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EXISTENCE AND HOMOGENIZATION FOR A SINGULAR
PROBLEM THROUGH ROUGH SURFACES*

PATRIZIA DONATO! AND DANIELA GIACHETTI#

Abstract. The paper deals with existence and homogenization for elliptic problems with lower
order terms singular in the u-variable (u is the solution) in a cylinder @ in RY, so that the lower
order term becomes infinite on the set {u = 0}. A rapidly oscillating interface inside @Q separates
the cylinder in two composite connected components. The interface has a periodic microstructure
and it is situated in a small neighbourhood of a hyperplane which separates the two components of
Q. At the interface we suppose the following transmission conditions: (i) the flux is continuous, (ii)
the jump of a solution at the interface is proportional to the flux through the interface. This is a
steady state model for the heat conduction in two heterogeneous electrically conducting materials
with an imperfect contact between them. On the exterior boundary Dirichlet boundary conditions
are prescribed.

We also derive a corrector result for every values of the two parameters v and « which are related
respectively to the microstructure period and to the amplitude of the interface oscillations.
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AMS subject classifications. 35J75, 35J65, 35B27
1. Introduction. In this paper we deal with a semilinear elliptic singular prob-
lem which models the stationary heat diffusion in a medium @ = wx] —,{[ made up
of two connected composite components.
An interface I'., fixed for positive € and rapidly oscillating as € goes to zero, separates
the two components, Q.1 and QQz2. The source term depends on the solution itself

and becomes infinite when the solution vanishes.
Our model is the following

—div(A*Vu.) = f ((uc) in Qa1 UQ:2,
[A*Vu.] v =0 on I,

(A*Vue)1 - ve = —e7he[ue], on I,

ue =0 on 0Q),

where A®(x) = A(x/e) with A bounded uniformly elliptic periodic matrix, {(s) is a
nonnegative real function singular at s = 0, f is a nonnegative datum (not identically
zero) whose summability depends on the growth 6 of the singular function ((s) near
the singularity s = 0 and v, is the unit outward normal to Q.;. [/] denotes the jump
through T'..

The oscillating interface I'. represent a rough surface which gives rise to an imperfect
contact between the two components and this situation is modeled by a jump of
the solution of the diffusion equation, which is proportional to the flux through the
interface (see [13]).
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Our aim is to study the existence of a solution to problem (P.) for ¢ fixed and its
macroscopic behaviour, that is the asymptotic behaviour as € goes to zero of solutions
for all values of the parameters appearing in the problem.

Singular lower order terms (sometimes as an absorption term) appears in problems
which model boundary-layer phenomena for viscous fluids, non-Newtonian fluids (in
particular pseudoplastic fluids) and in problems related to enzymatic kinetics or in
the Langmuir-Hinshelwood model of heterogeneous chemical catalyst. Source terms
depending in a singular way from the solution appear also in problems modelling heat
transfer in electrical conductors.

We refer to Section 3 below for a description of some of these physical situations
governed by (elliptic or parabolic) semilinear singular equations. We point out that
if these phenomena take place in a region () made of two composite materials having
an imperfect contact between them, we are naturally led, at least in the stationary
case, to problem (FP;).

We refer to the early papers by [42], [50] for the theory of the H-convergence which
allows to deal with general uniformly elliptic second order differential operators with
oscillatory coefficients.

The homogenization of the linear problem with oscillating interface corresponding to
P. (i.e. fixed right-hand side f(z) € L?(Q)) has been studied [22] and the case of
perforated domains with jump was originally studied in [3] (see also [36], [20], [32] [40]
and [21] for a wide bibliography). We refer to [1], [2], [14], [15], [38], [39], [41] (and
references therein) for the homogenization in domains with an oscillating boundary
when the amplitude of the oscillations goes to zero, and to [11], [12], [24] for the case
of fixed amplitude. For transmission problem through an oscillating boundary of fixed
amplitude see [11], [25] and for vanishing amplitude see [44]. Classical homogenization
and corrector results can be found for instance in the books [6], [45] and [16].

Let us focus our attention on the main difficulties we have to deal with.

The first one is related to the presence of the singular term and we explain why
below. We confine ourselves to the problem of the existence of a solution for ¢ fixed.
Denoting by v.1; and v.o the restrictions to Q.1 and Q.2 of a function v defined in Q,
the framework space for problem (P) is the following

W5 :={v|ve € Hl(Qsl), Voo € HI(QEQ) and v =0 on 0Q},

equipped with the norm

[ollws = [IVllLo@ro)s

where
Vv = xq., VVe1 + XQ., VUe2.

We approximate our problem through non singular problems (P,) with solutions u,
(we omit here the parameter ). Let us even assume the further condition that the
function ¢ appearing in the right-hand side is nonincreasing, which gives us the fact
that {u,} is an increasing sequence, w, > %,—1... > u;. Even in this case no uniform
bound from below on compact sets of () is available on the sequence of the solutions
{un}. Indeed we can apply strong maximum principle to the function u; in the upper
part Q<1 and in the lower part Q.o of @ but not in the whole @ since the function u
does not belong to Hg (Q). Therefore, when we pass to the limit in the approximating
problem (P,,) we are in trouble on the compact sets which cut the interface, which is
in fact one of the main features of the problem.
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This implies that we are naturally obliged to do an analysis of the behaviour of the
singular terms near the singularity, which becomes one of the main tool in the proof.
This technique is inspired by the similar one used in [27], [29] where existence and
homogenization of singular problems in domains perforated by small holes is studied.
We refer to [7], [9], [17], [34], [49] for existence results to singular elliptic problems in
open sets () without interior interfaces, obtained by different techniques. Parabolic
singular problems with general p-laplacian principal part, p > 1, are studied in [26].
Of course, a fortiori, the same kind of difficulties hold when studying the asymptotic
behaviour as e goes to zero. In this case we deal with the sequence {u.} where u, is
a solution for the problem (P.). Note that in any case this sequence does not have
any monotonicity property even we assume that the function ¢ is nonincreasing.

In the proofs of the main results stated in Theorem 4.1, Theorem 4.6 and Theorem
8.5 we split the integral of the singular term in two parts, the one on the set where
the solution is close to the singularity and the one where it is far from it. Let us
emphasize that in each proof we need to treat the two terms in a different way.

The second difficulty is the behaviour, as £ go to zero, of the boundary term which
appear in the variational formulation of the problem. The different behaviour of this
term depends on x (the amplitude of the oscillation) and + (which appears in the
proportionality coefficient between the flux and the jump of the solution through the
interface) and it gives rise to different limit problems.

The last difficulty is due to the fact that the assumption on the integrability of the
datum f does not implies the boundedness of the solutions, so that we need often
truncation arguments in the proofs. Note that in the existence and in the homoge-
nization results we do not use any monotonicity assumption on the singular function
((s) which appears in the right-hand side. If we suppose in addition that ((s) is
nonincreasing in s, we can prove the uniqueness of the solution.

A main tool for proving the homogenization result is a convergence result (Theorem
8.5) which proves that the gradient of the solution behaves like that of a suitable
linear problem associated to a weak cluster point, as ¢ — 0. Let us mention that
this idea has been originally introduced in the literature for the homogenization of
nonlinear problems with quadratic growth with respect to the gradient. The proof
here is long and quite laborious, due to the difficulties mentioned above. We refer to
[4], [5], for the case of a fixed domain and to [18] for periodically perforated domains
(see also [19]).

Finally, we prove in Section 8 a corrector result for the corresponding linear problem,
which completes the homogenization results proved in [22] (see Theorem 9.1). This
implies, thanks to the convergence result of Theorem 8.5 mentioned above, that the
linear corrector is also a corrector for the original nonlinear problem.

The paper is organized as follows:

In Section 2 we give the setting of the problem. In Section 3 we present some physical
models governed by singular equations. In Section 4 we state the main results: ex-
istence, regularity, uniqueness, homogenization and correctors. Section 5 is devoted
to the a priori estimates. In Section 6 we prove the existence result. In Section 7 we
prove the regularity and the uniqueness results. Section 8 deals with the proof of the
homogenization result. Section 9 is devoted to the proof of the corrector result. For
completeness, in the Appendix we give the proof of the existence of solutions to the
approximate nonsingular problems.

2. Setting of problem. We use here the framework introduced in [22] and, for
simplicity, some notations therein.
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Along this paper we suppose N > 2. If w is a smooth bounded domain of R¥~! and
[ is a positive number, we will denote by @ the open bounded cylinder in RY defined
by Q =wx] —1,1].

We denote by Y =]0, 1[V the volume reference cell and by Y’ =]0, 1[NV ~! the surface
reference cell. Moreover, in the following, € will be a positive parameter converging
to zero.

Let g : Y/ — R a periodic positive Lipschitz continuous function, i.e. such that

(2.1) l9(y") — 9| < Lgly" — w1,  for every 3,9} € Y.

If K >0 and 2’ = (z1,...,2y_1) the graph
x/
(2.2) r.={zreQu, = E"g(;)}
represents an oscillating interface which divides the set @ in two subdomains

.’I;/

(2.3) Qe ={r €@z, > Eﬂg(;)},
(2.4) Qea={r @z, < E“g(g)}

which are called the upper and the lower parts of @, respectively.
Setting § = max g, by construction, the set w x [0, £"g] contains the oscillating inter-
face, and the measure of this set goes to zero as e — 0 (see Figure 1).

A

] E—

-

Figure 1: The upper and the lower parts of (Q and the interface.

As observed in [22], the case kK = 1 presents a self-similar geometry because the
interface I’ can be obtained by homothetic dilatation of the fixed function yy = g(y’)
in RN, The case x > 1 represents the flat case, while the case 0 < x < 1 describes a
highly oscillating interface (see [22] for details).

