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Abstract

In this work we study the existence of nodal solutions for the problem
“Au = due® T in Qu =0 on 99,

where Q C R? is a bounded smooth domain and p — 1.

If © is ball, it is known that the case p = 1 defines a critical threshold between
the existence and the non-existence of radially symmetric sign-changing solutions.
In this work we construct a blowing-up family of nodal solutions to such problem
as p — 17, when Q is an arbitrary domain and ) is small enough. As far as we
know, this is the first construction of sign-changing solutions for a Moser-Trudinger
critical equation on a non-symmetric domain.

1 Introduction

Let us consider the equation
Au+ due®” Tl = 0 in Q, u=20 on 09, (1)

where Q is a bounded smooth domain in R?, ) is a positive parameter and the nonlinear
term h(u) := ue®*’, with @ € R and p € [0,2), is a lower-order perturbation of e’
according to the definition given by Adimurthi in [2].

The nonlinearity f(u) = h(u)e" is critical from the view point of the Trudinger
imbedding. Indeed, in view of the Moser-Trudinger inequality (see [25] 29, [24])

sup /e“2 de : ue Hi(Q), HUH%(Q) <dm p < +o0, (2)
Q



the functional .
Ia(u) == 2/|Vu]2dx - )\/F(u)dx, u € Hi(Q), (3)
Q Q

t
where F(t) = [ f(s)ds, is well defined and its critical points are solutions to problem

. Adimurthi0 in [2] proved that .J satisfies the Palais-Smale condition in the infinite
energy range (—oo, 27m) but, as observed by Adimurthi and Prashant in [5], the critical
nature of f(u) reflects in the failure of the Palais-Smale condition at the sequence of
energy levels 2k with k € N (see also [7]).

In [2] Adimurthi proved the existence of a critical point of Jy if the perturbation h
is large, i.e. @ >0, and if 0 < A < \1(2), where A\1(Q) is the first eigenvalue of —A with
Dirichlet boundary condition ((see also [1])). Such a critical point is a positive solution
to problem . Successively, Adimurthi and Prashant in [6] showed that the condition
a > 0 is necessary to get a positive solution to (|I). Indeed, they proved that if the
perturbation A is small, i.e. a < 0, then there are no positive solutions to problem
when the domain (2 is a ball provided A is small. The case a = 0 in a general domain
Q) has been studied by Del Pino, Musso and Ruf [14] using a perturbative approach.
Indeed they find multiplicity of positive solutions which blow-up in one or more points
of Q (depending on the geometry) as A — 0. We point out that a general qualitative
analysis of blowing-up families of positive solutions to problem has been obtained
by Druet in [I5] (see also [3], 17, [16]).

As far as it concerns the existence of sign-changing solutions, Adimurthi and Yadava
in [8] proved that problem (1)) has a nodal solution when A is small if there is the further
restriction p > 1 on the growth of the large perturbation h (i.e. a > 0). Actually,
this condition turns out to be optimal for the existence of nodal radial solutions in a
ball. Indeed Adimurthi and Yadava in [9] proved that if @ > 0 and €2 is a ball, problem
does not have any radial sign-changing solution when A is small and p € [0,1]. If
one drops the radial requirement, Adimurthi and Yadava in [§] proved the existence
of infinitely many sign-changing solutions in a ball whatever A > 0 is. We point out
that, in the case a = 0, the approach of Del Pino, Musso and Ruf [14] allows to find
sign-changing solutions which blow-up positively and negatively at least at two different
points in any domain 2 as A — 0 (even if this is not explicitly said in their work).

According to the previous discussion, it turns out that when a > 0 the case p = 1
defines a critical threshold for the existence of radial sign-changing solutions in the ball.
Indeed, when = B(0,1), has radially symmetric sign-changing solutions which
blow-up as p — 17. The precise behavior of such solutions was studied by Grossi and
Naimen in [19]. Therefore, when a > 0, it is natural to ask whether it is possible to find
sign-changing solutions to problem on an arbitrary planar domain €2 which blow-up
at one point in Q as p — 1.

In this paper we give a positive answer. More precisely, let us consider the problem

—Au = el Q,
{ (4)

u =0 on 05,



where ¢ is a positive small parameter. Set
fo(t) = et I (5)
For a given 0 < A < A\1(Q2), let ug be a positive solution of the problem

—Aug = Afo(ug) in £,
ug > 0 in Q, (6)
ug =0 on 0,

whose existence has been established by Adimurthi in [2]. We make the following as-
sumptions:

(A1) wp is non-degenerate, i.e. there is no non-trivial solution ¢ € H} () of the equation
— Ap = Af(ug)p in Q, ¢ =0 on . (7)

(A2) up has a Ct—stable critical point & € € such that ug(£) > 3.

Then, we will show that admits a family of sign-changing solutions which blow-up
at & with residual mass —ugy as € — 0, namely:

Theorem 1.1 For 0 < A < M\(Q), let ug be a solution of (6)) such that[(A1) and[(A2)
are satisfied. Let also &y be as in|(A2). Then there exist eg > 0 and a family (us)o<e<e,
of sign-changing solutions to such that:

e max u. — 400 ase — 0, for any 0 < r < d(&,00N).

B(&o,r)
o u. — —ug weakly in H(Q) and in C*(Q\ {&}).
Let us make some comments about assumtpions [(A1l)[ and |(A2)

Remark 1.2 o The solution ug to problem @ turns out to be non-degenerate when
Q is the ball as proved by Adimurthi, Karthik and Giacomoni in [4]. In a work
in progress, Grossi and Naimen are going to prove that the solution is also non-
degenerate when Q is convex and symmetric (see [20]). Actually, we believe that the
non-degeneracy condition holds true for most domains Q) and positive parameters
A. Indeed, one could use similar arguments to those used by Micheletti and Pistoia
in [23] for a class of singularly perturbed equations.

o We remind that & is a C'—stable critical point of ug if the Brouwer degree
deg (Vug, B(&,7),0) # 0. In particular, any strict local mazimum point of ug
is Ct—stable. We point out that by Adimurthi and Druet [3] we can deduce that
assumption holds true when the parameter A is small enough.



e We strongly believe that the condition ug(&y) > % is not purely technical, but it
1s necessary to build a solution which blows-up at &. Indeed, we conjecture that,
if uo(&o) < %, there does not exist any sign-changing solution which blows-up at
&o with non-trivial residual mass ug as € — 0. We point out that, in a different
setting, a similar condition was proved by Mancini and Thizy [22] for problem
on a ball with p =1 and a < 0: in fact, they show that the value at the origin
of the residual mass of any non-compact sequence of radially symmetric positive

solutions must be equal to —5 (and we get %, when a = —1).

Actually, we can give a more precise description of the asymptotic behavior of the
solution u. as € — 0, since it is build via a Lyapunov-Schmidt procedure. For d, u > 0,
and ¢ € R”, let us consider the functions

811242 ) | @®)

which describe the set of all the solutions to the Liouville equation
—~ AU =éY inR? 9)
under the condition eV € L'(R?) (see [2I, M2]). We further consider the projection

PUs ¢ = (—A) teVsme where (—A)~L: L2(Q) — H} () is the inverse of —A. Namely,
PUs,, ¢ is defined as the unique solution to

{—APUM5 — —AUs e = Vot in Q, 10)

PUs ¢ =0 on 0.
Intuitively, we want to look for solutions of that look like aPUs ¢ — ug for suit-
able choices of the parameters «, 4, u, €. Unfortunately, in order to succesfully perform
Lyapunov-Schmidt reduction, a more precise ansatz is necessary and we are forced to

replace ug with a better approximation of the solutions. First, the non-degeneracy
assumption allows to find a positive solution v. € C1(Q) of such that

Ve — Up in C1(Q),
as € — 0. Then, we consider the function
Ve 7= Ve + Qwe ¢ + a22575, (11)

where a € (0,1) is a small positive parameter depending on ¢, 1, & such that o — 0
as € — 0, and w, ¢ and z. ¢ are defined as the unique solutions to the couple of linear
problems

Awg ¢ + AfL(ve)we e = 8TAGe fL(v-) in Q, (12)
wee =0 on 012,
and
Aze,g + Afé(vs)za,ﬁ = % !(—’Ug)(87TG§ - w5)2 in €,
(13)
ze =10 on 0f),



with G¢ denoting the Green function of {} with singularity at £, namely the distributional
solution to

{—Aag — 0 inQ, 14

G& =0 on 89

Problems and are nothing but the linearization of problem around the
solution v. and the R.H.S.’s are the terms of the second order Taylor’s expansion with

respect to a of f.(aPUs,¢ — Vo) far away from the concentration point § (indeed
PUs,,¢ ~ 87Gg because of (23)).

