A NEW NONAUTONOMOUS CHAIN RULE IN BV

VIRGINIA DE CICCO

Abstract

The aim of this note is to present a new nonautonomous chain rule formula for the distributional derivative of the composite function $v(x)=B(x, u(x))$, where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a scalar function of bounded variation and B admits a special integral form in terms of a locally bounded function $b(x, t)$, with $b(\cdot, t)$ of bounded variation. It is an useful tool especially in view to applications to semicontinuity results for integral functional (see $[1,8,9,10]$) and to conservation laws (see [5, 6]).

1. Introduction

In this note we present a new nonautonomous chain rule formula in the scalar case for the distributional derivative of the composite function $v(x)=B(x, u(x))$, with $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ a scalar function of bounded variation and $B(x, t)=\int_{0}^{t} b(x, s) d s$, where $b(x, t)$ is locally bounded (which implies that $B(x, \cdot)$ is Lipschitz continuous) and $b(\cdot, t)$ has bounded variation.

In 1967, A.I. Vol'pert in [13] considers a general B in the autonomous case and by requiring the Lipschitz continuity of B, proved that the following identity holds in the sense of measures:

$$
\begin{equation*}
D v=\nabla B(u) \nabla u \mathcal{L}^{N}+\nabla B(\widetilde{u}) D^{c} u+\left[B\left(u^{+}\right)-B\left(u^{-}\right)\right] \nu_{u} \mathcal{H}^{N-1}\left\llcorner J_{u}\right. \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
D u=\nabla u \mathcal{L}^{N}+D^{c} u+\nu_{u} \mathcal{H}^{N-1}\left\llcorner J_{u}\right. \tag{2}
\end{equation*}
$$

is the usual decomposition of $D u$ in its absolutely continuous part ∇u with respect to the Lebesgue measure \mathcal{L}^{N}, its Cantor part $D^{c} u$ and its jumping part, which is represented by the restriction of the $(N-1)$-dimensional Hausdorff measure to the jump set J_{u}. Moreover, ν_{u} denotes the measure

[^0]theoretical unit normal to J_{u}, \widetilde{u} is the approximate limit and u^{+}, u^{-}are the approximate limits from both sides of J_{u}.

The validity of (1) is stated also in the vectorial case (see Theorem 3.96 in [4] for $B \in C^{1}$). The situation is significantly more complicated if B is only a Lipschitz continuous function. In this case, the general chain rule is false, while a weaker form of the formula was proved by Ambrosio and Dal Maso in [3] (see also [12]).

On the other hand, in some recent papers a remarkable effort is devoted to establish chain rule formulas with an explicit dependence on the space variable x (see $[1,5,8,9,10]$). Notice that the new term of derivation with respect to x needs a particular attention. The proofs are achieved by regularizing $B(\cdot, t)$ with fixed t, by applying the Ambrosio-Dal Maso formula to the regularized functions and finally by passing to the limit in each term.

More recently, a very general nonautonomous formula is proven in [2] for vector functions $u \in B V$. Here, the first assumption is a C^{1} dependence of $B(x, \cdot)$ with an uniform bound on $\partial_{t} B(x, t)$. Concerning the x-derivative, it is required the existence of a Radon measure σ bounding from above all measures $\left|D_{x} B(\cdot, t)\right|$, uniformly with respect to $t \in \mathbb{R}$.

The aim of this note is to consider the special case of

$$
B(x, t)=\int_{0}^{t} b(x, s) d s
$$

In the spirit of Theorem 3.1 below proved in [9] we find a chain rule in this situation. We assume that b is $B V$ in x and it is locally bounded (then $B(\cdot, t)$ is $B V$ and $B(x, \cdot)$ is Lipschitz continuous) and we find an explicit form for the term involving the x-derivation, which is described in [9] by a Fubini's type inversion of integration order.

In the spirit of [2] we require the existence of a Radon measure $\bar{\sigma}$ bounding from above all measures $\left|D_{x} b(\cdot, t)\right|$, uniformly with respect to $t \in \mathbb{R}$. We prove that for any $u \in B V_{\text {loc }}$ the composite function $v(x)=$ $B(x, u(x))$ belongs to $B V_{\text {loc }}$ and it is shown the existence of a countably \mathcal{H}^{N-1}-rectifiable set $\overline{\mathcal{N}}$, independent of u and containing the jump set of $B(\cdot, t)$ for every $t \in \mathbb{R}$, such that the jump set of v is contained in $\overline{\mathcal{N}} \cup J_{u}$. A chain rule is obtained (see Theorem 4.2) by requiring further uniformity conditions, but without assuming any continuity assumptions. The result here presented will be proven in a forthcoming paper.

