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Abstract. The aim of this note is to present a new nonautonomous

chain rule formula for the distributional derivative of the composite

function v(x) = B(x, u(x)), where u : RN → R is a scalar function

of bounded variation and B admits a special integral form in terms

of a locally bounded function b(x, t), with b(·, t) of bounded variation.

It is an useful tool especially in view to applications to semicontinuity

results for integral functional (see [1, 8, 9, 10]) and to conservation laws

(see [5, 6]).

1. Introduction

In this note we present a new nonautonomous chain rule formula in

the scalar case for the distributional derivative of the composite function

v(x) = B(x, u(x)), with u : RN → R a scalar function of bounded variation

and B(x, t) =
∫ t

0 b(x, s)ds, where b(x, t) is locally bounded (which implies

that B(x, ·) is Lipschitz continuous) and b(·, t) has bounded variation.

In 1967, A.I. Vol’pert in [13] considers a general B in the autonomous

case and by requiring the Lipschitz continuity of B, proved that the follow-

ing identity holds in the sense of measures:

(1) Dv = ∇B(u)∇u LN +∇B(ũ)Dcu+ [B(u+)−B(u−)] νuHN−1 Ju ,

where

(2) Du = ∇u LN +Dcu+ νuHN−1 Ju

is the usual decomposition of Du in its absolutely continuous part ∇u with

respect to the Lebesgue measure LN , its Cantor part Dcu and its jumping

part, which is represented by the restriction of the (N − 1)-dimensional

Hausdorff measure to the jump set Ju . Moreover, νu denotes the measure
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theoretical unit normal to Ju, ũ is the approximate limit and u+, u− are

the approximate limits from both sides of Ju .

The validity of (1) is stated also in the vectorial case (see Theorem 3.96

in [4] for B ∈ C1). The situation is significantly more complicated if B is

only a Lipschitz continuous function. In this case, the general chain rule is

false, while a weaker form of the formula was proved by Ambrosio and Dal

Maso in [3] (see also [12]).

On the other hand, in some recent papers a remarkable effort is devoted

to establish chain rule formulas with an explicit dependence on the space

variable x (see [1, 5, 8, 9, 10]). Notice that the new term of derivation

with respect to x needs a particular attention. The proofs are achieved

by regularizing B(·, t) with fixed t, by applying the Ambrosio-Dal Maso

formula to the regularized functions and finally by passing to the limit in

each term.

More recently, a very general nonautonomous formula is proven in [2]

for vector functions u ∈ BV . Here, the first assumption is a C1 dependence

of B(x, ·) with an uniform bound on ∂tB(x, t). Concerning the x-derivative,

it is required the existence of a Radon measure σ bounding from above all

measures |DxB(·, t)|, uniformly with respect to t ∈ R.

The aim of this note is to consider the special case of

B(x, t) =

∫ t

0
b(x, s)ds.

In the spirit of Theorem 3.1 below proved in [9] we find a chain rule in this

situation. We assume that b is BV in x and it is locally bounded (then

B(·, t) is BV and B(x, ·) is Lipschitz continuous) and we find an explicit

form for the term involving the x-derivation, which is described in [9] by a

Fubini’s type inversion of integration order.

In the spirit of [2] we require the existence of a Radon measure σ

bounding from above all measures |Dxb(·, t)|, uniformly with respect to

t ∈ R . We prove that for any u ∈ BVloc the composite function v(x) =

B(x, u(x)) belongs to BVloc and it is shown the existence of a countably

HN−1-rectifiable set N , independent of u and containing the jump set of

B(·, t) for every t ∈ R, such that the jump set of v is contained in N ∪ Ju.

A chain rule is obtained (see Theorem 4.2) by requiring further uniformity

conditions, but without assuming any continuity assumptions. The result

here presented will be proven in a forthcoming paper.
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2. Definitions and preliminaries

In this section we recall some preliminary results and basic definitions

(see [4] and [11]).

Let E be a measurable subset of RN . The density D(E;x) of E at a point

x ∈ RN is defined by

D(E;x) = lim
%→0

LN (E ∩Bρ(x))

ωNρN
,

whenever this limit exists, where ωN is the measure of the unit ball and

Bρ(x) denotes the ball centered at x with radius ρ.

Let Ω ⊆ RN be an open set and let u : Ω→ R be a measurable function.

The upper and lower approximate limits of u at a point x ∈ Ω are defined

as

u+(x)=inf{t ∈ R : D({u>t};x)= 0},

u−(x)=sup{t ∈ R : D({u<t};x)= 0} ,
(3)

respectively. The quantities u+(x), u−(x) are well defined (possibly equal

to ±∞) at every x ∈ Ω, and u−(x) ≤ u+(x). The functions u+, u− : Ω →
[−∞,∞] are Borel measurable.

