
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Peeking Behind the Ordinal Curtain: Improving Distortion via Cardinal Queries

Georgios Amanatidis,1 Georgios Birmpas,2 Aris Filos-Ratsikas,3 Alexandros A. Voudouris2

1Department of Computer, Control and Management Engineering, Sapienza University of Rome
amanatidis@diag.uniroma1.it

2Department of Computer Science, University of Oxford
{georgios.birmpas, alexandros.voudouris}@cs.ox.ac.uk

3Department of Computer Science, University of Liverpool
aris.filos-ratsikas@liverpool.ac.uk

Abstract

The notion of distortion was introduced by Procaccia and
Rosenschein (2006) to quantify the inefficiency of using only
ordinal information when trying to maximize the social wel-
fare. Since then, this research area has flourished and bounds
on the distortion have been obtained for a wide variety of fun-
damental scenarios. However, the vast majority of the exist-
ing literature is focused on the case where nothing is known
beyond the ordinal preferences of the agents over the alter-
natives. In this paper, we take a more expressive approach,
and consider mechanisms that are allowed to further ask a
few cardinal queries in order to gain partial access to the un-
derlying values that the agents have for the alternatives. With
this extra power, we design new deterministic mechanisms
that achieve significantly improved distortion bounds and out-
perform the best-known randomized ordinal mechanisms. We
draw an almost complete picture of the number of queries re-
quired to achieve specific distortion bounds.

1 Introduction

Social choice theory (Brandt et al. 2016) is concerned with
aggregating the preferences of individuals into a joint deci-
sion. In an election, for instance, the winner should repre-
sent well (in some precise sense) the viewpoints of the vot-
ers. Similarly, the expenditure of public funds is typically
geared towards projects that increase the well-being of soci-
ety. Most traditional models assume that the preferences of
individuals are expressed through ordinal preference rank-
ings, where each agent sorts all alternatives from the most
to the least preferred. Underlying these ordinal preferences,
it is often assumed that there exists a cardinal utility struc-
ture, which further specifies the intensity of the preferences.
That is, there exist numerical values that indicate how much
an agent prefers an outcome to another. Given this cardinal
utility structure, usually expressed via valuation functions,
one can define meaningful quantitative objectives, with the
most prominent one being the social welfare, i.e., the total
value of the agents for the chosen outcome.

The main rationale justifying the dominance of ordinal
preferences in the classical economics literature is that the
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task of asking individuals to express their preferences in
terms of numerical values is arguably quite demanding. In
contrast, performing simple comparisons between the dif-
ferent options is more easily conceivable. To quantify how
much the lack of cardinal information affects the maximiza-
tion of social welfare, Procaccia and Rosenschein (2006) de-
fined the notion of distortion as the worst-case ratio between
the optimal social welfare (achievable by using all cardinal
information) and the social welfare of the outcome, which is
chosen having access only to ordinal information. Follow-
ing their agenda, a plethora of subsequent works studied the
distortion in different settings.

Somewhat surprisingly, these variants of the distortion
framework studied in this rich line of work differentiate be-
tween two extremes: we either have complete cardinal in-
formation or only ordinal information. Driven by the origi-
nal motivation for using ordinal preferences, it seems quite
meaningful to ask whether improved distortion guarantees
can be obtained if one has access to limited cardinal infor-
mation, especially in settings for which the worst-case dis-
tortion bounds are already quite discouraging (Boutilier et
al. 2015). We formulate this idea via cardinal queries, which
elicit cardinal information from the agents. These queries
can be as simple as asking the value of an agent for a pos-
sible outcome, or even asking an agent whether an outcome
is at least x times better than some other outcome. Note that
questions of the latter form are much less demanding than
eliciting a complete cardinal utility structure, and thus are
much more realistic as an elicitation device.

In this paper, we enhance the original distortion setting
of Procaccia and Rosenschein (2006) and Boutilier et al.
(2015) on single winner elections, by allowing the use of
cardinal queries. In this setting, there are n agents that have
cardinal values over m alternatives, and the goal is to elect
a single alternative that (approximately) maximizes the so-
cial welfare, while having access only to ordinal informa-
tion. Caragiannis et al. (2017) proved that no determinis-
tic mechanism can achieve a distortion better that Ω(m2)
when agents have unit-sum normalized valuation functions
(i.e., the sum of the values of each agent for all alternatives
is 1). Under this assumption, Boutilier et al. (2015) proved
that the distortion of any randomized mechanism is between
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Ω(
√
m) and O(

√
m · log∗ m). Here we show how—with

only a limited number of cardinal queries, on top of the
ordinal information—deterministic mechanisms can signif-
icantly outperform any mechanism that has access only to
ordinal information, even randomized ones.

