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1 Introduction

In this paper we will prove some existence and uniqueness theorems for
two different two-scale problems. In this framework, a two-scale problem
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is a system of PDEs involving two unknowns (u, u1), the first one just
depending on a set of space variables (usually called the macroscopic or
slow variables) and, possibly, on time t, the second one depending also on a
second set of spatial variables y (i.e. u depends on (x, t), while u1 depends
on (x, y, t)). This other set of space variables y is usually called the set of
microscopic or fast variables.
Such problems have a wide range of applications in many models in which
the physical properties at a macroscopic level are affected by phenomena
taking place at a microscopic level which, in turn, are affected by the evo-
lution of the macroscopic state variable.
A relevant mathematical framework in which such problems originate is the
well-known homogenization theory where, in general, a system of PDEs is
studied in a periodic non-homogenous medium, characterized by regions
having different physical properties. As the typical length scale of the
periodic microstructure tends to zero, we expect to find a “limit” problem
satisfied by the macroscopic state variable u. Obviously, the microscopic
structure of the medium must play a role in the final equations and this is
taken into account by the microscopic state variable u1, thus leading to the
so-called two-scale problem or two-scale system of PDEs (see, among the
many others, [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14] and the reference therein).
In some recent papers (see [7, 8]), the authors have studied a model for
the heat conduction in finely mixed periodic materials made up of two
different constituents, having different thermal properties and which are
separated by a two-dimensional thermally active interface. Such a problem
was treated via homogenization techniques and, as we have described above,
it led to a two-scale systems of PDEs of the type studied in this paper. Its
main feature is that the equations for the microscopic function u1 in the
two physically different regions Eint and Eout are coupled via a Laplace-
Beltrami equation satisfied on the surface G separating such two regions.
Due to this peculiar structure, the problem for the pair (u, u1) (see (3.1)–
(3.7) and (4.1)–(4.6) below) must be dealt carefully.
In particular, the homogenized limit problem obtained in [7, 8] belongs to
the family of elliptic/parabolic systems (4.1)–(4.6), whose well-posedness is
proved in Section 4 via a relaxation technique. This is done by introducing
a new problem in which u1 satisfies a parabolic equation in Eint ∪ Eout

(see (4.9)–(4.15)) and passing to the limit as ε tends to zero (ε being the
coefficient of u1

t ). In order to achieve our goal, we make use of some a-priori
estimates independent of ε (see (4.19)).
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In turn, the well-posedness of the relaxed system (3.1)–(3.7) is obtained in
Section 3 using abstract parabolic theory (see, for instance, [13] and [15]).
When problems of type (3.1)–(3.7) or (4.1)–(4.6) appear as homogeniza-
tion limit, this automatically yields the existence of solutions (leaving only
uniqueness to be established). Here, we prove an independent result of ex-
istence and uniqueness under more general assumptions; for instance, both
in (3.1) and in (4.1), we allowed the matrix A in the principal part to be
also negative definite. We believe that these problems are of mathematical
interest in themselves and, for this reason, we have decided to devote this
paper to their study.

The paper is organized as follows. In Section 2, we recall the definition and
some properties of the tangential operators (gradient, divergence, Laplace-
Beltrami operator) and we state our geometrical setting. In Sections 3 and
4, we state and prove our main results.

2 Prelimineries

2.1 Tangential derivatives

Let ϕ be a C2-function, Φ be a C2-vector function and S a smooth surface
in RN with normal unit vector n. We recall that the tangential gradient of
ϕ on S is given by

∇Bϕ = ∇ϕ− (n · ∇ϕ)n (2.1)

and the tangential divergence of Φ on S is given by

divB Φ = divB (Φ− (n ·Φ)n) = div (Φ− (n ·Φ)n)
= div Φ− (n · ∇Φi)ni − (divn)(n ·Φ) , (2.2)

where, taking into account the smoothness of S, the normal vector n can
be naturally defined in a small neighborhood of S as ∇d

|∇d| , where d is the
signed distance from S. Moreover, we define as usual the Laplace-Beltrami
operator as

∆Bϕ = divB(∇Bϕ) . (2.3)

Finally, we recall that on a regular surface S with no boundary (i.e. when
∂S = ∅) we have ∫