We suppose that A is a Y-periodic matrix field satisfying, for 0 < a < £,

(2.5) (AN A) > al\?, |A(y)A| < B\, a.e. inY and for any A € RV,
Moreover, h will denote an Y'-periodic function such that, for some hg € R7,

(2.6) h e L*(T), and 0 < hg < h(y'), a.e. on T,
4
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(2.7) I={yy =9,y €Y'}
We set, for any ¢ > 0,
(2.8) Ao (z) = A(g), he(2) = h(f)

For any function v defined on @ we set

(2.9) Vel = V|Q,, Vg2 = V|Q.4

and v, stands for the unit outward normal to Q..
Also, we use the notations:

- 0 for the zero extension of a function v defined on a subset of @,
- XE, the characteristic function of any set £ C RY,
-my:(v) = ﬁ [y [ dy’, the average on Y of any function v € L*(Y”).

Our aim is to prove some existence results (for fixed ¢), and homogenization results
as € — 0, of the following problem:

—div(A*Vu.) = f ((ue) in @\ T,

(A*Vue)y - ve = (A°Vue)g - ve on I,
(2.10)
(A°Vue)y - ve = —e7h® (ue1 — uea), onT,.

ue =0 on 0Q,

where v € R and ¢ : [0, +0o[— [0, +00] is a function such that

1
(2.11) ¢ € C°([0, +o0]), 0<¢(s) < 7 for every s €]0, +o0[, with 0 < 6 < 1.
and
(2.12) f>0,ae inQ, f#£0, withfeL"(Q) forr> TQO (> 1).

We refer to Remark 4.4 for some comments on this assumption.

REMARK 2.1. We want to stress that we do not assume any monotonicity property
on the singular term f((u). Note that no growth is required from below.

A simple example of an oscillating function with singular behaviour which fits our
assumptions is the following

F@)C(s) = %f) (1 +cosi> 50,

where f(x) satisfies (2.12).

Let us also explain why we chose to assume that the function f(x) appearing in the
right-hand side of problem (2.10) belongs to a convenient Lebesgue space. This as-
sumption allows to consider more general physical situations where possible infinite

5
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concentrations appear in a point xg, like f(x) = with o < «g, g suitable
positive real number.

This is also the case when we deal with the data f and ug of the classical model diffu-
ston problem in a bounded cylinder Q x (0,T), without any dependence of the source

term from the solution u, that is

1
|z—a0|™

u — Apu = f(z,t) in Qx(0,T)
(2.13) u(z,t) =0 on 00 x (0,T)

u(z,0) =up(z) in Q,
where A, is the p-laplacian with p > 1(or its stationary version).
Looking for weak solutions, a large literature, starting from [33], [35], considers data
f and ug like in the present paper, i.e. in convenient Lebesque’s spaces or, even worst,
data f and ug measure (see [/8] [8]).
On the other hand, confining to our stationary model in the domain Q, more regular
data f, say f € C°Q), are obviously included in Lebesque spaces. Let us point
out that no advantage comes from such further regularity of the data in the proof
of our existence result. Indeed our methods are ”a priori estimate” methods which
use, as a main tool, inequalities like Holder’s and Young’s ones and therefore the
summability properties of the data. Of course more regularity on the data will induce
more regularity on the solutions.

Through this paper, we suppose that ¢ is singular in 0, which mean that ¢(0) = +o0,
since otherwise ( is bounded, which is a trivial case.

We introduce (under notation (2.9)) the space W§ defined by

W5 = {v e L*(Q) | v € H'(Qe1), ve2 € H'(Q=2) and v =0 on 0Q},
equipped with the norm
(2.14) [ollws := IVollo(@ir.)

where o
Vv = Ve + Ve,

that is, we identify Vv with the absolutely continuous part of the gradient of v.
In the same way we define
(2.15)

Qi={z€Q:2,>0}, Q={rcQ:z,<0}, Ty={ze€@:z,=0}
and, for any function v defined on Q,
(2.16) V1 = v|Q, Vg = V|,
Observe that
(2.17)  xo., = xo, strongly in LP(Q), 1 <p < +oo, and weakly * in L>(Q).
Then we introduce the space

WY = {ve L*Q) | vi € H(Q1), va € H(Q2) v =0 on 0Q},

equipped with the norm

[llwe = [IVllLo@\ro)
6
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In the sequel we also use the notations

(2.18) Ieo=T.UT,.
and
(2.19) Q:=Q\Tq, Qo = Q\ Ty, Qeo=Q\Tcp.

Let us observe that (2.14) is a norm, due to the following Poincaré inequality: there
exists a constant ¢, (independent of €) such that, for any v € W§

(2.20) [vllz2(@) < eplVollL2(q.)-

Moreover, we have

PROPOSITION 2.2. ([22]) If kK > 1 in (2.2), then there exist two families of linear
continuous extensions operators P.y : H'(Qa) — HY(Q) and P.o : H'(Qe2) —
HY(Q) which are bounded uniformly in €, that is

| Pervll o) < cllvllmr@an), for every v € Hl(Qel),

| Peav 1 @) < cllvllm1(qu,), for every v € Hl(Qag),

where ¢ only depend on the Lipschitz constant L, of the function g (and is independent
of ).

REMARK 2.3. From Proposition 2.2, if kK > 1 we have the following uniform Sobolev-
Poincaré inequality: there exists a constant ¢ (independent of €) such that, for any

ve Wy

(2.21) [vllze@) < cllVvllLz(q.)

for every p € [2,2*] if N > 2 and for every p € [2,4+00[ if N = 2. The constant ¢
depends on p, N and Ly. Note that, if Kk < 1 the estimate is not uniform for p > 2,
since the height of the cogs is much greater then its width, so that the constant c
depends on the parameter € and it blows up as € goes to zero.

3. Physical meaning of the model. In this section we try to present some
physical phenomena leading to mathematical models governed by semilinear elliptic
equations with singular lower order terms. Some of them deal with non newtonian
fluids and some others with diffusion in electrical conductors.

Of course, as pointed out in the introduction, if this kind of phenomena take place
in composite materials possibly having inside rough interfaces we can have modelling
problems which look like problem P.. Metamaterials, for example, are composite
materials that ”gain their properties from their structure, besides their composition;
their precise shape, geometry, size, orientation and arrangement can affect the waves
of light or sound in an unconventional manner, creating material properties which are
unachievable with conventional materials.” ([47])

Let us present a first class of phenomena described by a singular semilinear equation.
Following [43], a non-Newtonian fluid is called pseudoplastic if the shear stress 7 is a

function of the strain rate — via the expression

dy

T:K(@

n, 0<n<l,
ay) "

7
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where K is a positive constant, u is the velocity of the fluid along the boundary and
y is the height above the boundary. Suppose that we look for an exact analytical
solution to a basic problem in the boundary layer theory of these pseudoplastic fluids.
Specifically, we are interested in the classical case of the incompressible flow of a
uniform stream past a semi-infinite flat plate at zero incidence. Flows of this type
are encountered in glacial advance [51], as well as in other geophysical contexts and
in many industrial applications such as polymer or metal extrusion or continuous
stretching of plastic films.

Following the discussion by [46], the boundary layer equations for steady flow over a
semi-infinite flat plate may be written as

ou ou 101

"or "oy T poy
ou  Ov

%4-@:0,

(3.1)

where p is the density, u and v are the velocity components parallel and normal to
the plate and the shear stress is given by (3). The case n = 1 corresponds to a
Newtonian fluid and for 0 < n < 1 the "power law” relation (3) between shear stress
and rate of strain has been proposed as a model for pseudoplastic non-Newtonian
fluids. The standard boundary conditions are that the fluid have zero velocity on
the plate and that the flow approach free stream conditions far from the plate. Thus
u(z,0) = v(x,0) = 0, u(z,00) = Uy , where Uy, is the uniform potential flow.
Treating = and u as independent variables and 7 as the dependent variable, it is
possible to prove that system (3.1) can be transformed to

0 o
(3.2) u— (Ki "1> +27 -0
* u
One seeks a solution to (3.2) of the form 7 = ®(x)g(u). Substituting this into (3.2)
leads to the results
A(n+1)z\ 71
s (A1)
pK n

"™ (w)g" (u) = Au,

(3.3)

where A is a arbitrary separation constant. The transformed boundary conditions
become ¢'(0) = 0, g(Us) = 0. Letting u = - and choosing A appropriately leads
to

9"/ (u)g" (u) + nu = 0,
(3.4) g'(0)=0, g¢(1)=0,

O<u<l, 0<n<l1.

which is infact a singular equation in the u variable.

Let us describe another concrete situation, described in [23] where singular terms ap-
pear in the model.

Suppose that we have a three dimensional region @} occupied by an electrical con-
ductor. Each point becomes a source of heat as a current flows in (). The function

8
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u(x,t) represents the temperature at the point x and at the time ¢, the function
V(xz,t) = f2(x,t) describes the local voltage drop in Q and a(u) = ﬁu) denotes the
electrical resistivity. Then generation of heat occurs with a rate given by
V2(z,t)
-\ t
s = ),
so that the time dependent equation which models the phenomenon is

up — Au = f(z,t)¢(u),

which in the stationary case reads
—Au = f(z)¢(u).

In the case of a conductor material the electrical resistivity is a positive increasing
funntion of the temperature u, which goes to zero as u goes to zero, (in some cases
a(u) = u* with a > 0) so that the function ((u) in the right-hand side of the last
equation is singular in the u variable on the set where the solution u is zero.

4. Statement of the main results.

4.1. The existence result. We state here the following existence result for
problem (2.10), which is proved in Section 5:

THEOREM 4.1. Under assumptions (2.5)-(2.8), (2.11) and (2.12), for every € there
exists at least a solution u. of problem (2.10), in the following sense:

us € W5, ue >0 a.e. in Q,

/ fClue)p dx < 400 and
(4.1) @

A*Vu Vo dx + 6”/ he(uer — uea) (1 — @2) do = / fC(ue)p dx,
Qe e Q

for every ¢ € Wy.

In the sequel any function u. satisfying (4.1) will be called solution to problem (2.10).

REMARK 4.2. Observe that in the coordinates =’ the boundary integral in the varia-
tional formulation reads

67/ he(uer — ue2)(p1 — o) do =
e

! / / !