Our Contributions

We initiate the study of trade-offs between the number of
cardinal queries per agent that a mechanism uses on top
of the ordinal information, and the distortion that it can
achieve. In particular, we show results of the following type:

The distortion D(M) of a mechanism M that makes at
most λ queries per agent is O(g(m,λ)).

Our results suggest that the distortion can be drastically re-
duced by exploiting only minimal cardinal information.
Query Model. We consider two different types of cardinal
queries, namely value queries and comparison queries.

• A value query takes as input an agent i and an alternative
j, and returns the agent’s value for that alternative.

• A comparison query takes as input an agent i, two alter-
natives j, � and a real number d and returns “yes” if the
value of agent i for alternative j is at least d times her
value for alternative �, and “no” otherwise.

Note that value queries are in general stronger than compar-
ison ones, as they reveal much more detailed information.
On the other hand, comparison queries are quite attractive
as an elicitation device, since the cognitive complexity of the
question they pose is not much higher than that of forming
preference rankings.
Results and Techniques. We devise a class of sophisticated
mechanisms that achieve much improved trade-offs between
the distortion and the number of queries. In particular, our
class contains a mechanism that achieves constant distor-
tion using at most O(log2 m) value queries per agent, and
a mechanism that achieves a distortion of O(

√
m) using

O(logm) value queries. This matches the performance of
the best possible randomized ordinal mechanism, and ac-
tually outperforms all known ones. Surprisingly, under the
standard unit-sum normalization assumption,1 we can ap-
proximate each agent’s value for her favorite alternative us-
ing only O(log2 m) comparison queries, and hence we can
achieve constant distortion with only comparison queries at
no extra cost, asymptotically. These results are in Section 3.

Next, in Section 4, we significantly improve on our
O(

√
m) result for the fundamental case n = Θ(m). We

present a mechanism that achieves this bound using only 2
value queries per agent. Finally, in Section 5, we present sev-
eral lower bounds on the possible achievable trade-offs be-
tween the number of queries and distortion. An overview of
our main results can be found in Table 1.

Related Work

The distortion has been studied extensively in numerous set-
tings, such as normalized valuations (Caragiannis and Pro-

1We remark here that all of our other upper bounds hold without
any normalization assumption on the cardinal values.

caccia 2011; Boutilier et al. 2015; Filos-Ratsikas and Mil-
tersen 2014; Filos-Ratsikas, Micha, and Voudouris 2019),
metric preferences (Anshelevich et al. 2018; Anshelevich
and Postl 2017; Goel, Krishnaswamy, and Munagala 2017;
Fain et al. 2019; Pierczynski and Skowron 2019; Munagala
and Wang 2019), committee elections (Caragiannis et al.
2017; Bhaskar, Dani, and Ghosh 2018), participatory bud-
geting (Goel et al. 2019; Benade et al. 2017), and match-
ing and facility location (Filos-Ratsikas, Frederiksen, and
Zhang 2014; Anshelevich and Sekar 2016; Feldman, Fiat,
and Golomb 2016; Anshelevich and Zhu 2018).

Very recently, Mandal et al. (2019) study a model in
which agents are asked to provide cardinal information, but
there is a restriction on the number of bits to be communi-
cated. Hence, they study trade-offs between the number of
transmitted bits and distortion. This is markedly quite dif-
ferent from what we do here, as a query in their setting has
access to the (approximate) values of an agent for many al-
ternatives simultaneously, and is therefore much too expres-
sive when translated to our setting. On the other hand, their
setting does not assume “free” access to the ordinal pref-
erences. We consider our work complementary to theirs, as
they are mostly motivated by the computational limitations
of elicitation (corresponding to a communication complex-
ity approach), whereas we are motivated by the cognitive
limitations of eliciting cardinal values (corresponding to a
query complexity approach).