S

divB Φ dσ = 0 . (2.4)
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2.2 Geometrical setting

LetΩ be an open connected bounded subset of RN with Lipschitz boundary.
Let us denote by Y the open subset (0, 1)N ⊂ RN and assume that Y =
Eout ∪ Eint ∪ G, where Eint and Eout are two disjoint open subsets of Y ,
Eout is connected, G = ∂Eint = ∂Eout ∩Y , G ∩ ∂Y = ∅ and G is assumed to
be of class C∞. Finally, let ν denote the normal unit vector to G pointing
into Eout.
We will also use the following notation. Let T > 0 be a given time, for any
spatial domain G, we will denote by GT = G × (0, T ) the corresponding
space–time cylindrical domain over the time interval (0, T ).

3 Well-posedness for the parabolic two-scale sys-
tem

We consider the following two-scale parabolic problem for the pair (u, u1)
defined by

ut−div
(
A∇u+

∫
Y

B(∇yu
1+∇xu)dy+

∫
G

ℓ(∇B
y u

1+∇B
x u)dσ

)
=f, in ΩT ; (3.1)

u1
t − divy

(
B(∇yu

1 +∇xu)
)

= g , in ΩT × (Eint ∪ Eout); (3.2)
divB

y

(
ℓ(∇B

y u
1 +∇B

x u)
)

= −[B(∇yu
1 +∇xu) · ν]− h , in ΩT × G; (3.3)

u1(x, ·, t) is Y -periodic for a.e. (x, t) ∈ ΩT ; (3.4)

u = 0 , on ∂Ω × (0, T ); (3.5)
u1(x, y, 0) = u1

0(x) , in Ω × Y ; (3.6)

u(x, 0) = u0(x) , in Ω, (3.7)

where the notation [·] denotes the jump across the interface G of the function
inside the square brackets.
We assume that f, g, h, u0, u

1
0 satisfies

f ∈ L2(ΩT ) , g ∈ L2(ΩT × Y ) , h ∈ L2(ΩT × G) ,
u0 ∈ L2(Ω) , u1

0 ∈ L2(Ω × Y ) ,
(3.8)
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and that

A ∈
(
L∞(Ω)

)N
, A(x)ξ · ξ ≥ −γA|ξ|2, for a.e. x ∈ Ω, ∀ξ ∈ RN,

B ∈
(
L∞(Ω × Y )

)N
, B(x, y)ξ · ξ ≥ γB|ξ|2, for a.e. (x, y) ∈ Ω × Y , ∀ξ ∈ RN,

ℓ ∈ L∞(Ω × G), ℓ(x, y) ≥ γℓ, for a.e. (x, y) ∈ Ω × G,
(3.9)

where γB > γA > 0 and γℓ are strictly positive constants.

Remark 3.1. Notice that, as a consequence of (3.2) and (3.3), it follows

d

dt

∫
Y

u1(x, y, t)dy

 =
∫
Y

g dy +
∫
Y

divy
(
B(∇yu

1 +∇xu)
)
dy

=
∫
Y

g dy −
∫
G

[B(∇yu
1 +∇xu) · ν] dσ

=
∫
Y

g dy +
∫
G

divB
y

(
ℓ(∇yu

1 +∇xu)
)
dσ +

∫
G

hdσ =
∫
Y

g dy +
∫
G

hdσ .

(3.10)

Hence, the mean average of u1 over the unit cell Y is prescribed in terms
of the sources g and h and the initial datum u1

0, i.e.

∫
Y

u1(x, y, t)dy =
∫
Y

u1
0(x, y)dy +

t∫
0

∫
Y

g dy +
∫
G

hdσ

 dτ . (3.11)

Therefore, replacing u1 with the function û1 defined by

û1(x, y, t) = u1(x, y, t)−
∫
Y

u1
0(x, y) dy

−
t∫

0

∫
Y

g(x, y, τ)dy +
∫
G

h(x, y, τ)dσ

 dτ , (3.12)

we get that the pair (u, û1) satisfies the problem (3.1)–(3.7) with a new

initial datum û
1
0 (having null mean average on Y ) defined by

û
1
0(x, y) = u1

0(x, y)−
∫
Y

u1
0(x, y)dy ,
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and a new source g defined by

ĝ(x, y, t) = g(x, y, t)−
∫
Y

g(x, y, t)dy −
∫
G

h(x, y, t)dσ .