2. Definitions and preliminaries

In this section we recall some preliminary results and basic definitions (see [4] and [11]).
Let E be a measurable subset of \mathbb{R}^{N}. The density $D(E ; x)$ of E at a point $x \in \mathbb{R}^{N}$ is defined by

$$
D(E ; x)=\lim _{\varrho \rightarrow 0} \frac{\mathcal{L}^{N}\left(E \cap B_{\rho}(x)\right)}{\omega_{N} \rho^{N}}
$$

whenever this limit exists, where ω_{N} is the measure of the unit ball and $B_{\rho}(x)$ denotes the ball centered at x with radius ρ.

Let $\Omega \subseteq \mathbb{R}^{N}$ be an open set and let $u: \Omega \rightarrow \mathbb{R}$ be a measurable function. The upper and lower approximate limits of u at a point $x \in \Omega$ are defined as

$$
\begin{align*}
& u^{+}(x)=\inf \{t \in \mathbb{R}: D(\{u>t\} ; x)=0\} \\
& u^{-}(x)=\sup \{t \in \mathbb{R}: D(\{u<t\} ; x)=0\}, \tag{3}
\end{align*}
$$

respectively. The quantities $u^{+}(x), u^{-}(x)$ are well defined (possibly equal to $\pm \infty$) at every $x \in \Omega$, and $u^{-}(x) \leq u^{+}(x)$. The functions $u^{+}, u^{-}: \Omega \rightarrow$ $[-\infty, \infty]$ are Borel measurable.
We say that u is approximately continuous at a point $x \in \Omega$ if $u^{+}(x)=$ $u^{-}(x) \in \mathbb{R}$. In this case, we set $\widetilde{u}(x)=u^{+}(x)=u^{-}(x)$ and call $\widetilde{u}(x)$ the approximate limit of u at x. The set of all points in Ω where u is approximately continuous is a Borel set which will be denoted by C_{u} and called the set of approximate continuity of u. The set $S_{u}=\Omega \backslash C_{u}$ will be referred to as the set of approximate discontinuity of u.
Finally, by u^{*} we denote the precise representative of u which is defined by

$$
u^{*}(x)=\frac{u^{+}(x)+u^{-}(x)}{2}
$$

if $u^{+}(x), u^{-}(x) \in \mathbb{R}, u^{*}(x)=0$ otherwise.
A locally integrable function u is said to be approximately differentiable at a point $x \in C_{u}$ if there exists $\nabla u(x) \in \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{1}{\rho^{N+1}} \int_{B_{\rho}(x)}|u(y)-\widetilde{u}(x)-\langle\nabla u(x), y-x\rangle| d y=0 \tag{4}
\end{equation*}
$$

Here, $\langle\cdot, \cdot\rangle$ stands for scalar product in \mathbb{R}^{N}. The vector $\nabla u(x)$ is called the approximate differential of u at x.

A function $u \in L^{1}(\Omega)$ is said to be of bounded variation if its distributional gradient $D u$ is an \mathbb{R}^{N}-valued Radon measure in Ω and the total variation $|D u|$ of $D u$ is finite in Ω. The space of all functions of bounded variation in Ω is denoted by $B V(\Omega)$, while the notation $B V_{\text {loc }}(\Omega)$ will be reserved for the space of those functions $u \in L_{\text {loc }}^{1}(\Omega)$ such that $u \in B V\left(\Omega^{\prime}\right)$ for every open set $\Omega^{\prime} \subset \subset \Omega$.