Finally, at the same time and independently of our work,
Abramowitz, Anshelevich, and Zhu (2019) also introduce a
setting in which the mechanism designer has access to some
cardinal information on top of the ordinal preferences. This
enables the design of improved mechanisms in terms of dis-
tortion. While the motivation of their paper is the same as
ours, the two approaches are inherently different. Besides
the fact that they study a metric distortion setting, the access
to the cardinal information in their paper is not via queries,
but is given explicitly as part of the input.

2 The model

In the standard utilitarian social choice setting, there is a
set A of m alternatives and a set N of n agents. Our goal
is to elect a single alternative based on the preferences of
the agents, which are expressed through valuation functions
vi : A → R≥0 that map alternatives to non-negative real
numbers. For notational convenience, we use vij instead of
vi(j) to denote the cardinal value of agent i for alternative
j, and refer to the matrix v = (vij)i∈N,j∈A as a valuation
profile. By V we denote the set of all possible valuation pro-
files. Clearly, the valuation function vi also defines a prefer-
ence ranking for agent i, i.e., a linear ordering �i of A such
that j �i j′ if vij ≥ vij′ . We assume that ties are broken
according to a deterministic tie-breaking rule, e.g., accord-
ing to a fixed global ordering of the alternatives.2 We refer
to �v= (�1, . . . ,�n) as an (ordinal) preference profile.

In this work, we consider the following two families of
valuation functions:

2It would be equivalent to allow ties, get pre-linear orderings
instead, and leave the tie-breaking to the mechanisms.
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Number of queries Upper Bounds Lower Bounds

0 (ordinal, deterministic) O(m2) (Caragiannis and Procaccia 2011) Ω(m2) (Caragiannis et al. 2017)
0 (ordinal, randomized) O(

√
m log∗ m) (Boutilier et al. 2015) Ω(

√
m) (Boutilier et al. 2015)

1 (value) O(m) [1-PRV, Theorem 1] Ω(m) [Theorem 5]
Ω(

√
m) [Theorem 7]

λ ≥ 2, constant (value) O(
√
m) [

√
m-TRV, Theorem 4]� Ω(m1/2(λ+1)) [Corollary 3]

O
(

logm
log logm

)
(value) O(

√
m) [

√
m-TRV, Theorem 4]� Ω(log logm) [Corollary 3]

O(logm) (value) O(
√
m) [O(1)-ARV, Corollary 1] Ω(1)

O(log2 m) (value) O(1) [O(logm)-ARV, Corollary 1] Ω(1)

O(log2 m) (comparison) O(1) [O(logm)-ARV, Corollary 2] Ω(1)

Table 1: A table showing the most important results in the paper. All our results are for deterministic mechanisms. Results
marked by � hold for n = Θ(m). Results for unit-sum valuation functions are highlighted; everything else is for unrestricted
valuation functions.

• Unrestricted valuation functions, which may take any
non-negative real values.

• Unit-sum valuation functions, which are such that∑
j∈A vij = 1 for every agent i ∈ N .

The social welfare of alternative j ∈ A with respect
to v is the total value of the agents for j: SW(j|v) =∑

i∈N vij . Our goal is to output one of the alternatives
who maximize the social welfare, i.e., an alternative in
argmaxj∈A SW(j|v). This is clearly a trivial task if one has
full access to the valuation profile. However, we assume lim-
ited access to these cardinal values. In particular, we assume
that we only have access to the preference profile �v and
can also learn cardinal information by asking queries. We
consider two types of queries: value queries that reveal the
value of an agent for a given alternative, and comparison
queries that reveal whether the value of an agent for an al-
ternative is a multiplicative factor larger than her value for
some other alternative.
Definition 1. Given a preference profile, a query about the
underlying cardinal values is called
• A value query, if it takes as input an agent i and an alterna-

tive j and returns the agent’s value vij for that alternative.
This is implemented via the function V : N ×A → R≥0.
We say that agent i is queried at position k, if alternative
j is ranked k-th in �i and we make the query V(i, j).

• A comparison query, if it takes as input an agent i, two
alternatives j, � and a real number d, and returns YES if
vij ≥ d · vi�, and NO otherwise. This is implemented via
the function C : N ×A×A× R≥0 → {YES, NO}.