Moreover, the sources ĝ and h satisfy the following compatibility condition∫
Y

ĝ(x, t, y)dy +
∫
G

h(x, t, y)dσ = 0 , for a.e. (x, t) ∈ ΩT (3.13)

As a consequence of Remark 3.1, without loss of generality, we will assume
that the initial datum u1

0 in (3.6) satisfies the further condition∫
Y

u1
0(x, y)dy = 0 , for a.e. x ∈ Ω, (3.14)

and that the sources g and h satisfies the compatibility condition (3.13), so
that, in the pair (u, u1) of solutions, the function u1 satisfies∫

Y

u1(x, y, t) dy = 0 , for a.e. (x, t) ∈ ΩT . (3.15)

Assumptions (3.13)–(3.15) will be instrumental in considering problem (3.1)–
(3.7) in an abstract parabolic setting, as for instance in [13] and [15]. To
this purpose, we are led to introduce the following function space

H1,B
0,#(Ω × Y ) = {v ∈ L2(

Ω;H1
#(Y )

)
: ∃∇B

y v ∈ L2(Ω × G)

and

∫
Y

v(x, y)dy = 0 for a.e. x ∈ Ω} ,

where the supscript # denotes Y -periodicity.

Definition 3.2. We say that a pair (u, u1) ∈ L2(
0, T ;H1

0 (Ω)
)
× L2(

0, T ;
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H1,B
0,#(Ω × Y )

)
is a weak solution of the problem (3.1)–(3.7) if

−
T∫

0

∫
Ω

u
∂φ

∂τ
dxdτ+

T∫
0

∫
Ω

A∇u·∇φdxdτ+
T∫

0

∫
Ω

∫
Y

B(∇u+∇yu
1)·∇φ dxdy dτ

+
T∫

0

∫
Ω

∫
G

ℓ(∇Bu+∇B
y u

1) · ∇φdxdσ dτ −
T∫

0

∫
Ω

∫
Y

u1∂ϕ

∂τ
ψ dx dy dτ

+
T∫

0

∫
Ω

∫
Y

B(∇u+∇yu
1) · ∇yψ ϕ dxdy dτ

+
T∫

0

∫
Ω

∫
G

ℓ(∇Bu+∇B
y u

1) · ∇B
y ψ ϕ dxdσ dτ

=
∫
Ω

u0φ(x, 0)dx+
∫
Ω

∫
Y

u1
0ϕ(x, 0)ψ(y)dxdy

+
T∫

0

∫
Ω

fφ dxdτ +
T∫

0

∫
Ω

∫
Y

gϕψ dxdy dτ +
T∫

0

∫
Ω

∫
G

hϕψ dx dσ dτ , (3.16)

for every φ, ϕ ∈ C∞(
[0, T ]; C∞

c (Ω)
)
, φ(·, T ) = ϕ(·, T ) = 0 in Ω, and ψ ∈

C∞
# (Y ).

Theorem 3.3. Assume that f, g, h, u0, u
1
0, A,B, ℓ satisfy (3.8), (3.9), and

(3.14) and that the compatibility condition (3.13) is fulfilled by the sources g
and h. Then problem (3.1)–(3.7) admits a unique pair of solutions (u, u1)∈[
L2(

0, T ;H1
0 (Ω)

)
∩ C0(

[0, T ];L2(Ω)
)]
×

[
L2(

0, T ;H1,B
0,#(Ω × Y )

)
∩ C0(

[0, T ];

L2(Ω × Y )
)]
.