&" /w W) (11 (@0 (D)) a0 () (91 (& 20 () (. % (2)))

1/2
< (L4 209 g, ) e

4.2. Regularity and uniqueness results. In the theorem below we state that
the solutions found in the previous Theorem 4.1 are bounded if the datum f is assumed
more regular.

y'=a'/e
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THEOREM 4.3. Under assumptions (2.5)-(2.8), (2.11) and (2.12), assume in addition
that

(4.2) ferL(Q), forr> g

Then any solution u® of (4.1) is bounded. Moreover, if k > 1 any sequence of solutions
{u} is bounded in L>(Q).

REMARK 4.4. Let us compare assumption (2.12) with assumption (4.2). For the case
N=2if0<0<1lorif =1andr >1in (2.12), assumption (4.2) is automatically
satisfied. If N = 3 and (2.12) holds, the fact that (4.2) is satisfied or not depends on
0. For N > 4 assumption (4.2) is stronger that (2.12).

The next result deals with the uniqueness of the solution found in Theorem 4.1.
Here is the only point where we assume that the function ((s) defined in (2.11) has
monotonicity properties, more precisely is non increasing.

THEOREM 4.5. Let us assume (2.5)-(2.8), (2.11) and (2.12) and, in addition, that
¢(s) is non increasing in ]0,4+00[. Then, for every e, there is a unique solution to
problem (4.1).

Theorems 4.3 and 4.5 are proved in Section 5.

4.3. Homogenization results. To state our homogenization results, let us in-
troduce (see [6]) the homogenized tensor A°, defined by

(4.3) AN = my (AVw))
with wy € H'(Y) the unique solution, for any A € RY, of

-div (AVwy) =0 inY,
(4.4) Wy — Ay Y -periodic,
my (w_\-y) =0.

THEOREM 4.6. Assume that (2.5)-(2.8) and (2.11) hold true; moreover if k > 1 as-
sume (2.12) while if k < 1 suppose f € L*(Q). Let u be a solution of problem (}.1).
Then, for every v € R there exists a subsequence (still denoted {c}) and function ug
such that

(4.5) ug € W3, up >0 ae onQ, / fC(up)p dx < 400
Q

the following convergences hold true:

(46) { i) ue = ug, strongly in Ly(Q) and a.e. in Q,
1) XQ.. Vue = X@: VUo, weakly in (L2(Q))Y,

and

(4.7 XQ. AVuE — xg,A° Vuy, weakly in (Ly(Q))Y,

fori=1,2, where A° is given by (4.3).
Moreover, denoting
o = { U()l(l‘), SCEQ1
up2(w), T E€ Q2

we have the limit problems below.
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Suppose that one of the following assumptions holds

(4.8) k>1andy=0

or
(4.9) 0<k<landy=1-xk.
Then, the function ug is a solution of the problem

—div(A°Vug) = f¢(ug)  in Qo
(A°Vug)1 - n = (A°Vug)s - n on Ty,
4.10
(4.10) (A%ug)s - n = —H (g, h)(uo1 — uo2), on o,

ug =0 on 0Q,

where n is unit outward normal to Q1 and

my (h(l + (|Vg|2)1/2) if Kk =1and v =0,
(4.11) H(g,h) = my:(h)  ifx>1landy=0,
my(h|Vg|) if0<k<landy=1-—k&,
whose variational formulation is

/ AV ugVy dxr + H(g, h)/ (uo1 — uo2)(p1 — 2) do
Qo

Lo
(4.12) - /Q £ (o) de,

for every ¢ € W§.

Suppose now that one of the following assumptions holds

(4.13) k>1andy <0
or
(4.14) 0<k<landy<1l-—k.

Then, the function ug belongs to H}(Q) and is a solution of the problem
—~div(A°Vug) = fC(uo) in Q,
(4.15) u=0 on 0Q),

whose variational formulation is

/ AVugVip da = / FC(uo)p de,
(4.16) 2 Q

for every ¢ € HL(Q).
11
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Finally, suppose that one of the following assumptions holds

(4.17) k2>1andy>0
or
(4.18) 0<k<landy>1—k.

Then, ug1 and upz are solutions of the following two (independent) Neumann prob-
lems:

—div(A°Vug) = f¢(up1) in Qu,
(4.19) A°Vugr -n =0 on Iy,
uor =0 on 0Q1 \ I'o,
and
—div(A°Vugs) = fC(uge) in Qa,
(4.20) AOVUOQ -n=0 on Yy,
gz = 0 on 9Qs \ T,

whose variational formulations are

| AVuavedo= [ ftue da.
(4.21) 1 @

for every ¢ € H' (1) such that ¢ =0 on Q1 \ T
and

/ AVuq Ve do = [ fC(uo)ep da,
(4.22) 2 Q2

for every p € H* () such that ¢ =0 on 0Qs \ Ty,
respectively.

If, in addition, we suppose that the function ((s) defined in (2.11) is non decreasing,
the solution ug of the above limit problems is unique and convergences (4.6) and (4.7)
hold for the whole sequences.

The proof of this theorem is done in Section 7.

4.4. A corrector result. We complete here the convergences given in Theorem
4.6 by a corrector result, which shows that the corrector for the nonlinear problem
(4.1) is the same as that of the associated linear problem.
We derive this result by a corrector result on the corresponding linear problem (The-
orem 9.1), which is itself new and which will be proved in Section 8.
Then, the nonlinear corrector result stated in Theorem 4.7 below follows straightfor-
ward from Theorem 9.1 and Theorem 8.5 which is also an essential tool when proving
Theorem 4.6.

12
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380

381

382

Let us introduce the classical corrector matrix C° = (C5;) <, given by

1<i,j

X

C5i(@) =Cj; (g) a.e. on @,

ow;
Cii(y) = =—2(y), i,j=1,...,n a.e. onY,
1) = 52

(4.23)

where {ej}j-vzl is the canonical basis of RV and wj is the solution of problem (4.4),
written for A = e;.

THEOREM 4.7. Under the assumptions of Theorem 4.0, for every value of k and -,
we have

: e _
(4.24) gl_r% [|[Vue — C vuOH(Ll(Qs,O))N

where the corrector matriz C° is given by (4.23).

5. A priori estimates. In this section we give some a priori estimates for a
solution w of problem (2.10), which are uniform with respect to € and dependent on
any function ¢ satisfying (2.11) only through the constant 6.

This also provides uniform estimates with respect to n and ¢ for the solutions u;,
of the approximate problem (6.1), used in the next section to show (for fixed ¢) the
existence of a solution of problem (2.10). Indeed, the nonlinearity in the right-hand
side of (6.1) still satisfies (2.11). These estimates are also used for the solution u. of
problem (2.10) itself, when proving the homogenization result in Section 7.

Along this paper, we will denote by c¢ different constants independent of e.

For any function v in W§, we define

vt = max{v, 0}, v~ = —min{v, 0}, a.e. on Q,
which, by known results, still belong to W§. Clearly,
(5.1) v=0vt -0~

REMARK 5.1. Let us observe that for every v € W§ one has

(01 —v2)(vy —vy) = (v —vf)(vy —vy) = (vy —vy)* =

(5.2) . L B o
= —vj vy —vyvy — (v —vy)? <0,

as well as for their traces on I'..

PROPOSITION 5.2. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w € W§
be a solution of problem (2.10). Then, the following a priori estimates hold:

1
. . < +e
(5.3) wllwe < CIIfIILH%(Q),

where ¢ = ¢(a, ¢, ) and

_1
(5.4) lwy = wall o,y < ce 2|17,
L1+9(Q)

g
|

where ¢ = ¢(a, c,, 0).

13
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387
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398

399

Proof. Let us choose w as test function in the variational formulation (4.1) of problem
(2.10). We use (2.5), (2.11), (2.12), Holder inequality and Poincaré inequality (2.20),
getting

al VulZaq.) +ellwr — w2z,
(55) 1-0 1-0

<A1, 2y 01y < o7, 12, o 1901y

We first neglect the nonnegative boundary term in (5.5) and we get (5.3). Neglecting
now the firs term in (5.5) and using (5.3), we easily get (5.4). |
PROPOSITION 5.3. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w € W§
be a solution of problem (2.10). Then,

(5.6) If¢(w)ellLr ) < e

for every positive p € W5 where ¢ = c(a, ¢, || fl Lm0, 0, B, I Vel L2(q))-

Proof. We choose a nonnegative ¢ € Hi(Q) as test function in (4.1). Since the
boundary term vanishes, from (2.5), estimate (5.3) and the Holder inequality, it follows
that

0< / FC(w)p dr < c,
Q

where ¢ = 6(0476797013’ Hf”LT(Q): ||V<pHL2(Q))
Let us take now a nonnegative ¢ = (.1, e2) in W§. Since I'; is Lipschitz continuous,
there exist still nonnegative 1; and ¥» € Hg(Q) such that (see for instance [10], Ch.
9)

P = (30817 ()062) = (wHdewQ\ng)'
Then we can write:

0< / fC(w)p dz = / eyt de+ | fe(wybs
Q Qe1 Qe2

< /Q FC(w)y da+ /Q FCwhn d < c,

O
The following proposition, which gives an estimate of the integral of the singular term
close to the singular set {w = 0}, is crucial in the proof of our results, both existence
and homogenization ones.
It makes use of similar techniques as those in [27], [29], which involve the auxiliary
real function Zs defined by

1, if0<s<,
(5.7) Zs(s) =4 —5+2, ifd<s<26,
0, if 26 < s.

We also need for k£ > 0, the usual truncation function 7T} at level k, defined by

—k, if s < —k,
(5.8) Ti(s) =1 s, if |s| <k,
k, if s > k.
14
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413
414
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418

419

420
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PROPOSITION 5.4. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w € W§
be a solution of problem (2.10) and 0 a fized positive real number. Then,

(5.9)

/ J¢(w)p dx < / A*NVw Ve Zs(w) dz
{0<w<s}

€

—f—a“’/r he (w1 — w2)(Zs(w1)pr — Zs(w2)p2) do

< [ 4V zi(w) do+ 262 llum lor + gl

for every ¢ € W§, ¢ > 0, where Zs is defined by (5.7).

