ‖λf ′n(ωn)χB(ξn,ρ1,n) − eUn‖εn → 0 by Lemma 4.1,

it is sufficient to observe that ‖eUn‖εn = O(1) and apply Step 1.

Step 3 There exists δn � ρn ≤ ρ0,n such that, up to a subsequence, ‖ϕn‖L∞(B(ξn,ρn)) →
0 as n→ +∞.

Let us consider the sequence Φn(y) := ϕn(ξn + δny), y ∈ Ω−ξn
δn

. By (66) Φn satisfies

−∆Φn = eŪΦn + δ2
nh̃n(ξ + δn·) in B

(
0,
ρ1,n

δn

)
.

We know that ∣∣∣eŪ(y)Φn(y)
∣∣∣ ≤ eŪ(y) ≤ 8

µ2
,

and, for y ∈ B(0,
ρ0,n

δn
), that

δ2
n|h̃n(ξ + δny)| ≤ δ2

njεn(ξ + δny)‖h̃n‖εn = eŪ(y)(1 + |Ū(y)|4)‖h̃n‖εn ≤ C‖h̃n‖εn → 0.

In particular Φn and ∆Φn are uniformly bounded in B(0,
ρ0,n

δn
). By standard elliptic

estimates, we can find Φ0 ∈ C(R2) ∩H1
loc(R2) and a sequence Rn → +∞, Rn ≤ ρ0,n

δn
,

such that, up to a subsequence, ‖Φn − Φ0‖L∞(B(0,Rn)) → 0. Moreover, |Φ0| ≤ 1 and Φ0

is a weak solution to
−∆Φ0 = eŪΦ0 in R2.

According to Proposition 4.2, we must have Φ0 = κ0Z0 +κ1Z1 +κ2Z2, for some κi ∈ R,
i = 0, 1, 2. Keeping in mind (58) and using that eŪ ∈ L1(R2), we obtain

0 =

∫
Ω
eUnZi,nφn dx =

∫
Ω−ξn
δn

eŪZiΦndy

=

∫
B(0,Rn)

eŪZiΦn dy +O

(∫
R2\B(0,Rn)

eŪdy

)
→ 8

3
πκi,

for i = 0, 1, 2. This implies κi = 0, i = 0, 1, 2. Then Φ0 ≡ 0 and we get the conclusion
with ρn = δnRn.

Step 4 Up to a subsequence, ξn → ξ ∈ Ω and ϕn → 0 in L∞loc(Ω \ {ξ̄}), as n→∞.

We know that ϕn satisfies (66) in Ω. Since |ϕn| ≤ 1, ‖eUn‖L∞(Ω\B(ξn,ρ1,n)) → 0,
‖hn‖L2(Ω\B(ξ,ρ1,n)) → 0, and ‖f ′n(ωn)‖L∞(Ω\B(ξ,ρ1,n)) = O(1), by ellpitic estimates we

find that ϕn is bounded in C0,γ
loc (Ω \ {ξ}), for some γ ∈ (0, 1). Therefore, there exists

ϕ0 ∈ C(Ω) ∩ H1
0 (Ω), such that ϕn → ϕ0 locally uniformly on Ω \ {ξ} and weakly in
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H1
0 (Ω). Noting that ωn → −u0 locally uniformly in Ω \ {ξ} and that f ′n is even, we see

that ϕ0 satisfies ∆ϕ0 + f ′0(u0)ϕ0 in Ω \ {ξ̄}. Actually, since ϕ0,∆ϕ0 ∈ L∞(Ω), ϕ0 is
a weak solution of ∆ϕ0 + f ′0(u0)ϕ0 = 0 in Ω. Then, the non-degeneracy of u0 implies
ϕ0 ≡ 0.

Step 5 ‖ϕn‖L∞(Ω) → 0.

By Step 4, we can find a sequence σn ≥ ρ2,n such that ‖ϕn‖L∞(Ω\B(ξn,σn)) → 0 as
n → +∞, up to a subsequence. Then, it is sufficient to show that ‖ϕn‖L∞(An) → 0,

where An := B(ξn, σn) \ B(ξn, ρn) and ρn is as in Step 3. We can split ϕn = ϕ
(0)
n +

ϕ
(1)
n + ϕ

(2)
n + ϕ

(3)
n , where{

∆ϕ
(0)
n = 0 in An,

ϕ
(0)
n = ϕn on ∂An,

and

{
−∆ϕ

(i)
n = fi,n in An,

ϕ
(i)
n = 0 on ∂An,

for i = 1, 2, 3,

with 
f1,n := eUnϕn + h̃nχB(ξn,ρ0,n),

f2,n := h̃nχB(ξn,ρ1,n)\B(ξn,ρ0,n),

f3,n := h̃nχB(ξn,σn)\B(ξn,ρ1,n) + λf ′n(ωn)χB(ξn,σn)\B(ξn,ρ1,n)ϕn.