Theorem follows at once by the following result:

Theorem 1.3 Let A\, ug, & be as in Theorem 1.1, There exists eg > 0 and functions
o, 8,1 (0,60) = (0,+00), £:(0,e0) — Q and ¢ : (0,60) — HY(Q) such that:

o ue = a(e)PUs() u(e) e(e) — Vera(e)g(e) + (€) is a solution (4.

o afe) =0, 6(s) =0, u(e) = V8e™L, &(e) — &, and u(£(g)) — 400 as e — 0.

).

_ log(2ug(£0))
€

° H@(E)HHOI(Q) + [lp(e) | Lo (@) = Ofe
Let us briefly sketch the main steps of the proof of Theorem First, in Section [2]

we choose a = a(e, i1, &) and § = 0(g, p, &) such that the function
We, g 1= OPUs e — Veae (15)

is an approximate solution of . Then, we look for solutions of of the form w; ,, ¢+
with ¢ € HE(Q). Clearly, () can be written in terms of ¢ as

— Ap = Ml(wepe)p = R+ N(p), (16)
where the error term R is defined by
R = Rs,u,ﬁ = Awg’u’g + Afg(wE‘”u’g), (17)

and the higher order term N by

N(p) = Nepelp) = A (fa(ws,u,i + ) = felweue) — fé(wa,u,E)So) . (18)
Equivalently, introducing the linear operator
Lo = Leyep =0 — (=A) (A f (e n)9)s (19)

we need to solve

Ly = (=) (R+ N(p)). (20)

A careful and delicate estimate of the error R will be given in Section 3] The behaviour
of the operator L will be studied in Section[4 On the one hand, for functions supported
away from a suitable schrinking neighborhood of £, we will show that L is close to the



operator L1y = ¢ — (=A) (A f(uo)p), which is invertible on H{(Q) because of the
non-degeneracy assumption On the other hand, near the point &, L is close to
the operator Loy := ¢ — (—A)~!(eYrtp). This operator appears in the analysis of
several critical problems in dimension 2 (see for example [10, 13| I8]) and its behavior
is well known: although L is not invertible, it is possible to find an approximate three-
dimensional kernel K, ¢ for Ly by projecting on H(f2) the three functions

— |z —¢P 20p(zi — &) :

05#5( ) |x_€|2+52 27 1,5,#,5(.%) \x—§\2+52,u2’ ? )
Such properties transfer to the operator L, which turns out to be invertible on the
subspace K 5:#75 orthogonal to Ky, ¢ in HZ(Q). More precisely, denoting by 7 and 7+

the projections of H}(Q) respectively on Ks,¢ and K(ihg, we will show that 7L is
invertible on K ép,g' Then, it is natural to split equation as

o= (D)t (~A) R+ N(g)), o
Ly =7 (—A)~ 1(R+N( ).

The first equation of will be solved in Section |5 where for any pu > 0, € close to &
and any small € > 0, we will find a solution ¢, , ¢ via a contraction mapping argument
on a sufficiently small ball in K5u£ N L>(Q2). Then, recalling that dim K5, ¢ = 3 and
using assumption |(A2), we will show in Section |§| that it is possible to choose the three
parameters p = () and & =¢&(e) = (&1(e),&(e)) so that the second equation in (21
is also fullfilled. Clearly, for such choice of p and &, the function ¢, ,()¢() solves both
the equations in (21)) (or, equivalently and (20)), and u. := We pu(e),&(e) T Peule) E(e)
is a solution of .

It is important to point out that choice of the concentration point £(¢) is extremely
delicate since the scaling parameter § turns out to be much smaller than the parameter
«, whose powers control all the error terms. To overcome this difficulty, we introduce
a new argument based on a precise Pohozaev-type identity. This allows us to bypass
global a priori gradient estimates on the solution ¢, , ¢, which are hard to obtain for
Moser-Trudinger critical problems. Our argument requires a very precise ansatz of the
approximate solution w ,, ¢. In particular, the presence of the correction terms w, ¢ and
Z¢ ¢ in the expression of V , ¢ is not merely technical, but plays a crucial role both in
the estimates of the error term R and in the choice of £(¢).

2 Construction of the approximate solution

In this section we give the detailed construction of the approximate solution w, , ¢.
Here and in the rest of the paper, we will assume that (u,&) € U x B(&p,0), where
U € Rt is an open interval containing pg := v/8e™!, & is as in the assumption
and 0 < o < 3d(&, 02). By|(A2)| we can also assume

inf ug(§) >

22
B(&0,0) (22)

[\DM—~



2.1 The main terms of the ansatz

Let us introduce the main property of the projection of the bubble PUs,, ¢ defined in
, which gives the main term of the approximate solution close to the blow-up point
€. Let G¢(+) = G(+,§) be the Green’s function of —A with Dirichlet boundary conditions
introduced in and let H(-, ) be its regular part, i.e.

1 1
H(z,§) .= Ge(x) — %log Pk

Lemma 2.1 We have

PUs ye(w) =Us e () — log(8u?6°) + 8w H (x,£) + s e (),
where
||¢6,u,§||cl(ﬁ) = 0(52)»

uniformly with respect to p € U, £ € B(&o,0).

In particular,
PUs e — 871G in Cloo(2\ {€})- (23)

Proof. See for example [I1, Proosition 5.1]. O

Next, let us define the main term of the approximate solution in the whole domain
as aPUs, ¢ — ve where « is a positive parameter approaching zero as € — 0 and v, is a
non-degenerate solution to , whose existence is proved in the following lemma.

Lemma 2.2 Let A\ and ug be as in Theorems and[1.3 There exists £9 > 0, and a
family of functions (ve)o<e<e, € CH(Q) such that:

i. Ve 1S a non-degenerate weak solution of for any € € (0,¢p).
ii. ve — ug in C1(Q) as e — 0.
iii. There exists ¢ > 0 such that ve(z) > cd(x,0Q) for any x € Q, € € (0,¢ep).
Proof. Let F: (—1,1) x H}(Q) — H(Q) be defined by
Fle,u) = Fufu) = u— (=)L (\fe(w), (24)

where f. is defined as in . F is well defined because the Moser-Trudinger inequality
implies that f.(u) € LP(Q) for any 1 < p < +oo and u € HZ (). Moreover, it is a
C'-map and its partial derivative DF.(u) : H}(Q) — HE(Q) defined by

DF.(u)[g] = ¢ — (—=A) T (A fL(u)p)

is a Fredholm operator of index 0 (since the embedding HE(Q) < LP(12) is compact).

Now, let ug be a non-degenerate weak solution of @ such that holds true. In
particular, Fy(ug) = 0 and DFy(ug) is invertible. Therefore, by the implicit function
theorem, we can construct a O curve ¢ — v. € H}(€2), defined for || < &g such that
vo = ug, F:(v:) =0, and DF(v.) is invertible for |e| < &p. Then holds.

7



Applying the Moser-Trudinger inequality and standard elliptic estimates, we
obtain [izl

Hopf’s lemma and the compactness of 9} give % < —2c¢ on 012, for some ¢ > 0.
Then, for e sufficiently small, we have % < —¢, which in turn gives v.(z) > cd(z, 002)
for x in a neighborhood of 0f2. Finally, since v. — ug uniformly in €2, and ug > 0 in €,

we get O

2.2 The correction of the ansatz

We need to correct the ansatz in the whole domain by solving the following two linear

problems and :

Awg ¢ + Mfl(ve)we ¢ = 8TAGe fL(ve)  in Q,
wee =0 on 0f),

and

Az g + Afl(ve)zee = %fé’(—vg)(Sng —w:)?  in Q,
ze =10 on 0f).

Lemma 2.3 For any 0 < € < g9 and any § € (2, there exist w.¢, 2. ¢ such that
and hold. Moreover, there exists C > 0 such that

||w5,§||01(§) + ||Za,§||01(§) <C (25)
fore € (0,e0), £ € Q.

Proof. The existence of the solutions immediately follows from the non-degeneracy of
the function v, proved in Lemma Moreover, since for any p € [1,400) one has

zug |Gellr@) < +o0  and sup HU&HCl(ﬁ) < o0,
€

0<e<eo
follows by standard elliptic estimates. O
Finally, we introduce the corrected ansatz as
We g = PUs e — Veag (26)
with
Ve = Ve + 0w e + azzgyg, (27)

where v, is defined in Lemma and we ¢ and z. ¢ as in Lemma

2.3 The choice of parameters

It will be necessary to choose the parameters o = a(e, i, &) and § = 6(e, i, §) such that
Me(we ) ~ aeVsne when |z — €| ~ 6. We point out that one of the main difficulties in
this problem is that this estimates holds true only at a very small scale.

Let us fix the values of a and § according to the next lemma. The proof is based on
the contraction mapping theorem and is postponed to the appendix.



Lemma 2.4 There exist eg > 0 and functions a = a(e,u, &), f = B(e, 1, &) and § =
d(e, i, &), defined in (0,e9) x U x B(&y,0) and continuous with respect to p and &, such
that

)\/8652+51+E - %7

208 + afff +eaf =1, (28)
B =dalog} — Vine(6) + acue,

where ¢, ¢ == —log(8u?) + 8TH (£,£) and Ve o ¢ is defined in (11)).