Proof. Let ¢ € W§, ¢ > 0. Taking, for k > 0, Zs(w)Tx(p) as test function in (4.1)
where Ty (s) is the truncation function given by (5.8), we obtain

A*VuVT,(p)Zs(w) doe — f/ A*VuwVuwTy(p) dx

Q- N{d<w<2§}

—i—s“*/F he (w1 — w2)(Zs(w1)Tr(p)1 — Zs(w2)Tr(w)2) do

- /Q FC(w) Zs(w)Ti(p) de.

Since w and ¢ are nonnegative, this implies

(5.10)

{0<w<s}

fC(w)Tk(p) dz < / AVw VT (p) Zs(w) dx

+5’Y/F he (w1 — w2)(Zs(w1)Tr(0)1 — Zs(w2)Tr(@)2) do

and the following one:

57/ he (w1 — wa)(Zs(w1) Tk ()1 — Zs(w2) T (p)2) do

€

< EV/F he (w1 Zs(w1)Ti ()1 + w2 Zs(w2) Ty (p)2) do

: Ev/ P01 0, <05 TH(P)1 F 02X 1, <05y Th(9)2) do

€

<26&7 [|hl|pe(my 1 + 2l r.)-

where we used (5.7). This, together with (5.10) gives, for any k > 0,

/ FCw)Ti(p) dz < [ AVw VTi(p) Zs(w) dx
{0<w<s} Q.

<

Q-

+5”/ he (w1 — wa)(Zs(w1)Tk(9)1 — Zs(w2) Tk (p2) do

€

ATVw VT(p) Zs(w) dz + 257 |||y o1 + @2|l 21 (r.)-

15
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To get the result, we pass now to the limit as k tends to infinity in the last inequalities,
using Fatou’s lemma (on the first integral) and the fact that Ty () strongly converges
to ¢ in W§. 0
REMARK 5.5. We point out that estimate (5.9) near the singularity allows us to over-
come a main difficulty. Indeed, due to the jump of the solutions on the interface,
we cannot expect that they are uniformly bounded from below by a positive constant
on compact sets w of Q, which is a property often used in the literature for singular
problems.

The lack of bounds from below is essentially due to the fact that the strong maximum
principle cannot be applied in the whole domain @Q (since these functions do not belong
to HY(Q)), but only in Qc1 and Q-o. This concerns uniform estimates (with respect
to n) for the solutions u, of the approzimating problems (6.1) introduced in Section
5 when proving of the existence result of u. for fized . It concerns as well uniform
estimates (with respect to €) for the solutions u. of (4.1) itself, when studying the
corresponding homogenization problem. Both were denoted by w above.

6. Proof of the existence (Theorem 4.1). We define the following sequence
of nonsingular problems, which approximates problem (2.10):

—div(A4° Vui) =T, (f ¢(Jug])) in Q,

(A°Vu;)1 - ve = (A°Vud)o - ve onl,,
(6.1)
(Aevufz)l Ve = —¢7 hg(ule - uiQ)v on I'.

uf, =0 on 0Q),

where, for every n € N, n > 1, the function T,, is the truncation function given by
(5.8).
Since in this proof ¢ is fixed, we denote A%, uf, and h® simply by A, u,, and h omitting
its dependence on €.
Then, the variational formulation of problem (6.1) reads
(6.2)

u, € W§,

AVu, Vo dx —|—6’V/ h(tun1 — un2)(p1 — @2) do = / Tn(fC(\unD)(p dz,
Qe Te Q
for every ¢ € W§.

The existence of a solution of this problem, quite standard, is proved in the Appendix.
Let us show that

(6.3) up, >0, a.e. in Q.

Choosing ¢ = —u,, in (6.2) and using (2.12) we obtain

(6.4) AVu, Vu, dx + 57/ h(un1 — un2)(—up,; + Upy) do < 0.
Q€

The surface integral over I is nonnegative, since from (5.1) one has

(Un1 = tn2) (=t + Upy) = (—tyy + ) + (—upy + ) (uhy —uly)

= (—upy + tp)? + (upauhy + upyuty) > 0.
16
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Then (6.4) and the ellipticity of A imply that u,, = 0 almost everywhere, so that (6.3)
holds and we can write ((u,) instead of ((|u,|) in the problem.

Observe now that 7T,,({) satisfies the same assumptions as the function ¢, so that the
a priori estimates given in Section 5 apply to the sequence {u,}. Consequently, there
exists u. € W§ N L?(Q) such that up to a subsequence,

up, — u. weakly in W§ and strongly in L?(Q),
(6.5) Up — Ue  a.e. in Q,

Upl — Una — Uep — Uen  strongly in L2(TF).
This, together with (6.3) implies that ue > 0 almost everywhere in Q.

Let us now consider ¢ € W§, ¢ > 0 and take the function T;(¢p) € W§ N L>®(Q)(see
(5.8)) as test function in (6.2), for [ > 0 fixed. We get

AV, VTi(p) dz + 67/ h(un1 — un2)(Ti ()1 — Ti(p)2) do
QE £

(6.6)
- /Q T,y (FC(un)) Ti() de.

From Proposition 5.3 we have the uniform estimates

1T (fC(un)) Ti(P)l 1) < ¢

with ¢ independent of n. This together with (6.5), in view of Fatou’s Lemma implies
that

(6.7) /Q FC(u)Ti(p) dir < +oo,

for any ¢ € W and any fixed positive .

Let us now pass to the limit in (6.6) for nonnegative ¢, as n — oo and for [ fixed. Con-
cerning the right-hand side of the equation, observe that we can apply the Lebesgue
dominated convergence theorem only far from the singularity.

To overcome this difficulty, for every positive & we split the right-hand side as

[ Ta(Feun) i) da

(6.8) @

:/ T (f<¢(un)) Ti() dz+/ T (fC(un))Ti(p) da = Iy + Jy.
(0<u, <5}

{o<un}

From Proposition 5.4 it follows that

I, < AVu, VTi(p) Zs(un) dz +26¢” ||h||L°°(F) o1 + ‘P2||L1(I‘g)7
QE
which using (6.5) and (5.7) yields

limsup I, < AVu VTi(p) Zs(ue) dx 425" [|h]| Lo (ry ||01 + @21 (r.)-

n—roo QE
17

This manuscript is for review purposes only.



478

479

480

481

482

483

484

485
486

Since the gradient of H!-functions vanishes on level sets,

lim AVu: VT (p) Zs(ue) de = / AVu: VTi(p)
§—0 Q-

€

which gives

(6.9) lim limsup I,, = 0.

6—0 nooco
As far as it concerns the term .J,,, we write it as

(6.10)
+/QTn(f<(un))Tl(‘p)X{un>5} X{u =5} dr.

Due to assumption (2.12), fT;(¢) € L(Q), so that

1
and from (2.11) (6.5) and (6.7) we have, almost everywhere in @,

i T, (£¢(un)) TH(2) X, 5 5y Xguisy = FSW)TUP) X gy 5y

n— oo

;i_% X{u€>5} = X{u5>0}'

Then, applying twice the Lebesgue dominated convergence theorem, we obtain
(6.11)

lim lim /Tn(fC(un)>Tl(<p)X{un>5} X{ug;ﬁ&} dx:/QfC(ua)Tl((p)X{uE>0} dx.

6—0n—oo Q
To treat the second term of the right-hand side of (6.10), observe that for every ¢ > 0

except at most for a countable set C' of values, one has meas{x € Q : u.(z) =46} =0,
so that

/QTn (f¢(un)) Tl(go)x{u”>5} X{u.=5) dx =0, for every § € Ry \ C.

This, together with (6.11) implies that

d—0n—oo

(6.12) lim lim J, = /Q fC(u)Ti(p) X (w50} dx, deRL\C.
Collecting (6.8)-(6.12) we can pass to the limit in the right-hand side of (6.6) getting

limsup/QTn(fC(un))Tl(go) dﬂcZ/quus)Tl(SD) X{u. >0} dx,

n—oo

for every ¢ € W§, ¢ > 0. This remains true for every ¢ € W{§ with any sign, using
the fact that ¢ = ™ — ™.

18
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Consequently, since convergences (6.5) allow to easily pass to the limit in the left-hand
side of (6.6), the function u,. satisfies

ue € W5, wue>0ae. on (@, / fC(ue)Ti(yp) dox < 400 and
Q

(6.13) / AVuVTi(p) dx + 6’*/F h(ue1 — ue2)(Ti(p)1 — Ti(p)2) do

€

= /QfC(Us)Tl(SO) X (u. >0} dx, for every p € W§.

Finally, from the strong maximum principle (see Theorem 8.19 of [30]) we deduce that
ue > 0 a.e. in @, hence a.e. in @, since the N-dimensional measure of I'; is zero.
Then problem (6.13) reads as

u. € W5, wue >0ae. on @, / fClue)Ti(p) de < +00  and
Q

(6.14) AVUVTY(p) dz + &1 / h(ter — uea)(Ti(0)1 — Ti()2) do

FE

— [ K Ti(e) do, tor every ¢ < W5,
Q

Finally, we easily pass to the limit in the left-hand side of (6.14) as I goes to +oo.
The right-hand side is then uniformly bounded in [, so that by Fatou’s lemma we have
f¢(us)p € LY(Q). Then we can use Lebesgue theorem since we have for any positive
[ and any ¢ € W,

FC(ue)Ti(p) < fC(ue)p € LHQ)

and this concludes the proof. O

7. Proofs of regularity (Theorem 4.3) and uniqueness (Theorem 4.5).
Proof of Theorem 4.3. Let us choose, for v € R, v > 1, the function

¢ =Gy(ue) = (ue —v)*
as test function in (4.1), which is clearly in W¢.

This gives

/ ASV G (1) VG (1) dx+a/ B (ter — 129) (G (t11) — Gl (12)) dor

/ FC(u2)Go () da

Let us assume that N > 2. Since from (2.11) we have ((u.) < W < 1 on the set

where G, (u:) # 0, taking into account the ellipticity of A and the fact that G, is not
decreasing, we get using (2.21)

2
=

LG an® <o [ 196w ar< £ [ 16y dn

€

where ¢ = ¢(N, |Q:]).
19

This manuscript is for review purposes only.



