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Abstract. The paper deals with existence and homogenization for elliptic problems with lower4
order terms singular in the u-variable (u is the solution) in a cylinder Q in RN , so that the lower5
order term becomes infinite on the set {u = 0}. A rapidly oscillating interface inside Q separates6
the cylinder in two composite connected components. The interface has a periodic microstructure7
and it is situated in a small neighbourhood of a hyperplane which separates the two components of8
Q. At the interface we suppose the following transmission conditions: (i) the flux is continuous, (ii)9
the jump of a solution at the interface is proportional to the flux through the interface. This is a10
steady state model for the heat conduction in two heterogeneous electrically conducting materials11
with an imperfect contact between them. On the exterior boundary Dirichlet boundary conditions12
are prescribed.13

We also derive a corrector result for every values of the two parameters γ and κ which are related14
respectively to the microstructure period and to the amplitude of the interface oscillations.15
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1. Introduction. In this paper we deal with a semilinear elliptic singular prob-18

lem which models the stationary heat diffusion in a medium Q = ω×]− l, l[ made up19

of two connected composite components.20

An interface Γε, fixed for positive ε and rapidly oscillating as ε goes to zero, separates21

the two components, Qε1 and Qε2. The source term depends on the solution itself22

and becomes infinite when the solution vanishes.23

Our model is the following24

(Pε)



−div(Aε∇uε) = f ζ(uε) in Qε1 ∪Qε2,

[Aε∇uε] · νε = 0 on Γε,

(Aε∇uε)1 · νε = −εγhε[uε], on Γε,

uε = 0 on ∂Q,

25

where Aε(x) = A(x/ε) with A bounded uniformly elliptic periodic matrix, ζ(s) is a26

nonnegative real function singular at s = 0, f is a nonnegative datum (not identically27

zero) whose summability depends on the growth θ of the singular function ζ(s) near28

the singularity s = 0 and νε is the unit outward normal to Qε1. [·] denotes the jump29

through Γε.30

The oscillating interface Γε represent a rough surface which gives rise to an imperfect31

contact between the two components and this situation is modeled by a jump of32

the solution of the diffusion equation, which is proportional to the flux through the33

interface (see [13]).34
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†Université de Rouen Normandie, Laboratoire de Mathématiques Raphaël Salem, UMR CNRS
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Our aim is to study the existence of a solution to problem (Pε) for ε fixed and its35

macroscopic behaviour, that is the asymptotic behaviour as ε goes to zero of solutions36

for all values of the parameters appearing in the problem.37

Singular lower order terms (sometimes as an absorption term) appears in problems38

which model boundary-layer phenomena for viscous fluids, non-Newtonian fluids (in39

particular pseudoplastic fluids) and in problems related to enzymatic kinetics or in40

the Langmuir-Hinshelwood model of heterogeneous chemical catalyst. Source terms41

depending in a singular way from the solution appear also in problems modelling heat42

transfer in electrical conductors.43

We refer to Section 3 below for a description of some of these physical situations44

governed by (elliptic or parabolic) semilinear singular equations. We point out that45

if these phenomena take place in a region Q made of two composite materials having46

an imperfect contact between them, we are naturally led, at least in the stationary47

case, to problem (Pε).48

We refer to the early papers by [42], [50] for the theory of the H-convergence which49

allows to deal with general uniformly elliptic second order differential operators with50

oscillatory coefficients.51

The homogenization of the linear problem with oscillating interface corresponding to52

Pε (i.e. fixed right-hand side f(x) ∈ L2(Q)) has been studied [22] and the case of53

perforated domains with jump was originally studied in [3] (see also [36], [20], [32] [40]54

and [21] for a wide bibliography). We refer to [1], [2], [14], [15], [38], [39], [41] (and55

references therein) for the homogenization in domains with an oscillating boundary56

when the amplitude of the oscillations goes to zero, and to [11], [12], [24] for the case57

of fixed amplitude. For transmission problem through an oscillating boundary of fixed58

amplitude see [11], [25] and for vanishing amplitude see [44]. Classical homogenization59

and corrector results can be found for instance in the books [6], [45] and [16].60

Let us focus our attention on the main difficulties we have to deal with.61

The first one is related to the presence of the singular term and we explain why
below. We confine ourselves to the problem of the existence of a solution for ε fixed.
Denoting by vε1 and vε2 the restrictions to Qε1 and Qε2 of a function v defined in Q,
the framework space for problem (Pε) is the following

W ε
0 := {v | vε1 ∈ H1(Qε1), vε2 ∈ H1(Qε2) and v = 0 on ∂Q},

equipped with the norm62

‖v‖W ε
0

:= ‖∇v‖L2(Q\Γε),63

where
∇v = χQε1∇vε1 + χQε2∇vε2.

We approximate our problem through non singular problems (Pn) with solutions un64

(we omit here the parameter ε). Let us even assume the further condition that the65

function ζ appearing in the right-hand side is nonincreasing, which gives us the fact66

that {un} is an increasing sequence, un ≥ un−1... ≥ u1. Even in this case no uniform67

bound from below on compact sets of Q is available on the sequence of the solutions68

{un}. Indeed we can apply strong maximum principle to the function u1 in the upper69

part Qε1 and in the lower part Qε2 of Q but not in the whole Q since the function u170

does not belong to H1
0 (Q). Therefore, when we pass to the limit in the approximating71

problem (Pn) we are in trouble on the compact sets which cut the interface, which is72

in fact one of the main features of the problem.73
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This implies that we are naturally obliged to do an analysis of the behaviour of the74

singular terms near the singularity, which becomes one of the main tool in the proof.75

This technique is inspired by the similar one used in [27], [29] where existence and76

homogenization of singular problems in domains perforated by small holes is studied.77

We refer to [7], [9], [17], [34], [49] for existence results to singular elliptic problems in78

open sets Ω without interior interfaces, obtained by different techniques. Parabolic79

singular problems with general p-laplacian principal part, p > 1, are studied in [26].80

Of course, a fortiori, the same kind of difficulties hold when studying the asymptotic81

behaviour as ε goes to zero. In this case we deal with the sequence {uε} where uε is82

a solution for the problem (Pε). Note that in any case this sequence does not have83

any monotonicity property even we assume that the function ζ is nonincreasing.84

In the proofs of the main results stated in Theorem 4.1, Theorem 4.6 and Theorem85

8.5 we split the integral of the singular term in two parts, the one on the set where86

the solution is close to the singularity and the one where it is far from it. Let us87

emphasize that in each proof we need to treat the two terms in a different way.88

The second difficulty is the behaviour, as ε go to zero, of the boundary term which89

appear in the variational formulation of the problem. The different behaviour of this90

term depends on κ (the amplitude of the oscillation) and γ (which appears in the91

proportionality coefficient between the flux and the jump of the solution through the92

interface) and it gives rise to different limit problems.93

The last difficulty is due to the fact that the assumption on the integrability of the94

datum f does not implies the boundedness of the solutions, so that we need often95

truncation arguments in the proofs. Note that in the existence and in the homoge-96

nization results we do not use any monotonicity assumption on the singular function97

ζ(s) which appears in the right-hand side. If we suppose in addition that ζ(s) is98

nonincreasing in s, we can prove the uniqueness of the solution.99

A main tool for proving the homogenization result is a convergence result (Theorem100

8.5) which proves that the gradient of the solution behaves like that of a suitable101

linear problem associated to a weak cluster point, as ε → 0. Let us mention that102

this idea has been originally introduced in the literature for the homogenization of103

nonlinear problems with quadratic growth with respect to the gradient. The proof104

here is long and quite laborious, due to the difficulties mentioned above. We refer to105

[4], [5], for the case of a fixed domain and to [18] for periodically perforated domains106

(see also [19]).107

Finally, we prove in Section 8 a corrector result for the corresponding linear problem,108

which completes the homogenization results proved in [22] (see Theorem 9.1). This109

implies, thanks to the convergence result of Theorem 8.5 mentioned above, that the110

linear corrector is also a corrector for the original nonlinear problem.111

The paper is organized as follows:112

In Section 2 we give the setting of the problem. In Section 3 we present some physical113

models governed by singular equations. In Section 4 we state the main results: ex-114

istence, regularity, uniqueness, homogenization and correctors. Section 5 is devoted115

to the a priori estimates. In Section 6 we prove the existence result. In Section 7 we116

prove the regularity and the uniqueness results. Section 8 deals with the proof of the117

homogenization result. Section 9 is devoted to the proof of the corrector result. For118

completeness, in the Appendix we give the proof of the existence of solutions to the119

approximate nonsingular problems.120

2. Setting of problem. We use here the framework introduced in [22] and, for121

simplicity, some notations therein.122
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Along this paper we suppose N ≥ 2. If ω is a smooth bounded domain of RN−1 and123

l is a positive number, we will denote by Q the open bounded cylinder in RNdefined124

by Q = ω×]− l, l[.125

We denote by Y =]0, 1[N the volume reference cell and by Y ′ =]0, 1[N−1 the surface126

reference cell. Moreover, in the following, ε will be a positive parameter converging127

to zero.128

Let g : Y ′ → R a periodic positive Lipschitz continuous function, i.e. such that129

(2.1) |g(y′)− g(y′1)| ≤ Lg|y′ − y′1|, for every y′, y′1 ∈ Y ′.130

If κ > 0 and x′ = (x1, . . . , xN−1) the graph131

(2.2) Γε =
{
x ∈ Q, x

N
= εκg(

x′

ε
)
}

132

represents an oscillating interface which divides the set Q in two subdomains133

(2.3) Qε1 = {x ∈ Q, x
N
> εκg(

x′

ε
)},134

135

(2.4) Qε2 = {x ∈ Q, x
N
< εκg(

x′

ε
)}136

which are called the upper and the lower parts of Q, respectively.137

Setting g = max g, by construction, the set ω × [0, εκg] contains the oscillating inter-138

face, and the measure of this set goes to zero as ε→ 0 (see Figure 1).139

140

Figure 1: The upper and the lower parts of Q and the interface.

As observed in [22], the case κ = 1 presents a self-similar geometry because the141

interface Γε can be obtained by homothetic dilatation of the fixed function yN = g(y′)142

in RN . The case κ > 1 represents the flat case, while the case 0 < κ < 1 describes a143

highly oscillating interface (see [22] for details).144

We suppose that A is a Y-periodic matrix field satisfying, for 0 < α < β,145

(2.5) (A(y)λ, λ) ≥ α|λ|2, |A(y)λ| ≤ βλ, a.e. in Y and for any λ ∈ RN .146

Moreover, h will denote an Y ′-periodic function such that, for some h0 ∈ R∗+,147

(2.6) h ∈ L∞(Γ), and 0 < h0 < h(y′), a.e. on Γ,148
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where149

(2.7) Γ = {y
N

= g(y′), y′ ∈ Y ′}.150

We set, for any ε > 0,151

(2.8) Aε(x) = A
(x
ε

)
, hε(x′) = h

(x
ε

)
.152

For any function v defined on Q we set153

(2.9) vε1 = v|Qε1 vε2 = v|Qε2154

and νε stands for the unit outward normal to Qε1.155

Also, we use the notations:156

- ṽ for the zero extension of a function v defined on a subset of Q,157

- χE , the characteristic function of any set E ⊂ RN ,158

- mY ′(v) = 1
|Y ′|

∫
Y ′
f dy′, the average on Y ′ of any function v ∈ L1(Y ′).159

Our aim is to prove some existence results (for fixed ε), and homogenization results160

as ε→ 0, of the following problem:161

(2.10)



−div(Aε∇uε) = f ζ(uε) in Q \ Γε,

(Aε∇uε)1 · νε = (Aε∇uε)2 · νε on Γε,

(Aε∇uε)1 · νε = −εγhε(uε1 − uε2), on Γε.