Moreover, as € — 0, we have that

1 log(2ug(£)+o(1)

Oé(e’;‘,,u,g) = 56 s (29)

Blesn) = 5 — wolE) + (1), (30)
1 1+o0(1

log 5l i d) = gaz( ), (31)

where o(1) — 0 as € — 0, uniformly for p € U and & € B(&,0).

Remark 2.5 Note that — and give a(e, 1, &), 0(e, 1, &) — 0 and B(e, pu, &) —
+oo as € — 0, uniformly for u € U and £ € B(&,0).

From now on we let o = afe, i, ), f = B(e, 1, &) and 6 = d(e, i, &) be as in Lemma

24
It will be convenient to work on the scaled domain % = {xT_‘ﬁ, x € Q} . Note
that we have the scaling relation
U _g, (=8
sue(x) =U, 5 —2logé, (32)
where
Tu(y) = Unpoly) = lo <8“2> (33)
AT T T G P2 )
Lemma 2.6 As e — 0, we have
We e (& + 0y) = B+ alu(y) + O(8]y|) + O(6), (34)
uniformly for y € B(0,5), p €U and § € B(&,0).
Moreover, for any R > 0 it holds also true that
(e ) (€ + 0y) = aePuns&HW (1 4 0(a?), (35)

as € — 0 uniformly for y € B(0,R), u € U and £ € B(&,0).



Proof. Lemma and the scaling relation show that, as § — 0, we have the
following expansion uniformly for € € (0,£0), p € U, £ € B(§p,0) and y € B(0, §):

_ 1
Ws,u,é(f + 5y) = aUM + 4alog 5 + acye — Ve,a,u(g) +V€,a,u(§> - Vs,a,g(f + 5y)

=
- 8ma(H(E + 0y, €) — H(E,€) + O(5?).

By Lemmas and we know that V; 4, is uniformly bounded in C''(£2). Thus

Veau(§ +0Yy) = Vea,u(€) +O(]yl).
Similarly, since H € C*(Q x B(&, o)), we have

H(E + 0y, 8) = H(E,€) + O]yl).
Then estimate is proved.

_ 14+0(1)

Now, let us prove . Note that — yield § = O(é), d = O(e 8% ), and
B¢ =2up(€) +o(1) = O(1). For |y| < R, implies

we (€ +0y) = B+ aU,(y) + O(6).

In particular -
wepe(€ +6y)* = B2 + 208U, (y) + O(B9), (36)

and

we (€ +0y)' e = (B4 alu(y) + 0(6)) (8 + alu(y) + 0(5))°
= (B+ aU,(y) + O(8)) 5 <1 + —Uu(y) + O(a5)>

a

B

= (B + aBUL(y) + O(6)) <1 + %Uu(y) + O(€a4)>

= ﬁ1+s _,_aﬁs[ju(y) +€a,36[_f“(y) +O(Ea3)_
Then, using we get
M) (€ + 8) = M g (€ + by)eeans CHON e g4
= A3(1+ 0(a2))6,32+ﬁ1+a+(2a5+a55+a555)@(y)+o(a2)
(2083 + af° + aeff®) Uu(y)
= /\ﬁeﬁ2+,31+8 e =1 (1 4 O(a2))60(a2)
——

=32
- %eUu(y)(l +0(a?))
= aeUsneEH) (1 4 O(a?)),
which proves . O

It is also useful to point out the following result which will be used in the next
sections.

10



Remark 2.7 Lemma[2.1 and Lemma[2.3) give
0 < aPUsue < B+ uo(§) + o(1),

and
_Va@,f < We 11,6 < 6 + 0(1),

uniformly for x € Q, € € (0,e9), p €U, § € B(&o,0).

Notation: In order to simplify the notation, we will write U,, U, V., w., w. and
2. instead of Us ¢, Um Ve o Wepe, Wee and 2o ¢, without specifying explicitly the
dependence on the parameters. It is important to point out that all the estimates of
the next sections will be uniform with respect to u € U and £ € B(§,0). This will
allow us to choose freely the values of u and £ in Section [6] Consistently, the notation
O(f(xz,e,a,8,0)) and o f(z,e,, 3,d)) will be used for quantities depending on €, &, p
(and the parameters «, 3,6 of Lemma and satisfying respectively

o(f(z,e, 1, B,0))
f(x7€7ll’l’7§7a71875)

O(f(x,&, .80, B,0))| < Cf (w6, 1,8, 2, ,0))  and — 0,

as € — 0, uniformly for p € U and & € B(&, o).

3 The estimate of the error term
In this section we give estimates for the error term R defined in
R=Re e :=Aweye+ Me(Wepg)
It will be convenient to split €2 into four different regions:
Q= B(&,po) U (B(& p1) \ B po)) U (B(&,p2) \ B(&.p1) ) U (2N BEp2)).  (38)

where po = po(e, i, §), pr = p1(e, 1, §), p2 = p2(e, p, §), are defined by

13

€ ©) £
po=0des, pi=e 2o and py=c a. (39)

Note that
0K pg K p1 K p2 < 1, as ¢ — 0,

by and . Roughly speaking, we have to split the error into four parts: in B(&, po)

we have A\f-(w:) = aeV (14 0(1)) (see (35)) and we can use a blow-up argument to get
a uniform weighted estimate on R. This estimate does not hold anymore in the set
Q\ B(&, po), which we further split into three parts: the region Q \ B(¢, p2), where
aGe = O(e) and a uniform estimate on R can be obtained via a Taylor expansion of
fe(w:) (using that w. = —V; + 8maGe + o(a?)), and the two annuli B(, p1) \ B(&, po)
and B(&, p2) \ B(&, p1), where we give quite delicate integral estimates. The last two
regions are treated separately since w. > ¢ > 0 in B(E, p1) \ B(&, po), while w, changes

sign in B(§, p2) \ B(&, p1) (cfr. Lemma [3.2/ and Lemma [3.11)).

11



3.1 A uniform expansion in B(¢, p;)

In this section we give a more precise version of the expasions in (36[)-(37)).

Lemma 3.1 For any e € (0,1) and x > —1, we have
(14 2)17 —1 — (1 +e)z| < ex?.
Proof. According to Bernoulli’s inequality we have
(142 <1l+ex

and
A+z)!e>14 1 +¢e)x.

Since z > —1, thanks to we have that
A+a)!* <A +a)(14ex) =14+ (14¢e)x +ea’.

Then, the conclusion follows from and .

inf  wp(§). For x € B(&, p1), we have that

1
Lemma 3.2 Set ¢y := =
2 ¢eB(&,0)

B+ 04(7(%) > co,
for sufficiently small €. In particular, we have
co Sw: < B(1+0(1)).
Proof. The definitons of U and p; (see . ) and (| . and . give
reat(259) 20 000(3)
= —4da log 5 +o(1)
= uo(§) + o(1),

which implies for sufficiently small €. To get , it is sufficient to apply Lemma

2.6 and Remark 2.1

Lemma 3.3 For x € B(&, p1), we have

0

w2 (z)+wit(z) = 52+B”5+U< . €>+a2U2< 5 6>+O( <1+U2(x(5_5>>>.

12



Proof. Set y = ”:T_g € B(0,4). Noting that U(y) = O(a™?) and using Lemma m we
get

W (x) = W€+ 6y) = (B+alU(y) + O(p))?
= B2 + 228U (y) + a*U(y)* + O(Bp1).

Similarly, since Lemma w gives %ﬁ(?/) > -1+ %0 > —1, by Lemma H we infer

1+e
wﬁﬁmww%“0+gﬁw+omm0

B B
= B+ (14 2)apU(y) + O(ca®(1 + U(y))).

_ gl+e (1 +(1+e) (gﬁ(y) + O(apl)) +0 (5 <aU(y) + O(aP1)>2>>

Then the conclusion follows from the second equation in . O

3.2 Expansions in B(¢, po)

Let us now restrict our attention to the smaller ball B(, pg). This allows to control the
term o2U? appearing in the expansion of Lemma Indeed, since |U(y)| = —4log |y| +
O(1) as |y| — 400, we have that

] <$ . 5) -0 (2) and 202 (”’“ - 5) —0(2) forze B, po).  (45)

Lemma 3.4 For x € B(&, pp), we have

R(z) = oeV=@) <2U(xg§) + UQ(xg£>> +ate¥@0 <1 + U4(xg§)> .