By the maximum principle

‖ϕ(0)
n ‖L∞(An) ≤ ‖ϕn‖L∞(∂An) → 0.

Since
|f1,n| ≤ eUn + ‖h̃n‖εnjεn ≤ jεn(1 + o(1)) ≤ 2jεn ,

we get that |ϕ(1)
n | ≤ 2ψn, where ψn satisfies{

−∆ψn = jεn in An

ψn = 0 on ∂An.

Lemma 3.15 implies ‖ψn‖L∞(An) → 0, hence ‖ϕ(1)
n ‖L∞(An) → 0. Finally, since |An| is

uniformly bounded, elliptic estimates (see Corollaries B.3 and B.4) give

‖ϕ(2)
n ‖L∞(An) ≤

C

α2
‖f2,n‖L1+α2 (An)

=
C

α2
‖h̃n‖L1+α2 (B(ξn,ρ1,n)\B(ξn,ρ0,n))

≤ ‖h̃n‖εn → 0,

and
‖ϕ(3)

n ‖L∞(An) ≤ C‖f3,n‖L2(An) = O(‖hn‖εn) +O(
√
σn)→ 0.

Step 6 Conclusion of the proof.

By Step 5, we have that ‖ϕn‖H1
0 (Ω) = 1− ‖ϕn‖L∞(Ω) → 1. But (66) gives

‖ϕn‖2H1
0 (Ω) =

∫
Ω
eUnϕ2

n dx+

∫
Ω\B(ξ,ρ1,n)

λf ′n(ωn)ϕ2
n dx+

∫
Ω
h̃nϕn dx

= O(‖ϕn‖2L∞(Ω)) + o(‖ϕn‖L2(Ω))→ 0.

Then, we get a contadiction. �

As a consequence we have that π⊥L is invertible on K⊥ε .
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Corollary 4.7 π⊥L : K⊥ε 7→ K⊥ε is invertible.

Proof. This follows by standard Fredholm theory. Indeed, for any ε > 0 the map
F (ϕ) := π⊥(−∆)−1(f ′(ωε)ϕ) defines a compact operator on K⊥ε (in fact on H1

0 (Ω)).
Then π⊥L = IdK⊥ε − F is a Fredholm operator of index 0. Proposition 4.6 implies that

π⊥L is injective, hence it is invertible on K⊥ε . �

5 The reduction to a finite dimensional problem

This section is devoted to reduce the problem to a finite dimensional one. More precisely,
we prove:

Proposition 5.1 There exist ε0 > 0 and a map (ε, µ, ξ)→ ϕε,µ,ξ ∈ K⊥ε ∩L∞(Ω) defined
in (0, ε0)×U×B(ξ0, σ) and continuous with respect to µ and ξ, such that for some D > 0

‖ϕε,µ,ξ‖H1
0

+ ‖ϕε,µ,ξ‖L∞ ≤ Dα3, (67)

and
π⊥
{
Lϕε,µ,ξ − (−∆)−1(R+N(ϕε,µ,ξ))

}
= 0, (68)

where the linear operator L is defined in (19), the error term R is defined in (17) and
the quadratic term N is defined in (18).

5.1 Estimates on N(ϕ)

For a function ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), let N(ϕ) be defined as in (18), i.e.

N(ϕ) = Nε,µ,ξ(ϕ) := λ
(
fε(ωε,µ,ξ + ϕ)− fε(ωε,µ,ξ)− f ′ε(ωε,µ,ξ)ϕ

)
.

Let us estimate ‖N(ϕ)‖ε, where ‖ · ‖ε is defined as in (55). Let us define

Bα := {ϕ ∈ L∞(Ω) : ‖ϕ‖L∞(Ω) ≤ α}. (69)

Lemma 5.2 There exists D2 > 0 such that

‖N(ϕ1)−N(ϕ2)‖ε ≤ D2α
−1
(
‖ϕ1‖L∞(Ω) + ‖ϕ2‖L∞(Ω)

)
‖ϕ1 − ϕ2‖L∞(Ω),

for any ϕ1, ϕ2 ∈ Bα.