uε = 0 on ∂Q,

162

where γ ∈ R and ζ : [0,+∞[→ [0,+∞] is a function such that163

(2.11) ζ ∈ C0([0,+∞[), 0 ≤ ζ(s) ≤ 1

sθ
for every s ∈]0,+∞[, with 0 < θ ≤ 1.164

and165

(2.12) f ≥ 0, a.e. in Q, f 6≡ 0, with f ∈ Lr(Q) for r ≥ 2

1 + θ
(≥ 1).166

We refer to Remark 4.4 for some comments on this assumption.167

Remark 2.1. We want to stress that we do not assume any monotonicity property168

on the singular term fζ(u). Note that no growth is required from below.169

A simple example of an oscillating function with singular behaviour which fits our
assumptions is the following

f(x)ζ(s) =
f(x)

sθ

(
1 + cos

1

s

)
, s > 0,

where f(x) satisfies (2.12).170

Let us also explain why we chose to assume that the function f(x) appearing in the171

right-hand side of problem (2.10) belongs to a convenient Lebesgue space. This as-172

sumption allows to consider more general physical situations where possible infinite173
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concentrations appear in a point x0, like f(x) = 1
|x−x0|α with α < α0, α0 suitable174

positive real number.175

This is also the case when we deal with the data f and u0 of the classical model diffu-176

sion problem in a bounded cylinder Ω× (0, T ), without any dependence of the source177

term from the solution u, that is178

(2.13)


ut −∆pu = f(x, t) in Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

179

where ∆p is the p-laplacian with p > 1(or its stationary version).180

Looking for weak solutions, a large literature, starting from [33], [35], considers data181

f and u0 like in the present paper, i.e. in convenient Lebesgue’s spaces or, even worst,182

data f and u0 measure (see [48] [8]).183

On the other hand, confining to our stationary model in the domain Q, more regular184

data f , say f ∈ C0(Q̄), are obviously included in Lebesgue spaces. Let us point185

out that no advantage comes from such further regularity of the data in the proof186

of our existence result. Indeed our methods are ”a priori estimate” methods which187

use, as a main tool, inequalities like Holder’s and Young’s ones and therefore the188

summability properties of the data. Of course more regularity on the data will induce189

more regularity on the solutions.190

Through this paper, we suppose that ζ is singular in 0, which mean that ζ(0) = +∞,191

since otherwise ζ is bounded, which is a trivial case.192

We introduce (under notation (2.9)) the space W ε
0 defined by

W ε
0 := {v ∈ L2(Q) | vε1 ∈ H1(Qε1), vε2 ∈ H1(Qε2) and v = 0 on ∂Q},

equipped with the norm193

(2.14) ‖v‖W ε
0

:= ‖∇v‖L2(Q\Γε),194

where
∇v = ∇̃vε1 + ∇̃vε2,

that is, we identify ∇v with the absolutely continuous part of the gradient of v.195

In the same way we define196

(2.15)
Q1 = {x ∈ Q : x

N
> 0}, Q2 = {x ∈ Q : x

N
< 0}, Γ0 = {x ∈ Q : x

N
= 0}197

and, for any function v defined on Q,198

(2.16) v1 = v|Q1
v2 = v|Q2

.199

Observe that200

(2.17) χQεi → χQi strongly in Lp(Q), 1 ≤ p < +∞, and weakly * in L∞(Q).201

Then we introduce the space

W 0
0 := {v ∈ L2(Q) | v1 ∈ H1(Q1), v2 ∈ H1(Q2) v = 0 on ∂Q},

equipped with the norm202

‖v‖W 0
0

:= ‖∇v‖L2(Q\Γ0),203
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In the sequel we also use the notations204

(2.18) Γε,0 = Γε ∪ Γ0.205

and206

(2.19) Qε = Q \ Γε, Q0 = Q \ Γ0, Qε,0 = Q \ Γε,0.207

Let us observe that (2.14) is a norm, due to the following Poincaré inequality: there208

exists a constant c
P

(independent of ε) such that, for any v ∈W ε
0209

(2.20) ‖v‖L2(Q) ≤ cP ‖∇v‖L2(Qε).210

Moreover, we have211

Proposition 2.2. ([22]) If κ ≥ 1 in (2.2), then there exist two families of linear
continuous extensions operators Pε1 : H1(Qε1) → H1(Q) and Pε2 : H1(Qε2) →
H1(Q) which are bounded uniformly in ε, that is

‖Pε1v‖H1(Q) ≤ c‖v‖H1(Qε1), for every v ∈ H1(Qε1),

‖Pε2v‖H1(Q) ≤ c‖v‖H1(Qε2), for every v ∈ H1(Qε2),

where c only depend on the Lipschitz constant Lg of the function g (and is independent212

of ε).213

Remark 2.3. From Proposition 2.2, if κ ≥ 1 we have the following uniform Sobolev-214

Poincaré inequality: there exists a constant c (independent of ε) such that, for any215

v ∈W ε
0216

(2.21) ‖v‖Lp(Q) ≤ c‖∇v‖L2(Qε)217

for every p ∈ [2, 2∗] if N > 2 and for every p ∈ [2,+∞[ if N = 2. The constant c218

depends on p, N and Lg. Note that, if κ < 1 the estimate is not uniform for p > 2,219

since the height of the cogs is much greater then its width, so that the constant c220

depends on the parameter ε and it blows up as ε goes to zero.221

3. Physical meaning of the model. In this section we try to present some222

physical phenomena leading to mathematical models governed by semilinear elliptic223

equations with singular lower order terms. Some of them deal with non newtonian224

fluids and some others with diffusion in electrical conductors.225

Of course, as pointed out in the introduction, if this kind of phenomena take place226

in composite materials possibly having inside rough interfaces we can have modelling227

problems which look like problem Pε. Metamaterials, for example, are composite228

materials that ”gain their properties from their structure, besides their composition;229

their precise shape, geometry, size, orientation and arrangement can affect the waves230

of light or sound in an unconventional manner, creating material properties which are231

unachievable with conventional materials.” ([47])232

Let us present a first class of phenomena described by a singular semilinear equation.233

Following [43], a non-Newtonian fluid is called pseudoplastic if the shear stress τ is a234

function of the strain rate
∂u

∂y
via the expression235

τ = K
(∂u
∂y

)n
, 0 < n < 1,236
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where K is a positive constant, u is the velocity of the fluid along the boundary and237

y is the height above the boundary. Suppose that we look for an exact analytical238

solution to a basic problem in the boundary layer theory of these pseudoplastic fluids.239

Specifically, we are interested in the classical case of the incompressible flow of a240

uniform stream past a semi-infinite flat plate at zero incidence. Flows of this type241

are encountered in glacial advance [51], as well as in other geophysical contexts and242

in many industrial applications such as polymer or metal extrusion or continuous243

stretching of plastic films.244

Following the discussion by [46], the boundary layer equations for steady flow over a245

semi-infinite flat plate may be written as246

(3.1)


u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τ

∂y
,

∂u

∂x
+
∂v

∂y
= 0,

247

where ρ is the density, u and v are the velocity components parallel and normal to248

the plate and the shear stress is given by (3). The case n = 1 corresponds to a249

Newtonian fluid and for 0 < n < 1 the ”power law” relation (3) between shear stress250

and rate of strain has been proposed as a model for pseudoplastic non-Newtonian251

fluids. The standard boundary conditions are that the fluid have zero velocity on252

the plate and that the flow approach free stream conditions far from the plate. Thus253

u(x, 0) = v(x, 0) = 0, u(x,∞) = U∞ , where U∞ is the uniform potential flow.254

Treating x and u as independent variables and τ as the dependent variable, it is255

possible to prove that system (3.1) can be transformed to256

(3.2) u
∂

∂x

(
K

1
n
ρ

τ
1
n

)
+
∂2τ

∂2u
= 0257

One seeks a solution to (3.2) of the form τ = Φ(x)g(u). Substituting this into (3.2)258

leads to the results259

(3.3)


Φ(x) =

(
−A(n+ 1)x

ρK
1
n

)− n
n+1

g1/n(u)g′′(u) = Au,

260

where A is a arbitrary separation constant. The transformed boundary conditions261

become g′(0) = 0, g(U∞) = 0. Letting u = u
U∞

and choosing A appropriately leads262

to263

(3.4)


g1/n(u)g′′(u) + nu = 0,

g′(0) = 0, g(1) = 0,

0 < u < 1, 0 < n < 1.

264

which is infact a singular equation in the u variable.
Let us describe another concrete situation, described in [23] where singular terms ap-
pear in the model.
Suppose that we have a three dimensional region Q occupied by an electrical con-
ductor. Each point becomes a source of heat as a current flows in Q. The function

8
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u(x, t) represents the temperature at the point x and at the time t, the function

V (x, t) = f
1
2 (x, t) describes the local voltage drop in Q and a(u) = 1

ζ(u) denotes the

electrical resistivity. Then generation of heat occurs with a rate given by

V 2(x, t)

a(u)
= f(x, t)ζ(u),

so that the time dependent equation which models the phenomenon is

ut −∆u = f(x, t)ζ(u),

which in the stationary case reads

−∆u = f(x)ζ(u).

In the case of a conductor material the electrical resistivity is a positive increasing265

funntion of the temperature u, which goes to zero as u goes to zero, (in some cases266

a(u) = uα with α > 0) so that the function ζ(u) in the right-hand side of the last267

equation is singular in the u variable on the set where the solution u is zero.268

4. Statement of the main results.269

4.1. The existence result. We state here the following existence result for270

problem (2.10), which is proved in Section 5:271

Theorem 4.1. Under assumptions (2.5)-(2.8), (2.11) and (2.12), for every ε there272

exists at least a solution uε of problem (2.10), in the following sense:273

(4.1)



uε ∈W ε
0 , uε > 0 a.e. in Q,∫

Q

fζ(uε)ϕ dx < +∞ and∫
Qε

Aε∇uε∇ϕ dx+ εγ
∫

Γε

hε(uε1 − uε2)(ϕ1 − ϕ2) dσ =

∫
Q

fζ(uε)ϕ dx,

for every ϕ ∈W ε
0 .

274

In the sequel any function uε satisfying (4.1) will be called solution to problem (2.10).275

Remark 4.2. Observe that in the coordinates x′ the boundary integral in the varia-
tional formulation reads

εγ
∫

Γε

hε(uε1 − uε2)(ϕ1 − ϕ2) dσ =

εγ
∫
ω

h
(x′
ε

)(
uε1
(
x′, εκg

(x′
ε

))
−uε2

(
x′, εκg

(x′
ε

)))(
ϕ1

(
x′, εκg

(x′
ε

))
−ϕ2

(
x′, εκg

(x′
ε

)))
×
(

1 + ε2(κ−1)(|∇y′g(y′)|2)
∣∣
y′=x′/ε

)1/2

dx′.

4.2. Regularity and uniqueness results. In the theorem below we state that276

the solutions found in the previous Theorem 4.1 are bounded if the datum f is assumed277

more regular.278
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Theorem 4.3. Under assumptions (2.5)-(2.8), (2.11) and (2.12), assume in addition279

that280

(4.2) f ∈ Lr(Q), for r >
N

2
.281

Then any solution uε of (4.1) is bounded. Moreover, if κ ≥ 1 any sequence of solutions282

{uε} is bounded in L∞(Q).283

Remark 4.4. Let us compare assumption (2.12) with assumption (4.2). For the case284

N = 2, if 0 < θ < 1 or if θ = 1 and r > 1 in (2.12), assumption (4.2) is automatically285

satisfied. If N = 3 and (2.12) holds, the fact that (4.2) is satisfied or not depends on286

θ. For N ≥ 4 assumption (4.2) is stronger that (2.12).287

The next result deals with the uniqueness of the solution found in Theorem 4.1.288

Here is the only point where we assume that the function ζ(s) defined in (2.11) has289

monotonicity properties, more precisely is non increasing.290

Theorem 4.5. Let us assume (2.5)-(2.8), (2.11) and (2.12) and, in addition, that291

ζ(s) is non increasing in ]0,+∞[. Then, for every ε, there is a unique solution to292

problem (4.1).293

Theorems 4.3 and 4.5 are proved in Section 5.294

4.3. Homogenization results. To state our homogenization results, let us in-295

troduce (see [6]) the homogenized tensor A0, defined by296

(4.3) A0λ = mY (A∇wλ)297

with wλ ∈ H1(Y ) the unique solution, for any λ ∈ RN , of298

(4.4)

 -div (A∇wλ) = 0 in Y,
wλ − λ · y Y -periodic,
mY (w−λ · y) = 0.