Proof. Set y = %5. First by Lemma ﬁ Lemma and —, we get that

a — 1+e
AMe(we(x)) = A8 <1 + BU(y) 4 O(ap1)> ow? (@) +we e (2)
= % (1+ 202U (y) + O(a®(1 + U(y)))) U ) +a2TU%(y)+0(ca® (14+T2(y)))
= ac¥ @ (142020 (y) + O(a*(1 + [U(y))))) ¢V +OC 1402w,
Now, by , we can expand the last exponential term, and find
T WFOEIHIN) — 1 4 a202(y) + Oea® (1 + U%(y))) + O (1 + T*(y))
=14+ a’U*(y) + O(ea®(1 + U*(y))).
We can so conclude that

Me(we () = ac” ) a2 (20 (y) + U (y)?) + ' @01+ T'(y)).  (46)
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Moreover, by (10)-(13), and Lemmas we have
Aw, = —aes + 0(1) = —aes (1+ O(oz)e_UE) = —ae’ (1 +o(a?)), (47)
where in the last equality we used that

v 522 + |z — £]2)?2 -
o~Ve(@) _ 85|2M2 7 _ 0(5%%) = o),

for © € B(, pp). Thanks to and (47), we conclude that

R(z) = a3l (20 (y) + ﬁz(y)) + e’ @00 + U(y)).

As an immediate consequence of the previous lemma we obtain the estimate:

Corollary 3.5 We have that

reofor (0209)
in B(&, po)-
3.3 Estimates on B(§,p1) \ B(&, po)

In this region, it is diffcult to provide pointwise estimates of R because the term a?U?
appearing in the expansion of Lemma becomes very large. Then, we will look for
integral estimates. Specifically we will show that R is (very) small in LP(B(§, p1) \
B(&, po)), for a suitable choice of p = p(a) > 1, such that p — 1 as e — 0, uniformly
with respect to & € B(&p,0), u € U.

Lemma 3.6 There exists ¢1 > 0 such that
0< /\fs(ws) < 046U5+a2(1+016a)02(%)7
i B(€7 pl) \ B(€7p0)
Proof. Since 0 < w. < fin B(&, p1) \ B(&, po), from Lemma and we get

M (we) < MG BT +U(55)+a? T (55 (1+0(ea))

8 040

Ueta202(5)(140(ea)).

= ae
O

For ¢; as in Lemma let us consider the function
T.(z) = oUe(@)+a2U(555)2(14c1ea) (48)

14



Lemma 3.7 Setp:= 1+ a?. There exists c3 > 0 such that
I zoa(e pun B = O (7' )
Proof. First of all, we observe that for ¢ € (%, +00), R > 0, one has

7 8*)* m(8p?)
etV dy < / ( dy = ————- . 49
/]R?\B(O,R) R2\B(0 r) |yl* (2 — 1)R4a~2 (49)

=% e B(0, )\ B(0,5). Clearly we have

For z € B(£, p1) \ B(§, po), set y =

1
— _ _ p
Il HLP B(&,p1)\B(€,00)) = 5% / epU(y)(1+a2U(y)(1+c1aa))dy . (50)
B(0,%1)\B(0,%)
- _
Set p = dea? , so that py < p < py. For 2 <yl < &, we have
_ 2
p(1+0U)(1+eaa)) =1+0(Va) > 3.
Then, for € small enough, yields
/ U W) (14020 ) (1erz)) g, < / 200 g,
(0,2)\B(0,2) R2\B(0,7) (51)

<ly| < & by (30) and Lemma we have
1+ U(y) (1+crea) =1+ a(B+ aU(y)) (1 + ciea) — af (1 + cieq)

For

SN

1
> 5+ (o + wo(€))ar -+ ofc)
1 + coar.
2 0
Hence, we get
/ L PU)(14a2T ) (1+erea) gy < / L (3 +an)l) gy,
B(O LLZ\B(0,e 2) R2\B(0,e* 2) (52)
_ 40
= O(a_le \/5)
Thus, by ,,, we obtain
2-2p _1 _ 4
ITell e (B(e,pi)\B(po)) = O <5 Poa re wa).
Since — give
2-2p 242 1 1-p _ 4cg _ 4
0 =46 1+ =0(1), ar =aa ?» =a(l+o(l)), e o =0(e Vo),

P

we get the conclusion.
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Lemma 3.8 Let p and ¢y be as in Lemma[3.7, then

IR e (BE,p)\B(Epo)) = Ole Vo).

Proof. By Lemma [3.6| and Lemma we get that

[Afe(we)ll o (B o\ Blepo)) = Ole V7).
On the other hand, we have
Aw,(z) = —ae= W) + 0(1),

so that
2
1AWe | 2o (e o0\ Bleo)) < @l Lo(B(eo\Blep)) + OoF)
2-2p & 2
<ad 7 |6 o po,20)) + Olof)
ad?
=0 (2> +0 (pi)
Po
= 0(6_725).

3.4 Estimates in B(&, p2) \ B(§, p1)

In B(&, p2) \ B(&, p1) we can only say that w. and R are uniformly bounded. Since ps is
very small, we still get integral bounds for R.

Lemma 3.9 We have w. = O(1) and R = O(1) in Q\ B(¢, p1). In particular,
IRl L2 (B(¢.po)\Be.or)) = Olp2) = O(e™=).

Proof. Let us recall that w. = aPU; — V; with V. =V, , ¢ defined as in . According
to Lemma and Lemma we have V. = O(1) in €. Besides Lemma gives

1 1
aPU; = alog ((H252 P €|2)2) + O(a) = O(alog E) + O(a) = O(1),

for z € Q\ B(§, p1). Then, w. = O(1) and fz(we) = O(1) in Q \ B(&, p1). Similarly

Aw, = —aeVs + o(1)
52 2
=g OV
=08 +0(1) = O(1).

Therefore R = O(1). O
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3.5 Estimates in Q\ B(&, p2)

In Q\ B(&, p2) we will use that w. ~ 8maG¢— V. Our choice of V; will make R uniformly
small, namely of order a®. Note further that the choice of ps gives aG¢ = O(e) on

Q\ B(&, p2).

Lemma 3.10 As e — 0 we have

£7P2
Proof. By Lemma [2.1] we have
1
5%+ €7
2,2

)
= —4log|r —&| + 87H(x,§) — 2log <1 + |$_M§|2> + Vs e
2,2

0°u
= 87TG§(:E) — 2log (1 + ’x_§’2> + wé,u,ﬁ

Since [|[Vs.ello1 (@) = O(6%) as e — 0, it is sufficent to observe that

PU. =log ( ) + 8T H (x,8) + s ¢

&2 2 -3
Il og (1 + |_5|2> ler@\Biepay) = 072 7)-

0
Lemma 3.11 There exists a constant ¢ > 0 such such that
we(z) < —cd(z,00) <0,
for any x € Q\ B(&, p2), provided € is sufficiently small.
Proof. By Lemma Lemma and we have
Ve(z) > e(1 4 O(w))d(z, 092) Vo €,
for some ¢ > 0. Then, Lemma [3.10] implies that
we(x) < —c(1+ O(wr))d(zx, 08) (53)

in a neighborhood of 0. By definiton of ps, we have that PU. = G¢ + o(1) = O(£)

«

in Q\ B(&, p2). Then, using again Lemma and Lemma we get w, = —ug +
o(1) uniformly in Q\ B(&, p2). Since ug > 0 in €2, this toghether with yields the
conclusion. O

Lemma 3.12 In Q\ B(&, p2), we have R = O(a3(1 + Gg)) In particular,
IR 22(0\ B(e,pa)) = O(a?).
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Proof. Since ve > 0 in Q, we. < 0 in Q\ B(&,p2), and f. € C3((—00,0)), for any
x € Q\ B(&, p2) we can find 0(z) € [0,1] such that

felwe) = fo(=ve + aPU; — aw; — o’z
= fulv) + fL-0)(OPUL — awe — 0%20) 4 5 f2(~ve)(@PU. — aw. — %)’
+ éf’"(—vE + 0(aPU. — aw. — a*z.))(aPU, — aw, — o?z.)?
According to Lemma [2.3] and Lemma [3.10] we have
|ze| +|we| = O(Ge)  and  aPU. = 81aGe(1+ o(a?)).

Thus we get

1
fe(we) = — fe(ve) + afl(v.)(87Ge — we) + a? (2f//(1}5)(87TG§ —w,)? — f’(vg)zg)
+0(a3(1 + G?)) + O0(a®| " (—ve + 0(aPU;s,, — aw, — a2z5))|G§’).
A direct computation shows the existence of a constant C' > 0 such that

|1+€

12()] < C(tE 1 + 1 T v 0.

Since —v. + 0(aPU; — aw. — a?z.) = O(1) uniformly in Q\ B(&, p2), and since Lemma
implies —v. + 0(aPU. + aw, + a?z.) < —cd(-,09Q) in a neighborhood of 952, we get

I (—ve + 0(aPUs,, — awe — 04225))| =01+ d(~,8(2)8_1).

Since G¢ = O(d(-,012)) near 0N, we deduce that

felwe) = —fo(ve) + afé(vg)(&rGg —we) + a? (;f”(—vg)(&rGg — w£)2 — fé(va)zg)
+0(a’(1+ GY)).