199

T W N = O

]

G I, IS, B, BN, SN G B |

S

[S1 S WS B}
= = O
- o ©

N

wt
o
~

This implies the result by classical arguments due to G. Stampacchia ([48]). The
proof in the case N = 2 uses similar arguments and the fact that in this case the
space Hi(Q) is continuously embedded in the space L!(2) for any ¢ > 1.

The last statement follows from the fact that if k > 1 the constant ¢ above is inde-
pendent of e (see Remark 2.3). d

Proof of Theorem /.5. Let u. and w, be two solutions to problem (4.1).
We choose u. — w,. as test function in both equations and we take the difference
between the two equations, getting

/ AV (ue — we)V(ue —we) do + 67/ he((uer — wer) — (uez — wgg))2 do
.

e

= o F(C(ue) = C(we)) (ue — we) dz <0,

where in the last inequality we have used the fact that the function ((s) is non
increasing. By (2.5) and getting rid of the boundary term which is nonnegative, we
get u, = we a.e. in Q.

O

8. Proof of Theorem 4.6 (homogenization). The main tool when proving
Theorem 4.6 is Theorem 8.5, which shows that the gradient of the solution of problem
(4.1) is equivalent (in the L?-norm), as ¢ — 0, to that of a suitable linear problem,
given by (8.26). We present it in Section 7.2, after recalling some homogenization
results for the linear problem in Section 7.1. Finally in Section 7.3 we prove Theorem
4.6.

8.1. Preliminaries. Let us introduce, for a given matrix field B in LOO(Q)”Q
and for every ¢, the map

(8.1) 52 € WY — 15(2) € (WE)

defined by

(8.2) < 75(2), 0 >we (wey = /Q BVzV dx,
€,0

where Q). o is given in (2.19).
In this section, using the notations of Section 2, we recall some homogenization results
from [22], for the following linear problem:

—div(A*Vv.) =g — 15(2) in Q.,
(A*Vve)a - ne = (A°Vu.)1 - ne onl,,

(A*Vve)1 - me = —eVh®(ve1 — vea), on I';.

ve =0 on 0Q),
20
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whose variational formulation is

Find u. € Wy such that

/ AV Ve dx + 57/ h®(ver — ve2) (01 — @2) do
(8'4) Q\FE

.

= / g dx +/ BVzVpdz, forevery p € Wj.
Q Q\FE,O

where

(8.5) g€ L*(Q), zeW{, Bisa given matrix field in LOO(Q)"2
and 75(z) is defined by (8.1)-(8.2).

The matrix field A¢ and the function h® are given by (2.5)-(2.8).
THEOREM 8.1. [22] Under assumptions (2.5)-(2.8) and (8.5) let v¢ be the solution of

problem (8.3) and A° be given by (4.3)-(4.4). For every k > 0 and v € R there evists
a function vg € W{ such that the following convergences hold true:

i) ve = vp, strongly in L*(Q),
(8.6) it) x0.;Vve = xq, Vo, weakly in (L*(Q))",
and
(8.7) XQ.; AV, — x0, A Vg, weakly in (L*(Q))N,

for i=1,2. Moreover, denoting vo; = vg|,, for i = 1,2, we have the limit problems
below.

e Suppose that (4.8) or (4.9) holds. Then, the function vy is is the unique solution of
the problem

—div(A°Vug) = g — 7%(2) in Qo,
(AOV’U())Q n = (AOV’U())l -n on F(),
(A°Vvg)1 - n = H(g,h)(vo1 — vo2), on Iy,

u=20 on 0Q,

where H(g,h) is given by (4.11) and 7% : WO — (WQ)' is defined by
(8.9) < 710(2), ¢ >wo,(woy = —/ BVzVy du.
Qo

o Suppose now that (4.13) or (4.14) holds. Then, the function vy belongs to Hi(Q)
and is the unique solution of the problem

—div(A°Vug) = g — 75(2) in Q,
(8.10) u=20 on 0Q.

21
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o Finally, suppose that (4.17) or (4.18) holds. Then, vo1 and voy are the unique
solution of the following two (independent) Neumann problems:

—div(A°Vu1) = g —div (BVz) in Qq,
(8.11) A"Vvg -n=0 on T\,
vo =0 on 0Q1 \ T,
and
—div(A°Vvge) = g — div(BVz) in Q,
(8.12) A°Vugy -n =0 on Ty,
vg =0 on 0Q2 \ T.

REMARK 8.2. The homogenization results proved in [22] deal with the case z = 0. It
is easy to check that the proofs can be adapted without any significative modification
when z # 0. Indeed, the test function used for passing to the limit in [22] is a function
¢ in W§ such that p1 and py are restrictions of functions in HE(Q). Then for the
additional term one has, as € — 0,

BVzVyp dx = BVzVy, do + / BV2zVp, dx — BVzVy dz.
Qc.0 Qa1 2 Qo
Observe also that if z is in H}(Q), then the equation in (8.10) reads

—div(A°Vuvg) = g — div (BVz).

The main difficulty when proving Theorem 8.1 in [22] concerns the way to pass to the
limit in the boundary terms. We adapt the arguments used therein for the case where
only one sequence depends on € to show the proposition below, which deals with the
case of two sequences depending on ¢.

PROPOSITION 8.3. Let {w.} be a sequence such that w. € W§ for every e and
(8.13) lwellwg < e, lwer — weall g2,y < ce™ 2,
where c is a constant independent on €. Suppose that for some w € W one has
i) we = w, strongly in L*(Q),
(8.14)
1) XQ..Vws = xq,Vw, weakly in (L2(Q))N.
o If (4.13) or (4.14) holds, then
(8.15) w belong to HY(Q).

Suppose now that {1} is another sequence verifying the same estimates (8.13) such
that for some 1 € W

{ i) Y. — 1, strongly in L2(Q),

i) XQ.: Ve — X0, Vb,  weakly in (La(Q))N.
22
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o If (4.8) or (4.9) holds, under notation (4.11),

(8.17) lim 6”/F he(we1 — we2) (Y1 — Ye2)do = H(g, h)/ (w1 — w2) (Y1 — o)do.

e—0 To

o If (4.17) or (4.18) holds,

e—0

(818) lim E’y/ he(wgl - wsg)(¢51 - ’lbag)dO' =0.
e

Proof. We only explain how to derive the result from the argument introduced in [22],
where one of the two sequence was fixed, that is independent of €.

Suppose first that « > 1. From Corollary 2.7 of [22] in (2.2) there exist two functions
W1 and Ws in H(Q) such that

(8.19) P.i(we) — W, weakly in H'(Q), i=1,2,
with
(820) VVl|Q1 = Wi, WQ‘QZ = wWsy.

Let us point out that in [22] convergence (8.19) is stated for a subsequence, but it
actually holds for the whole sequence when (8.14) is supposed. Indeed, as usual in
the literature, the extension operators in Proposition 2.2 can be chosen such that

| Pesvll 2@y < cllvllz2q.y), for every v € Hl(QEi)7 1=1,2,

where c is independent of e. Then, since {w.} is a Cauchy sequence in L?(Q), the
sequence {P;(wg;)} is also a Cauchy sequence in L?(Q) for i = 1,2. The same holds
obviously for the sequence {1.}.

Then, we argue for the whole sequences {w.} and {i.} as in the proof of Theorems
4.1 and 5.1 of [22], observing that Lemma 3.2 used therein can be applied here to
both sequences. We have

(8:21)  lim g h®(wer — wez)(e1 — Yhe2)do = H (g, h)/r (w1 — w2)(¥1 — P2)do,
= 0

which gives (8.18) and (8.17).

To prove (8.15), as in [22] it suffices to choose ¥. = w. in (8.21). Indeed, since
we are in the case v < 0, the boundary a priori estimate in (8.13) implies that
lwer — weal|L2(r.) — 0; this, together with assumption (2.6), shows that the limit in
the left-hand side of (8.21) is zero. Then wy = wy on I'g, which means that w belongs
to Hy(Q).

Finally, when 0 < k < 1, the result follows by the same arguments used in the proof
of Theorem 6.1 of [22], observing again that the computation used therein for the
sequence {u} can be applied here to both sequences. d

8.2. A main tool. In this section we state and prove Theorem 8.5, which plays
an essential role in the proof of the homogenization result. Let us point out that one
difficulty in order to prove the homogenization result stated in Theorem 4.6 is that in
the variational formulation (4.1) the test functions belong to a space depending on &
and have a jump on I'., while in the limit problem we need functions in W{.

To overcome this difficulty, along this paper we construct test functions as follow.
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Let ¢ € W{. Then, there exist ¢; and ¢ € H(Q) such that

(822) (9013()02) = (1/}1|Q171/)2\Q2)'

Observe that if ¢ is nonnegative, then 11 and 1, can be chosen nonnegative too.
Then for every e, we associate to ¢ the function . € W2 defined by

(8.23) Pe = (¢1\Q517w2|Q52) ew?.

Observe that by construction and using (2.17), we have

i) e — @, strongly in L%(Q),
1) XQ.: Ve = XQ.. VWi = xq, Vi, weakly in (L2(Q))Y, i =1,2.

We have the following lemma:

LEMMA 8.4. Under the assumptions of Theorem /j.1 there exists a nonnegative func-
tion ug € W§ and a subsequence (still denoted {€}) such that convergences (4.6) hold.
Also,

(8.25) / fC(ug)p dx < 400, for every ¢ € WQ.
Q

Moreover, if v < 0, then ug belongs to H}(Q).

Proof. The convergences (for a subsequence) follow from the a priori estimates given
in Section 5 applied to the sequence {u.} of the solutions of (2.10), thanks to the
compactness results given in [22] (Proposition 2.4).

Concerning (8.25), let ¢ be a nonnegative function in W and ¢. given by (8.23).
Then, by Proposition 5.3,

/ FC(us)pe do = / Xou fC(uet by da+ / o fC(uc)ss do <
Q Q Q

and from convergences (4.6) (2.3)-(2.4),

XQsifC(uE’i) — XszC(u02)7 a.e in Q7 1= 1a 2.