Proof. First, for any x ∈ Ω we can find θ1 = θ1(x) ∈ [0, 1] such that

N(ϕ2)−N(ϕ1) = λ
(
fε(ωε + ϕ2)− fε(ωε + ϕ1)− f ′ε(ωε)(ϕ2 − ϕ1)

)
= λ

(
f ′ε(ωε + θ1ϕ2 + (1− θ1)ϕ1)(ϕ2 − ϕ1)− f ′ε(ωε)(ϕ2 − ϕ1)

)
= λ

(
f ′ε(ωε + ϕ3)− f ′ε(ωε)

)
(ϕ2 − ϕ1),

where ϕ3 := θ1ϕ2 + (1− θ1)ϕ1. Furthermore, there exists θ2 = θ2(x) such that

f ′ε(ωε + ϕ3) = f ′ε(ωε) + f ′′ε (ωε + θ2ϕ3)ϕ3.
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Thus, we obtain

|N(ϕ1)−N(ϕ2)| = λ|f ′′ε (ωε + θ2ϕ3)||ϕ3||ϕ1 − ϕ2|
≤ λ|f ′′ε (ωε + θ2ϕ3)|

(
‖ϕ1‖L∞(Ω) + ‖ϕ2‖L∞(Ω)

)
‖ϕ1 − ϕ2‖L∞(Ω).

(70)

Then, in order to conclude the proof, we shall bound ‖f ′′ε (ωε+θ2ϕ3)‖ε. Note that, there
exists a universal constant C0 > 0 such that

|f ′′ε (t)| ≤ C0(1 + |t|3)et
2+|t|1+ε

, ∀t ∈ R.

By Remark 2.7 we have ωε = O(β) = O(α−1). Since |ϕ3| ≤ |ϕ1|+ |ϕ2| ≤ 2α, we get

(ωε + θ2ϕ3)2 ≤ ω2
ε + 2|ωε||ϕ3|+ ϕ2

3 = ω2
ε +O(1). (71)

By convexity, we also have

|ωε + θ2ϕ3|3 ≤ (|ωε|+ |ϕ3|)3 ≤ 4(|ωε|3 + |ϕ3|3) ≤ 4(|ωε|3 + α3). (72)

In B(ξ, ρ1) we have ωε ≥ c0 by Lemma 3.2, so that

(ωε + θ2ϕ3)1+ε ≤ ω1+ε
ε

(
1 +

α

c0

)1+ε

= ω1+ε
ε +O(1). (73)

Clearly (71)-(73) yield the existence of a constant C1 > 0 such that

|f ′′ε (ωε + θ2ϕ3)| ≤ C1α
−2ωεe

ω2
ε+|ωε|1+ε

= C1α
−2fε(ωε),

in B(ξ, ρ1). Arguing as in Lemma 3.4 (see (46)) we get

λ|f ′′ε (ωε + θ2ϕ)| ≤ Cα−1jε in B(ξ, ρ0). (74)

Lemma 3.6 and Lemma 3.7 yield

λ‖f ′′ε (ωε + θ2ϕ)‖
L1+α2 (B(ξ,ρ1)\B(ξ,ρ0))

= O(α−2e
− c2√

α ). (75)

Finally, thanks to Lemma 3.9, we know that

λf ′′ε (ωε + θ2ϕ3) = O(1) in Ω \B(ξ, ρ1). (76)

Thanks to (74)-(76) we infer

λ‖f ′′ε (ωε + θ2ϕ3)‖ε = O(α−1),

and the conclusion follows from (70). �

Remark 5.3 Applying Lemma 5.2 with ϕ2 = 0, we obtain that

‖N(ϕ)‖ε ≤ D2α
−1‖ϕ‖2L∞(Ω),

for any ϕ ∈ Bα.

Remark 5.4 The proof of Proposition 5.2 and Lemma 3.9 also shows that

‖N(ϕ)‖L∞(Ω\B(ξ,ρ1)) ≤ D3‖ϕ‖2L∞(Ω),

for any ϕ ∈ Bα.
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5.2 Proof of Proposition 5.1: a fixed point argument

Let us consider the operator

T = Tε,µ,ξ := (π⊥L)−1π⊥
[
(−∆)−1

(
N(ϕ) +R

)]
(77)

on the space X := K⊥ε ∩ L∞(Ω), which is a Banach space with respect to the norm

‖ · ‖X = ‖ · ‖H1
0 (Ω) + ‖ · ‖L∞(Ω).