Since by construction we have Aw, = —ae’s — Av. — aAw, — oAz, with v, w,, 2z

solving and -, we conclude that

R=—ae% +0(a3(1 + Gg))
= 0(8%p; ) + O(a®(1 + G}))
= 0(a3(1+ GY)).
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3.6 The final estimate of the error in a mixed norm

We can summarize the estimates of the previous sections as follows:
In B(&, pg), Corollary [3.5] gives |R| < a?j., where

jela) = e (1 (TS5, 654)

In B(&, p1)\ B(&, po), Lemma shows that the norm of R in L'**” is exponentially
small in a.

Finally, in Q\ B(¢, p1), Lemma and Lemma give L? estimates on R. This
suggests to introduce the norm

_ 1
£l i= 132 Fllee e o + 2zl i s onpieson + 1 l2@Bem)-  (59)

The coefficient % is chosen in order to match the norm of (—A)~! as a linear operator

from L7 (B(&, p1) \ B(&, po)) into L2 (B(&, p1) \ B(E, po)) (see Corollary [B.4).
According to the estimates above we have:

Proposition 3.13 There exists D1 > 0, €9 > 0 such that
||RH€ < Dlaga

fOT’ any € € (0750)} ne u7 g € B(g()?o-)‘
We conclude this section by stating some simple properties of the norm || - || and
the weight j..
Lemma 3.14 There exists a constant C' > 0 such that
- lzrey <€l - e

foranye >0, uel, £ € B(&,o).

Proof. Let f:Q — R be a Lebesgue measurable function. Then

171l (e oy < I1£c / jeda = |If1l- / 1+ Ty < C| .-
PO) B(OvaO)

67

By Holder’s inequality
2(12

HfHLl B(&,p1)\B(&,p0)) < HfHL1+a (B(f p1\B(E, po))p11+a < CHf”aa

and
1
£l zr\Bep)) < L2\ BeEpn2\ B )2 < C| e

Hence, the conclusion follows. O
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Lemma 3.15 For any ¢ > 0 let pe, oc be such that ps < 0. < 0 and 6 K p: < pgy as
e — 0. Let p. of be the solution to

{—Asoa =je in B(& o)\ B pe),
e =0 on OB(,0:) \ B(&, pe).
As e — 0, we have

19e | o= (B, oo \B(Ep2)) = O(1)-

Proof. Let us first note that there exists a constant ¢ > 0, such that

‘ ; - 8p? 8 [
62 (646 - :eU1+U4:<1—|—log4< <ec——
in R2. Then, by the maximum principle, we have
e <0 (55 i Bleo)\ Ble oo (56)
where v satisfies
Ay — B : .: oe pe
A PRI in A. := B(0,%)\ B(0, &),
=0 on DA..
Since the function W := —log(u + +/| - |?> + p?) satisfies —AW = —E—— we have

(B2+][?)2
Y=a+blog| |+ W,
for suitable constants a,b € R. Denoting R; = %5 and Rp = % one can verify that

o = W(RQ) log R1 — W(Rl) log R2 and b— W(Rl) — W(RQ)
log R2 - log R1 log R2 - log R1 ’

Since o .
I
W+log|-||<—=0(—=,
wortog| |1 < 5 =04 )

. . log R 1
uniformly in A., one has a = O (—Rl(log}%gQ_QlogRl)) and b =1+ 0 (—Rl(long_logRl)).
Then

1
Y=a+(b—1)log| |+ O(=)
Ry

1 log Ro 1
-0 -—-——="= O —
(Rl logRg—logR1> + (R1>

1 1 1
_O<]%11_10gRl>+0<1%1>

log Ra2

Since

log = log £2
oel_ _OEG o %a (),
log Ry  logo. —logd ~ logps —logd

we conclude that ), = O(R%) = 0(1), uniformly in A.. Then, the conclusion follows by

(56 0
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4 The Linear Theory

Let us consider the linear operator

Lo =¢— (—A) " (Afl(we)p)

introduced in . In this section we give a priori estimates for the operator L and we
prove its invertibility on a suitable subspace of Hg ().

Lemma 4.1 The following expansions hold:
1 AMfL(w2) = eV (1+ O(e2)) in B(E, po).
2. Ml(ws) = O(Ty) in B(&, p1), with T as in (48).
9. Afl(w.) = O(1) in Q\ B(E py).
4o INL(we)XBe,p) — €V ]le = o(1) as e — 0.
Proof. For x € B(&, py), using ., Lemmam ., and (| ., we have that

14e¢

Mi(ws) = M1+ 2w? + (1 + e)wlTe)e= Fhwe
B2 4 ()P I H0E)
=% (14 0(e%).
For z € B(&, p1), using Remark Lemma we have

1+4e

Af(we) = M1+ 202 + (1 + &)wlto)ewtee
= AB2(2 + O()) P BT HUGIHU(55)2(1+0(e)
=0(T,).

Claim 8 follows directly from Lemma Finally, claim 4 follows by claims 1 and 2,
using also Lemma [3.7] and the estimates

e\ rto(mepnBes) = o1 €@ b)) = o).
According to Lemma for |z — &| < po, L approaches the operator Loy :=
© — (=A)"1(eY ). Note that
Lop=0 inQ = —Ap=e%"p inQ

= ~AD=e"d in %, where ® = p({+9-).

Let us recall the following known fact about Lg (see for example [10]).
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Proposition 4.2 All bounded weak solutions of the problem
—AD=e"®  in R (57)
have the form
D = coZy+ 141 + cal,
where ¢y, c1,c2 € R and

2 2
— |y 2 2
Zo(y) == Q Zi(y) == _AHn Za(y) : HY2

oAyl oyl oyl

Remark 4.3 The functions Zy, Z1, Zo are orthogonal in DV2(R?), that is

; 8
. VZ;-VZidy = /R2 V2, 7;dy = 3700 (58)

In the following we denote

Zie(x) = Z; (x g 5) and PZ.=(-A)"'Z.,  i=0,1,2
Lemma 4.4 It holds true that

PZy. = Zy.+1+0(6%) and PZ;. = Z; - + O(6), i =1,2,
uniformly with respect to p € U, £ € B(&,0).

Proof. See for example Appendix A in [18]. O

Lemma shows the smallness of PZ;. — Z; . for i = 1,2, but not for i = 0. For
this reason, in many cases it is convenient to replace PZy. with the funtion

ZO,E if |$ - £| < P0,

= log p1 —log |z — .

Ze =S Zoc(po) (LBl if py < |z — € < p1, (59)
0 if |z —&| > p1.

Lemma 4.5 The function ZE satisfies the following properties:
o Z.€ HYQ) and |Z.] <1 in Q.
. HV(ZE = 20)lr2) = 0, uniformly for p € U and § € B(&, o).
Proof. The first property follows trivially from the definition. Moreover we have
Zo £ (po)? /
(log p1 =108 )/ B( o)\ B(e,p0) 1T — €I
o 27 Z0c(po)®

~ log p1 —log po
=0(®?)+0(e"=) = 0,

IV(Z. - Zo.2)720) < dz + |V Zo £l 7200 (e po)

+ HVZOHiQ(RQ\B(O,”TO))
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as € — 0. O

We will denote by K. the subspace of H}(Q) spanned by PZ;., i = 0,1,2 and by
K the subspaces of H(Q) orthogonal to K, i.e.

Kj:{ueﬂg(ﬂ) : /VPZw-vudx:/eUsZwuda::o, i:0,1,2}.
Q Q

Let 7 and 7+ be the projections of H{(Q) respectively on K. and K. Finally, we
denote
Yo:={f e LX) : |If]- < +oo}.

Proposition 4.6 There exist g > 0 and a constant Do > 0 such that
ez + el @) < Dollhlle, (60)

for any e € (0,e0), peU, £ € B(&,0), h € Yz and p € K- satisfying
™ {Lp — (—A)*h} = 0. (61)

Proof. We assume by contradiction that there exists &, — 0, u, € U, &, € B(&,0),
hy, € Y and a solution ¢, € K én of such that

lonll 1) + lenll e (@)
thHan

Let 6, an, By, be the parameters in Lemma corresponding to €,, i, and &,. Let also
PO,n> Py P2,n be defined as in . We denote wy, := w;,, Up :=Us.,, Zipn := Z;., and
fn = fe,- W.lo.g we can assume that [|¢nl g1(q) + [[onllre@) = 1 and [[hn]lc, — 0.
Since ¢, satisfies , there exist ¢; , € R, i = 0, 1,2, such that

— +0o0

2
— App — M (wn)n = hn + Z cin€’" Z; . (62)
1=0

Step 1 We have ¢;, — 0 asn — 400, i =0,1,2.