Proof. Let us set

H = L2(Ω)× L2(Ω × Y ) , V = H1
0 (Ω)×H1,B

0,#(Ω × Y ) ;

and define, for every ũ = (u, v), w̃ = (w, v) ∈ H (or ũ = (u, v), w̃ = (w, v)
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∈ V , respectively)

(ũ, w̃)H :=
∫
Ω

uw dx+
∫
Ω

∫
Y

vv dxdy , (3.17)

(ũ, w̃)V := (ũ, w̃)H +
∫
Ω

∇u · ∇w dx+
∫
Ω

∫
Y

∇yv · ∇yv dx dy

+
∫
Ω

∫
G

(∇B
x u+∇B

y v) · (∇B
x w +∇B

y v)dx dσ .
(3.18)

We claim that V and H are Hilbert space endowed with the previously
defined scalar products. Indeed, the product (3.17) is the standard one in
L2(Ω)× L2(Ω × Y ). On the other hand, it can be easily verified that also
(3.18) is a scalar product with respect to which V is a complete space.
To this purpose, we notice that (3.18) contains the sum of the scalar
product in H1

0 (Ω) (which is complete) and the standard scalar product
in L2(

Ω;H1
#(Y )

)
(which is complete, too). Hence we have that, if (uk, u

1
k)k

is a Cauchy sequence in V , there exists (u, u1) ∈ H1
0 (Ω) × L2(

Ω;H1
#(Y )

)
such that (uk, u

1
k)→ (u, u1) strongly in H1

0 (Ω)×L2(
Ω;H1

#(Y )
)
and u1 has

null mean average on Y . Moreover, if (uk, u
1
k)k is a Cauchy sequence in V

we have also that (∇B
x uk + ∇B

y u
1
k)k is a Cauchy sequence in L2(Ω × G).

Therefore, it remains to verify that ∇B
x u + ∇B

y u
1 does exist and ∇B

x uk +
∇B

y u
1
k → ∇B

x u+∇B
y u

1, strongly in L2(Ω × G). However, by the complete-
ness of L2(Ω × G), it follows that there exists q⃗ ∈ L2(Ω × G) such that
∇B

x uk +∇B
y u

1
k → q⃗ strongly in L2(Ω × G) and

−
∫
Ω

∫
G

(∇B
x u+∇B

y u
1) ·Ψ dx dσ dτ =

∫
Ω

∫
G

(udivB
x Ψ+u1 divB

y Ψ)dx dσ dτ ←−
∫
Ω

∫
G

(uk divB
x Ψ+u1

k divB
y Ψ)dxdσ

= −
∫
Ω

∫
G

(∇B
x uk +∇B

y u
1
k) ·Ψ dx dσ −→ −

∫
Ω

∫
G

q⃗ ·Ψdxdσ , (3.19)

where Ψ ∈ C∞
0

(
ΩT ; C∞

# (Y )
)
and the first equality follows by easy com-

putations from formula (2.2). Hence, q⃗ = ∇B
x u + ∇B

y u
1 and the claim is

proved.
Finally, we also have that V ⊂ H with continuous and dense injection (note
that C∞

0 (Ω × Y ) ⊂ V ).
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Let us now define the bilinear and symmetric form a : V × V → R as

a(ũ, w̃) =
∫
Ω

A∇u · ∇w +
∫
Ω

∫
Y

B(∇u+∇yv) · (∇w +∇yv)dxdy

+
∫
Ω

∫
G

ℓ(∇Bu+∇B
y v) · (∇Bw +∇B

y v)dx dy

which satisfies

|a(ũ, w̃)| ≤ C
(
∥∇u∥L2(Ω)∥∇w∥L2(Ω) + ∥∇yv∥L2(Ω×Y )∥∇yv∥L2(Ω×Y )

+ ∥∇B
x u+∇B

y v∥L2(Ω×G)∥∇
B
x w +∇B

y v∥L2(Ω×G)
)
≤ C∥ũ∥V ∥w̃∥V

a(ũ, ũ) ≥ c
(
∥∇u∥2L2(Ω)+∥∇yv∥2L2(Ω×Y )+∥∇

B
x u+∇B

y v∥2L2(Ω×G)
)
≥ c∥ũ∥2V ,

(3.20)

where c, C depend on γA, γB, γℓ and the Poincaré constant and we have
taken into account that, due to the Y -periodicity of v, we have∫