Let D1 and D0 be the constants defined in Proposition 3.13 and Proposition 4.6. Let
us set

Eε := {ϕ ∈ X : ‖ϕ‖X ≤ D0(D1 + 1)α3}.
Proposition 5.1 is an immediate consequence of the following result.

Proposition 5.5 There exists ε0 > 0 such that, for any ε ∈ (0, ε0), µ ∈ U , ξ ∈ B(ξ0, σ),
T has a fixed point ϕε,µ,ξ ∈ Eε, which depends continuosly on µ and ξ.

Proof. Since Eε is a closed subspace of X and T depends continuously on µ and ξ, it is
sufficient to verifry that

1. T maps Eε into itself.

2. T is a contraction, i.e. ||T (ϕ1)−T (ϕ2)||H1
0 (Ω) ≤ θ||ϕ1−ϕ2||H1

0 (Ω) for some positive
constant θ < 1 and for any ϕ1, ϕ2 ∈ Eε.

Then the conclusion follows by the contraction mapping theorem.

Step 1 T maps Eε into itself.

Let us denote C0 := D0(D1 + 1). Take ϕ ∈ Eε and set

h(ϕ) := R+N(φ).

If ε is small enough, we have that α2C0 ≤ 1, so that Eε ⊆ Bα (see (69)). By Proposition
3.13 and Remark 5.3 we get

‖h(ϕ)‖ε ≤ ‖R‖ε + ‖N(ϕ)‖ε
≤ D1α

3 +D2α
−1‖ϕ‖2L∞(Ω)

≤ D1α
3 + C2

0D2α
5,

for any ϕ ∈ Eε. Then, if we take ε small enough so that C2
0D2α

2 ≤ 1, we get that

‖h(ϕ)‖ε ≤ (D1 + 1)α3.

Since by definition
π⊥L(T (ϕ)) = π⊥(−∆)−1h(ϕ),

we have by Proposition 4.6 that

‖T (ϕ)‖X ≤ D0‖h(ϕ)‖ε ≤ D0(D1 + 1)α3,

that is T (ϕ) ∈ Eε.
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Step 2 T is a contraction mapping in Eε.

Let us take ε small enough so that D0D2C0α
2 ≤ 1

4 and Eε ⊆ Bα. By Propositions
4.6 and 5.2 we have

‖T (ϕ1)− T (ϕ2)‖X ≤ D0‖h(ϕ1)− h(ϕ2)‖ε
= D0‖N(ϕ1)−N(ϕ2)‖ε
≤ D0D2α

−1(‖ϕ1‖L∞(Ω) + ‖ϕ2‖L∞(Ω))‖ϕ1 − ϕ2‖L∞(Ω)

≤ 2C0D0D2α
2‖ϕ1 − ϕ2‖L∞(Ω)

≤ 1

2
‖ϕ1 − ϕ2‖L∞(Ω),

for any ϕ1, ϕ2 ∈ Eε. Then, T is a contraction mapping on Eε. �

6 The reduced problem: proof of Theorem 1.3 completed

Let ϕε := ϕε,µ,ξ be as in Proposition 5.1. By (68), we can find κε,i = κε,i(µ, ξ), i = 0, 1, 2
(which depend continuously on µ, and ξ), such that

−∆ϕε = λf ′ε(uε)ϕε +R+N(ϕε) +
2∑
j=0

κε,je
UεZε,j . (78)

Equivalently, setting uε := ωε + ϕε,

−∆uε = λfε(uε) +

2∑
j=0

κε,je
UεZε,j . (79)

Our aim is to find the parameter µ = µ(ε) and the point ξ = ξ(ε) so that the κε,i’s are
zero provided ε is small enough.

Proposition 6.1 It holds true that

κ0,ε = 6πα3

(
2− log

( 8

µ2

)
+ o(1)

)
, (80)

and

κi,ε = −κ0,εai,ε +
3µ

2
δ
∂vε
∂xi

(ξ) +O(αδ), i = 1, 2 (81)

as ε→ 0 uniformly with respect to µ ∈ U and ξ ∈ B(ξ0, σ). Here, the ai,ε’s are continuous
functions of µ and ξ and ai,ε = O(α2) uniformly for (µ, ξ) ∈ U ×B(ξ0, σ).