Then, the Fatou’s Lemma gives (8.25) for nonnegative . This implies that f¢(ug)
is finite almost everywhere. Then, if ¢ has any sign, it suffices to decompose it as
— ot — o
p=¢ L2
The last statement follows from Proposition 8.3 applied to the previous subsequence.
|

From now on, we deal with the function uy and the subsequence given by Lemma 8.4.
Let us introduce the solution v. of the linear problem

—diV(AEV’UE) = _TZO (UO) in Q€7

(A*Vve)1 - ne = (A°Vu. )2 - ne onl,,
(8.26)
(A*Vve)1 - ne = —eVh®(ve1 — Vea), onI';.

ve =0 on 0Q).
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where 750 (uo) is given by (8.2) (written for B = A° and z = uy).

Observe that from convergences (4.6) and Theorem 8.1 (with g = 0), thanks to the
uniqueness of the solution of the linear problems (8.8),(8.10) (8.11) and (8.12) it
follows that

i) ve = ug, strongly in L?(Q),
(8.27) i) XQ., Vve = x0; Vo, weakly in (L2(Q))",

iii) xq., A*Vv® = xq, A Vuo, weakly in (L3(Q))Y,
fori=1,2.
Then, the main tool for proving Theorem 4.6, is the following result:

THEOREM 8.5. Let u. and ve be solutions of problems (4.1) and (8.26), respectively.
Under the assumption of Theorem 4.6 one has (for the subsequence given by Lemma

8.4)

. . 2 _
(8.28) Eh_% 0. |V (ue —ve)|* de = 0.

Proof. We need to distinguish the two cases xk > 1 and x < 1.
Case 1 : k> 1 and | satisfying (2.12).

Since the functions v, are not necessarily bounded, we approximate the nonnegative
function ug by the sequence {u,,} given by

U, = T (), for every m € N, m > 1,
where Ty, is the truncation function given by (5.8), so that
(8.29) 0 < tupm <up, Uy —>ug strongly in WY asm — +oc.
Then, we define v* as the solution to
—div(ATV™) = =750 (Um) in Q.,
(A°Vo')1 - ne = (A°Vul)a - ne on T,

(8.30)
(ASVul)y - ne = —eYhe (v} — V%), on ..

vt =0 on 0Q).

Since we are assuming x > 1 (this is the only point where we use this hypothesis), the
uniform Sobolev-Poincaré inequality given by (2.21) holds. Then, since u,, € L>®(Q),
by classical results from [48] (see also Proposition 4.3) for every m there exists a
constant ¢, such that

(8.31) V2" | Lo (@) < Ems for every e

and by Theorem 8.1,

i) VI = U, strongly in L?(Q),
(8.32) i1)XQ.; VU — X@, Vim, weakly in (L2(Q))%,
iii) XQ., ATV — x0,A° Vi, weakly in (L?(Q))N.
25
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fori=1,2 as e — 0,

In this case (k > 1) we prove the statement in three steps.
Step 1. Let us first prove that

(8.33) lim | ((v™)7)%*dz < lim c/ IV(v™)~|?dz =0 for any m.
QE

e—0 Q e—0

Choosing —(v")~ € W§ as test function in the variational formulation of (8.30) and
using Remark 5.1 we obtain in view of (2.18),

a/ |V(v(’€")7\2d:r

< - ASVu'V (vI") " dr — 57/ he (vl — vg)((vg)_ — (vg)_)do
Qe FE

= —/ AV, V(™) dr = —/ AV, Vol X{vm<o} dx
QE,O QE,O

< 5

— |Vum|2x{vm<0} dx + / IV (v™)"|? da.
2 /QO € - 2 Q €

€

Using (8.32)(i) and the fact that u,, is nonnegative it results, up to a subsequence,

(8.34) =0 ae in@, ase—0.

Xfop <0} Xum#0} " Xfum<o)
Moreover, Vu,, = 0 in the set where u,, = 0. Therefore
/ ‘Vum|2X{v;nS0} dxr — 0, for every m, ase—0,
Qo

which using (2.20) concludes the step.
Step 2. Let us prove that

(8.35) lim lim [ |V(ue —v™)|*dz = 0.

m—o00 e—0 Q
€

We choose as test function in (4.1) and in the variational formulation of (8.30) the
function
¢ =u, —v" € Wy.

This gives, after subtraction of the two identities

/ AV (ue — vl )V (ue — v") da < / AV (ue — v )V (ue — v*) dx

= €

(8.36) +s”/ h (ue1 — ueg — 07} +vl3)*do
I8

:/ f Cue)(ue — o) do — / A'Vu,, V(ue —o™) da.
Q Qe0

We take for the moment m fixed and pass to the limit on . From (4.6) and (8.32)
we have

lim AVu,, V(ue —v*) doe = A'Vu,, V(ug — ty,) d.
€0 Qc0 Qo
26
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666 Now, in order to pass to the limit in the term containing the singularity, we split it
667 in two terms as below

G5 (8.38) /Q F C(u) e — o) do = /Q f Clue)(us — (o)) di + /Q f Clu) ) da.

669  We will prove that

oo (839)  lim [ F o) (e~ (@)) do = [ £ ¢lun)(uo ~ u™)x(up0) do
E—> Q Q
671  and
672 (8.40) lim [ f C(ue)(w)™ dz=0.
e—0 Q

673 We begin by proving (8.39). For any 6 > 0 we have

/ £ Clue) (e — (@P)F) d = / £ Clue)(ue — (M) da
Q

{6<UE}

674 (8.41) +/{O<u <6}f C(ue)(ue — (I")7) dw < /{ fCue)(ue = (V")) dx

6<UE}

+/ fC(ue)ue do = J2 + I2.
{O<u5§6}
675 On the other hand, treating the term J? as in (6.10), we can write

5 _ m\+
J = /Qf Cue)(ue — (v) )X{ua>5} X{u(ﬂsa} dx
676 (8.42)
_ (p™m)t
+/Qf Clue)(ue — (v7") )X{u5>5} X{uo=5} dz,

677 where (see the proof of Theorem 4.1)
e (8.43) L7 €)= )Xy Xy =0

679 except at most for a countable set of values of 4.
680  Concerning the first term, we have

[ Clue) (e — () X gy Xy < F Cueue + F G0 gy s

< f C(ue)ue +Cm5%f7

682 where ¢,, is defined in (8.31) when « > 1. This implies, using (2.11), (2.12), (5.3) and
683  the Holder inequality that

681 (8.44)

m 1
s 805) [ 1F Cu = ()X Xpa) S 12y gy + em 1308
685 for any measurable set E in ). Moreover from (2.11) and (4.6)

G0 i F Q) (e~ (0)) X g gy Xguony = F CO0) (00 = tm) X ogy A€ 0 Q.
27
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693

694
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696

697

698

699

By the Vitali Theorem we obtain

Bl /Qf Clue) (e = (0F)7) X158y Xpugrsy 8

e—0

(8.46)
_ /Q f C(u0) (0 — 4m) X - 5y -

Note that this is the point where we need the bounded (with respect to ¢) sequence
v defined by (8.30).

We can apply the Lebesgue dominated convergence theorem on the last integral of
(8.46) as & — 0 since, by Lemma 8.4, f ((uo)(uo — um) € L1(Q) getting

lim lim /Qf Clu)(ue — (V1)) X (w5} X {uo) dx

6—0e—0

(8.47)
= /Qf C(uo)(ug — “m)X{u0>o} dz.

By (8.42), (8.43) and (8.47) we get
. . 5 _
(8.48) (%13(1) ;1_I>r(1) J? = /Qf Cuo) (o — um) X (>0} dx.
We estimate now the term I? in (8.41). Observe that if < 1 from (2.11) we have

(8.49) < 51—9/ fdz<cot?,
{0<u.<6}

which gives

(8.50) lim lim 12 = 0,
6—0e—0

while if 6 = 1,

(8.51)

) _
< /{o%g}fd‘”_ /QfX{0<uE§5} X{uo#5} d‘H/QfX{owEs&} Xup=s) -

Arguing as in the proof of Theorem 4.1, we deduce that except at most for a countable
set of values of § the second integral in the right-hand side of (8.51) is zero.
Hence, using (4.6), we have again (8.50) since

§—0e—0

. . 5 -
(8.52) lim lim I? < /Qfx{uo_o} dr =0,
as a consequence of (8.25) and the fact that the function ((s) is singular at s = 0,
which implies that
(8.53) meas {z € Q|up =0 and f >0} =0.

Hence, collecting (8.41), (8.48), (8.50) and (8.52) we get (8.39).
We are going to prove now (8.40). Let us choose §y outside a convenient countable
set so that

/ f C(us)(U?)_X{uozéo} de =0
{ue>50}

28
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and split the integral in (8.40) as
[ 1oy do
Q

(854)  _ /{ e s / F ) (W) X gy da

{u5>60}

= A: + B..

By Proposition 5.4 (written for 6 = dp) we have

0<A < / A*Vu V()™ Zs,(ue) dz
(8.55) ‘
e / B (uer — 22 (Zsy (ue1) ()T — Zay (uz) (0); dor

€

We want to prove that

(8.56) lim A, = 0.

e—0

As far as the first term in the right-hand side of (8.55) is concerned we use the Holder
inequality, estimates (5.3) and condition (8.33), so that it goes to zero as € goes to
zZ€ero.

Observe now that, for m fixed, thanks to (8.31) and the definition of Zs (see (5.7)),
we can apply Proposition 8.3 to w. = u, and . = Zs, (u:)(vI") ", for any v € R.
Then, if v > 0, also the second term in the right-hand side goes to zero, since 1),
converges to ¢ = 0 strongly in L?(Q) by (8.33).