Ω

∫
Y

|∇u+∇yv|2 dx dy =
∫
Ω

∫
Y

(
|∇u|2 + |∇yv|2 + 2∇u · ∇yv

)
dx dy

=
∫
Ω

∫
Y

(
|∇u|2 + |∇yv|2

)
dxdy + 2

∫
Ω

∇u ·

∫
Y

∇yv dy

 dx

=
∫
Ω

∫
Y

(
|∇u|2 + |∇yv|2

)
dx dy. (3.21)

Hence, a is a continuous and coercive bilinear form on V ×V . Finally, let us
denote by V ∗ the topological dual space of V and observe that V ⊂ H ⊂ V ∗

is a so-called evolution triple (see [15, Def. 23.11]). Moreover, consider the
linear and continuous operator F ∈ L2(0, T ;V ∗) defined by

⟨F (t), ϕ̃⟩ =
∫
Ω

f(x, t)ϕ(x, t)dx+
∫
Ω

∫
Y

g(x, y, t)Φ(x, y, t)dx dy

+
∫
Ω

∫
G

h(x, y, t)Φ(x, y, t) dxdσ ,

for a.e. t ∈ (0, T ) and every ϕ̃ = (ϕ,Φ) ∈ V , where we denote by ⟨·, ·⟩ the
duality pairing between V ∗ and V .
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Now let us consider the following abstract problem

find ũ ∈ L2(0, T ;V ) ∩ C0(
[0, T ];H

)
such that ũ(0) =

(
u0, u

1
0
)
∈ H

and
d

dt

(
ũ(t), ϕ̃

)
H

+ a
(
ũ(t), ϕ̃

)
= ⟨F (t), ϕ̃⟩ ∀ϕ̃ ∈ V , (3.22)

in the sense of distribution in (0, T ). We remark that (3.22) correspond
to the abstract formulation of the problem (3.1)–(3.7); indeed, taking into
account the compatibility condition (3.13), it is possible to prove that the
weak form (3.16) can be equivalently rewritten using test function ψ ∈
C∞

# (Y ) with null mean average on Y (as it is usual in the periodic setting).
Therefore, since by [15, Theorem 23A (a)] problem (3.22) admits a unique
solution, the thesis is accomplished.

Remark 3.4. Previous theorem can be generalized to the case where the
source terms are more general; i.e., we can assume that F ∈ L2(0, T ;V ∗).
Remark 3.5. Notice that Theorem 3.3 can be generalized to the case in
which the coefficients γ ∈ L∞(Ω) and α ∈ L∞(G) (with γ(x) ≥ γ0 a.e. in
Ω and α(x) ≥ α0 a.e. on G, for proper constants γ0, α0 > 0) appear in
front of the time derivatives in (3.1) and (3.2).

4 Well-posedness for the parabolic-elliptic two-
scale system

This section is devoted to prove that, as a consequence of Theorem 3.3,
we obtain the well-posedness of the following two-scale parabolic-elliptic
system

ut−div
(
A∇u+

∫
Y

B(∇yu
1+∇xu)dy+

∫
G

ℓ(∇B
y u

1+∇B
x u)dσ

)
=f, in ΩT ; (4.1)

− divy
(
B(∇yu

1 +∇xu)
)

= g , in ΩT × (Eint ∪ Eout); (4.2)
divB

y

(
ℓ(∇B

y u
1 +∇B

x u)
)

= −[B(∇yu
1 +∇xu) · ν]− h , in ΩT × G; (4.3)

u1(x, ·, t) is Y -periodic and with null mean average; (4.4)

u = 0 , on ∂Ω × (0, T ); (4.5)

u(x, 0) = u0(x) , in Ω. (4.6)
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Definition 4.1. We say that a pair (u, u1) ∈ L2(
0, T ;H1