We say that u is approximately continuous at a point x ∈ Ω if u+(x) =

u−(x) ∈ R. In this case, we set ũ(x) = u+(x) = u−(x) and call ũ(x)

the approximate limit of u at x. The set of all points in Ω where u is

approximately continuous is a Borel set which will be denoted by Cu and

called the set of approximate continuity of u. The set Su = Ω \ Cu will be

referred to as the set of approximate discontinuity of u.

Finally, by u∗ we denote the precise representative of u which is defined by

u∗(x) =
u+(x) + u−(x)

2

if u+(x), u−(x) ∈ R, u∗(x) = 0 otherwise.

A locally integrable function u is said to be approximately differentiable

at a point x ∈ Cu if there exists ∇u(x) ∈ RN such that

(4) lim
ρ→0

1

ρN+1

∫
Bρ(x)

|u(y)− ũ(x)− 〈∇u(x), y − x〉| dy = 0 .

Here, 〈·, ·〉 stands for scalar product in RN . The vector ∇u(x) is called the

approximate differential of u at x.
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A function u ∈ L1(Ω) is said to be of bounded variation if its distri-

butional gradient Du is an RN -valued Radon measure in Ω and the total

variation |Du| of Du is finite in Ω. The space of all functions of bounded

variation in Ω is denoted by BV (Ω), while the notation BVloc(Ω) will be

reserved for the space of those functions u ∈ L1
loc(Ω) such that u ∈ BV (Ω′)

for every open set Ω′ ⊂⊂ Ω.

Let u ∈ BV (Ω). Then it can be proved that

lim
ρ→0
−
∫
Bρ(x)

|u(y)− ũ(x)| dy = 0 for HN−1−a.e. x ∈ Cu

and that u is approximately differentiable for LN -a.e. x. Moreover, the

functions u− and u+ are finite HN−1-a.e. and for HN−1-a.e. x ∈ Su there

exists a unit vector νu(x) such that

(5) lim
ρ→0
−
∫
B±
ρ (x;νu(x))

|u(y)− u±(x)| dy = 0 ,

where B+
ρ (x; νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}, and B−% (x; νu(x))

is defined analogously. The set of all points in Su where the equalities in

(5) are satisfied is called the jump set of u and is denoted by Ju.

If u is a BV function, we denote by Dau the absolutely continuous part of

Du with respect to Lebesgue measure. The singular part, denoted by Dsu,

is split into two more parts, the jump part Dju and the Cantor part Dcu,

defined by

Dju = Dsu Ju, Dcu = Dsu−Dju .

Finally, we denote by D̃u the diffuse part of Du, defined by

D̃u = Dau+Dcu .

3. The chain rule in BV (RN ) proven in [9]

In the paper [9] the authors deal with a general chain rule formula in

BV (RN ) for functions whose dependence in x is BV . More precisely, the

following theorem is proved for particular functions of the type B(x, t) =∫ t
0 b(x, s) ds.

Theorem 3.1. Let b : RN × R→ R be a Borel function. Assume that

(α) the function b(x, t) is locally bounded;

(β) for every t ∈ R the function b(·, t) ∈ BV (RN );
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(γ) for any compact set H ⊂ R,∫
H
|Dxb(·, t)|(RN ) dt < +∞ ,

where Dxb(·, t) is the distributional gradient of the map x 7→ b(x, t).

Then for every u ∈ BV (RN ) ∩L∞loc(RN ), the function v : RN → R, defined

by

v(x) :=

∫ u(x)

0
b(x, t) dt ,

belongs to BVloc(RN ) and for any φ ∈ C1
0 (RN ) we have∫

RN
∇φ(x)v(x) dx(6)

= −
∫ +∞

−∞
dt

∫
RN

sgn(t)χ∗Ωu,t(x)φ(x) dDxb(x, t)−
∫
RN
φ(x)b(x, u(x))∇u(x) dx

−
∫
RN

φ(x)̃b(x, ũ(x)) dDcu−
∫
Ju

φ(x)

[∫ u+(x)

u−(x)
b∗(x, t) dt

]
νu(x) dHN−1,

where Ju is the jump set of u, Ωu,t = {x ∈ RN : t belongs to the segment

of endpoints 0 and u(x)} and χ∗Ωu,t and b∗(·, t) are, respectively, the precise

representatives of χΩu,t and b(·, t).