If v < 0 then ug belongs to H}(Q), so that the same holds true for the sequences u™
and v defined by (8.29) and(8.30). This implies that also (v™)~ belongs to Hg(Q)
so that (v*)] = (vI"); and, since the function Zs, is non increasing (see (5.7))

& / B (e — en) (Zoy (uer) ()T — Zsy (ue2) (v1)7 ) do

e

— e / B (e — ea)(Zay (ter) — Zsy (te2) (o) dor < 0
e

Therefore, for any value of  (8.56) holds true.
We prove now that

(8.57) lim B. = 0.

e—0

It is sufficient to observe that
m\— Cm 1
0< f C(UE)(UE ) XA{ue >80} X{uo#d80} < f57 €L (Q)
0
(where ¢, is defined in (8.31)) and that, by (8.33),

T Cue) (V") X fue >80} X{uo#s0} — 0 ae. in Q
29
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This implies (8.57) by Lebesgue Theorem. Collecting (8.54), (8.56) and (8.57), we get
(8.40) and therefore recalling (8.36)-(8.40),

e—0

a limsup/ IV (ue —v™)|* dz

=

(8.58) SMMQ/AW%*ﬂmwwfﬂﬂx

e—0 .

< — | A, V(ug — um) dz + / £ C(uo)(uo — um) X (w0 4
Qo Q

The first term of the right-hand side goes to zero as m — oo since u,, — ug (see
(8.29)). For the same reason

£ ¢luo)(uo — um) Xfuos0} 0 a.e. in Q.
Since, by Lemma 8.4
0 < £ Clu0) (0 — t10) X,y < f Clu0)t0 € L'(Q),

the second term of the right-hand side of (8.58) also goes to zero as m — oo by
Lebesgue Theorem and this proves (8.35).

Step 8. In this step we prove that

lim i " — ) Pdz =0
mgnoo El_I)I(l) Q. |V(’U€ Ue)l . ’
which concludes the proof in the case x > 1, due to the previous step.
To this aim, we choose as test function in (8.26) and (8.30) the function v* —v.. This
gives, after subtraction of the two identities and observing that the boundary term is
nonnegative,

/ AV —ve) V(o' —ve)de < / A (U — up) V(0™ — v.) dx,
€ QE,O

whose right-hand side goes to zero when passing to the limit first as € — 0 and then
as m — 00, by convergences (8.32), (8.27) and (8.29). The ellipticity condition (2.5)
allow to conclude this case.

Case 2 : k<1 and f € L*(Q).

Note that in this case it is useless to introduce the sequence v defined by (8.30)
since it does not satisfies estimate (8.31) (see Remark 2.3 and the proof of Theorem
4.3). We recall that estimate (8.31) has been used in (8.44) and in (8.45). Here, since
f € L?(Q), we can simply use the sequence v. instead of the sequence v throughout
the proof. With the same argument used in the Step 1 we are able to prove that

(8.59) lim |VoZ|*de =0 for any m.
QE

e—0

In the Step 2 we only have to replace (8.44) and (8.45) which do not hold anymore by

1
|f Cue)(ue — U;_) X{u.>6} X{UO;éé}‘ < fC(ue)ue + fﬁvs
30
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and

1
8.60) [ 1F ¢ =09 Xy ) < g+ W2y 5 10220

(

for any measurable set E, respectively.
We note that by (8.32); the sequence {||vc|[12(g)} is bounded. Then, since in view of
(4.6) and (8.27) we have

; + _
Eh_I;l’(l)f C(UE)(UE - Us )X{u5>5} X{’Uzofé} - 07

by the Vitali Theorem

hm /C'Q f C(us)(uE - U;r) X{u€>6} X{u07’:6} = 0

e—0

Obviously we do not have anymore Step 3 and therefore the proof is completed also
in the case k < 1. |

REMARK 8.6. The above proof would be simpler if in Step 2 we could take as test
function u. — (vVI*)T instead of u. —v™. This it not possible due to the presence of

the boundary term, which cannot be treated in this case.

8.3. Proof of Theorem 4.6. We want to identify the problem satisfied by the
function u® given by (4.6). To do that we need to pass to the limit in problem (4.1).
Let ¢ € W{ and ¢. be given by (8.22)-(8.23). It is not restrictive to assume that
¢ > 0. Indeed, if not, it suffices to decompose ¢ = ¢t — ¢~ and we argue on each
term.

For [ > 0, let us choose Tj(¢.) € W§ N L>®(Q) as test function in the variational
formulation (4.1), with T; given by (5.8).
Since @e; = 1; on I'; for i = 1,2, we obtain

AVu VT () dr + 57/ he(uer — ue2)(Ti(¥1) — T1(¢2))do

QE FE

(8.61)
:/QfC(ue)Tl(Qoe)dmv

where we want to pass to the limit as € — 0. Let us observe that

/ AEVuEVTl(apg)da::/ AEV(uS—ve)VTl(goa)dx—i—/ A*Vu VT (p.) dx.

€ € €

From Theorem 8.5, using (8.22)-(8.23) we have

lim AV (ue —ve)VTi(pe) dz
e—0 Q.

< B(IVnllz2 @ +11VillL2 @) I [V (ue = vellr2(q.) = 0.
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On the other hand, from (8.27);;; and again using (8.22)-(8.23) we have

A*Vo VT (p:) dx = / XQ AV VT (1) dx + / X AV VT (12) dz
Qe Q Q

— / X0, A°VuoVTi(vy) do + / X, A'Vug VT (1) dx
Q Q

= AV ugVTi(p) d.
Qo
Hence,
lim lim/ A*Vu VT (pe) dx
l—-+o0c0 e—=0 Q.
(8.62)

= lim AOVUOVTl(go)dx:/ AV Ve de,

l—+o00 Qo o

for any ¢ € W, since
(8.63) Ti(p) — @, strongly in H(Q;), i = 1,2.
Observe also that by a similar argument we obtain convergences (4.7), using again
(8.27)4s: and Theorem 8.5. Indeed,
A*Vu O dx = AV (ue —v.)P dx + AV O dx
Qe Qe Qe

for every ® € L*(Q).

Let us now pass to the limit in the right-hand side of (8.61).

In the spirit of the proof of Theorem 4.1, we split it in two terms like in (6.8) (see
also (8.41)). We write

fC(UE)Tl(QOE) dx
(8.64)
— [ ot de 4 [ fCuties do =124 2.
[0<u. <8} {ue>0}
The same arguments used to prove (6.12) (see also (8.48)), noting that
5 l
0<J2 < 55 feLNQ),

give here

6—0 =0

(8.65) lim lim J? = [ f¢(uo)Ti(9) X, <oy 42
0 {uo>0}

except at most for a countable set of values of §.
From (5.9) and (8.23) we derive

0<1? g/ AV VT (pe) Zs(ue) dz

+4L0 7| ||| Lo (1),
32
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with Zs defined in (5.7). On the other hand, as done when proving (6.9) we derive

lim lim [ A°Vu. VTi(¢.) Zs(u.) dr = lim Ao VTi(p) Zs(ug) dr = 0,
6—0 =0 Q. 6—0 Qo

since Zs(u.) converges a.e. to X {uo=0} 3 0 tends to zero.

Consequently, if (4.17) or (4.18) or (4.8) or (4.9) holds (since v > 0) it results

(8.66) lim lim I° =0,

§—0 =0

which together with (8.64) and (8.65) gives, for the above cases,
(867) tim | guaTite) de = | FC0)Ti) x50

Suppose now that (4.13) or (4.14) holds. Then, we can use the fact that from Propo-
sition (8.3) the function uy belongs to H}(Q). As a consequence, we can choose
¢ € HYQ) in (8.61), which using inequality (5.9) stated in Proposition 5.4 gives

0<I? < A*Vu. VT () Zs(uz) da
Q-

(8.68) L oo /F WTi(9) (uer — weo)(Zs(uer) — Zs(ue)) do

€

< st AEVUE VT‘l((ps) Zé(ue) dZC,

since Zs is non increasing.

Hence we still have (8.66), which together with (8.64) and (8.65) again give (8.67) for
these last cases.

It remains to show that

(869) l—lg-ri-nOO /Q fC(Uo)T’l(QD) X{uo>0} dr = /Q fC(UO)(p X{u0>0} dz.
By (5.8) and Lemma 8.4 we deduce that fC(uo)ch{uO>0}

again (8.63) and the Lebesgue dominated convergence theorem, we obtain (8.69) since
for any [ > 0,

is in L'(Q). Therefore, using

0< f((UO)Tl(@)X{uO>O} < fC(UO)@X{u0>0} € Ll(Q)

Finally, to pass to the limit in the boundary integral in (8.61) we use Proposition 8.3.
o If (4.8) or (4.9) holds, from (8.17) and (8.63) we have

Jim T2 [ e ) (1)~ T = Ho. ) | (=) 1) o

This together with (8.62), (8.67) and (8.69) allows to pass to the limit in (8.61), first
as € — 0 then as [ — +o00. We have that ug verifies

A'NuoVe drx + H(g, h) /

- (uo1 — uo2) (1 — p2)do = /QfC(Uo)<P X{uo>0} dz,

Qo
33
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for every ¢ € W{. Using the maximum principle and Lemma 8.4 we obtain (4.5) and
(4.10).

o If (4.17) or (4.18) holds, from Proposition 8.3 we deduce that the boundary integral
in (8.61) goes to zero as € goes to zero, so using (8.62), (8.67) we pass to the limit in
(8.61), first as € — 0 then as [ — +o0o. We have that the limit function ug solves

/ AVuoVy de = / fC(ug)e X (>0} dz, for every ¢ € W{.
Qo Q ’

Moreover, using here too the maximum principle and Lemma 8.4, we obtain (4.5) and
the fact that ug; and g2 solve the two Neumann problems given by (4.19) and (4.20),
respectively.

e Finally, suppose that (4.13) or (4.14) holds. Then ug belongs to H}(Q) and choosing
in particular a test function ¢ in H}(Q), the boundary term in in (8.61) is zero. Then,
we obtain

/ A'Vuo Vo dz = / fC¢(ug)e X (>0} dz, for every ¢ € Hy(Q).
Q Q

Once again, by the strong maximum principle we deduce that the function u is strictly
positive almost everywhere in @, which together with Lemma 8.4 gives (4.5) and

(4.16).
To conclude the proof, observe that the last statement is a straightforward conse-
quence of Theorem 4.5. O

9. A Corrector result for the linear problem. The main result of this sec-
tion is a correctors for the linear problem (8.3), whose variational formulation is given

in (8.4).
THEOREM 9.1. Under the assumptions of Theorem 8.1, for every value of k and -,
we have

. e _
(9.1) ;%HVUE C V'UQH(LI(QE)U))N

where the corrector matriz C¢ is given by (4.23).