299

Theorem 4.6. Assume that (2.5)-(2.8) and (2.11) hold true; moreover if κ ≥ 1 as-300

sume (2.12) while if κ < 1 suppose f ∈ L2(Q). Let uε be a solution of problem (4.1).301

Then, for every γ ∈ R there exists a subsequence (still denoted {ε}) and function u0302

such that303

(4.5) u0 ∈W 0
0 , u0 > 0 a.e. on Q,

∫
Q

fζ(u0)ϕ dx < +∞304

the following convergences hold true:305

(4.6)

{
i) uε → u0, strongly in L2(Q) and a.e. in Q,

ii) χQεi∇uε ⇀ χQi∇u0, weakly in (L2(Q))N ,
306

and307

(4.7) χQεiA
ε∇uε ⇀ χQiA

0 ∇u0, weakly in (L2(Q))N ,308

for i = 1, 2, where A0 is given by (4.3).309

Moreover, denoting

u0 =

{
u01(x), x ∈ Q1

u02(x), x ∈ Q2

we have the limit problems below.310
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Suppose that one of the following assumptions holds311

(4.8) κ ≥ 1 and γ = 0312

or313

(4.9) 0 < κ < 1 and γ = 1− κ.314

Then, the function u0 is a solution of the problem315

(4.10)



−div(A0∇u0) = fζ(u0) in Q0,

(A0∇u0)1 · n = (A0∇u0)2 · n on Γ0,

(A0∇u0)2 · n = −H(g, h)(u01 − u02), on Γ0,

u0 = 0 on ∂Q,

316

where n is unit outward normal to Q1 and317

(4.11) H(g, h) =



mY ′

(
h(1 + (|∇g|2)1/2

)
if κ = 1 and γ = 0,

mY ′(h) if κ > 1 and γ = 0,

mY ′(h|∇g|) if 0 < κ < 1 and γ = 1− κ,

318

whose variational formulation is319

(4.12)



∫
Q0

A0∇u0∇ϕ dx+H(g, h)

∫
Γ0

(u01 − u02)(ϕ1 − ϕ2) dσ

=

∫
Q

fζ(u0)ϕ dx,

for every ϕ ∈W ε
0 .

320

Suppose now that one of the following assumptions holds321

(4.13) κ ≥ 1 and γ < 0322

or323

(4.14) 0 < κ < 1 and γ < 1− κ.324

Then, the function u0 belongs to H1
0 (Q) and is a solution of the problem325

(4.15)


−div(A0∇u0) = fζ(u0) in Q,

u = 0 on ∂Q,
326

whose variational formulation is327

(4.16)


∫
Q

A0∇u0∇ϕ dx =

∫
Q

fζ(u0)ϕ dx,

for every ϕ ∈ H1
0 (Ω).

328
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Finally, suppose that one of the following assumptions holds329

(4.17) κ ≥ 1 and γ > 0330

or331

(4.18) 0 < κ < 1 and γ > 1− κ.332

Then, u01 and u02 are solutions of the following two (independent) Neumann prob-333

lems:334

(4.19)



−div(A0∇u01) = fζ(u01) in Q1,

A0∇u01 · n = 0 on Γ0,

u01 = 0 on ∂Q1 \ Γ0,

335

and336

(4.20)



−div(A0∇u02) = fζ(u02) in Q2,

A0∇u02 · n = 0 on Γ0,

u02 = 0 on ∂Q2 \ Γ0,

337

whose variational formulations are338

(4.21)


∫
Q1

A0∇u01∇ϕ dx =

∫
Q1

fζ(u0)ϕ dx,

for every ϕ ∈ H1(Ω1) such that ϕ = 0 on ∂Q1 \ Γ0

339

and340

(4.22)


∫
Q2

A0∇u01∇ϕ dx =

∫
Q2

fζ(u0)ϕ dx,

for every ϕ ∈ H1(Ω2) such that ϕ = 0 on ∂Q2 \ Γ0,

341

respectively.342

If, in addition, we suppose that the function ζ(s) defined in (2.11) is non decreasing,343

the solution u0 of the above limit problems is unique and convergences (4.6) and (4.7)344

hold for the whole sequences.345

The proof of this theorem is done in Section 7.346

4.4. A corrector result. We complete here the convergences given in Theorem347

4.6 by a corrector result, which shows that the corrector for the nonlinear problem348

(4.1) is the same as that of the associated linear problem.349

We derive this result by a corrector result on the corresponding linear problem (The-350

orem 9.1), which is itself new and which will be proved in Section 8.351

Then, the nonlinear corrector result stated in Theorem 4.7 below follows straightfor-352

ward from Theorem 9.1 and Theorem 8.5 which is also an essential tool when proving353

Theorem 4.6.354
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Let us introduce the classical corrector matrix Cε =
(
Cεij
)

1≤i,j≤n, given by355

(4.23)


Cεij(x) = Cij

(x
ε

)
a.e. on Q,

Cij(y) =
∂wj
∂yi

(y), i, j = 1, ..., n a.e. on Y,
356

where {ej}Nj=1 is the canonical basis of RN and wj is the solution of problem (4.4),357

written for λ = ej .358

Theorem 4.7. Under the assumptions of Theorem 4.6, for every value of κ and γ,359

we have360

(4.24) lim
ε→0
||∇uε − Cε∇u0||(

L1(Qε,0)
)N = 0.361

where the corrector matrix Cε is given by (4.23).362

5. A priori estimates. In this section we give some a priori estimates for a363

solution w of problem (2.10), which are uniform with respect to ε and dependent on364

any function ζ satisfying (2.11) only through the constant θ.365

This also provides uniform estimates with respect to n and ε for the solutions uεn366

of the approximate problem (6.1), used in the next section to show (for fixed ε) the367

existence of a solution of problem (2.10). Indeed, the nonlinearity in the right-hand368

side of (6.1) still satisfies (2.11). These estimates are also used for the solution uε of369

problem (2.10) itself, when proving the homogenization result in Section 7.370

Along this paper, we will denote by c different constants independent of ε.371

For any function v in W ε
0 , we define

v+ = max{v, 0}, v− = −min{v, 0}, a.e. on Q,

which, by known results, still belong to W ε
0 . Clearly,372

(5.1) v = v+ − v−.373

Remark 5.1. Let us observe that for every v ∈W ε
0 one has374

(5.2)
(v1 − v2)(v−1 − v

−
2 ) = (v+

1 − v
+
2 )(v−1 − v

−
2 )− (v−1 − v

−
2 )2 =

= −v+
1 v
−
2 − v

+
2 v
−
1 − (v−1 − v

−
2 )2 ≤ 0,

375

as well as for their traces on Γε.376

Proposition 5.2. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w ∈W ε
0377

be a solution of problem (2.10). Then, the following a priori estimates hold:378

(5.3) ‖w‖W ε
0
≤ c‖f‖

1
1+θ

L
2

1+θ (Q)
,379

where c = c(α, c
P

) and380

(5.4) ‖w1 − w2‖L2(Γε) ≤ c ε
− γ2 ‖f‖

1
1+θ

L
2

1+θ (Q)
,381

where c = c(α, c
P
, θ).382
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Proof. Let us choose w as test function in the variational formulation (4.1) of problem383

(2.10). We use (2.5), (2.11), (2.12), Holder inequality and Poincaré inequality (2.20),384

getting385

(5.5)

α‖∇w‖2L2(Qε)
+ εγ‖w1 − w2‖2L2(Γε)

≤ ‖f‖
L

2
1+θ (Q)

‖w‖1−θL2(Q) ≤ cP ‖f‖L 2
1+θ (Q)

‖∇w‖1−θL2(Qε)
.

386

We first neglect the nonnegative boundary term in (5.5) and we get (5.3). Neglecting387

now the firs term in (5.5) and using (5.3), we easily get (5.4).388

Proposition 5.3. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w ∈W ε
0389

be a solution of problem (2.10). Then,390

(5.6) ‖fζ(w)ϕ‖L1(Q) ≤ c,391

for every positive ϕ ∈W ε
0 where c = c(α, c

P
, ‖f‖Lr(Q), θ, β, ‖∇ϕ‖L2(Q)).392

Proof. We choose a nonnegative ϕ ∈ H1
0 (Q) as test function in (4.1). Since the393

boundary term vanishes, from (2.5), estimate (5.3) and the Hölder inequality, it follows394

that395

0 ≤
∫
Q

fζ(w)ϕ dx ≤ c,396

where c = c(α, β, θ, c
P
, ‖f‖Lr(Q), ‖∇ϕ‖L2(Q)).397

Let us take now a nonnegative ϕ = (ϕε1, ϕε2) in W ε
0 . Since Γε is Lipschitz continuous,

there exist still nonnegative ψ1 and ψ2 ∈ H1
0 (Q) such that (see for instance [10], Ch.

9)
ϕ = (ϕε1, ϕε2) = (ψ1|Qε1 , ψ2|Qε2).

Then we can write:398

0 ≤
∫
Q

fζ(w)ϕ dx =

∫
Qε1

fζ(w)ψ1 dx+

∫
Qε2

fζ(w)ψ2

≤
∫
Q

fζ(w)ψ1 dx+

∫
Q

fζ(w)ψ2 dx ≤ c,
399

400

The following proposition, which gives an estimate of the integral of the singular term401

close to the singular set {w = 0}, is crucial in the proof of our results, both existence402

and homogenization ones.403

It makes use of similar techniques as those in [27], [29], which involve the auxiliary404

real function Zδ defined by405

(5.7) Zδ(s) =


1, if 0 ≤ s ≤ δ,
− sδ + 2, if δ ≤ s ≤ 2δ,

0, if 2δ ≤ s.
406

We also need for k > 0, the usual truncation function Tk at level k, defined by407

(5.8) Tk(s) =


−k, if s < −k,
s, if |s| ≤ k,
k, if s > k.

408

409
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Proposition 5.4. Under the assumptions (2.5)-(2.8), (2.12) and (2.11), let w ∈W ε
0410

be a solution of problem (2.10) and δ a fixed positive real number. Then,411

(5.9)

∫
{0≤w≤δ}

f ζ(w)ϕ dx ≤
∫
Qε

Aε∇w∇ϕZδ(w) dx

+ εγ
∫

Γε

hε(w1 − w2)(Zδ(w1)ϕ1 − Zδ(w2)ϕ2) dσ

≤
∫
Qε

Aε∇w∇ϕZδ(w) dx+ 2 δ εγ ||h||L∞(Γ) ||ϕ1 + ϕ2||L1(Γε),

412

for every ϕ ∈W ε
0 , ϕ ≥ 0, where Zδ is defined by (5.7).413

Proof. Let ϕ ∈ W ε
0 , ϕ ≥ 0. Taking, for k > 0, Zδ(w)Tk(ϕ) as test function in (4.1)414

where Tk(s) is the truncation function given by (5.8), we obtain415 ∫
Qε

Aε∇w∇Tk(ϕ)Zδ(w) dx− 1

δ

∫
Qε∩{δ<w<2δ}

Aε∇w∇wTk(ϕ) dx

+ εγ
∫

Γε

hε(w1 − w2)(Zδ(w1)Tk(ϕ)1 − Zδ(w2)Tk(ϕ)2) dσ

=

∫
Q

fζ(w)Zδ(w)Tk(ϕ) dx.

416

Since w and ϕ are nonnegative, this implies417

(5.10)∫
{0≤w≤δ}

f ζ(w)Tk(ϕ) dx ≤
∫
Qε

Aε∇w∇Tk(ϕ)Zδ(w) dx

+ εγ
∫

Γε

hε(w1 − w2)(Zδ(w1)Tk(ϕ)1 − Zδ(w2)Tk(ϕ)2) dσ

418

and the following one:419

εγ
∫

Γε

hε(w1 − w2)(Zδ(w1)Tk(ϕ)1 − Zδ(w2)Tk(ϕ)2) dσ

≤ εγ
∫

Γε

hε(w1Zδ(w1)Tk(ϕ)1 + w2Zδ(w2)Tk(ϕ)2) dσ

≤ εγ
∫

Γε

hε(w1χ{w1≤2δ}Tk(ϕ)1 + w2χ{w2≤2δ}Tk(ϕ)2) dσ

≤ 2 δ εγ ||h||L∞(Γ) ||ϕ1 + ϕ2||L1(Γε).

420

where we used (5.7). This, together with (5.10) gives, for any k > 0,421 ∫
{0≤w≤δ}

f ζ(w)Tk(ϕ) dx ≤
∫
Qε

Aε∇w∇Tk(ϕ)Zδ(w) dx

+ εγ
∫

Γε

hε(w1 − w2)(Zδ(w1)Tk(ϕ)1 − Zδ(w2)Tk(ϕ2) dσ

≤
∫
Qε

Aε∇w∇Tk(ϕ)Zδ(w) dx+ 2 δ εγ ||h||L∞(Γ) ||ϕ1 + ϕ2||L1(Γε).