Let $u \in B V(\Omega)$. Then it can be proved that

$$
\lim _{\rho \rightarrow 0} f_{B_{\rho}(x)}|u(y)-\widetilde{u}(x)| d y=0 \quad \text { for } \mathcal{H}^{N-1}-\text { a.e. } x \in C_{u}
$$

and that u is approximately differentiable for \mathcal{L}^{N}-a.e. x. Moreover, the functions u^{-}and u^{+}are finite \mathcal{H}^{N-1}-a.e. and for \mathcal{H}^{N-1}-a.e. $x \in S_{u}$ there exists a unit vector $\nu_{u}(x)$ such that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} f_{B_{\rho}^{ \pm}\left(x ; \nu_{u}(x)\right)}\left|u(y)-u^{ \pm}(x)\right| d y=0 \tag{5}
\end{equation*}
$$

where $B_{\rho}^{+}\left(x ; \nu_{u}(x)\right)=\left\{y \in B_{\rho}(x):\left\langle y-x, \nu_{u}(x)\right\rangle>0\right\}$, and $B_{\varrho}^{-}\left(x ; \nu_{u}(x)\right)$ is defined analogously. The set of all points in S_{u} where the equalities in (5) are satisfied is called the jump set of u and is denoted by J_{u}.

If u is a $B V$ function, we denote by $D^{a} u$ the absolutely continuous part of $D u$ with respect to Lebesgue measure. The singular part, denoted by $D^{s} u$, is split into two more parts, the jump part $D^{j} u$ and the Cantor part $D^{c} u$, defined by

$$
D^{j} u=D^{s} u\left\llcorner J_{u}, \quad D^{c} u=D^{s} u-D^{j} u\right.
$$

Finally, we denote by $\widetilde{D} u$ the diffuse part of $D u$, defined by

$$
\widetilde{D} u=D^{a} u+D^{c} u
$$

3. The chain Rule in $B V\left(\mathbb{R}^{N}\right)$ proven in [9]

In the paper [9] the authors deal with a general chain rule formula in $B V\left(\mathbb{R}^{N}\right)$ for functions whose dependence in x is $B V$. More precisely, the following theorem is proved for particular functions of the type $B(x, t)=$ $\int_{0}^{t} b(x, s) d s$.

Theorem 3.1. Let $b: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function. Assume that
(α) the function $b(x, t)$ is locally bounded;
(β) for every $t \in \mathbb{R}$ the function $b(\cdot, t) \in B V\left(\mathbb{R}^{N}\right)$;
(γ) for any compact set $H \subset \mathbb{R}$,

$$
\int_{H}\left|D_{x} b(\cdot, t)\right|\left(\mathbb{R}^{N}\right) d t<+\infty,
$$

where $D_{x} b(\cdot, t)$ is the distributional gradient of the map $x \mapsto b(x, t)$. Then for every $u \in B V\left(\mathbb{R}^{N}\right) \cap L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$, the function $v: \mathbb{R}^{N} \rightarrow \mathbb{R}$, defined by

$$
v(x):=\int_{0}^{u(x)} b(x, t) d t
$$

belongs to $B V_{\text {loc }}\left(\mathbb{R}^{N}\right)$ and for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$ we have
(6) $\int_{\mathbb{R}^{N}} \nabla \phi(x) v(x) d x$

$$
\begin{aligned}
= & -\int_{-\infty}^{+\infty} d t \int_{\mathbb{R}^{N}} \operatorname{sgn}(t) \chi_{\Omega_{u, t}}^{*}(x) \phi(x) d D_{x} b(x, t)-\int_{\mathbb{R}^{N}} \phi(x) b(x, u(x)) \nabla u(x) d x \\
& -\int_{\mathbb{R}^{N}} \phi(x) \widetilde{b}(x, \widetilde{u}(x)) d D^{c} u-\int_{J_{u}} \phi(x)\left[\int_{u^{-}(x)}^{u^{+}(x)} b^{*}(x, t) d t\right] \nu_{u}(x) d \mathcal{H}^{N-1},
\end{aligned}
$$

where J_{u} is the jump set of $u, \Omega_{u, t}=\left\{x \in \mathbb{R}^{N}: t\right.$ belongs to the segment of endpoints 0 and $u(x)\}$ and $\chi_{\Omega_{u, t}}^{*}$ and $b^{*}(\cdot, t)$ are, respectively, the precise representatives of $\chi_{\Omega_{u, t}}$ and $b(\cdot, t)$.