Proof.
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Step 1 Let us prove that

κi,ε = O(α3) for i = 0, 1, 2 (82)

and
‖ϕε‖C1(Ω\B(ξ0,2σ)) = O(α3). (83)

First, since (67) gives ‖φ‖L∞(Ω) = O(α3), Proposition 3.13, Lemma 3.14, Remark
5.3 and Lemma 4.1 yield

‖R‖L1(Ω) = O(α3), ‖N(ϕε)‖L1(Ω) = O(α5), ‖λf ′ε(ωε)ϕε‖L1(Ω) = O(α3).

Recalling that ∫
Ω
eUnZj,nPZi,ndx =

8

3
πδij +O(δ), for i, j = 0, 1, 2,

by Lemma 4.4 and (58), we get (82) by testing equation (78) with PZi,n, i = 0, 1, 2.
By Lemma 3.12, Remark 5.4, and Lemma 4.1, one has

λf ′ε(ωε) = O(1), R = O(α3), N(ϕε) = O(α6),

uniformly in Ω \B(ξ, σ2 ). Then

‖∆ϕε‖L∞(Ω\B(ξ,σ
2

)) + ‖ϕε‖L∞(Ω) = O(α3),

and we get (83) by standard elliptic estimates.

Step 2 Proof of (80).

Let Z̃ε be the function defined in (59). We shall test equation (78) against Z̃ε. With
the same arguments of the proof of Proposition 4.6 (Step 1), we obtain∫

Ω
∇ϕε · ∇Z̃ε dx =

∫
Ω
∇ϕε · ∇Z0,ε dx+ o(‖ϕε‖H1

0 (Ω)) = o(α3).

Moreover∫
Ω
λf ′ε(ωε)ϕεZ̃εdx =

∫
B(ξ,ρ0)

eUεZ0,εϕε dx+O(ε2α3) +O(α3‖Γε‖L1(B(ξ,ρ1)\B(ξ,ρ0)))

= o(α3),

and ∫
Ω
eUnZj,εZ̃εdx =

∫
R2

eŪZjZ0dy +O

(∫
R2\B(0,

ρ0
δ

)
eŪdx

)
=

8

3
πδij +O(δ2ρ−2

0 ).
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By Lemma 3.4 and Lemma 3.8, we get∫
Ω
RZ̃ndx =

∫
B(ξ,ρ0)

RZ0,ndx+O(‖R‖L1(B(ξ,ρ1)\B(ξ,ρ0)))

= α3

∫
B(0,ρ0)

eŪ
(
2Ū + Ū2

)
Z0dy +O

(
α4

∫
R2

eŪ (1 + Ū4)dy

)
+ o(α4)

= 16πα3

(
log
( 8

µ2

)
− 2

)
+O(α4).

Finally, we have that ∫
Ω
N(ϕ)Z̃εdx = O(‖N(ϕ)‖ε) = O(α5).

Then, testing (78) against Z̃ε and using (82), one gets

0 = 16πα3

(
log
( 8

µ2

)
− 2

)
+

8

3
πk0,ε + o(α3),

from which we get (80).

Step 3 Let us prove

2∑
j=0

κj,ε

∫
Ω
eUεZj,ε

∂uε
∂xi

dx = −8πα
∂vε
∂xi

(ξ) +O(α2), i = 1, 2, (84)

We multiply (79) and ∂uε
∂xi

. Applying the Pohozaev identity (see e.g. [27, Proposition
2, Proof of Step 1]), we obtain

− 1

2

∫
∂Ω

∂uε
∂xi

∂uε
∂ν

νi dσ = λ

∫
Ω
fε(uε)

∂uε
∂xi

dx+
2∑
j=0

κj,ε

∫
Ω
eUnZj,ε

∂uε
∂xi

dxi. (85)

Since uε = 0 on ∂Ω, the divergence theorem yields∫
Ω
fε(uε)

∂uε
∂xi

dx =

∫
Ω

d

dxi

(∫ uε(x)

0
fε(t)dt

)
dx

=

∫
∂Ω
νi

(∫ uε(x)

0
fε(t)dt

)
dσ = 0.