422
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To get the result, we pass now to the limit as k tends to infinity in the last inequalities,423

using Fatou’s lemma (on the first integral) and the fact that Tk(ϕ) strongly converges424

to ϕ in W ε
0 .425

Remark 5.5. We point out that estimate (5.9) near the singularity allows us to over-426

come a main difficulty. Indeed, due to the jump of the solutions on the interface,427

we cannot expect that they are uniformly bounded from below by a positive constant428

on compact sets ω of Q, which is a property often used in the literature for singular429

problems.430

The lack of bounds from below is essentially due to the fact that the strong maximum431

principle cannot be applied in the whole domain Q (since these functions do not belong432

to H1(Q)), but only in Qε1 and Qε2. This concerns uniform estimates (with respect433

to n) for the solutions un of the approximating problems (6.1) introduced in Section434

5 when proving of the existence result of uε for fixed ε. It concerns as well uniform435

estimates (with respect to ε) for the solutions uε of (4.1) itself, when studying the436

corresponding homogenization problem. Both were denoted by w above.437

6. Proof of the existence (Theorem 4.1). We define the following sequence438

of nonsingular problems, which approximates problem (2.10):439

(6.1)



−div(Aε ∇uεn) = Tn
(
f ζ(|uεn|)

)
in Qε,

(Aε∇uεn)1 · νε = (Aε∇uεn)2 · νε on Γε,

(Aε∇uεn)1 · νε = −εγ hε(uεn1 − uεn2), on Γε.

uεn = 0 on ∂Q,

440

where, for every n ∈ N, n ≥ 1, the function Tn is the truncation function given by441

(5.8).442

Since in this proof ε is fixed, we denote Aε, uεn and hε simply by A, un and h omitting443

its dependence on ε.444

Then, the variational formulation of problem (6.1) reads445

(6.2)

un ∈W ε
0 ,∫

Qε

A∇un∇ϕ dx+ εγ
∫

Γε

h(un1 − un2)(ϕ1 − ϕ2) dσ =

∫
Q

Tn
(
fζ(|un|)

)
ϕ dx,

for every ϕ ∈W ε
0 .

446

The existence of a solution of this problem, quite standard, is proved in the Appendix.447

Let us show that448

(6.3) un ≥ 0, a.e. in Q.449

Choosing ϕ = −u−n in (6.2) and using (2.12) we obtain450

(6.4)

∫
Qε

A∇u−n∇u−n dx+ εγ
∫

Γε

h(un1 − un2)(−u−n1 + u−n2) dσ ≤ 0.451

The surface integral over Γε is nonnegative, since from (5.1) one has452

(un1 − un2)(−u−n1 + u−n2) = (−u−n1 + u−n2)2 + (−u−n1 + u−n2)(u+
n1 − u

+
n2)

= (−u−n1 + u−n2)2 + (u−n2u
+
n1 + u−n1u

+
n2) ≥ 0.

453
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Then (6.4) and the ellipticity of A imply that u−n = 0 almost everywhere, so that (6.3)454

holds and we can write ζ(un) instead of ζ(|un|) in the problem.455

Observe now that Tn(ζ) satisfies the same assumptions as the function ζ, so that the456

a priori estimates given in Section 5 apply to the sequence {un}. Consequently, there457

exists uε ∈W ε
0 ∩ L2(Q) such that up to a subsequence,458

(6.5)


un ⇀ uε weakly in W ε

0 and strongly in L2(Q),

un → uε a.e. in Q,

un1 − un2 → uε1 − uε2 strongly in L2(Γε).

459

This, together with (6.3) implies that uε ≥ 0 almost everywhere in Q.460

Let us now consider ϕ ∈ W ε
0 , ϕ ≥ 0 and take the function Tl(ϕ) ∈ W ε

0 ∩ L∞(Q)(see461

(5.8)) as test function in (6.2), for l > 0 fixed. We get462

(6.6)

∫
Qε

A∇un∇Tl(ϕ) dx+ εγ
∫

Γε

h(un1 − un2)(Tl(ϕ)1 − Tl(ϕ)2) dσ

=

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ) dx.

463

From Proposition 5.3 we have the uniform estimates464

‖Tn(fζ(un))Tl(ϕ)‖L1(Q) ≤ c,465

with c independent of n. This together with (6.5), in view of Fatou’s Lemma implies466

that467

(6.7)

∫
Q

fζ(uε)Tl(ϕ) dx < +∞,468

for any ϕ ∈W ε
0 and any fixed positive l.469

Let us now pass to the limit in (6.6) for nonnegative ϕ, as n→∞ and for l fixed. Con-470

cerning the right-hand side of the equation, observe that we can apply the Lebesgue471

dominated convergence theorem only far from the singularity.472

To overcome this difficulty, for every positive δ we split the right-hand side as473

(6.8)

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ) dx

=

∫
{0≤un≤δ}

Tn
(
fζ(un)

)
Tl(ϕ) dx+

∫
{δ<un}

Tn
(
fζ(un)

)
Tl(ϕ) dx

.
= In + Jn.

474

From Proposition 5.4 it follows that

In ≤
∫
Qε

A∇un∇Tl(ϕ)Zδ(un) dx+ 2 δ εγ ||h||L∞(Γ) ||ϕ1 + ϕ2||L1(Γε),

which using (6.5) and (5.7) yields

lim sup
n→∞

In ≤
∫
Qε

A∇uε∇Tl(ϕ)Zδ(uε) dx+ 2 δ εγ ||h||L∞(Γ) ||ϕ1 + ϕ2||L1(Γε).
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Since the gradient of H1-functions vanishes on level sets,

lim
δ→0

∫
Qε

A∇uε∇Tl(ϕ)Zδ(uε) dx =

∫
Qε

A∇uε∇Tl(ϕ)χ{uε=0} dx = 0,

which gives475

(6.9) lim
δ→0

lim sup
n→∞

In = 0.476

As far as it concerns the term Jn, we write it as477

(6.10)

Jn =

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε 6=δ}
dx

+

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε=δ}
dx.

478

Due to assumption (2.12), f Tl(ϕ) ∈ L1(Q), so that

0 ≤ Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε 6=δ}
≤ 1

δθ
f Tl(ϕ) ∈ L1(Q)

and from (2.11) (6.5) and (6.7) we have, almost everywhere in Q,479

lim
n→∞

Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε 6=δ}
= fζ(uε)Tl(ϕ)χ{uε>δ}

,

lim
δ→0

χ{uε>δ}
= χ{uε>0}.

480

Then, applying twice the Lebesgue dominated convergence theorem, we obtain481

(6.11)

lim
δ→0

lim
n→∞

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε 6=δ}
dx =

∫
Q

fζ(uε)Tl(ϕ)χ{uε>0} dx.482

To treat the second term of the right-hand side of (6.10), observe that for every δ > 0
except at most for a countable set C of values, one has meas{x ∈ Q : uε(x) = δ} = 0,
so that∫

Q

Tn
(
fζ(un)

)
Tl(ϕ)χ{un>δ}

χ{uε=δ}
dx = 0, for every δ ∈ R+ \ C.

This, together with (6.11) implies that483

(6.12) lim
δ→0

lim
n→∞

Jn =

∫
Q

fζ(uε)Tl(ϕ)χ{uε>0} dx, δ ∈ R+ \ C.484

Collecting (6.8)-(6.12) we can pass to the limit in the right-hand side of (6.6) getting

lim sup
n→∞

∫
Q

Tn
(
fζ(un)

)
Tl(ϕ) dx =

∫
Q

fζ(uε)Tl(ϕ)χ{uε>0} dx,

for every ϕ ∈ W ε
0 , ϕ ≥ 0. This remains true for every ϕ ∈ W ε

0 with any sign, using485

the fact that ϕ = ϕ+ − ϕ−.486
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Consequently, since convergences (6.5) allow to easily pass to the limit in the left-hand487

side of (6.6), the function uε satisfies488

(6.13)



uε ∈W ε
0 , uε ≥ 0 a.e. on Q,

∫
Q

fζ(uε)Tl(ϕ) dx < +∞ and∫
Qε

A∇uε∇Tl(ϕ) dx+ εγ
∫

Γε

h(uε1 − uε2)(Tl(ϕ)1 − Tl(ϕ)2) dσ

=

∫
Q

fζ(uε)Tl(ϕ)χ{uε>0} dx, for every ϕ ∈W ε
0 .

489

Finally, from the strong maximum principle (see Theorem 8.19 of [30]) we deduce that490

uε > 0 a.e. in Qε, hence a.e. in Q, since the N-dimensional measure of Γε is zero.491

Then problem (6.13) reads as492

(6.14)



uε ∈W ε
0 , uε > 0 a.e. on Q,

∫
Q

fζ(uε)Tl(ϕ) dx < +∞ and∫
Qε

A∇uε∇Tl(ϕ) dx+ εγ
∫

Γε

h(uε1 − uε2)(Tl(ϕ)1 − Tl(ϕ)2) dσ

=

∫
Q

fζ(uε)Tl(ϕ) dx, for every ϕ ∈W ε
0 .

493

Finally, we easily pass to the limit in the left-hand side of (6.14) as l goes to +∞.
The right-hand side is then uniformly bounded in l, so that by Fatou’s lemma we have
fζ(uε)ϕ ∈ L1(Q). Then we can use Lebesgue theorem since we have for any positive
l and any ϕ ∈W ε

0 ,
fζ(uε)Tl(ϕ) ≤ fζ(uε)ϕ ∈ L1(Q)

and this concludes the proof. �494

7. Proofs of regularity (Theorem 4.3) and uniqueness (Theorem 4.5).
Proof of Theorem 4.3. Let us choose, for ν ∈ R, ν ≥ 1, the function

ϕ = Gν(uε)
.
= (uε − ν)+

as test function in (4.1), which is clearly in W ε
0 .495

This gives496

(7.1)

∫
Qε

Aε∇Gν(uε)∇Gν(uε) dx+ εγ
∫

Γε

hε(uε1 − uε2)(Gν(uε1)−Gν(uε2)) dσ

=

∫
Q

fζ(uε)Gν(uε) dx.

497

Let us assume that N > 2. Since from (2.11) we have ζ(uε) ≤
1

kθ
≤ 1 on the set

where Gν(uε) 6= 0, taking into account the ellipticity of A and the fact that Gν is not
decreasing, we get using (2.21)∫

Q

(Gν(uε))
2∗ dx

) 2
2∗ ≤ c

∫
Qε

|∇Gν(uε)|2 dx ≤
c

α

∫
Q

fGν(uε) dx,

where c = c(N, |Qε|).498
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This implies the result by classical arguments due to G. Stampacchia ([48]). The499

proof in the case N = 2 uses similar arguments and the fact that in this case the500

space H1
0 (Ω) is continuously embedded in the space Lt(Ω) for any t > 1.501

The last statement follows from the fact that if κ ≥ 1 the constant c above is inde-502

pendent of ε (see Remark 2.3). �503

504

Proof of Theorem 4.5. Let uε and wε be two solutions to problem (4.1).505

We choose uε − wε as test function in both equations and we take the difference506

between the two equations, getting507 ∫
Qε

Aε∇(uε − wε)∇(uε − wε) dx+ εγ
∫

Γε

hε((uε1 − wε1)− (uε2 − wε2))2 dσ

=

∫
Q

f(ζ(uε)− ζ(wε))(uε − wε) dx ≤ 0,

508

where in the last inequality we have used the fact that the function ζ(s) is non509

increasing. By (2.5) and getting rid of the boundary term which is nonnegative, we510

get uε = wε a.e. in Q.511

�512

8. Proof of Theorem 4.6 (homogenization). The main tool when proving513

Theorem 4.6 is Theorem 8.5, which shows that the gradient of the solution of problem514

(4.1) is equivalent (in the L2-norm), as ε → 0, to that of a suitable linear problem,515

given by (8.26). We present it in Section 7.2, after recalling some homogenization516

results for the linear problem in Section 7.1. Finally in Section 7.3 we prove Theorem517

4.6.518

8.1. Preliminaries. Let us introduce, for a given matrix field B in L∞(Q)n
2

519

and for every ε, the map520

(8.1) τεB : z ∈W 0
0 → τεB(z) ∈ (W ε

0 )′521

defined by522

(8.2) < τεB(z), ϕ >W ε
0 ,(W

ε
0 )′=

∫
Qε,0

B∇z∇ϕ dx,523

where Qε,0 is given in (2.19).524

In this section, using the notations of Section 2, we recall some homogenization results525

from [22], for the following linear problem:526

(8.3)



−div(Aε∇vε) = g − τεB(z) in Qε,

(Aε∇vε)2 · nε = (Aε∇vε)1 · nε on Γε,

(Aε∇vε)1 · nε = −εγhε(vε1 − vε2), on Γε.

vε = 0 on ∂Q,

527
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whose variational formulation is528

(8.4)



Find uε ∈W ε
0 such that∫

Q\Γε
Aε∇vε∇ϕ dx+ εγ

∫
Γε

hε(vε1 − vε2)(ϕ1 − ϕ2) dσ

=

∫
Q

g ϕ dx+

∫
Q\Γε,0

B∇z∇ϕ dx, for every ϕ ∈W ε
0 .