Remark 3.2. Notice that $b^{*}(x, t)=\left(b^{+}(x, t)+b^{-}(x, t)\right) / 2$, where $b^{+}(x, t)$ and $b^{-}(x, t)$ are the upper and lower approximate limits of $b(\cdot, t)$ at a point x. The function $b(\cdot, t)$ is approximately continuous at a point x if $b^{+}(\cdot, t)=$ $b^{-}(\cdot, t) \in \mathbb{R}$. In this case, we set $\widetilde{b}(\cdot, t)=b^{+}(\cdot, t)=b^{-}(\cdot, t)$. By Lemma 3.1 in [9] the functions $\widetilde{b}(x, t), b^{+}(x, t), b^{-}(x, t)$ and $b^{*}(x, t)$ are locally bounded Borel functions. Moreover, if $b(x, t) \equiv b(t)$, then (6) reduces to the well known chain rule formula for the composition of BV functions with a Lipschitz function, while, in the special case that $b(x, t) \equiv b(x)$, (6) gives the formula for the derivative of the product of two $B V$ functions.

4. An explicit chain rule

In this section we will present the result and we will write more explicitly the first term appearing in the right hand side of formula (6).

Let $b: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function. Assume that
(i) the function $b(x, t)$ is locally bounded;
(ii) for every $t \in \mathbb{R}$ the function $b(\cdot, t) \in B V\left(\mathbb{R}^{N}\right)$;
(iii) the measure

$$
\bar{\sigma}:=\bigvee_{t \in \mathbb{R}}\left|D_{x} b(\cdot, t)\right|
$$

is a Radon measure, where \bigvee denotes the least upper bound in the space of nonnegative Borel measures.

Remark 4.1. As in Remark 3.5 in [2], since we will consider $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$, condition (iii) can be replaced by the following local version
(iii) ${ }_{\text {loc }}$ for every compact set $H \subset \mathbb{R}$ the measure

$$
\bar{\sigma}_{H}:=\bigvee_{t \in H}\left|D_{x} b(\cdot, t)\right|
$$

is a Radon measure.
For simplicity we will omit the explicit dependence of $\bar{\sigma}$ on H. By (iii), we have that $\bar{\sigma} \ll \mathcal{H}^{N-1}$ and, if we define

$$
\overline{\mathcal{N}}=\left\{x \in \mathbb{R}^{N}: \liminf _{r \rightarrow 0} \frac{\bar{\sigma}\left(B_{r}(x)\right)}{r^{N-1}}>0\right\}
$$

then $\overline{\mathcal{N}}$ is a \mathcal{H}^{N-1}-rectifiable set. We omit the dependence of $\overline{\mathcal{N}}$ of H in the local version (see Remark 3.5 in [2]).

Moreover we consider the following assumptions:
(iv) there exists a Borel set $\mathcal{N}_{0} \subset \mathbb{R}^{N}$ with $\mathcal{L}^{N}\left(\mathcal{N}_{0}\right)=0$ such that the approximate differential $\nabla_{x} b(x, t)$ of the function $y \mapsto b(y, t)$ at x exists for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{0}$ and for every $t \in \mathbb{R}$ and

$$
\frac{d D_{x} b(\cdot, t)}{d \mathcal{L}^{N}}(x)=\nabla_{x} b(x, t)
$$

for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{0}$ and for every $t \in \mathbb{R}$;
(v) there exists a Borel set $\mathcal{N}_{1} \subseteq \mathbb{R}^{N}$ with $\bar{\sigma}\left(\mathcal{N}_{1}\right)=0$ such that the following limit

$$
\lim _{r \downarrow 0} \frac{D_{x}^{c} b(\cdot, t)\left(B_{r}(x)\right)}{\bar{\sigma}\left(B_{r}(x)\right)}=\frac{d D_{x}^{c} b(\cdot, t)}{d \bar{\sigma}}(x)
$$

exists for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{1}$ and for every $t \in \mathbb{R}$ and this equality holds, where $\frac{d D_{x}^{c} b(\cdot, t)}{d \bar{\sigma}}(x)$ is Radon-Nikodým derivative at x of the Cantor part of the measure $D_{x} b(\cdot, t)$ w.r.t. $\bar{\sigma}$;
(vi) there exists a Borel set $\mathcal{N}_{2} \subset \mathbb{R}^{N}$ with $\mathcal{H}^{N-1}\left(\mathcal{N}_{2}\right)=0$ such that the one-sided limits $b^{+}(x, t)$ and $b^{-}(x, t)$ defined by

$$
\lim _{r \downarrow 0} f_{B_{r}^{ \pm}(x)}\left|b(y, t)-b^{ \pm}(x, t)\right| d y=0
$$

exist for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{2}$ and for every $t \in \mathbb{R}$, where $B_{r}^{ \pm}(x)$ are the two half balls determined by the normal $\nu_{\overline{\mathcal{N}}}$, and

$$
\frac{d D_{x}^{j} b(\cdot, t)}{d \mathcal{H}^{N-1}}(x)=\left[b^{+}(x, t)-b^{-}(x, t)\right] \nu_{\overline{\mathcal{N}}}(x)
$$

for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{2}$ and for every $t \in \mathbb{R}$.
By (vi) the functions $b^{ \pm}:\left(\mathbb{R}^{N} \backslash \mathcal{N}_{2}\right) \times \mathbb{R} \rightarrow \mathbb{R}$ are locally bounded Borel functions.