(86)

By (83), the definition of uε and ωε, Lemma 2.3, Lemma 3.10, we have

∂uε
∂ν

= −∂vε
∂ν

+ α
∂

∂ν
(8πGξ − wε) +O(α2)

on ∂Ω. Thus, keeping in mind that |∇vε|, |∇wε| and |∇Gξ| are uniformly bounded on
∂Ω (see Lemma (2.2) and (2.3)) and that ∂uε

∂xi
= ∂uε

∂ν νi, we obtain∫
∂Ω

∂uε
∂xi

∂uε
∂ν

dσ =

∫
∂Ω

∂vε
∂xi

∂vε
∂ν

dσ + 2α

∫
∂Ω

∂vε
∂xi

∂

∂ν
(wε − 8πGξ) dσ +O(α2). (87)
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Applying the Pohozaev identity to vε and arguing as in (86), we get that∫
∂Ω

∂vε
∂xi

∂vε
∂ν

dσ = −2λ

∫
Ω
fε(vε)

∂vε
∂xi

dx = 0. (88)

Integrating by parts and noting that −∆∂vε
∂xi

= λf ′ε(vε)
∂vε
∂xi

in Ω, we get∫
∂Ω

∂vε
∂xi

∂

∂ν
(wε − 8πGξ)dσ =

∫
Ω

(
∂vε
∂xi

∆wε − wε∆
∂vε
∂xi

)
dx+ 8π

∂vε
∂xi

(ξ)

+ 8π

∫
Ω
Gξ∆

∂vε
∂xi

dx

=

∫
Ω

∂vε
∂xi

(
∆wε + λf ′ε(vε)wε − 8πλf ′ε(vε)Gξ

)︸ ︷︷ ︸
=0 by (12)

dx+ 8π
∂vε
∂xi

(ξ).

This together with (87)-(88) gives

1

2

∫
∂Ω

∂uε
∂xi

∂uε
∂ν

dσ = 8πα
∂vε
∂xi

(ξ) +O(α2). (89)

Finally, (84) follows by (85)-(86) and (89).

Step 4 For i = 1, 2, j = 0, 1, 2, we have∫
Ω
eUεZj,ε

∂uε
∂xi

dx = −α
δ

(
16

3µ
πδij +O(α2)

)
. (90)

For i = 1, 2 and j = 0, 1, 2. Note that we have the identity

∂

∂xi
eUεZj,ε =

eUε

δµ
(δij(Z0,ε + 1)− δj0Zi,ε − 3Zi,εZj,ε) .

Setting Ψij := δij(Z0 + 1)− δj0Zi− 3ZiZj and applying the divergence theorem, we find∫
Ω
eUεZj,ε

∂uε
∂xi

dx = −
∫

Ω
uε

d

dxi

(
eUεZj,ε

)
dx

= − 1

δµ

∫
Ω
uεe

Uε (δij(Z0,ε + 1)− δj0Zi,ε − 3Zi,εZj,ε) dx

= − 1

δµ

∫
Ω−ξ
δ

uε(ξ + δy)eŪΨijdy

= − 1

δµ

∫
B(0,σ

δ
)
uε(ξ + δy)eŪΨijdy +O(βδ2),

where in the last equality we used that

uε = O(β) and eŪΨij = O(|y|−5), (91)

for |y| ≥ σ
δ . By Lemma 2.6 we have

uε(ξ + δy) = β + αŪ(y) +O(α3) +O(δ|y|), (92)
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for y ∈ B(0, σδ ). Using again (91), we get that∫
B(0,σ

δ
)
eŪΨijdy =

∫
R2

eŪΨijdy︸ ︷︷ ︸
=0

+O(δ3).

Similarly, we have ∫
B(0,σ

δ
)
UeŪΨijdy =

∫
R2

UeŪΨijdy +O(β2δ3)

=
16

3
πδij +O(β2δ3),

and (90) is proved.

Step 5 Proof of (81).

Let us set

aij,ε = aij,ε(ξ, µ) := − 3µ

16π

δ

α

∫
Ω
eUεZj,ε

∂uε
∂xi

dσ.

According to Step 4, we have ai0,ε = O(α2) if i = 1, 2. Moreover the matrix A =

(aij,ε)i,j∈{1,2} is invertible and its inverse A−1 = (aijε )ij∈{1,2} satisfies

aijε = δij +O(α2), i, j = 1, 2.

Then (81) follows by (84), just setting

ai,ε :=
2∑
j=1

aijε a0j,ε.