Note that the information obtained by a comparison query
can be obtained by at most two value queries. On the other
hand, however, without any cardinal information or any nor-
malization assumption, it is impossible to even approximate
the information obtained by a value query using only com-
parison queries. In this sense, value queries are considerably
stronger than comparison queries.
Definition 2. A mechanism M = (Q, f) with access to a
(value or comparison) oracle takes as input a preference pro-
file �v and returns an alternative. In particular, it consists of
the following two parts:

• An algorithm Q that takes as input the preference profile
�v, adaptively makes queries to the oracle, and returns
the set of answers to these queries.

• A mapping f that takes as input the preference profile �v

and the set Q(�v) of answers to the queries above, and
outputs a single alternative j ∈ A. Such a mapping is
called a social choice function.

By the description of Q above, it is clear that the mecha-
nism is free to choose the positions at which each agent will
be queried, and those can depend not only on �v, but on
the answers to the queries already asked as well. The perfor-
mance of a mechanism is measured by its distortion.
Definition 3. The distortion of a mechanism M is

D(M) = sup
v∈V

maxj∈A SW(j|v)
SW(M(�v)|v) .

Due to space constraints, some details have been omitted
and can be found in the full version (Amanatidis et al. 2019).

3 Achieving Constant Distortion

Before we dive into the main result of this section, let us first
discuss probably the most obvious idea, to query each agent
at the first λ ≥ 1 positions; we refer to such queries as pre-
fix. Among such mechanisms, we show that λ-Prefix Range
Voting (λ-PRV), which elects the alternative who maximizes
the total value of the agents according to the answers to the
queries, is asymptotically the best possible.
Theorem 1. The distortion of λ-PRV is O(m/λ), even for
unrestricted valuation functions, and is best possible among
mechanisms that make prefix queries.

Observe that λ-PRV is a good first step, but it needs to
make a large number of queries per agent in order to pro-
vide good improvements on the distortion. In particular, it
achieves distortion O(

√
m) for λ = Θ(

√
m) and constant

distortion for λ = Θ(m). It is natural to ask whether it is
possible to design mechanisms that achieve similar distor-
tion bounds, but require fewer queries per agent. We manage
to answer this question positively.

For any k ∈ [m], we define a mechanism which we call
k-Acceptable Range Voting (k-ARV). Let λ1, . . . , λk be k
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thresholds such that λ� = m
�

k+1 for � ∈ [k]. For every agent
i ∈ N , we first query her value v∗i for her favorite alternative
ji(1). Then, using binary search we compute the maximal
λ�-acceptable set Si,� = {j ∈ A : vij ≥ v∗i /λ�} for every
� ∈ [k]. The λ�-acceptable set consists of the alternatives
that the agent finds at most λ� times worse than her favorite.
We define Si,0 = {ji(1)} to contain only the favorite al-
ternative of the agent. We continue by constructing a new
approximate valuation profile ṽ, where the values of every
agent i are

• ṽ∗i = v∗i ;

• ṽij = v∗i /λ� for every j ∈ Si,� \ Si,�−1 with � ∈ [k];

• ṽij = 0 for every j ∈ A \ Si,k.

We finally elect the alternative z ∈ A that maximizes the so-
cial welfare according to the approximate valuation profile.

Theorem 2. The mechanism k-ARV makes O(k logm)
value queries per agent, and has distortion O(k+1

√
m).

Proof. Consider any instance with valuation profile v. Since
mechanism k-ARV executes a binary search in order to com-
pute the λ�-acceptable sets for each � ∈ [k], it requires a total
of O(k logm) value queries per agent. The rest of the proof
is dedicated to bounding the distortion of k-ARV. First, we
define some useful notation:

• z is the alternative elected by k-ARV;
• y is a welfare-maximizing alternative for the valuation

profile v̂, which is such that the value of agent i ∈ N
for alternative j ∈ A is

v̂ij =

{
0, if j ∈ A \ Si,k

vij , otherwise.

That is, y ∈ argmaxj∈A

∑
i∈N v̂ij .

• x is the welfare-maximizing alternative for the true valu-
ation profile v. That is, x ∈ argmaxj∈A

∑
i∈N vij .

Also, let Nj(v) = {i ∈ N : vij > 0} be the set of agents
with strictly positive value for alternative j ∈ A. We use the
following easy fact about welfare-maximizing alternatives.

Fact 1. If j ∈ argmaxj∈A

∑
i∈N vij , then j ∈ argmaxj∈A∑

i∈Nj(v)
vij .