Moreover for all $x \in \mathbb{R}^{N} \backslash\left(\overline{\mathcal{N}} \cup \mathcal{N}_{2}\right)$ and $t \in \mathbb{R}$ there exists the limit

$$
\widetilde{b}(x, t)=\lim _{r \rightarrow 0} f_{B_{r}(x)} b(y, t) d y
$$

For all $x \in \mathbb{R}^{N} \backslash\left(\overline{\mathcal{N}} \cup \mathcal{N}_{2}\right)$ the function $t \mapsto \widetilde{b}(x, t)$ is a locally bounded Borel functions. If assumptions (i)-(vi) hold, then for every $t \in \mathbb{R}$ the following decomposition formula holds

$$
\begin{align*}
\left(D_{x} b\right)(\cdot, t)= & \left(\nabla_{x} b\right)(x, t) \mathcal{L}^{N}+\frac{d D_{x}^{c} b(\cdot, t)}{d \bar{\sigma}}(x) \bar{\sigma} \tag{7}\\
& +\left[b^{+}(x, t)-b^{-}(x, t)\right] \nu_{\overline{\mathcal{N}}}(x) \mathcal{H}^{N-1}\llcorner\overline{\mathcal{N}}
\end{align*}
$$

in the sense of measures.

Theorem 4.2. Let $b: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function satisfying (i)-(vi). Then, for every $u \in B V\left(\mathbb{R}^{N}\right) \cap L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N}\right)$, the function $v: \mathbb{R}^{N} \rightarrow \mathbb{R}$, defined by

$$
v(x):=\int_{0}^{u(x)} b(x, t) d t
$$

belongs to $B V_{\text {loc }}\left(\mathbb{R}^{N}\right)$ and for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla \phi(x) v(x) d x \tag{8}
\end{equation*}
$$

$$
=-\int_{\mathbb{R}^{N}} \phi(x)\left[\int_{0}^{u(x)} \nabla_{x} b(x, t) d t\right] d x-\int_{\mathbb{R}^{N}} \phi(x) b(x, u(x)) \nabla u(x) d x
$$

$$
-\int_{\mathbb{R}^{N}} \phi(x)\left[\int_{0}^{\widetilde{u}(x)} \frac{d D_{x}^{c} b}{d \bar{\sigma}}(x, t) d t\right] d \bar{\sigma}-\int_{\mathbb{R}^{N}} \phi(x) \widetilde{b}(x, \widetilde{u}(x)) d D^{c} u
$$

$$
-\int_{\overline{\mathcal{N}} \cup J_{u}} \phi(x)\left[\int_{0}^{u^{+}(x)} b^{+}(x, t) d t-\int_{0}^{u^{-}(x)} b^{-}(x, t) d t\right] \nu_{\overline{\mathcal{N}} \cup J_{u}}(x) d \mathcal{H}^{N-1}
$$

where it is understood that for \mathcal{H}^{N-1}-a.e. $x \in \overline{\mathcal{N}} \cap J_{u}$ the normal $\nu_{\overline{\mathcal{N}} \cup J_{u}}$ is choosen equal to $\nu_{\overline{\mathcal{N}}}$.

Corollary 4.3. Let $b: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function satisfying
(i) the function $b(x, t)$ is locally bounded;
(ii) for every $t \in \mathbb{R}$ the function $b(\cdot, t) \in W^{1,1}\left(\mathbb{R}^{N}\right)$ and there exists a Borel set $\mathcal{N}_{1} \subseteq \mathbb{R}^{N}$ such that $\mathcal{H}^{N-1}\left(\mathcal{N}_{1}\right)=0$ such that

$$
b(x, t)=\widetilde{b}(x, t)
$$

for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{1}$ and every $t \in \mathbb{R}$;
(iii) for every compact set $H \subseteq \mathbb{R}$ the function

$$
g_{H}(x):=\sup _{t \in H}\left|\nabla_{x} b(x, t)\right|
$$

belongs to $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$;
(iv) there exists a Borel set $\mathcal{N}_{2} \subseteq \mathbb{R}^{N}$ such that $\mathcal{L}^{N}\left(\mathcal{N}_{2}\right)=0$ such that the approximate gradient $\nabla_{x} b(x, t)$ of the function $y \mapsto b(y, t)$ at x exists for every $x \in \mathbb{R}^{N} \backslash \mathcal{N}_{2}$ and every $t \in \mathbb{R}$.