0 (Ω)
)
× L2(

0, T ;
H1,B

0,#(Ω × Y )
)
is a weak solution of the problem (4.1)–(4.6) if

−
T∫

0

∫
Ω

u
∂φ

∂τ
dxdτ+

T∫
0

∫
Ω

A∇u·∇φdxdτ+
T∫

0

∫
Ω

∫
Y

B(∇u+∇yu
1)·∇φ dxdy dτ

+
T∫

0

∫
Ω

∫
G

ℓ(∇Bu+∇B
y u

1) · ∇φdxdσ dτ

+
T∫

0

∫
Ω

∫
Y

B(∇u+∇yu
1)·∇yψ ϕ dxdy dτ+

T∫
0

∫
Ω

∫
G

ℓ(∇Bu+∇B
y u

1)·∇B
y ψ ϕ dx dσ dτ

=
∫
Ω

u0φ(x, 0)dx+
T∫

0

∫
Ω

fφdxdτ+
T∫

0

∫
Ω

∫
Y

gϕψ dx dy dτ+
T∫

0

∫
Ω

∫
G

hϕψ dxdσ dτ,

(4.7)

for every φ, ϕ ∈ C∞(
[0, T ]; C∞

c (Ω)
)
, φ(·, T ) = ϕ(·, T ) = 0 in Ω, and ψ ∈

C∞
# (Y ).

Note also that, integrating (4.2) on Y = Eint ∪Eout, applying Gauss-Green
formulas and taking into account (4.3), we obtain that, for a.e. (x, t) ∈ ΩT ,∫

Y

g dy = −
∫
Y

divy
(
B(∇yu

1 +∇xu)
)
dy =

∫
G

[B(∇yu
1 +∇xu) · ν] dσ

= −
∫
G

divB
y

(
ℓ(∇B

y u
1 +∇B

x u)
)
dσ −

∫
G

hdσ = −
∫
G

h dσ . (4.8)

Thus (4.8) is a compatibility condition for g and h (analogous to (3.13)),
which now is an essential a-priori condition in order to have the well-
posedness of problem (4.1)–(4.6).

Theorem 4.2. Assume that f, g, h, u0, A,B, ℓ satisfy (3.8) and (3.9) and
that the compatibility condition (4.8) hold. Then the problem (4.1)–(4.6)
admits a unique pair of solutions (u, u1) ∈ L2(

0, T ; H1
0 (Ω)

)
× L2(

0, T ;
H1,B

0,#(Y )
)
.

Proof. We will prove the existence of a pair of solution to problem (4.1)–
(4.6) via a relaxation technique. To this purpose let us consider, for every
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ε > 0, the following problem

uε
t−div

(
A∇uε+

∫
Y

B(∇yu
ε,1+∇xu

ε)dy
)

−div
(∫

G

ℓ(∇B
y u

ε,1+∇B
x u

ε)dσ
)
=f, in ΩT ; (4.9)

εuε,1
t − divy

(
B(∇yu

ε,1 +∇xu
ε)

)
= g, in ΩT × (Eint ∪ Eout); (4.10)

divB
y

(
ℓ(∇B

y u
ε,1 +∇B

x u
ε)

)
=−[B(∇yu

1 +∇xu) · ν]− h, in ΩT × G; (4.11)

uε,1(x, ·, t) is Y -periodic for a.e. (x, t) ∈ ΩT ; (4.12)

uε = 0, on ∂Ω × (0, T ); (4.13)

uε,1(x, y, 0) = 0, in Ω × Y ; (4.14)

uε(x, 0) = u0(x), in Ω. (4.15)

Clearly, problem (4.9)–(4.15) is well-posed since, for ε fixed, it can be
treated as the problem (3.1)–(3.7), up to properly redefining the scalar
products in (3.17) and (3.18) (due to the relaxation parameter ε, which
appears explicitly in front of the time derivative in (4.10)). We recall also
that, as a consequence of Remark 3.1, taking into account that (4.8) is ful-
filled, it follows that uε,1 has null mean average on Y , a.e. in ΩT . Moreover,
by (3.16), we get the following energy estimate

1
2

T∫
0

∫
Ω

∂(uε)2

∂τ
dxdτ +

T∫
0

∫
Ω

A∇uε · ∇uε dxdτ

+
T∫

0

∫
Ω

∫
Y

B(∇uε +∇yu
ε,1) · ∇uε dxdy dτ

+
T∫

0

∫
Ω

∫
G

ℓ(∇Buε +∇B
y u

ε,1) · ∇uε dxdσ dτ

+ ε

2

T∫
0

∫
Ω

∫
Y

∂(uε,1)2

∂τ
dxdy dτ +

T∫
0

∫
Ω

∫
Y

B(∇uε +∇yu
ε,1) · ∇yu

ε,1 dxdy dτ

+
T∫

0

∫
Ω

∫
G

ℓ(∇Buε +∇B
y u

ε,1) · ∇B
y u

ε,1 dxdσ dτ

12



=
T∫

0

∫
Ω

fuε dxdτ +
T∫

0

∫
Ω

∫
Y

guε,1 dx dy dτ +
T∫

0

∫
Ω

∫
G

huε,1 dx dσ dτ . (4.16)