529

where530

(8.5) g ∈ L2(Q), z ∈W 0
0 , B is a given matrix field in L∞(Q)n

2

531

and τεB(z) is defined by (8.1)-(8.2).532

The matrix field Aε and the function hε are given by (2.5)-(2.8).533

Theorem 8.1. [22] Under assumptions (2.5)-(2.8) and (8.5) let vε be the solution of534

problem (8.3) and A0 be given by (4.3)-(4.4). For every κ > 0 and γ ∈ R there exists535

a function v0 ∈W 0
0 such that the following convergences hold true:536

(8.6)

 i) vε → v0, strongly in L2(Q),

ii) χQεi∇vε ⇀ χQi∇v0, weakly in (L2(Q))N ,
537

and538

(8.7) χQεiA
ε∇vε ⇀ χQiA

0 ∇v0, weakly in (L2(Q))N ,539

for i=1,2. Moreover, denoting v0i = v0|Qi for i = 1, 2, we have the limit problems540

below.541

• Suppose that (4.8) or (4.9) holds. Then, the function v0 is is the unique solution of542

the problem543

(8.8)



−div(A0∇v0) = g − τ0
B(z) in Q0,

(A0∇v0)2 · n = (A0∇v0)1 · n on Γ0,

(A0∇v0)1 · n = H(g, h)(v01 − v02), on Γ0,

u = 0 on ∂Q,

544

where H(g, h) is given by (4.11) and τ0
B : W 0

0 → (W 0
0 )′ is defined by545

(8.9) < τ0(z), ϕ >W 0
0 ,(W

0
0 )′= −

∫
Q0

B∇z∇ϕ dx.546

• Suppose now that (4.13) or (4.14) holds. Then, the function v0 belongs to H1
0 (Q)547

and is the unique solution of the problem548

(8.10)


−div(A0∇v0) = g − τ0

B(z) in Q,

u = 0 on ∂Q.
549
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• Finally, suppose that (4.17) or (4.18) holds. Then, v01 and v02 are the unique550

solution of the following two (independent) Neumann problems:551

(8.11)



−div(A0∇v01) = g − div (B∇z) in Q1,

A0∇v01 · n = 0 on Γ0,

v0 = 0 on ∂Q1 \ Γ0,

552

and553

(8.12)



−div(A0∇v02) = g − div (B∇z) in Q2,

A0∇v02 · n = 0 on Γ0,

v0 = 0 on ∂Q2 \ Γ0.

554

Remark 8.2. The homogenization results proved in [22] deal with the case z = 0. It
is easy to check that the proofs can be adapted without any significative modification
when z 6= 0. Indeed, the test function used for passing to the limit in [22] is a function
ϕ in W ε

0 such that ϕ1 and ϕ2 are restrictions of functions in H1
0 (Q). Then for the

additional term one has, as ε→ 0,∫
Qε,0

B∇z∇ϕ dx =

∫
Qε1

B∇z∇ϕ1 dx+

∫
Qε2

B∇z∇ϕ2 dx→
∫
Q0

B∇z∇ϕ dx.

Observe also that if z is in H1
0 (Q), then the equation in (8.10) reads

−div(A0∇v0) = g − div (B∇z).

The main difficulty when proving Theorem 8.1 in [22] concerns the way to pass to the555

limit in the boundary terms. We adapt the arguments used therein for the case where556

only one sequence depends on ε to show the proposition below, which deals with the557

case of two sequences depending on ε.558

Proposition 8.3. Let {wε} be a sequence such that wε ∈W ε
0 for every ε and559

(8.13) ‖wε‖W ε
0
≤ c, ‖wε1 − wε2‖L2(Γε) ≤ c ε

− γ2 ,560

where c is a constant independent on ε. Suppose that for some w ∈W 0
0 one has561

(8.14)

{
i) wε → w, strongly in L2(Q),

ii) χQεi∇wε ⇀ χQi∇w, weakly in (L2(Q))N .
562

• If (4.13) or (4.14) holds, then563

(8.15) w belong to H1
0 (Q).564

Suppose now that {ψε} is another sequence verifying the same estimates (8.13) such565

that for some ψ ∈W 0
0566

(8.16)

{
i) ψε → ψ, strongly in L2(Q),

ii) χQεi∇ψε ⇀ χQi∇ψ, weakly in (L2(Q))N .
567
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• If (4.8) or (4.9) holds, under notation (4.11),568

(8.17) lim
ε→0

εγ
∫

Γε

hε(wε1 − wε2)(ψε1 − ψε2)dσ = H(g, h)

∫
Γ0

(w1 − w2)(ψ1 − ψ2)dσ.569

• If (4.17) or (4.18) holds,570

(8.18) lim
ε→0

εγ
∫

Γε

hε(wε1 − wε2)(ψε1 − ψε2)dσ = 0.571

Proof. We only explain how to derive the result from the argument introduced in [22],572

where one of the two sequence was fixed, that is independent of ε.573

Suppose first that κ ≥ 1. From Corollary 2.7 of [22] in (2.2) there exist two functions574

W1 and W2 in H1(Q) such that575

(8.19) Pεi(wεi) ⇀Wi, weakly in H1(Q), i = 1, 2,576

with577

(8.20) W1|Q1
= w1, W2|Q2

= w2.578

Let us point out that in [22] convergence (8.19) is stated for a subsequence, but it
actually holds for the whole sequence when (8.14) is supposed. Indeed, as usual in
the literature, the extension operators in Proposition 2.2 can be chosen such that

‖Pεiv‖L2(Q) ≤ c‖v‖L2(Qεi), for every v ∈ H1(Qεi), i = 1, 2,

where c is independent of ε. Then, since {wε} is a Cauchy sequence in L2(Q), the579

sequence {Pεi(wεi)} is also a Cauchy sequence in L2(Q) for i = 1, 2. The same holds580

obviously for the sequence {ψε}.581

Then, we argue for the whole sequences {wε} and {ψε} as in the proof of Theorems582

4.1 and 5.1 of [22], observing that Lemma 3.2 used therein can be applied here to583

both sequences. We have584

(8.21) lim
ε→0

∫
Γε

hε(wε1 − wε2)(ψε1 − ψε2)dσ = H(g, h)

∫
Γ0

(w1 − w2)(ψ1 − ψ2)dσ,585

which gives (8.18) and (8.17).586

To prove (8.15), as in [22] it suffices to choose ψε = wε in (8.21). Indeed, since587

we are in the case γ < 0, the boundary a priori estimate in (8.13) implies that588

‖wε1 − wε2‖L2(Γε) → 0; this, together with assumption (2.6), shows that the limit in589

the left-hand side of (8.21) is zero. Then w1 = w2 on Γ0, which means that w belongs590

to H1
0 (Q).591

Finally, when 0 < κ < 1, the result follows by the same arguments used in the proof592

of Theorem 6.1 of [22], observing again that the computation used therein for the593

sequence {uε} can be applied here to both sequences.594

8.2. A main tool. In this section we state and prove Theorem 8.5, which plays595

an essential role in the proof of the homogenization result. Let us point out that one596

difficulty in order to prove the homogenization result stated in Theorem 4.6 is that in597

the variational formulation (4.1) the test functions belong to a space depending on ε598

and have a jump on Γε, while in the limit problem we need functions in W 0
0 .599

To overcome this difficulty, along this paper we construct test functions as follow.600
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Let ϕ ∈W 0
0 . Then, there exist ψ1 and ψ2 ∈ H1

0 (Q) such that601

(8.22) (ϕ1, ϕ2) = (ψ1|Q1
, ψ2|Q2

).602

Observe that if ϕ is nonnegative, then ψ1 and ψ2 can be chosen nonnegative too.603

Then for every ε, we associate to ϕ the function ϕε ∈W 0
ε defined by604

(8.23) ϕε = (ψ1|Qε1 , ψ2|Qε2) ∈W 0
ε .605

Observe that by construction and using (2.17), we have606

(8.24)

{
i) ϕε → ϕ, strongly in L2(Q),

ii) χQεi∇ϕε = χQεi∇ψi → χQi∇ψi, weakly in (L2(Q))N , i = 1, 2.
607

We have the following lemma:608

Lemma 8.4. Under the assumptions of Theorem 4.1 there exists a nonnegative func-609

tion u0 ∈W ε
0 and a subsequence (still denoted {ε}) such that convergences (4.6) hold.610

Also,611

(8.25)

∫
Q

fζ(u0)ϕ dx < +∞, for every ϕ ∈W 0
0 .612

Moreover, if γ < 0, then u0 belongs to H1
0 (Q).613

Proof. The convergences (for a subsequence) follow from the a priori estimates given614

in Section 5 applied to the sequence {uε} of the solutions of (2.10), thanks to the615

compactness results given in [22] (Proposition 2.4).616

Concerning (8.25), let ϕ be a nonnegative function in W 0
0 and ϕε given by (8.23).

Then, by Proposition 5.3,∫
Q

fζ(uε)ϕε dx =

∫
Q

χQε1fζ(uε1)ψ1 dx+

∫
Q

χQε2fζ(uε2)ψ2 dx ≤ c

and from convergences (4.6) (2.3)-(2.4),

χQεifζ(uεi)→ χQifζ(u0i), a.e in Q, i = 1, 2.

Then, the Fatou’s Lemma gives (8.25) for nonnegative ϕ. This implies that fζ(u0)617

is finite almost everywhere. Then, if ϕ has any sign, it suffices to decompose it as618

ϕ = ϕ+ − ϕ−.619

The last statement follows from Proposition 8.3 applied to the previous subsequence.620

621

From now on, we deal with the function u0 and the subsequence given by Lemma 8.4.622

Let us introduce the solution vε of the linear problem623

(8.26)



−div(Aε∇vε) = −τεA0(u0) in Qε,

(Aε∇vε)1 · nε = (Aε∇vε)2 · nε on Γε,

(Aε∇vε)1 · nε = −εγhε(vε1 − vε2), on Γε.

vε = 0 on ∂Q.

624
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where τεA0(u0) is given by (8.2) (written for B = A0 and z = u0).625

Observe that from convergences (4.6) and Theorem 8.1 (with g ≡ 0), thanks to the626

uniqueness of the solution of the linear problems (8.8),(8.10) (8.11) and (8.12) it627

follows that628

(8.27)


i) vε → u0, strongly in L2(Q),

ii) χQεi∇vε ⇀ χQi∇u0, weakly in (L2(Q))N ,

iii) χQεiA
ε∇vε ⇀ χQiA

0 ∇u0, weakly in (L2(Q))N ,

629

for i = 1, 2.630

Then, the main tool for proving Theorem 4.6, is the following result:631

Theorem 8.5. Let uε and vε be solutions of problems (4.1) and (8.26), respectively.632

Under the assumption of Theorem 4.6 one has (for the subsequence given by Lemma633

8.4)634

(8.28) lim
ε→0

∫
Qε

|∇(uε − vε)|2 dx = 0.635

Proof. We need to distinguish the two cases κ ≥ 1 and κ < 1.636

Case 1 : κ ≥ 1 and f satisfying (2.12).637

Since the functions vε are not necessarily bounded, we approximate the nonnegative
function u0 by the sequence {um} given by

um = Tm(u0), for every m ∈ N, m ≥ 1,

where Tm is the truncation function given by (5.8), so that638

(8.29) 0 ≤ um ≤ u0, um → u0 strongly in W 0
0 as m→ +∞.639

Then, we define vmε as the solution to640

(8.30)



−div(Aε∇vmε ) = −τεA0(um) in Qε,

(Aε∇vmε )1 · nε = (Aε∇vmε )2 · nε on Γε,

(Aε∇vmε )1 · nε = −εγhε(vmε1 − vmε2), on Γε.

vmε = 0 on ∂Q.

641

Since we are assuming κ ≥ 1 (this is the only point where we use this hypothesis), the642

uniform Sobolev-Poincaré inequality given by (2.21) holds. Then, since um ∈ L∞(Q),643

by classical results from [48] (see also Proposition 4.3) for every m there exists a644

constant cm such that645

(8.31) ‖vmε ‖L∞(Q) ≤ cm, for every ε646

and by Theorem 8.1,647

(8.32)


i) vmε → um, strongly in L2(Q),

ii)χQεi∇vmε ⇀ χQi∇um, weakly in (L2(Q))N ,

iii) χQεiA
ε∇vmε ⇀ χQiA

0 ∇um, weakly in (L2(Q))N .