�

It is important to point out that (81) cannot be considered a precise uniform expan-
sion of κi,ε. Indeed, (80) and the rough (but difficult to improve) estimate ai,ε = O(α2)
yield only κ0,εai,ε = O(α5). Since δ � α5 it is not possible to identify the leading term
in the RHS of (81). However, it is clear that the term involving ∂vε

∂xi
becomes dominant

when κ0,ε vanishes. This is enough for our argument.

Proof of Theorem 1.3 completed
Proof. Let us consider the vector field

Bε(µ, ξ) =

(
1

6πα3
κ0,ε,

2

3δµ
(κ1,ε + κ0,εa1,ε) ,

2

3δµ
(κ2,ε + κ0,εa2,ε)

)
.

By construction, for any ε > 0, Bε depends continuously on µ and ξ. Moreover, thanks
to (80), (81) and Lemma 2.2, we have

Bε → B̄(µ, ξ) :=

(
2− log

( 8

µ2

)
,∇u0(ξ)

)
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as ε→ 0, uniformly for µ ∈ U and ξ ∈ B(ξ0, σ). By assumption (A2), B̄ has a C0-stable
zero at the point (µ0, ξ0), with µ0 =

√
8e−1. Then, for ε small enough, there exist

ξ = ξ(ε) → ξ0, µ = µ(ε) → µ0 as ε → 0 such that Bε(µ(ε), ξ(ε)) = 0. Clearly, this is
equivalent to κi,ε,µ(ε),ξ(ε) = 0, i = 0, 1, 2. That concludes the proof. �

Appendix A. The proof of Lemma 2.4

Proof. The third equation in (28) allows to write δ as a function of α, β, ε, µ, ξ:

log
1

δ2
=

β

2α
+
Vε,α,ξ(ξ)

2α
−
cµ,ξ
2
,

and the second equation in (28) gives α as a function of β, ε, µ, ξ:

α = (2β + βε + εβε)−1.

Then, (after a simple computation) it is sufficient to prove that there exists β = β(ε, µ, ξ)
such that

1

β

(
log λ+

cµ,ξ
2

)
+ 2

log β

β
+

(
1

2
βε − u0(ξ)

)
︸ ︷︷ ︸

:=θε(ξ,µ)

− (Vε,α,ξ(ξ)− u0(ξ))

+
log
(
2 + βε−1 + εβε−1

)
β

− 1

2
εβε − 1

2
Vε,α,ξ(ξ)

(
βε−1 + εβε−1

)
= 0.

(93)

Now, we choose βε := 2u0(ξ) + θε(ξ, µ) with ‖θε‖C0(B(ξ0,σ)×U)
so small that

2u0(ξ) + θε(ξ, µ) ≥ η > 1 in B(ξ0, σ)× U .

This is possible because of (22). With this choice we have 1
β = O

(
η−

1
ε

)
. It is easy to

show that (93) has a solution θε because of a simple fixed point argument. Indeed (93)
rewrites as θε = T (θε) where T is a contraction mapping on the ball{

θε ∈ C0(B(ξ0, σ)× U) : ‖θε‖C0(B(ξ0,σ)×U)
≤ ρε

}
,

where ρε := ρmin
{

1
εη
− 1
ε , ‖vε − u0‖C0(Ω)

}
for some ρ > 0 and ρε → 0 as ε → 0. Here

we use the expression of Vε,α,ξ(ξ) in (11) and (ii) of Lemma 2.2. �

Appendix B. A Stampacchia type estimate

In this section we prove domain-independent estimates for solutions of the Poisson equa-
tion −∆u = f , under Dirichlet boundary conditions, with f ∈ Lp(Ω) and p approaching
1. Our strategy is based on the Stampacchia method.
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Lemma B.1 ([28], Lemma 4.1) Let ψ : R+ 7→ R+ be a nonincreasing function. As-
sume that there exist M > 0, γ > 0, δ > 1 such that

ψ(h) ≤ Mψ(k)δ

(h− k)γ
∀ h > k > 0.

Then ψ(d) = 0, where d = M
1
γψ(0)

δ−1
γ 2

δ
δ−1 .

Let Ω ⊆ R2 be a bounded smooth domain. For any q > 1, let Sq(Ω) be the Sobolev’s
constant for the embedding of H1

0 (Ω) in Lq(Ω), namely

Sq(Ω) = inf
u∈H1

0 (Ω)

‖u‖H1
0 (Ω)

‖u‖Lq(Ω)
.

It is known that 0 < Sq(Ω) < +∞ and that (see [26] Lemma 2.2)

lim
q→+∞

√
qSq(Ω) =

√
8πe.