Let Z, := Zen be the function defined in . Testing equation against Zn, we get
2 ~ ~ ~ ~
> cin / eV Z; pZndx = / NV Zy, - Vpds — / A (wn)on Znda — / hpZpdz.  (63)
p Q Q Q Q
Since [l¢nll g1y <1 and ¢, € K2, using Lemmawe get

/ \V Vopdr = / VZon - Vonpdr +o(1) = / eUn Zonpndr 4+ o(1) = o(1),
Q Q Q

-~

=0
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as n — +oo. By Lemma and Lemma we find
/S2)\f7/1(wn)g0n2ndx = /B(g ) eUn(anO’ndx + 0(6721) + 0 (HFEHLl(B(En,m,n)\B(ﬁn,po,n)))
n,P0,n

_ / eV o Zo midz +o(1) = o(1).
Q
=0

Finally, Lemma and Lemma [3.14] give

|| haZadel < sy < Clhnlle, = of0).
Then rewrites as
2
Z cj,n/ eU"ijZde =o(1). (64)
j=0 79

With similar arguments, testing equation against PZ; , for i = 1,2, we get that

2
ch,n / eV Z; P Z; pda = — / A (wn)onP Zi pda — / hn P Z; pda
=0 Q Q Q

(65)
= AQURWnZi,ndx +0(1) = 0<1)

=0

Note that, as in , we have

/ eUn Zj,nan:U = / eln ZjnZondr + O / eUn
Q B(&n,po,n) R2\B(&n,00,n)

— /B(O pon) eUZjZody + 0(1)
7577

8
= 30, + o(1),

for j = 0,1,2. Similarly
Unyg. . — Un 7. .
/ e " ZinPZpdx = / e’ ZjnZindr + o(1)
Q Q
8
= 3™ + o(1),

fort=1,2, 5 =0,1,2. Then, and rewrite as

2

> cinl(8 +0(1)) = o(1),

J=0

which implies the conclusion.
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Step 2 Ifﬁn = h, + (Af:z(wn)XB(gn,pl,n) — eU") ©n + Z?:o cjmeU”Zj’n, then

— Apy, = 6Un30n + )‘f;z(wn)XQ\B(gn,plyn)SOn + %n in €2, and ”%ann — 0. (66)

Since [[hnle, = 0, [Zinl < 1, and [Af}(@n)XB(enprn) — € [l = 0 by Lemma[d.1]
it is sufficient to observe that ||eV"|., = O(1) and apply Step 1.

Step 3 There exists 0, < pn < pon such that, up to a subsequence, |[pn| Lo (B(g,,pn)) —
0 as n = +oo.

Let us consider the sequence ®,,(y) := on(&n + 0ny), y € 2 ®d,, satisfies

—AD, = eUD, + 62Tn (€ + 6,0) inB( ,p(;’”).

We know that

‘eU(y)q)n(y)‘ < VW < %’
i
and, for y € B(0, % 5), that

Oalhn(& + )| < 62je, (€ + a1 [Bulle,, = €7@ (1 4+ [T @) Bnlle,, < Cllenc,, = 0.

In particular ®,, and A®,, are uniformly bounded in B(0, po—’"). By standard elliptic
estimates, we can find &y € C(R?)N H] (R?) and a sequence R,, — +00, R, < po",
such that, up to a subsequence, ||®,, — ®o|| = (B(0,r,)) — 0- Moreover, [®| <1 and Dy
is a weak solution to B

—Ady=eYd;  in R
According to Proposition we must have ®g = kgZy + k121 + ko Za, for some k; € R,
1=0,1,2. Keeping in mind and using that eV € L'(R?), we obtain

0= / VU Z; b da = / eV Z,®,,dy
Q Q*fn

on,

— / eV 7,8, dy + O / Udy
B(0,R»,) R*\B(0,Rn)

— g’ﬂ'/‘ﬁi,

for ¢ = 0,1,2. This implies k; = 0, ¢ = 0,1,2. Then &3 = 0 and we get the conclusion
with p, = 0, R.

Step 4 Up to a subsequence, &, — & € 2 and o, — 0 in L2 (Q\ {£}), as n — .

e | oo @\B(enpra)) — 05

We know that ¢, satisfies in Q. Since |p,| < 1,
= O( ), by ellpitic estimates we

[hnllL2@\Be,prn)) — 05 and [|f7,(wn)llLoo(@\B(e,p1.0))
find that ¢, is bounded in C’IOOZ(Q\ {€}), for some v € (0,1). Therefore, there exists
o € C(Q) N HL(Q), such that ¢, — o locally uniformly on Q \ {£} and weakly in
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HE(Q). Noting that w, — —ug locally uniformly in Q\ {¢} and that f! is even, we see
that ¢o satisfies Apg + f((uo)po in Q\ {£}. Actually, since ¢o, Ay € L®(Q), ¢q is
a weak solution of Ay + fi(uo)po = 0 in . Then, the non-degeneracy of uy implies
Yo = 0.

By Step 4, we can find a sequence oy, > pa,, such that ||,z )\ B(gp,0n)) — 0 a8

n — 400, up to a subsequence. Then, it is sufficient to show that |[¢n | ze(a,) — 0,

where A, := B(&,,0,) \ B(&n, pn) and p,, is as in Step 3. We can split ¢, = 90510) +
(1) (2)

oD 4+ 0P + oD where

A 7(10) =0 i An —A %) = Jin i An
" A and o fin a1,
On' = @n on dA,, pn’ =0 on 0A,,

with _

Jin = EU’”Pn + "X B(En.pom)

fon = haXB(ew,p1,n)\B(En.po.n)>

S3m = M XB(&,0n)\B(€nprn) T A0 (@n)XB(&n0n)\B(En,pr.n) P
By the maximum principle

100 o (an) < llonllzoe @4,y — O

Since B
|fl,n| < er + [hnllenden < Jen (14 0(1)) < 24c,,,

we get that \gogll)| < 21, where 1), satisfies

—Aty, = Jen 1N Ap
Pp =0 on JA,.

Lemma |3.15| implies [|¢n||fec(4,) — 0, hence HQDS)HLOO A,) — 0. Finally, since [A,| is
uniformly bounded, elliptic estimates (see Corollaries and [B.4)) give

C C

) ~
H‘Pv(z )HL°°(An) = @Hf?mHLHa?(An) - @Hh’ﬂ”L1+a2(B(gn,m,n)\B@n,po,n))

< HE"ZHSH — 0,

and
e oo (an) < Cllfamllrzcan) = Olhnlle,) + O(Vew) = 0.

Step 6 Conclusion of the proof.
By Step 5, we have that ||50n||H3(Q) =1~ [lpnllpe@) — 1. But gives

||§0n||?{é(g) :/eUn(pidl‘—i—/ Af;(wn)goidx—l—/hngondx
Q Q\B(&Pl,n) Q

= O(lpalZoqay) + olllenll2ay) = 0.
Then, we get a contadiction. O

As a consequence we have that 7+ L is invertible on K.
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Corollary 4.7 1L : KX + K2 is invertible.

Proof. This follows by standard Fredholm theory. Indeed, for any € > 0 the map
F(p) == mH(—=A)"}(f'(we)g) defines a compact operator on K- (in fact on H{(Q)).
Then 7L = Id Kt — F is a Fredholm operator of index 0. Proposition implies that
7L is injective, hence it is invertible on K. O

5 The reduction to a finite dimensional problem

This section is devoted to reduce the problem to a finite dimensional one. More precisely,
we prove:

Proposition 5.1 There exist g > 0 and a map (e, 1, &) = e pe € KXNL>®(Q) defined
in (0,e0) XU x B(&, o) and continuous with respect to u and &, such that for some D > 0

Loe S Daga (67)

H‘P&uéHHg + [[e e

and
T Lpepe = (“A) R+ N(pepe)) } =0, (63)

where the linear operator L is defined in , the error term R is defined in and
the quadratic term N is defined in .