648
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for i = 1, 2 as ε→ 0,649

In this case (κ ≥ 1) we prove the statement in three steps.650

Step 1. Let us first prove that651

(8.33) lim
ε→0

∫
Q

((vmε )−)2 dx ≤ lim
ε→0

c

∫
Qε

|∇(vmε )−|2 dx = 0 for any m.652

Choosing −(vmε )− ∈W ε
0 as test function in the variational formulation of (8.30) and653

using Remark 5.1 we obtain in view of (2.18),654

α

∫
Qε

|∇(vmε )−|2dx

≤ −
∫
Qε

Aε∇vmε ∇(vmε )−dx− εγ
∫

Γε

hε(vmε1 − vmε2)
(
(vmε1)− − (vmε2)−

)
dσ

= −
∫
Qε,0

A0∇um∇(vmε )− dx = −
∫
Qε,0

A0∇um∇vmε χ{vmε ≤0} dx

≤ β2

2α

∫
Q0

|∇um|2χ{vmε ≤0} dx+
α

2

∫
Qε

|∇(vmε )−|2 dx.

655

Using (8.32)(i) and the fact that um is nonnegative it results, up to a subsequence,656

(8.34) χ
{vmε ≤0}

χ
{um 6=0}

→ χ
{um<0}

= 0 a.e. in Q, as ε→ 0.657

Moreover, ∇um = 0 in the set where um = 0. Therefore∫
Q0

|∇um|2χ{vmε ≤0} dx→ 0, for every m, as ε→ 0,

which using (2.20) concludes the step.658

Step 2. Let us prove that659

(8.35) lim
m→∞

lim
ε→0

∫
Qε

|∇(uε − vmε )|2 dx = 0.660

We choose as test function in (4.1) and in the variational formulation of (8.30) the
function

Φ = uε − vmε ∈W ε
0 .

This gives, after subtraction of the two identities661

(8.36)

∫
Qε

Aε∇(uε − vmε )∇(uε − vmε ) dx ≤
∫
Qε

Aε∇(uε − vmε )∇(uε − vmε ) dx

+ εγ
∫

Γε

hε(uε1 − uε2 − vmε1 + vmε2)2dσ

=

∫
Q

f ζ(uε)(uε − vmε ) dx−
∫
Qε,0

A0∇um ∇(uε − vmε ) dx.

662

We take for the moment m fixed and pass to the limit on ε. From (4.6) and (8.32)663

we have664

(8.37) lim
ε→0

∫
Qε,0

A0∇um ∇(uε − vmε ) dx =

∫
Q0

A0∇um ∇(u0 − um) dx.665
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Now, in order to pass to the limit in the term containing the singularity, we split it666

in two terms as below667

(8.38)

∫
Q

f ζ(uε)(uε − vmε ) dx =

∫
Q

f ζ(uε)(uε − (vmε )+) dx+

∫
Q

f ζ(uε)(v
m
ε )− dx.668

We will prove that669

(8.39) lim
ε→0

∫
Q

f ζ(uε)(uε − (vmε )+) dx =

∫
Q

f ζ(u0)(u0 − um)χ{u0>0} dx670

and671

(8.40) lim
ε→0

∫
Q

f ζ(uε)(v
m
ε )− dx = 0.672

We begin by proving (8.39). For any δ > 0 we have673

(8.41)

∫
Q

f ζ(uε)(uε − (vmε )+) dx =

∫
{δ<uε}

f ζ(uε)(uε − (vmε )+) dx

+

∫
{0<uε≤δ}

f ζ(uε)(uε − (vmε )+) dx ≤
∫
{δ<uε}

f ζ(uε)(uε − (vmε )+) dx

+

∫
{0<uε≤δ}

f ζ(uε)uε dx
.
= Jδε + Iδε .

674

On the other hand, treating the term Jδε as in (6.10), we can write675

(8.42)

Jδε =

∫
Q

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx

+

∫
Q

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0=δ} dx,

676

where (see the proof of Theorem 4.1)677

(8.43)

∫
Q

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0=δ} dx = 0,678

except at most for a countable set of values of δ.679

Concerning the first term, we have680

(8.44)
|f ζ(uε)(uε − (vmε )+)χ{uε>δ}

χ{u0 6=δ}
| ≤ f ζ(uε)uε + f ζ(uε)(v

m
ε )+χ{uε>δ}

≤ f ζ(uε)uε + cm
1
δθ
f ,

681

where cm is defined in (8.31) when κ ≥ 1. This implies, using (2.11), (2.12), (5.3) and682

the Hölder inequality that683

(8.45)

∫
E

|f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

| ≤ c‖f‖
L

2
1+θ (E)

+ cm
1

δθ
‖f‖L1(E),684

for any measurable set E in Q. Moreover from (2.11) and (4.6)685

lim
ε→0

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

= f ζ(u0)(u0 − um) χ{u0>δ}
a.e. in Q.686
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By the Vitali Theorem we obtain687

(8.46)

lim
ε→0

∫
Q

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx

=

∫
Q

f ζ(u0)(u0 − um)χ{u0>δ}
dx.

688

Note that this is the point where we need the bounded (with respect to ε) sequence689

vmε defined by (8.30).690

We can apply the Lebesgue dominated convergence theorem on the last integral of691

(8.46) as δ → 0 since, by Lemma 8.4, f ζ(u0)(u0 − um) ∈ L1(Q) getting692

(8.47)

lim
δ→0

lim
ε→0

∫
Q

f ζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6δ}

dx

=

∫
Q

f ζ(u0)(u0 − um)χ{u0>0} dx.
693

By (8.42), (8.43) and (8.47) we get694

(8.48) lim
δ→0

lim
ε→0

Jδε =

∫
Q

f ζ(u0)(u0 − um)χ{u0>0} dx.695

We estimate now the term Iδε in (8.41). Observe that if θ < 1 from (2.11) we have696

(8.49) Iδε ≤ δ1−θ
∫
{0<uε≤δ}

f dx ≤ c δ1−θ,697

which gives698

(8.50) lim
δ→0

lim
ε→0

Iδε = 0,699

while if θ = 1,700

(8.51)

Iδε ≤
∫
{0<uε≤δ}

f dx =

∫
Q

fχ{0<uε≤δ}
χ{u0 6=δ}

dx+

∫
Q

fχ{0<uε≤δ}
χ{u0=δ} dx.701

Arguing as in the proof of Theorem 4.1, we deduce that except at most for a countable702

set of values of δ the second integral in the right-hand side of (8.51) is zero.703

Hence, using (4.6), we have again (8.50) since704

(8.52) lim
δ→0

lim
ε→0

Iδε ≤
∫
Q

fχ{u0=0} dx = 0,705

as a consequence of (8.25) and the fact that the function ζ(s) is singular at s = 0,706

which implies that707

(8.53) meas {x ∈ Q |u0 = 0 and f > 0} = 0.708

Hence, collecting (8.41), (8.48), (8.50) and (8.52) we get (8.39).709

We are going to prove now (8.40). Let us choose δ0 outside a convenient countable
set so that ∫

{uε>δ0}
f ζ(uε)(v

m
ε )−χ{u0=δ0} dx = 0
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and split the integral in (8.40) as710

(8.54)

∫
Q

f ζ(uε)(v
m
ε )− dx

=

∫
{uε≤δ0}

f ζ(uε)(v
m
ε )− dx+

∫
{uε>δ0}

f ζ(uε)(v
m
ε )−χ{u0 6=δ0} dx

= Aε +Bε.

711

By Proposition 5.4 (written for δ = δ0) we have712

(8.55)

0 ≤ Aε ≤
∫
Qε

Aε∇uε∇(vmε )− Zδ0(uε) dx

+εγ
∫

Γε

hε(uε1 − uε2)(Zδ0(uε1)(vmε )−1 − Zδ0(uε2)(vmε )−2 dσ

713

We want to prove that714

(8.56) lim
ε→0

Aε = 0.715

As far as the first term in the right-hand side of (8.55) is concerned we use the Hölder716

inequality, estimates (5.3) and condition (8.33), so that it goes to zero as ε goes to717

zero.718

Observe now that, for m fixed, thanks to (8.31) and the definition of Zδ (see (5.7)),719

we can apply Proposition 8.3 to wε = uε and ψε = Zδ0(uε)(v
m
ε )−, for any γ ∈ R.720

Then, if γ ≥ 0, also the second term in the right-hand side goes to zero, since ψε721

converges to ψ = 0 strongly in L2(Q) by (8.33).722

If γ < 0 then u0 belongs to H1
0 (Q), so that the same holds true for the sequences um

and vmε defined by (8.29) and(8.30). This implies that also (vmε )− belongs to H1
0 (Q)

so that (vmε )−1 = (vmε )−2 and, since the function Zδ0 is non increasing (see (5.7))

εγ
∫

Γε

hε(uε1 − uε2)(Zδ0(uε1)(vmε )−1 − Zδ0(uε2)(vmε )−2 ) dσ

= εγ
∫

Γε

hε(uε1 − uε2)(Zδ0(uε1)− Zδ0(uε2)(vmε )−1 dσ ≤ 0

Therefore, for any value of γ (8.56) holds true.723

We prove now that724

(8.57) lim
ε→0

Bε = 0.725

It is sufficient to observe that

0 ≤ f ζ(uε)(v
m
ε )−χ{uε>δ0}χ{u0 6=δ0} ≤ f

cm
δθ0
∈ L1(Q)

(where cm is defined in (8.31)) and that, by (8.33),

f ζ(uε)(v
m
ε )−χ{uε>δ0}χ{u0 6=δ0} → 0 a.e. in Q
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This implies (8.57) by Lebesgue Theorem. Collecting (8.54), (8.56) and (8.57), we get726

(8.40) and therefore recalling (8.36)-(8.40),727

(8.58)

α lim sup
ε→0

∫
Qε

|∇(uε − vmε )|2 dx

≤ lim sup
ε→0

∫
Qε

Aε∇(uε − vmε ))∇(uε − vmε ) dx

≤ −
∫
Q0

A0∇um ∇(u0 − um) dx+

∫
Q

f ζ(u0)(u0 − um)χ{u0>0} dx.

728

The first term of the right-hand side goes to zero as m → ∞ since um → u0 (see
(8.29)). For the same reason

f ζ(u0)(u0 − um)χ{u0>0} → 0 a.e. in Q.

Since, by Lemma 8.4

0 ≤ f ζ(u0)(u0 − um)χ{u0>0} ≤ f ζ(u0)u0 ∈ L1(Q),

the second term of the right-hand side of (8.58) also goes to zero as m → ∞ by729

Lebesgue Theorem and this proves (8.35).730

Step 3. In this step we prove that

lim
m→∞

lim
ε→0

∫
Qε

|∇(vmε − vε)|2dx = 0,

which concludes the proof in the case κ ≥ 1, due to the previous step.731

To this aim, we choose as test function in (8.26) and (8.30) the function vmε −vε. This
gives, after subtraction of the two identities and observing that the boundary term is
nonnegative,∫

Qε

Aε∇(vmε − vε) ∇(vmε − vε) dx ≤
∫
Qε,0

A0∇(um − u0) ∇(vmε − vε) dx,

whose right-hand side goes to zero when passing to the limit first as ε→ 0 and then732

as m → ∞, by convergences (8.32), (8.27) and (8.29). The ellipticity condition (2.5)733

allow to conclude this case.734

Case 2 : κ < 1 and f ∈ L2(Q).735

Note that in this case it is useless to introduce the sequence vmε defined by (8.30)736

since it does not satisfies estimate (8.31) (see Remark 2.3 and the proof of Theorem737

4.3). We recall that estimate (8.31) has been used in (8.44) and in (8.45). Here, since738

f ∈ L2(Q), we can simply use the sequence vε instead of the sequence vmε throughout739

the proof. With the same argument used in the Step 1 we are able to prove that740

(8.59) lim
ε→0

∫
Qε

|∇v−ε |2 dx = 0 for any m.741

In the Step 2 we only have to replace (8.44) and (8.45) which do not hold anymore by

|f ζ(uε)(uε − v+
ε )χ{uε>δ}

χ{u0 6=δ}
| ≤ f ζ(uε)uε + f

1

δθ
vε
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and742

(8.60)

∫
E

|f ζ(uε)(uε − v+
ε )χ{uε>δ}

χ{u0 6=δ}
| ≤ c‖f‖

L
2

1+θ (E)
+ ‖f‖L1(E)

1

δθ
‖vε‖L2(Q)743

for any measurable set E, respectively.
We note that by (8.32)i the sequence {‖vε‖L2(Q)} is bounded. Then, since in view of
(4.6) and (8.27) we have

lim
ε→0

f ζ(uε)(uε − v+
ε )χ{uε>δ}

χ{u0 6=δ}
= 0,

by the Vitali Theorem

lim
ε→0

∫
Q

f ζ(uε)(uε − v+
ε )χ{uε>δ}

χ{u0 6=δ}
= 0.