Theorem B.2 Let Ω be a bounded smooth domain. For p > 1, f ∈ Lp(Ω), the unique
solution u ∈ H1

0 (Ω) of the equation −∆u = f satisfies

‖u‖L∞(Ω) ≤ 4S 3p+1
p−1

(Ω)−2‖f‖Lp |Ω|
p2−1

3p2+p .

Proof. We want to apply the previous lemma to the function

ψ(k) := |Ak|, Ak := {x ∈ Ω : |u(x)| > k}.

For any k > 0, let us consider the function

vk(x) :=


0 |u(x)| ≤ k,
u(x)− k u(x) > k,

−u(x)− k u(x) < −k.

Note that vk ∈ H1
0 (Ω) and |∇vk| = |∇u|χAk . If we test the equation against vk we get∫

Ω
∇u · ∇vk dx =

∫
Ω
fvkdx. (94)

For any q ∈ (1, p) Hölder’s inequality gives∫
Ω
fvk dx =

∫
Ak

fvk dx ≤ ‖f‖Lq(Ak)‖vk‖
L

q
q−1 (Ak)

≤ ‖f‖Lp |Ak|
p−q
pq ‖vk‖

L
q
q−1 (Ak)

. (95)

By Sobolev’s inequality, we have that∫
Ω
∇u · ∇vk dx =

∫
Ak

|∇vk|2dx ≥ S q
q−1

(Ω)2‖vk‖2
L

q
q−1

. (96)
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By (94)-(96), we have

‖vk‖
L

q
q−1
≤ S q

q−1
(Ω)−2‖f‖Lp |Ak|

p−q
pq .

Now, for any h > k, we have that Ah ⊆ Ak and vk ≥ (h− k) in Ah, hence∫
Ω
|vk|

q
q−1dx =

∫
Ak

v
q
q−1

k dx ≥
∫
Ah

v
q
q−1

k dx ≥ (h− k)
q
q−1 |Ah|.

In conlcusion, we find

(h− k)|Ah|
q−1
q ≤ S q

q−1
(Ω)−2‖f‖Lp |Ak|

p−q
pq ,

or, equivalently,

ψ(h) ≤
S q
q−1

(Ω)
− 2q
q−1 ‖f‖

q
q−1

Lp ψ(k)
p−q
p(q−1)

(h− k)
q
q−1

.

Then, we are in position to apply Lemma B.1 to ψ with M = S q
q−1

(Ω)
− 2q
q−1 ‖f‖

q
q−1

Lp ,

γ = q
q−1 , and δ = p−q

p(q−1) . For this, we need to impose that δ = p−q
p(q−1) , that is q < 2p

p+1 .

Note that 1 < 2p
p+1 < p. According to Stampacchia’s Lemma, we have

ψ(d) = 0 where d = M
1
γψ(0)

δ−1
γ 2

δ
δ−1 = S2

q
q−1
‖f‖Lp |Ω|

2p−q(p+1)
pq 2

p−q
2p−q(p+1) .

This implies that

‖u‖L∞(Ω) ≤ S q
q−1

(Ω)−2‖f‖Lp |Ω|
2p−q(p+1)

pq 2
p−q

2p−q(p+1) .

This is true for any choice of q ∈ (1, 2p
p+1). If we take for example p the midpoint of

(1, 2p
p+1), that is q = 1

2 + p
p+1 = 3p+1

2(p+1) , then we find that

q

q − 1
=

3p+ 1

p− 1
,

2p− q(p+ 1)

pq
=

p2 − 1

3p2 + p
,

p− q
2p− q(p+ 1)

=
2p+ 1

p+ 1
≤ 2,

and we get the conclusion. �

Corollary B.3 Given K > 0 and p > 1, there exists a constant C = C(K, p) such that,
for any domain Ω ⊆ R2 with |Ω| ≤ K and any f ∈ Lp(Ω) the unique solution u ∈ H1

0 (Ω)
of −∆u = f satisfies

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω).

Corollary B.4 Given K > 0, there exist p0 = p0(K) and C = C(K) such that, for any
1 < p < p0, any domain Ω ⊆ R2 with |Ω| ≤ K, and any f ∈ Lp(Ω), the unique solution
u ∈ H1

0 (Ω) of −∆u = f satisfies

‖u‖L∞(Ω) ≤
C

p− 1
‖f‖Lp(Ω).
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