5.1 Estimates on N(y)
For a function ¢ € Hj(€2) N L>(2), let N(¢) be defined as in (18), i.e.
N(p) = Nepe(#) = A (felwepe +9) = feWepug) = filwepne)p) -
Let us estimate || N(p)||e, where || - || is defined as in (55)). Let us define
B :={p € L*(Q) : [|¢llLe() < . (69)
Lemma 5.2 There exists Dy > 0 such that
IN (1) = N(2)lle < Do (o1l ooy + o2l noo@)) ller — w2ll o)

Jor any ¢1,¢2 € Ba.
Proof. First, for any = € 2 we can find 0; = 6,(z) € [0, 1] such that

N(p2) = N(p1) = A (fe(we + @2) — fo(w: + 1) — fi(we) (02 — ¢1))
= A (flwe + 012+ (1= 01)p1) (02 — ¢1) — fL(we) (02 — ¢1))
=A (fé(wa + 3) — fe/(wa)) (p2 — 1),

where 3 := 0192 + (1 — 01)p1. Furthermore, there exists 6 = 02(x) such that
fiwe + ¢3) = fiwe) + f (we + O203) 3.
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Thus, we obtain
IN (1) = N(p2)| = Al fL (we + 0203) |3l o1 — w2
<A (we + 0203)| ([le1ll L) + o2l o)) le1 — w2l Lo (-

Then, in order to conclude the proof, we shall bound || f(w: + 62¢3)||c. Note that, there
exists a universal constant Cy > 0 such that

7)) < Co(1 + [t2)e™ ™ vt e R,
By Remarkwe have w. = O(B) = O(ofl). Since |¢3] < 1] + |e2| < 2, we get

(70)

(we + 02003)% < w2 + 2fwelgs] + ¢F = wZ + O(1). (71)
By convexity, we also have
jwe + 023> < (Jwe| + [ps])® < A(|wel® + lsl’) < 4(Jwel® + o). (72)
In B(&, p1) we have w. > ¢y by Lemma so that

1+e
(we + O203)11 < wlte (1 + C“) =w!™+0(1). (73)
0
Clearly - yield the existence of a constant C; > 0 such that
|f!(ws + 92803)| < C’104_2Wz-:€w§+‘WsIlJrs = Cla_2f€(ws)a
in B(&, p1). Arguing as in Lemma (see (46)) we get
A fE (we +b29)| < Ca™'je  in B(E, po)- (74)

Lemma [3.6] and Lemma [3.7] yield

c2

A2 e 4 020) | 12 ey oy = Ol 267 VE). (75)
Finally, thanks to Lemma [3.9] we know that
AfZ (we + O203) = O(1)  in Q\ B(&, p1).- (76)

Thanks to — we infer
AllfZ (we + 0203) [l = O(a™),
and the conclusion follows from . g
Remark 5.3 Applying Lemma with @9 = 0, we obtain that
ING) - < Do~ ol e,
for any p € B,.
Remark 5.4 The proof of Proposition and Lemma also shows that

IN@z=@\se) < Dallelieo),
for any p € B,.
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5.2 Proof of Proposition a fixed point argument

Let us consider the operator
T = Tone = (7"1) 17 [(=8)7} (N(p) + R) | (77)
on the space X := K2 N L>®(f), which is a Banach space with respect to the norm

-l = 11 lag ) + 1 - llzee@)-

Let Dy and Dy be the constants defined in Proposition and Proposition Let
us set
E.:={peX : |l¢|lx < Do(D;1+1)a?}.

Proposition [5.1| is an immediate consequence of the following result.

Proposition 5.5 There exists eg > 0 such that, for anye € (0,e0), p €U, § € B(&o,0),
T has a fized point ., ¢ € E-, which depends continuosly on p and §.

Proof. Since E. is a closed subspace of X and T depends continuously on g and &, it is
sufficient to verifry that

1. 7 maps E. into itself.

2. T is a contraction, i.e. |[T(¢1) =T (@2)llm1 ) < 0llvr—p2llg1 () for some positive
constant # < 1 and for any 1,92 € Fg.

Then the conclusion follows by the contraction mapping theorem.
Step 1 T maps E. into itself.
Let us denote Cy := Do(D; + 1). Take ¢ € E. and set

h(¢) := R+ N(¢).

If £ is small enough, we have that a2Cy < 1, so that E. C B, (see (69)). By Proposition
and Remark [5.3] we get

1R(@)lle < [1R]le + [N (©)lle
< D1a® + Daa™ o[ Foe
< Dia® + C§D2a5,
for any ¢ € E.. Then, if we take € small enough so that C’ngaQ <1, we get that
Ih(p)lle < (D1 + 1.

Since by definition
T L(T(9)) = 7 (=A) " h(yp),

we have by Proposition [4.6] that
IT(@)llx < Dollh(w)lls < Do(D1 +1)a?,

that is T (¢) € E-.
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Step 2 T is a contraction mapping in F..

Let us take € small enough so that DyDyCpa? < % and E. C B,. By Propositions
[4.6] and [5.2] we have

1T (¢1) — T'(p2)llx < Dollh(p1) — h(w2)lle
= Do||N (1) = N(p2)ll
< DoDao ([[1 ]l (@) + 1@zl @) o1 — @2l ()
< 2Co Do D20’ |1 — pal| oo (o)
1
< 5llvr = ealloe()s

for any @1, p2 € E.. Then, T is a contraction mapping on E.. O

6 The reduced problem: proof of Theorem completed
Let ¢¢ := ¢ ¢ be as in Proposition By , we can find k. ; = ke i(p,§),1=0,1,2
(which depend continuously on y, and &), such that

2

— Ape = Mfl(ue)pe + R+ N(pe) + Z 'L{E,jeUEZEJ' (78)
=0

Equivalently, setting u. := we: + @,

2

— Aue = Mfe(ue) + Z /is,jeUEZ&j. (79)
j=0

Our aim is to find the parameter ;1 = p(e) and the point £ = £(e) so that the k. ;’s are
zero provided ¢ is small enough.

Proposition 6.1 It holds true that

8
— 3 _
Ko = 6T <2 log (Mz) + 0(1)) , (80)
and
= —roca + P5%% () £ Oas), i =1,2 (81)
Rie = —R0,eQj¢ 2 0x; @o), 1 =1,

as € — 0 uniformly with respect top € U and § € B(&o, o). Here, the a;’s are continuous
functions of p and & and a; . = O(a?) uniformly for (u,&) € U x B(&, ).

Proof.
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Step 1 Let us prove that
Kie = O(a®)  fori=0,1,2 (82)

and
||906||cl(§\3(50,20)) = 0(a”). (83)

First, since gives ||¢[|(q) = O(a?), Proposition Lemma Remark
and Lemma [4.1] yield

IRl 1) = O(®), [IN()llpi@) = O®), |IAfilws)pell i) = O(®).
Recalling that

8
/ GU"ijPZi’ndﬂZ = gwéij + 0(5), fori,7=0,1,2,
Q

by Lemma and , we get by testing equation with PZ; ,, 1= 10,1, 2.
By Lemma Remark and Lemma one has

Miwe) =0(1), R=0(a%), N(ge)=0(a),
uniformly in Q\ B(, §). Then
[A@e | oo Be,3)) + 19zl Lo () = O(@?),
and we get by standard elliptic estimates.
Step 2 Proof of .

Let ZE be the function defined in . We shall test equation against Zg. With
the same arguments of the proof of Proposition (Step 1), we obtain

[ oe V2= [ Goo Voedo t olleclnye) = ofed)
Moreover

/ )\fé(wg)gpgzsdx = / eUEZO’EQDE dx + O(e2a3) + O(a3HFE||L1(B(§,p1)\B(£,po)))
Q B(gupo)

= o(a”),

/eU”Zj,EZde:/ eUZjZody+O / e¥da
Q R2 R2\B(0,%)

8 -
= 57”527 + 0(52,00 2).

and
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By Lemma and Lemma [3.8] we get

RZpde = / RZond + O Rll 11 (6. ooy (e 00
/Q Bé.po) (B(&,p1)\B(&,p0))
= a3/ v (20 + UQ) Zydy + O <a4/ eU(l + U4)dy> + o(a?)
B(0,p0) R2
8
_ 3 I 4
= 167« (log (M2) 2> + O(a”).
Finally, we have that
| ¥ Zedz = 01N ()1 = O(a).
Then, testing against Zg and using , one gets
8 8
_ 3 3
0 =167 <log <E) — 2) + gﬂk‘o,g + o(a?),

from which we get .

Step 3 Let us prove

2
ou ov
Z A Ueg. Z2¢0r — —8 c O(a?), i=1,2 84
j_o'%]ﬁ/g;e ]758:1:7: T ﬂ-aa$z(§)+ (a )7 ? ) &y ( )

We multiply and g—gj. Applying the Pohozaev identity (see e.g. [27, Proposition
2, Proof of Step 1]), we obtain

1 Ou. Ou, Oue & U Oue
-3 zd = 5 Eid j,E nZaid i+
3 oo 9s 00 v; do /Qf (u )8% :c+jzoh;]7 /Qe i P x (85)

Since u. = 0 on 0, the divergence theorem yields

/Qfe(ue)gﬁdx = /Q di- (/Oug(x) fg(t)dt> da
B /asz " </0us<x) ﬁ;(t)dt) do =0,

By (B3), the definition of u. and w., Lemma Lemma we have

Oue Ov, 0 9
5 = o + 0‘5(8”(;6 —we) +O(a”)
on 09Q. Thus, keeping in mind that |Vv.|, |[Vw.| and |VG¢| are uniformly bounded on

0 (see Lemma ([2.2]) and (2.3])) and that gﬁ = %ff v;, we obtain

Oue Ou. Ove v, Ov. 0 )
oq O0x; Ov do oq Ox; Ov do + 2a 00 O; Ov (ws 87TG€) do + O(a ) (87)

32



Applying the Pohozaev identity to v. and arguing as in , we get that

Ove avs 81)5 B
S = 2 / o) geda =0, (88)

Integrating by parts and noting that —Aavf = )\f’(vg)a”8 in 2, we get

v, ﬁ
o0 81’1 ov

v, ov Ove
_ = A we A
(we — 87Ge)do / (6% We — 8351) dx + 8w oz, (&)

+87T/G§ g:€

+ AfL(ve)we — 8TAfL(ve)Ge) d + 87(23 (€).