Remark 3.2. Notice that b∗(x, t) = (b+(x, t) + b−(x, t))/2, where b+(x, t)

and b−(x, t) are the upper and lower approximate limits of b(·, t) at a point

x. The function b(·, t) is approximately continuous at a point x if b+(·, t) =

b−(·, t) ∈ R. In this case, we set b̃(·, t) = b+(·, t) = b−(·, t). By Lemma

3.1 in [9] the functions b̃(x, t), b+(x, t), b−(x, t) and b∗(x, t) are locally

bounded Borel functions. Moreover, if b(x, t) ≡ b(t), then (6) reduces to the

well known chain rule formula for the composition of BV functions with a

Lipschitz function, while, in the special case that b(x, t) ≡ b(x), (6) gives

the formula for the derivative of the product of two BV functions.

4. An explicit chain rule

In this section we will present the result and we will write more explic-

itly the first term appearing in the right hand side of formula (6).

Let b : RN × R→ R be a Borel function. Assume that

(i) the function b(x, t) is locally bounded;

(ii) for every t ∈ R the function b(·, t) ∈ BV (RN );
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(iii) the measure

σ :=
∨
t∈R
|Dxb(·, t)|

is a Radon measure, where
∨

denotes the least upper bound in the

space of nonnegative Borel measures.

Remark 4.1. As in Remark 3.5 in [2], since we will consider u ∈ L∞loc(RN ),

condition (iii) can be replaced by the following local version

(iii)loc for every compact set H ⊂ R the measure

σH :=
∨
t∈H
|Dxb(·, t)|

is a Radon measure.

For simplicity we will omit the explicit dependence of σ on H. By (iii), we

have that σ << HN−1 and, if we define

N =
{
x ∈ RN : lim inf

r→0

σ(Br(x))

rN−1
> 0
}
,

then N is a HN−1-rectifiable set. We omit the dependence of N of H in

the local version (see Remark 3.5 in [2]).

Moreover we consider the following assumptions:

(iv) there exists a Borel set N0 ⊂ RN with LN (N0) = 0 such that the

approximate differential ∇xb(x, t) of the function y 7→ b(y, t) at x

exists for every x ∈ RN \ N0 and for every t ∈ R and

dDxb(·, t)
dLN

(x) = ∇xb(x, t)

for every x ∈ RN \ N0 and for every t ∈ R;

(v) there exists a Borel set N1 ⊆ RN with σ(N1) = 0 such that the

following limit

lim
r↓0

Dc
xb(·, t)(Br(x))

σ(Br(x))
=
dDc

xb(·, t)
dσ

(x)

exists for every x ∈ RN \ N1 and for every t ∈ R and this equality

holds, where dDcxb(·,t)
dσ (x) is Radon-Nikodým derivative at x of the

Cantor part of the measure Dxb(·, t) w.r.t. σ;
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(vi) there exists a Borel set N2 ⊂ RN with HN−1(N2) = 0 such that

the one-sided limits b+(x, t) and b−(x, t) defined by

lim
r↓0
−
∫
B±
r (x)
|b(y, t)− b±(x, t)|dy = 0

exist for every x ∈ RN \ N2 and for every t ∈ R, where B±r (x) are

the two half balls determined by the normal νN , and

dDj
xb(·, t)

dHN−1
(x) = [b+(x, t)− b−(x, t)]νN (x)

for every x ∈ RN \ N2 and for every t ∈ R.

By (vi) the functions b± : (RN \N2)×R→ R are locally bounded Borel

functions.

Moreover for all x ∈ RN \ (N ∪N2) and t ∈ R there exists the limit

b̃(x, t) = lim
r→0
−
∫
Br(x)

b(y, t) dy.

For all x ∈ RN \(N ∪N2) the function t 7→ b̃(x, t) is a locally bounded Borel

functions. If assumptions (i)–(vi) hold, then for every t ∈ R the following

decomposition formula holds

(Dxb)(·, t) =(∇xb)(x, t)LN +
dDc

xb(·, t)
dσ

(x)σ

+
[
b+(x, t)− b−(x, t)

]
νN (x)HN−1 N ,

(7)

in the sense of measures.

Theorem 4.2. Let b : RN ×R→ R be a Borel function satisfying (i)–(vi).