Taking into account (3.8) and the fact that (∇Buε + ∇B
y u

ε,1) · ∇uε =
(∇Buε +∇B

y u
ε,1) · ∇Buε, by Young inequality it follows

sup
t

∫
Ω

(uε)2 dx+ ε sup
t

∫
Ω

∫
Y

(uε,1)2 dx dy +
T∫

0

∫
Ω

|∇uε|2 dxdτ

+
T∫

0

∫
Ω

∫
Y

|∇yu
ε,1|2 dxdy dτ +

T∫
0

∫
Ω

∫
G

|∇Buε +∇B
y u

ε,1|2 dxdσ dτ

≤ C
(
∥u0∥2L2(Ω) + ∥f∥2L2(ΩT ) + ∥g∥2L2(ΩT ×Y ) + ∥h∥2L2(ΩT ×G)

)
+ Cδ

(
∥∇uε∥2L2(ΩT ) + ∥∇yu

ε,1∥2L2(ΩT ×Y )

)
, (4.17)

where C depends on G, γA, γB, γC , the Poincaré’s and the trace inequality
constants. We remark also that, in the left-hand side we use the following
inequality

T∫
0

∫
Ω

∫
Y

|∇uε +∇yu
ε,1|2 dx dy dτ =

T∫
0

∫
Ω

∫
Y

(
|∇uε|2 + |∇yu

ε,1|2
)
dx dy dτ ,

(4.18)
which is a consequence of the Y -periodicity of uε,1 and can be proved as in
(3.21). This implies that the left-hand side of (4.17) is uniformly bounded
with respect to ε; i.e.,

sup
t

∫
Ω

(uε)2 dx+ ε sup
t

∫
Ω

∫
Y

(uε,1)2 dx dy +
T∫

0

∫
Ω

|∇uε|2 dxdτ

+
T∫

0

∫
Ω

∫
Y

|∇yu
ε,1|2 dx dy dτ +

T∫
0

∫
Ω

∫
G

|∇Buε +∇B
y u

ε,1|2 dxdσ dτ ≤ C ,

(4.19)

where C is a strictly positive constant independent of ε. As a consequence
of this estimate, we obtain that there exist u ∈ L2(

0, T ;H1
0 (Ω)

)
, u1 ∈

13



L2(
ΩT ;H1

#(Y )
)
with null mean average on Y and q⃗ ∈ L2(ΩT × G) such

that, up to a subsequence,

uε ⇀ u w − L2(ΩT ) ;
uε,1 ⇀ u1 w − L2(ΩT × Y ) ;
∇xu

ε ⇀ ∇xu w − L2(ΩT ) ;
∇yu

ε,1 ⇀ ∇yu
1 w − L2(ΩT × Y ) ;

∇B
x u

ε +∇B
y u

ε,1 ⇀ q⃗ w − L2(ΩT × G) .

Therefore, we can pass to the limit, for ε → 0, in the weak formula-
tion of (4.9)–(4.15), which is analogous to (3.16) written for (uε, u1,ε),
where

∫ T
0

∫
Ω

∫
Y u

1 ∂ϕ
∂τ ψ dxdy dτ is replaced by ε

∫ T
0

∫
Ω

∫
Y u

ε,1 ∂ϕ
∂τ ψ dx dy dτ → 0.

Finally, following analogous computations as in (3.19), we obtain that
q⃗ = ∇B

x u + ∇B
y u

1. Thus, the existence of a weak solution for the prob-
lem (4.1)–(4.6) is proved.
In order to prove uniqueness, we have only to take into account the linearity
of problem (4.1)–(4.6) and the associated energy estimate which, carrying
on the proper integration, turns out to be exactly the same as (4.19) having
set ε = 0.
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