Then, for every $u \in B V\left(\mathbb{R}^{N}\right) \cap L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N}\right)$, the function $v: \mathbb{R}^{N} \rightarrow \mathbb{R}$, defined by

$$
v(x):=\int_{0}^{u(x)} b(x, t) d t
$$

belongs to $B V_{\mathrm{loc}}\left(\mathbb{R}^{N}\right)$ and for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \nabla \phi(x) v(x) d x & =\int_{\mathbb{R}^{N}} \phi(x)\left[\int_{0}^{u(x)} \nabla_{x} b(x, t) d t\right] d x \\
& -\int_{\mathbb{R}^{N}} \phi(x) b(x, u(x)) \nabla u(x) d x-\int_{\mathbb{R}^{N}} \phi(x) \widetilde{b}(x, \widetilde{u}(x)) d D^{c} u \\
& -\int_{J_{u}} \phi(x)\left[\int_{u^{-}(x)}^{u^{+}(x)} \widetilde{b}(x, t) d t\right] \nu_{u}(x) d \mathcal{H}^{N-1} .
\end{aligned}
$$

Remark 4.4. This corollary improves Proposition 1.2 in [8] where $\mathcal{N}_{2}=\emptyset$ and $b(x, \cdot)$ is continuous for a.e. $x \in \mathbb{R}^{N}$.

References

[1] M. Amar, V. De Cicco, P. Marcellini, E. Mascolo, Weak lower semicontinuity for non coercive polyconvex integrals, Adv. Calc. Var., I (2008), no. 2 171-191.
[2] L. Ambrosio, G. Crasta, V. De Cicco, G. De Philippis, A nonautonomous chain rule formula in $W^{1, p}$ and in BV, Manuscripta Math. 140 (2013) no. 3, 461-480.
[3] L. Ambrosio, G. Dal Maso, A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108, (1990), 691-702.
[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, (2000).
[5] G. Crasta, V. De Cicco, A chain rule formula in BV and applications to conservation laws, SIAM J. Math. Anal. 43 (2011), no. 1, 430-456.
[6] G. Crasta, V. De Cicco, G. De Philippis, Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux, Comm. Partial Differential Equations, 40 (2015), no. 4, 694-726.
[7] V. De Cicco, Lower semicontinuity for nonautonomous surface integrals. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 1-21.
[8] V. De Cicco, N. Fusco, A. Verde, On L^{1}-lower semicontinuity in BV, J. of Convex Anal., 12 (2005), 173-185.
[9] V. De Cicco, N. Fusco, A. Verde, A chain rule formula in BV and application to lower semicontinuity, Calc. Var. Partial Differential Equations, 28 (2007), no. 4, 427-447.
[10] V. De Cicco, G. Leoni, A chain rule in $L^{1}\left(d i v ; \mathbb{R}^{N}\right)$ and its applications to lower semicontinuity, Calc. Var. Partial Differential Equations, 19, (2004), no. 1, 23-51.
[11] H. Federer, Geometric measure theory, Springer, Berlin, (1969).
[12] G. Leoni, M. Morini, Necessary and sufficient conditions for the chain rule in $W_{\text {loc }}^{1,1}\left(\mathbb{R}^{N} ; \mathbb{R}^{d}\right)$ and $B V_{\text {loc }}\left(\mathbb{R}^{N} ; \mathbb{R}^{d}\right)$, Comm. Pure Appl. Math., 58 (2005), no. 8, 10511076.
[13] A.I. Vol'pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.) 73 (115) (1967), 255-302.

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Via A. Scarpa 16 - 00161 Roma (Italy)

E-mail address: virginia.decicco@sbai.uniroma1.it

[^0]: 2010 Mathematics Subject Classification. 49J45, 49Q20.
 Key words and phrases. Chain rule, $B V$ functions, lower semicontinuity.