Obviously we do not have anymore Step 3 and therefore the proof is completed also744

in the case κ < 1.745

Remark 8.6. The above proof would be simpler if in Step 2 we could take as test746

function uε − (vmε )+ instead of uε − vmε . This it not possible due to the presence of747

the boundary term, which cannot be treated in this case.748

8.3. Proof of Theorem 4.6. We want to identify the problem satisfied by the749

function u0 given by (4.6). To do that we need to pass to the limit in problem (4.1).750

Let ϕ ∈ W 0
0 and ϕε be given by (8.22)-(8.23). It is not restrictive to assume that751

ϕ ≥ 0. Indeed, if not, it suffices to decompose ϕ = ϕ+ − ϕ− and we argue on each752

term.753

For l > 0, let us choose Tl(ϕε) ∈ W ε
0 ∩ L∞(Q) as test function in the variational754

formulation (4.1), with Tl given by (5.8).755

Since ϕεi = ψi on Γε for i = 1, 2, we obtain756

(8.61)

∫
Qε

Aε∇uε∇Tl(ϕε) dx+ εγ
∫

Γε

hε(uε1 − uε2)(Tl(ψ1)− Tl(ψ2))dσ

=

∫
Q

fζ(uε)Tl(ϕε)dx,

757

where we want to pass to the limit as ε→ 0. Let us observe that758 ∫
Qε

Aε∇uε∇Tl(ϕε) dx =

∫
Qε

Aε∇(uε − vε)∇Tl(ϕε) dx+

∫
Qε

Aε∇vε∇Tl(ϕε) dx.759

From Theorem 8.5, using (8.22)-(8.23) we have760

lim
ε→0

∫
Qε

Aε∇(uε − vε)∇Tl(ϕε) dx

≤ β(||∇ψ1||L2(Q) + ||∇ψ2||L2(Q)) lim
ε→0
||∇(uε − vε||L2(Qε) = 0.

761
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On the other hand, from (8.27)iii and again using (8.22)-(8.23) we have762 ∫
Qε

Aε∇vε∇Tl(ϕε) dx =

∫
Q

χQε1A
ε∇vε∇Tl(ψ1) dx+

∫
Q

χQε2A
ε∇vε∇Tl(ψ2) dx

→
∫
Q

χQ1
A0∇u0∇Tl(ψ1) dx+

∫
Q

χQ2
A0∇u0∇Tl(ψ2) dx

=

∫
Q0

A0∇u0∇Tl(ϕ) dx.

763

Hence,764

(8.62)

lim
l→+∞

lim
ε→0

∫
Qε

Aε∇uε∇Tl(ϕε) dx

= lim
l→+∞

∫
Q0

A0∇u0∇Tl(ϕ) dx =

∫
Q0

A0∇u0∇ϕdx,
765

for any ϕ ∈W 0
0 , since766

(8.63) Tl(ϕ)→ ϕ, strongly in H1(Qi), i = 1, 2.767

Observe also that by a similar argument we obtain convergences (4.7), using again
(8.27)iii and Theorem 8.5. Indeed,∫

Qε

Aε∇uεΦ dx =

∫
Qε

Aε∇(uε − vε)Φ dx+

∫
Qε

Aε∇vεΦ dx

for every Φ ∈ L2(Q).768

Let us now pass to the limit in the right-hand side of (8.61).769

In the spirit of the proof of Theorem 4.1, we split it in two terms like in (6.8) (see770

also (8.41)). We write771

(8.64)

∫
Q

fζ(uε)Tl(ϕε) dx

=

∫
{0<uε≤δ}

fζ(uε)Tl(ϕε) dx +

∫
{uε>δ}

fζ(uε)Tl(ϕε) dx
.
= Îδε + Ĵδε .

772

The same arguments used to prove (6.12) (see also (8.48)), noting that

0 ≤ Ĵδε ≤
l

δθ
f ∈ L1(Q),

give here773

(8.65) lim
δ→0

lim
ε→0

Ĵδε =

∫
Q

fζ(u0)Tl(ϕ)χ{u0>0} dx,774

except at most for a countable set of values of δ.775

From (5.9) and (8.23) we derive776

0 < Îδε ≤
∫
Qε

Aε∇uε∇Tl(ϕε)Zδ(uε) dx

+ 4l δ εγ ||h||L∞(Γ),

777
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with Zδ defined in (5.7). On the other hand, as done when proving (6.9) we derive778

lim
δ→0

lim
ε→0

∫
Qε

Aε∇uε∇Tl(ϕε)Zδ(uε) dx = lim
δ→0

∫
Q0

A0∇u0∇Tl(ϕ)Zδ(u0) dx = 0,779

since Zδ(uε) converges a.e. to χ{u0=0} as δ tends to zero.780

Consequently, if (4.17) or (4.18) or (4.8) or (4.9) holds (since γ ≥ 0) it results781

(8.66) lim
δ→0

lim
ε→0

Îδε = 0,782

which together with (8.64) and (8.65) gives, for the above cases,783

(8.67) lim
ε→0

∫
Q

fζ(uε)Tl(ϕε) dx =

∫
Q

fζ(u0)Tl(ϕ)χ{u0>0} dx.784

Suppose now that (4.13) or (4.14) holds. Then, we can use the fact that from Propo-785

sition (8.3) the function u0 belongs to H1
0 (Q). As a consequence, we can choose786

ϕ ∈ H1
0 (Q) in (8.61), which using inequality (5.9) stated in Proposition 5.4 gives787

(8.68)

0 < Îδε ≤
∫
Qε

Aε∇uε∇Tl(ϕε)Zδ(uε) dx

+ εγ
∫

Γε

hεTl(ϕ)(uε1 − uε2)(Zδ(uε1)− Zδ(uε2)) dσ

≤
∫
Qε
Aε∇uε∇Tl(ϕε)Zδ(uε) dx,

788

since Zδ is non increasing.789

Hence we still have (8.66), which together with (8.64) and (8.65) again give (8.67) for790

these last cases.791

It remains to show that792

(8.69) lim
l→+∞

∫
Q

fζ(u0)Tl(ϕ)χ{u0>0} dx =

∫
Q

fζ(u0)ϕχ{u0>0} dx.793

By (5.8) and Lemma 8.4 we deduce that fζ(u0)ϕχ{u0>0} is in L1(Q). Therefore, using

again (8.63) and the Lebesgue dominated convergence theorem, we obtain (8.69) since
for any l > 0,

0 ≤ fζ(u0)Tl(ϕ)χ{u0>0} ≤ fζ(u0)ϕχ{u0>0} ∈ L
1(Q).

Finally, to pass to the limit in the boundary integral in (8.61) we use Proposition 8.3.794

• If (4.8) or (4.9) holds, from (8.17) and (8.63) we have795

lim
l→+∞

lim
ε→0

εγ
∫

Γε

hε(uε1−uε2)(Tl(ψ1)−Tl(ψ2))dσ = H(g, h)

∫
Γ0

(u01−u02)(ϕ1−ϕ2)dσ.796

This together with (8.62), (8.67) and (8.69) allows to pass to the limit in (8.61), first
as ε→ 0 then as l→ +∞. We have that u0 verifies∫

Q0

A0∇u0∇ϕ dx+H(g, h)

∫
Γ0

(u01 − u02)(ϕ1 − ϕ2)dσ =

∫
Q

fζ(u0)ϕχ{u0>0} dx,
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for every ϕ ∈W 0
0 . Using the maximum principle and Lemma 8.4 we obtain (4.5) and797

(4.10).798

• If (4.17) or (4.18) holds, from Proposition 8.3 we deduce that the boundary integral
in (8.61) goes to zero as ε goes to zero, so using (8.62), (8.67) we pass to the limit in
(8.61), first as ε→ 0 then as l→ +∞. We have that the limit function u0 solves∫

Q0

A0∇u0∇ϕ dx =

∫
Q

fζ(u0)ϕχ{u0>0} dx, for every ϕ ∈W 0
0 .

Moreover, using here too the maximum principle and Lemma 8.4, we obtain (4.5) and799

the fact that u01 and u02 solve the two Neumann problems given by (4.19) and (4.20),800

respectively.801

• Finally, suppose that (4.13) or (4.14) holds. Then u0 belongs to H1
0 (Q) and choosing

in particular a test function ϕ in H1
0 (Q), the boundary term in in (8.61) is zero. Then,

we obtain∫
Q

A0∇u0∇ϕ dx =

∫
Q

fζ(u0)ϕχ{u0>0} dx, for every ϕ ∈ H1
0 (Q).

Once again, by the strong maximum principle we deduce that the function u is strictly802

positive almost everywhere in Q, which together with Lemma 8.4 gives (4.5) and803

(4.16).804

To conclude the proof, observe that the last statement is a straightforward conse-805

quence of Theorem 4.5. �806

9. A Corrector result for the linear problem. The main result of this sec-807

tion is a correctors for the linear problem (8.3), whose variational formulation is given808

in (8.4).809

Theorem 9.1. Under the assumptions of Theorem 8.1, for every value of κ and γ,810

we have811

(9.1) lim
ε→0
||∇vε − Cε∇v0||(

L1(Qε,0)
)N = 0.812

where the corrector matrix Cε is given by (4.23).813

This result will be proved at the end of this section. We adapt standard arguments814

(see for instance [16]) to our geometric situation. We first prove the following result:815

Proposition 9.2. Under the assumptions of Theorem 9.1, there exists a positive con-816

stant c = c(α, β) such that, for every value of κ and γ,817

(9.2) lim sup
ε→0

∫
Qε

|∇vε − CεΦ|2 dx ≤ c
∫
Q0

|∇v0 − Φ|2 dx,818

for every Φ = (Φ1, . . . ,ΦN ) such that the function Φi = (Φ1i, . . . ,Φni) belong to819

(D(Qi))
N , for i = 1, 2.820

Proof. Let Φ = (Φ1, . . . ,ΦN ) such that the function Φi = (Φ1i, . . . ,Φni) belong to821

(D(Qi))
N , for i = 1, 2. We have822

(9.3)

1

α

∫
Qε

|∇vε − CεΦ|2 dx ≤
∫
Qε

Aε(∇vε − CεΦ)(∇vε − CεΦ) dx

=

∫
Qε

Aε∇vε∇vε dx−
∫
Qε

Aε∇vεCεΦ dx−
∫
Qε

AεCεΦ∇vε dx

+

∫
Qε

AεCεΦCεΦ dx
.
= Iε1 − Iε2 − Iε3 + Iε4 .

823
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Observe now that824

(9.4) ∃ ε0 such that, for ε ≤ ε0, supp Φ1i ⊂ ω×]εκ0 ḡ, l[, ∀ i = 1, . . . , n.825

Hence, from (4.4) and by a standard computation,826

(9.5)

lim
ε→0

Iε4 = lim
ε→0

∫
ω×]εκ0 ḡ,l[

AεCεΦ1C
εΦ1 dx+ lim

ε→0

∫
Q2

AεCεΦ2C
εΦ2 dx

= lim
ε→0

∫
Q1

AεCεΦ1C
εΦ1 dx+ lim

ε→0

∫
Q2

AεCεΦ2C
εΦ2 dx

=

∫
Q0

A0ΦΦ dx.