Q 337i
=0 by

This together with — gives

1 Oue Oug oV, 9

= do =8 O . 89

3 ooy 0; 00 0 mam(@Jr (a”) (89)
Finally, follows by — and .
Step 4 Fori=1,2, j =0,1,2, we have

ou 16
/Q UEZJ&(%: dx = -5 <3 mdij + O(a )) (90)

For ¢ =1,2 and j = 0,1,2. Note that we have the identity

U,
U. e*

Z. =
amf PE S

(5ij(Z0,5 =+ 1) — (5]'021"5 — 3Zi,€Zj’€) .

Setting W;; := 6;j(Zo+ 1) — 00Z; — 3Z;Z; and applying the divergence theorem, we find

ou d
U. _ U.
/Qe Zje axj dr = — /Q Ug = (e ijs) dx

— 1/ uees (8;(Zos +1) = 8j0Zie — 3ZieZje) da
o Jo

B 1 Uy ..

= —@ /96—5 ue(f + (51/)6 \Ilz]dy
. _

T on / us (& + dy)e Wyjdy + O(56%),
op JB(0,2)

where in the last equality we used that
ue=0(f) and "Wy =0(y™), (91)
for |y| > §. By Lemma [2.6| we have

u(§+ 6y) = B+ alU(y) + O(a®) + O(3lyl), (92)
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for y € B(0,%). Using again (1)), we get that

/ eU\I/ijdy:/ eU\Ifijdy—l—O(&g).
B(0,) R2
=0

Similarly, we have
/3(07;) UeU\I/@-jdy = /R2 UeU\IJijdy +0(B%5?)
= ?W%‘ +0(5%5°),
and is proved.
Step 5 Proof of .

Let us set

3p o ou
Qije = Qije(§ 1) = — 7 /Q " Zje a;. do.
KA

According to Step 4, we have a0, = O(a?) if i = 1,2. Moreover the matrix A =
(aije)ijeqr 2y is invertible and its inverse A™! = (a);jeq1,0) satisfies

a¥ =6 +0(a?), i,j=1,2.

Then follows by , just setting

2
Aje ‘= CLEJCL[)LE.
j=1

g

It is important to point out that cannot be considered a precise uniform expan-
sion of k; .. Indeed, and the rough (but difficult to improve) estimate a; . = O(a?)
yield only ko ca;c = O(c®). Since § < o it is not possible to identify the leading term
in the RHS of . However, it is clear that the term involving ggi becomes dominant
when ko vanishes. This is enough for our argument.

Proof of Theorem [1.3| completed
Proof. Let us consider the vector field

1
a3 e 360

Be(p,€) = (

2
(Hl,s + F‘:O,Eal,é) ) @ (/@2,5 + K/O,EGQ,E) .

By construction, for any € > 0, B. depends continuously on p and £&. Moreover, thanks

to (80), (81) and Lemma we have
_ 8
B: — B(p,£) = (2 ~log (Mg),wo(é))
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as ¢ — 0, uniformly for p € U and £ € B(&y,0). By assumption B has a C%-stable
zero at the point (uo,&), with pg = +v/8e~!. Then, for £ small enough, there exist
€ =¢&() = &, b= p(e) — po as € — 0 such that B.(u(e),£(e)) = 0. Clearly, this is
equivalent to ;. ,().¢) = 0, 4 =0,1,2. That concludes the proof. (|

Appendix A. The proof of Lemma 2.4
Proof. The third equation in allows to write § as a function of «, 3, ¢, i, &:

1 ﬁ ‘/Eaf(f) Cu
log — = 1 4 &8\ 7
5T 00 T 2 2

and the second equation in gives a as a function of 8, ¢, u, &:
a=(28+p5 +eB)"

Then, (after a simple computation) it is sufficient to prove that there exists 8 = 5(e, i, &)
such that

5 (34 %) 428 1 (25— (6] ) = (Veael®) — w0(e)

2 B
log (2+ 851 +ep7Y) 1 1 _ _
( S (B +ept) =0.
3 2 2
Now, we choose 5% := 2ug(§) + 0-(&, p) with ”9€HC°(WXH) so small that

2u(€) +0:(¢. 1) = 1 > 1 in B(&o, 0) x U.

This is possible because of . With this choice we have % =0 <n_%>. It is easy to

show that has a solution . because of a simple fixed point argument. Indeed
rewrites as 6. = 7 (0;) where T is a contraction mapping on the ball

{0 € C°B&,0) x W) < 10: oz mynany < -}

where p. = pmin{%nfi, ||ve — UOHCO(Q)} for some p > 0 and p. — 0 as € — 0. Here
we use the expression of V; 4 ¢(£) in and (ii) of Lemma [2.2] O

Appendix B. A Stampacchia type estimate

In this section we prove domain-independent estimates for solutions of the Poisson equa-
tion —Awu = f, under Dirichlet boundary conditions, with f € LP(2) and p approaching
1. Our strategy is based on the Stampacchia method.
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Lemma B.1 ([28], Lemma 4.1) Let ¢ : RT — R be a nonincreasing function. As-
sume that there exist M > 0,y > 0, 6 > 1 such that

P(h) < ?ﬁ(gi Vh>k>0.

Then 1 (d) = 0, where d = M%d}(o)%zf%l

Let  C R? be a bounded smooth domain. For any ¢ > 1, let S;(£2) be the Sobolev’s
constant for the embedding of H(2) in L(Q), namely

u
S,(Q) = inf el gy
ueH(Q) [[ullLa(o)

It is known that 0 < S4(2) < 400 and that (see [26] Lemma 2.2)

lim /qSq(Q?) = V8me.

q—+00

Theorem B.2 Let Q be a bounded smooth domain. Forp > 1, f € LP(Q), the unique
solution u € H} () of the equation —Au = f satisfies

p2-1
lull (@) < 4Spe (@) 72| fll o 2[5

Proof. We want to apply the previous lemma to the function
(k)= |Ag|, Ax:={z€Q : |u(z)| > k}.
For any k£ > 0, let us consider the function

0 u(x)] <k,
vp(x) = qulx) —k  u(r) >k,
—u(z) —k u(x) < —k.

Note that vy € H} () and |Vug| = [Vulxa,. If we test the equation against vy we get

/ Vu -V, dx = / fupda. (94)
Q Q
For any ¢ € (1,p) Holder’s inequality gives
pP—q

Joee= [ e < U lsnca ol s ) < W00 AR ol (95)

By Sobolev’s inequality, we have that
) _ 20> 2 2
/QVu Vo da /Ak Vurlde > o (@2l (96)
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By —, we have
_ p—gq
okl o < S_a ()72 fllelAx] #e .

Now, for any h > k, we have that A, C Ay and vy > (h — k) in Ap, hence

P P
/\vk\qqldx—/ v,jldacz/ vi de > (b — k)71 | Ap).
Q Ag, Ay,

In conlcusion, we find
-1 —
(h =AW < S o (72 f ol Asl 7,

or, equivalently,

_ 29 4 p—gq
S_a () a1 fl 15" (k)P0
q—1
(h— k)it

2 9
Then, we are in position to apply Lemma to ¢ with M = S (02 )7?(11”sz;1,
V= —L, and 5 = (q 1) For this, we need to impose that § = ( ) that is ¢ < p+1

Y(h) <

Note that 1 < i1 <P According to Stampacchia’s Lemma, we have

5 2p—q(p+1)

(d) =0  where  d=Mp(0) > 25T = 8% || flle|Q 2% e,
q—1

This implies that

2p—q(p+1)

HUHLOO(Q)Ssﬁ(ﬁ)*szHLpKZ\ i QT el D

This is true for any choice of ¢ € (1 2p ). If we take for example p the midpoint of

7p+1
3p+1
(1?m) tha‘t ISQ—2+p+1: (gil)7thenweﬁndthat
¢ 3p+1 2p—qlp+1) p*—1 p—q  2p+1
g—1 p—-1’ Pq 32+p 2p—qlp+1) p+1 — 7
and we get the conclusion. O

Corollary B.3 Given K > 0 and p > 1, there exists a constant C' = C(K,p) such that,
for any domain Q C R? with || < K and any f € LP(Y) the unique solution u € HE(Q)
of —Au = f satisfies

[ull Lo (@) < Cllfllr)

Corollary B.4 Given K > 0, there exist pg = po(K) and C = C(K) such that, for any
1 < p < po, any domain Q C R? with || < K, and any f € LP(SY), the unique solution
u € HYQ) of —Au = f satisfies

C
[ull oo () < ]lefHLP(Q)-
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