Then, for every u ∈ BV (RN )∩L∞loc(RN ), the function v : RN → R, defined

by

v(x) :=

∫ u(x)

0
b(x, t) dt ,
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belongs to BVloc(RN ) and for any φ ∈ C1
0 (RN ) we have∫

RN
∇φ(x)v(x) dx(8)

= −
∫
RN

φ(x)

[∫ u(x)

0
∇xb(x, t) dt

]
dx−

∫
RN
φ(x)b(x, u(x))∇u(x) dx

−
∫
RN

φ(x)

[∫ ũ(x)

0

dDc
xb

dσ
(x, t) dt

]
dσ −

∫
RN

φ(x)̃b(x, ũ(x)) dDcu

−
∫
N∪Ju

φ(x)

[∫ u+(x)

0
b+(x, t) dt−

∫ u−(x)

0
b−(x, t) dt

]
νN∪Ju(x) dHN−1,

where it is understood that for HN−1-a.e. x ∈ N ∩ Ju the normal νN∪Ju is

choosen equal to νN .

Corollary 4.3. Let b : RN × R→ R be a Borel function satisfying

(i) the function b(x, t) is locally bounded;

(ii) for every t ∈ R the function b(·, t) ∈ W 1,1(RN ) and there exists a

Borel set N1 ⊆ RN such that HN−1(N1) = 0 such that

b(x, t) = b̃(x, t)

for every x ∈ RN \ N1 and every t ∈ R;

(iii) for every compact set H ⊆ R the function

gH(x) := sup
t∈H
|∇xb(x, t)|

belongs to L1
loc(RN );

(iv) there exists a Borel set N2 ⊆ RN such that LN (N2) = 0 such that

the approximate gradient ∇xb(x, t) of the function y 7→ b(y, t) at x

exists for every x ∈ RN \ N2 and every t ∈ R.

Then, for every u ∈ BV (RN )∩L∞loc(RN ), the function v : RN → R, defined

by

v(x) :=

∫ u(x)

0
b(x, t) dt ,
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belongs to BVloc(RN ) and for any φ ∈ C1
0 (RN ) we have∫

RN
∇φ(x)v(x)dx =

∫
RN
φ(x)

[∫ u(x)

0
∇xb(x, t) dt

]
dx

−
∫
RN
φ(x)b(x, u(x))∇u(x) dx−

∫
RN
φ(x)̃b(x, ũ(x)) dDcu

−
∫
Ju

φ(x)

[∫ u+(x)

u−(x)
b̃(x, t) dt

]
νu(x) dHN−1.

Remark 4.4. This corollary improves Proposition 1.2 in [8] where N2 = ∅
and b(x, ·) is continuous for a.e. x ∈ RN .

References

[1] M. Amar, V. De Cicco, P. Marcellini, E. Mascolo, Weak lower semicontinuity for

non coercive polyconvex integrals, Adv. Calc. Var., I (2008), no. 2 171–191.

[2] L. Ambrosio, G. Crasta, V. De Cicco, G. De Philippis, A nonautonomous chain rule

formula in W 1,p and in BV , Manuscripta Math. 140 (2013) no. 3, 461–480.

[3] L. Ambrosio, G. Dal Maso, A general chain rule for distributional derivatives, Proc.

Amer. Math. Soc., 108, (1990), 691–702.

[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discon-

tinuity problems, Oxford University Press, (2000).

[5] G. Crasta, V. De Cicco, A chain rule formula in BV and applications to conservation

laws, SIAM J. Math. Anal. 43 (2011), no. 1, 430–456.

[6] G. Crasta, V. De Cicco, G. De Philippis, Kinetic formulation and uniqueness for

scalar conservation laws with discontinuous flux, Comm. Partial Differential Equa-

tions, 40 (2015), no. 4, 694–726.

[7] V. De Cicco, Lower semicontinuity for nonautonomous surface integrals. Atti Accad.

Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 1–21.

[8] V. De Cicco, N. Fusco, A. Verde, On L1-lower semicontinuity in BV, J. of Convex

Anal., 12 (2005), 173–185.

[9] V. De Cicco, N. Fusco, A. Verde, A chain rule formula in BV and application to

lower semicontinuity, Calc. Var. Partial Differential Equations, 28 (2007), no. 4,

427–447.

[10] V. De Cicco, G. Leoni, A chain rule in L1(div;RN ) and its applications to lower

semicontinuity, Calc. Var. Partial Differential Equations, 19, (2004), no. 1, 23–51.

[11] H. Federer, Geometric measure theory, Springer, Berlin, (1969).

[12] G. Leoni, M. Morini, Necessary and sufficient conditions for the chain rule in

W 1,1
loc (RN ;Rd) and BVloc(RN ;Rd), Comm. Pure Appl. Math., 58 (2005), no. 8, 1051–

1076.

[13] A.I. Vol’pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.) 73 (115) (1967),

255–302.



10 V. DE CICCO

Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Via A.

Scarpa 16 – 00161 Roma (Italy)

E-mail address: virginia.decicco@sbai.uniroma1.it