827

Moreover, by the same argument for ε ≤ ε0 it results828

(9.6) Iε3 =

∫
Q1

AεCεΦ1∇vε1 dx+

∫
Q2

AεCεΦ2∇vε2 dx.829

Let us recall now that if wi is given by (4.4) for λ = ei and wεi (x) = εwi(
x

ε
) a.e. in830

RN , then831

(9.7)


wεi ⇀ xi, weakly in H1(Q),

wεi → xi, strongly in L2(Q),

Aε∇wεi ⇀ A0, weakly in (L2(Q))N

832

and a simple change of scale gives (see for instance [16])833

(9.8)

∫
ω

Aε∇wεi∇v dx = 0, for every v ∈ H1
0 (ω),834

for every open set ω ⊂ RN . Hence, we have from (9.7), (9.8) and (8.6)i835 ∫
Q1

AεCεΦ1∇vε1 dx

=

N∑
i=1

∫
Q1

Aε∇wεi∇(Φ1ivε1) dx−
N∑
i=1

∫
Q1

Aε∇wεi∇Φ1ivε1 dx

= −
N∑
i=1

∫
Q1

Aε∇wεi∇Φ1ivε1 dx→ −
N∑
i=1

∫
Q1

A0ei∇Φ1iv1 dx.

836

Treating in the same way the integral over Q2 in (9.6), we have837

(9.9) lim
ε→0

Iε3 =

∫
Q0

A0Φ∇v0 dx.838
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On the other hand, choosing ϕ = Φiw
ε
i in (8.4) we have839

Iε2 =

N∑
i=1

∫
Qε

Aε∇vεΦi∇wεi dx

=

N∑
i=1

∫
Qε

Aε∇vε∇(Φiw
ε
i ) dx−

N∑
i=1

∫
Qε

Aε∇vε∇Φiw
ε
i dx

=

N∑
i=1

∫
Q

gΦiw
ε
i dx+

N∑
i=1

∫
Q\Γε,0

B∇z∇(Φiw
ε
i ) dx−

N∑
i=1

∫
Qε

Aε∇vε∇Φiw
ε
i dx,

840

where we used the fact that

εγ
N∑
i=1

∫
Γε

hε(vε1 − vε2)((Φwεi )1 − (Φwεi )2) dσ = 0,

for ε ≤ ε0, since supp (Φ2) ⊂ Q2 and (9.4) holds.841

Consequently, in view of (9.7) and (8.7) and we obtain842

(9.10)

lim
ε→0

Iε2 =

N∑
i=1

∫
Q

gΦixi dx+

N∑
i=1

∫
Q0

B∇z∇(Φixi) dx−
N∑
i=1

∫
Q0

A0∇v0∇Φixi dx

=

N∑
i=1

∫
Q

gΦixi dx+

N∑
i=1

∫
Q0

B∇z∇(Φixi) dx

−
N∑
i=1

∫
Q0

A0∇v0∇(Φixi) dx+

∫
Q0

A0∇v0 Φ dx.

843

Observe now that for any case of κ and γ, since supp (Φi) ⊂ Q2 and (9.4) holds, using
the limit problem satisfied by v0 (according to the value of κ and γ) we get

N∑
i=1

∫
Q0

A0∇v0∇(Φixi) dx =

N∑
i=1

∫
Q

gΦixi dx+

N∑
i=1

∫
Q0

B∇z∇(Φixi) dx.

Hence from (9.10) we deduce that844

(9.11) lim
ε→0

Iε2 =

∫
Q0

A0∇v0 Φ dx.845

It remains to study the limit of the energy Iε1 . Choosing vε as test function in (8.4)846

we have847

(9.12) Iε1 = −εγ
∫

Γε

hε(vε1 − vε2)2 dσ +

∫
Q

gvε dx+

∫
Q\Γε,0

B∇z∇vε dx.848

Observe first that from convergences (8.6) we deduce that849

(9.13) lim
ε→0

(∫
Q

gvε dx+

∫
Q\Γε,0

B∇z∇vε dx
)

=

∫
Q

gv0 dx+

∫
Q\Γ0

B∇z∇v0 dx.850
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To treat the boundary term we apply Proposition 8.3 to wε = ψε = vε. If (4.8) or851

(4.9) holds, we obtain852

(9.14) lim
ε→0

εγ
∫

Γε

hε(vε1 − vε2)2 dσ =

∫
Γ0

H(g, h)(v01 − v02)2 dσ,853

while if (4.17) or (4.18) holds854

(9.15) lim
ε→0

εγ
∫

Γε

hε(vε1 − vε2)2 dσ = 0.855

Hence, by (9.13), using v0 as test function in the limit problem given by Theorem 4.6856

for these cases (according to the value of κ and γ), we have857

(9.16) lim
ε→0

Iε1 =

∫
Q0

A0∇v0∇v0 dx.858

Suppose now that (4.13) or (4.14) holds. Then,

Iε1 ≤
∫
Q

gvε dx+

∫
Q\Γε,0

B∇z∇vε dx.

which implies, using now (9.13) and the limit problem (8.10) from Theorem 8.1,859

(9.17) lim sup
ε→0

Iε1 ≤
∫
Q

gv0 dx+

∫
Q\Γ0

B∇z∇v0 dx =

∫
Q

A0∇v0∇v0 dx.860

Then, from (7.1), collecting (9.5)-(9.9), together with (9.12) or (9.17) (according to861

the different cases) we have862

(9.18) lim sup
ε→0

∫
Qε

|∇vε − CεΦ|2 dx ≤
1

α

∫
Q0

A0(∇v0 − Φ)(∇v0 − Φ) dx,863

where in the case that (4.13) or (4.14) holds we can choose Φ ∈ D(Q)N , which gives864

the claimed result.865

Remark 9.3. Let us point out that when (4.13) or (4.14) holds, we are not able to866

prove that the energy Iε1 converges to the energy of the homogenized problem (4.15).867

Nevertheless, inequality (9.17) is sufficient to prove the proposition above.868

Proof of Theorem 9.1 For fixed δ > 0, let Φδ = (Φδ1, . . . ,Φ
δ
n) be such that the function869

Φδi = (Φδ1i, . . . ,Φ
δ
ni) belong to (D(Qi))

N , for i = 1, 2, and870

(9.19) ‖∇v0 − Φδ‖(L2(Q0))N ≤ δ.871

Then, from Proposition 9.2 and the boundedness of Cε in L2(Q), using (9.19) we have872

(9.20)

lim sup
ε→0

‖∇vε − Cε∇v0‖
(L1(Qε,0))N

≤ lim sup
ε→0

∥∥∇vε − CεΦδ∥∥
(L2(Qε,0))N

+
∥∥CεΨ− CεΦδ∥∥

(L2(Q0))N
≤ cδ.

873

This concludes the proof, since δ is arbitrary.874

�875

37

This manuscript is for review purposes only.



We also have876

Corollary 9.4. Under the assumptions of Theorem 8.1, let δ > 0 and Ψ : Q→ RN877

be a simple function such that878

(9.21) ‖∇v0 −Ψ‖(L2(Q0))N ≤ δ.879

Then,880

lim sup
ε→0

‖∇vε − CεΨ‖
(L2(Qε,0))N

≤ c δ,881

where c depends only on α, β and Y .882

Proof. For fixed δ > 0, let Ψ be a simple function satisfying and let Φδ = (Φδ1, . . . ,Φ
δ
n)883

be such that Φδi = (Φδ1i, . . . ,Φ
δ
ni) ∈ (D(Qi))

N , for i = 1, 2, and884

(9.22) ‖∇v0 − Φδ‖(L2(Q0))N ≤ δ.885

Then,886

(9.23)

‖∇vε − CεΨ‖
(L2(Qε,0))N

≤
∥∥∇vε − CεΦδ∥∥

(L2(Qε,0))N
+
∥∥CεΨ− CεΦδ∥∥

(L2(Q0))N
.

887

Since {Cε} is bounded in L2(Q))N , from (9.21) and (9.22) via the Hölder inequality,888

(9.24)

∥∥CεΨ− CεΦδ∥∥
(L2(Q0))N

≤ c1
∥∥Ψδ −Ψ

∥∥
(L2(Q0))N

≤

c1(‖∇v0 −Ψ‖(L2(Q0))N +
∥∥∇v0 − Φδ

∥∥
(L2(Q0))N

) ≤ 2c1δ.
889

On the other hand, from Proposition 9.2 and (9.22) we derive

lim sup
ε→0

∥∥∇vε − CεΦδ∥∥
(L2(Qε,0))N

≤ cδ,

which together with (9.23) and (9.24) concludes the proof.890

10. Appendix. We prove here the existence of a solution of the approximate891

problem (6.1), where for simplicity we omit the dependence of the functions on n.892

To do that, we apply the Schauder’s Theorem to the map

F : w ∈ L2(Q) 7−→ u ∈ L2(Q),

where u is the unique solution in W ε
0 of the problem893

(10.1)



−div(A∇u) = Tn
(
f ζ(|w|)

)
in Qε,

(A∇u)1 · ν = (A∇u)2 · ν on Γε,

(A∇u)1 · ν = −εγ h(u1 − u2), on Γε.

u = 0 on ∂Q,

894

and Tn is the truncation at level n given by (5.8). The Lax-Milgram Theorem gives895

the existence and uniqueness of u and shows that F (L2(Q)) is contained in a ball896
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of W ε
0 , so that there exists a ball B of L2(Q) which is invariant for F . Since (see897

Proposition 2.4 of [22]) W ε
0 is compact in L2(Q), the set F (B) is a compact.898

It remains to show that F is continuous. Let us take a sequence {wm} which converges899

to some w in L2(Q). Then, um = F (wm) satisfies900

(10.2)



um ∈W ε
0 ,∫

Qε

A∇um∇ϕ dx+ εγ
∫

Γε

h(um1 − um2)(ϕ1 − ϕ2) dσ =

∫
Q

Tn
(
fζ(|wm|)

)
ϕ dx, for every ϕ ∈W ε

0 ,

901

and, up to a subsequence, from what showed above it converges to some u0 weakly in902

W ε
0 , strongly in L2(Q) and almost everywhere in Q.903

Then, passing to the limit in (10.2), we obtain∫
Qε

A∇u0∇ϕ dx+ εγ
∫

Γε

h(u01 − u02)(ϕ1 − ϕ2) dσ =

∫
Q

Tn
(
fζ(|w|)

)
ϕ dx,

for every ϕ ∈ W ε
0 . This implies, by uniqueness, that u0 = F (w) and concludes the904

proof.905
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[20] P. Donato and S.Monsurrò, Homogenization of two heat conductors with interfacial contact949
resistance, Analysis and Applications, 2(3), (2004) 247–273.950

[21] P. Donato, Homogenization of a class of imperfect transmission problems, in Multiscale Prob-951
lems: Theory, Numerical Approximation and Applications, Series in Contemporary Applied952
Mathematics CAM 16, A. Damlamian, B. Miara and T. Li Editors, Higher Education Press,953
Beijing (2011), 109-147.954

[22] P. Donato and A.Piatnitski, On the effective interfacial resistence through rough surfaces,955
Communications in Pure and Applied Analysis, 9(5) (2010), 1295-1310.956

[23] W. Fulks and J.S. Maybee, A Singular Non-Linear Equation, Osaka Math. J., 12(1960), 1-19.957
[24] A. Gaudiello, Asymptotic behaviour of non-homogeneous Neumann problems in domains with958

oscillating boundary, Ricerche Mat. 43(2) (1994), 239–292.959
[25] A. Gaudiello, Homogenization of an elliptic transmission problem,Adv. Math. Sci. Appl. 5(2)960

(1995), 639–657.961
[26] D. Giachetti and I. de Bonis, Nonnegative solutions for a class of singular parabolic problems962

involving p-laplacian, Asymptotic Analysis, (2015), 91, 2, 147-183.963
[27] D. Giachetti, P.J. Mart́ınez-Aparicio and F. Murat, Elliptic equations with mild sin-964

gularities in u = 0:existence and homogenization, J. Math. Pures Appl. (2016),965
http://dx.doi.org/10.1016/j.matpur.2016.04.007966

[28] M. Ghergu and V. Radulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis,967
Oxford University Press, 2008.968

[29] D. Giachetti, P.J. Mart́ınez-Aparicio and F. Murat, Definition, existence, stability and unique-969
ness of the solution to a semi-linear elliptic problem with a strong singularity at u = 0,970
Preprint (2014).971

[30] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics972
in Mathematics, Springer Verlag, Berlin Heidelberg New York (1983).973

[31] J. Hernandez and F. Mancebo, Singular elliptic and parabolic equations. In Handbook of Dif-974
ferential equations (ed. M. Chipot and P. Quittner), 3. Elsevier, (2006), 317-400.975

[32] H.K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances,976
Appl. Anal. 75(3-4) (2000), 403–424.977

[33] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of978
Parabolic Type, Translations of Math. Monographs, Providence 1968.979

[34] A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundary-value problem. Proc.980
Amer. Math. Soc. 111 (1991), 721–730.981
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