This result will be proved at the end of this section. We adapt standard arguments
(see for instance [16]) to our geometric situation. We first prove the following result:

PROPOSITION 9.2. Under the assumptions of Theorem 9.1, there exists a positive con-
stant ¢ = ¢(a, B) such that, for every value of k and 7,

(9.2) limsup/ Vv, — C°®|* dx < c/ Vg — @2 du,

e—0 . 0
for every ® = (®q1,...,Py) such that the function ®; = (Py,,...,Py;) belong to
(D(Q))N, fori=1,2.
Proof. Let ® = (®q,...,Py) such that the function ®; = (Py;,...,D,;) belong to
(D(Q;))N, for i = 1,2. We have

1
5/ |Vve — C°®|? dx < A (Ve — C°®) (Vv — C°P) dx
€ QE

(9.3) = AV V. dv — AV . C*® dx — / A*C*®V, dx
Qe Q- Qe

+ | ACTOC D dr = I — IS — I + IE.

QE
34

This manuscript is for review purposes only.



824  Observe now that
825 (9.4) I e such that, for e < gg, supp ®1; C wx]efg,l[, Vi=1,...,n.

826 Hence, from (4.4) and by a standard computation,

lim I} = lim A*C*D1C°Dq dx + lim ASCFD,C Dy dx
=0 =70 Juxlegal ==0Jq,
827 (9.5) = lim A*C*®1C*Dq dx + lim ASCED,C* Dy dx
e—0 Q1 e—0 Q-
= [ A'®d da.
Qo

828  Moreover, by the same argument for & < gq it results

829 (96) Ig = A*C*D Ve do + A*C*DyVueg d.
Q1 Q>

830 Let us recall now that if w; is given by (4.4) for A = e; and w5 (z) = Ewl(f) a.e. in
€

331 RN, then

-z, weakly in H'(Q),
832 (9.7) w§ — x4, strongly in L2 (Q),
AsVws — A°, weakly in (La(Q))N

833 and a simple change of scale gives (see for instance [16])
834 (9.8) / ASVwSVu de =0, for every v € H}(w),

835 for every open set w C RY. Hence, we have from (9.7), (9.8) and (8.6);

AECE(I)1V’U€1 dx
Q1

N N
836 => | AVwV(Quva)de =Y [ AVwVPy0 da
i—1 Y Q1 i=1 Y @1

N N
- Z/ ATVWEVD 00 do — — Z/ A%, Vd v, da.
i=17 Q1 i=17Q1
837 Treating in the same way the integral over Q2 in (9.6), we have

838 (9.9) lim I5 = / A®Vuyq da.
Qo

e—0
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839 On the other hand, choosing ¢ = ®;w5 in (8.4) we have

N
= Z/ AV O, Vw; dx
i=1 7 @Qe

N N
840 = Z/ ASV V(Dws) do — Z/ ATV V0w dx
N
= Z/ g®,wi dx + Z/ BVzV(®w5) dox — Z A*Vu . VO,w5 dx,
\Fe 0 i=1 Qe

where we used the fact that

N
&7 Z/E hE (Vo1 — ve2)((Bws)y — (Pws)2) do = 0,

841 for e < g, since supp (P2) C Q2 and (9.4) holds.
842 Consequently, in view of (9.7) and (8.7) and we obtain
(9.10)

J— O . .
;I_)I%IQ Z/ g®;x; d:17+2/ BVzV(®;x;) dx Z/OA VooV, x; do
843 :Z/ P,z dm+Z/ BV2V(®;2;) dx
~ — Jao

—Z AOWOV B;;) d:c+/ AV @ de.

0

Observe now that for any case of x and -y, since supp (®;) C Q2 and (9.4) holds, using
the limit problem satisfied by vy (according to the value of k and ) we get

Z/ AOV V(D) dx-Z/g@dex—i—Z BV2V(®;z;) da.

844  Hence from (9.10) we deduce that

e—0

845 (9.11) lim 75 7/ AV ® da.

0

846 It remains to study the limit of the energy I§. Choosing v. as test function in (8.4)
847 we have

848 (9.12) I = —67/ R (ver — Ve2)? do +/ gue dx +/ BVzVu,. dx.
Fs Q Q\Fs 0
849 Observe first that from convergences (8.6) we deduce that

850 (9.13)  lim (/ gue dx—i—/ BV 2V, dx) = / qgug dm—i—/ BV zVug dzx.
Q Q\T'c 0 Q Q\To

e—0

36

This manuscript is for review purposes only.



854

860

861
862

863

864
865
866
867
868
869
870

871

872

To treat the boundary term we apply Proposition 8.3 to w. = ¥, = v.. If (4.8) or
(4.9) holds, we obtain

(9.14) lim 57/ he (Ve — ve2)? do = H(g,h)(vor — vo2)? do,
e—0 . To

while if (4.17) or (4.18) holds

(9.15) gi_rg(l)s”/ he (ve1 — ve2)? do = 0.

€

Hence, by (9.13), using vy as test function in the limit problem given by Theorem 4.6
for these cases (according to the value of k and ), we have

(9.16) lim I{ = / AV Vg da.
e—0 o

Suppose now that (4.13) or (4.14) holds. Then,

I < / gue dx +/ BVzVu, dx.
Q Q\FE,O

which implies, using now (9.13) and the limit problem (8.10) from Theorem 8.1,

(9.17) limsup I5 < / gug dx Jr/ BV2zVug dx = / A’V Vg de.
Q Q\T'o Q

e—0

Then, from (7.1), collecting (9.5)-(9.9), together with (9.12) or (9.17) (according to
the different cases) we have

1
(9.18) lim sup/ Vo, — C°®|? dx < — A%(Vvg — @) (Vg — ) du,
e—0 . @ JQ,

where in the case that (4.13) or (4.14) holds we can choose ® € D(Q)", which gives
the claimed result. 0

REMARK 9.3. Let us point out that when (4.13) or (4.14) holds, we are not able to
prove that the energy I§ converges to the energy of the homogenized problem (4.15).
Nevertheless, inequality (9.17) is sufficient to prove the proposition above.

Proof of Theorem 9.1 For fixed § > 0, let ®° = (03, ..., %) be such that the function
O = (®%,,..., 82 ) belong to (D(Q;))Y, for i = 1,2, and

(9.19) ||VU0 - (bé”(L?(QO))N < é.

Then, from Proposition 9.2 and the boundedness of C¢ in L?(Q), using (9.19) we have

lim sup || Vv, — C°Vo < limsup ||[Vv. — C*®°
(9.20) 15%(1)1p|| Ve 0”<L1<Qa,o>>1" o lee(l)lpH ve H(LZ(Qa,M)N
+[|Cew — Ce@?| < cd.
(L2(Qon N

This concludes the proof, since ¢ is arbitrary.
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883
884

887

888

889

890

891
892

893

894

895
896

We also have
COROLLARY 9.4. Under the assumptions of Theorem 8.1, let § >0 and ¥ : Q — RN
be a simple function such that

(921) ||V’UQ - ‘1/||(L2(QU))N < 6.

Then,

limsup ||Vv, — C*¥|| <cé,
e—0

(L2(Qe,onNN ™

where ¢ depends only on «, § and Y.

Proof. For fixed § > 0, let ¥ be a simple function satisfying and let ®° = (®9,..., ®?)
be such that ®¢ = (®9,,...,®%.) € (D(Q;))N, for i = 1,2, and

(922) ||V1)0 - @5||(L2(Q0))N < é.
Then,

(|Vve — C’€\I/||(L2(Q N

5,0))
(9.23)

R I e ]

L2(Qe 0 L2(Qon N

Since {C*¢} is bounded in L?(Q))Y, from (9.21) and (9.22) via the Holder inequality,

(9.2 |Cw - Cg(bé”(L?(Qo))N <e |90 - \IIH(LQ(QO))N S
c1(IVvo = Wl pa(geyn + [[Vvo = @[ 1o g ))n) < 2610.
On the other hand, from Proposition 9.2 and (9.22) we derive
P Ve = O g g =
which together with (9.23) and (9.24) concludes the proof. ad

10. Appendix. We prove here the existence of a solution of the approximate
problem (6.1), where for simplicity we omit the dependence of the functions on n.
To do that, we apply the Schauder’s Theorem to the map

F: weLl*Q)— ue L*Q),
where u is the unique solution in W{ of the problem
—div(AVu) = T, (f¢(Jw]))  in Q.

(AVu); -v = (AVu)y - v on I'g,

(10.1)
(AVu); - v = —&7 h(ug — ug), on I'..

u=20 on 0Q),

and T, is the truncation at level n given by (5.8). The Lax-Milgram Theorem gives
the existence and uniqueness of u and shows that F(L?(Q)) is contained in a ball
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897
898
899
900

902
903

904
905

of W§, so that there exists a ball B of L?(Q) which is invariant for F. Since (see
Proposition 2.4 of [22]) W§ is compact in L?(Q), the set F(B) is a compact.

It remains to show that F is continuous. Let us take a sequence {w,, } which converges
to some w in L?(Q). Then, u,, = F(w,,) satisfies

U, € W,

(10.2) / AVun Ve dz + € / h(tum1 — um2) (1 — p2) do =

/ T (F¢(lwm])) @ dz, for every ¢ € W,
Q

and, up to a subsequence, from what showed above it converges to some uy weakly in
W§, strongly in L?(Q) and almost everywhere in Q.
Then, passing to the limit in (10.2), we obtain

/ AVugVp d:chs”/ h(uo1 — uo2) (w1 — @2) dU/QTn(fC(|w|))<Pd$,

for every ¢ € W{§. This implies, by uniqueness, that vy = F'(w) and concludes the
proof. ]
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