To prove the statement, we will bound the social welfare
of x in terms of the social welfare of z for the true valuation
profile v. In particular, we will show that

SW(x|v) ≤
(
λ1 +

m

λk

)
SW(z|v) . (1)

Then, the approximation ratio of k-ARV will be

SW(x|v)
SW(z|v) ≤ λ1 +

m

λk
= 2 ·m 1

k+1 = O(
k+1
√
m) .

We partition the social welfare of x into the following two
quantities: the contribution of the agents that place x in the
λk-acceptable set Si,k, and the contribution of the remaining

agents that have small value for x. By definition, we have
that i ∈ Nx(v̂) for any agent i such that x ∈ Si,k, and thus

SW(x|v) =
∑

i∈Nx(v̂)

vix +
∑

i/∈Nx(v̂)

vix

We first consider the term
∑

i∈Nx(v̂)
vix, and have that

∑
i∈Nx(v̂)

vix ≤
∑

i∈Ny(v̂)

viy ≤ λ1 ·
∑

i∈Ny(v̂)

ṽiy

≤ λ1 ·
∑

i∈Nz(ṽ)

ṽiz ≤ λ1 ·
∑

i∈Nz(ṽ)

viz

≤ λ1 · SW(z|v) , (2)

where the first inequality follows by the definition of y, the
simple fact that Nx(v̂) = Ny(v̂), and Fact 1; for the second
inequality it suffices to notice that for any i ∈ Ny(v̂) there
exists an � ∈ [k] such that y ∈ Si,� \ Si,�−1, and thus vij ≤
v∗
i

λ�−1
= λ1 · v∗

i

λ�
= λ1 · ṽij ; the third inequality follows by

the definition of z, the simple fact that Ny(v̂) = Nz(ṽ), and
Fact 1; the fourth inequality follows by vij ≥ ṽij , for any
i ∈ N , j ∈ A; the last inequality is obvious.

Next, we consider the term
∑

i/∈Nx(v̂)
vix. By the defini-

tion of Nx(v̂), for every i �∈ Nx(v̂) it holds that x �∈ Si,k,
and hence vix < v∗i /λk. Using this, we obtain

∑
i/∈Nx(v̂)

vix <
∑

i/∈Nx(v̂)

v∗i
λk

=
1

λk

∑
i/∈Nx(v̂)

v∗i

≤ 1

λk

∑
j∈A\{x}

∑
i∈T1(j)

vij , (3)

where T1(j) is the set of agents whose favorite alternative
is j, and for whom v∗i = ṽ∗i = vij = ṽij . Since z it the
alternative that maximizes the quantity

∑
i∈N ṽij , for every

j �= z we have that∑
i∈N

ṽiz ≥
∑
i∈N

ṽij =
∑

i∈T1(j)

vij +
∑

i∈N\T1(j)

ṽij ≥
∑

i∈T1(j)

vij .

Combining the above inequality together with the fact that
viz ≥ ṽiz for every agent i ∈ N , we have that∑

i∈N

viz ≥
∑

i∈T1(j)

vij .

Using this last inequality, (3) becomes
∑

i/∈Nx(v̂)

vix ≤ 1

λk

∑
j∈A\{x}

∑
i∈T1(j)

vij ≤ 1

λk

∑
j∈A\{x}

∑
i∈N

viz

=
m− 1

λk
SW(z|v). (4)

Finally, the desired inequality (1) follows by combining
inequalities (2) and (4).

The next statement follows by appropriately setting the
value of the parameter k in Theorem 2, and shows how
mechanism k-ARV improves upon the distortion guarantees
of λ-PRV using fewer value queries per agent.
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Corollary 1. We have that

• 1-ARV achieves distortion O(
√
m) using O(logm) val-

ues queries per agent;
• (logm)-ARV achieves distortion O(1) using O(log2 m)

value queries.

Implementing k-ARV with comparison queries

A crucial observation is that mechanism k-ARV can actually
be implemented using just one value query. We can ask the
value of each agent for her favorite alternative, and then ask
O(k logm) comparison queries that guide the binary search
in computing the maximal acceptable sets. Hence, (logm)-
ARV achieves constant distortion using only one value query
and O(log2 m) comparison queries.

It is natural to ask whether we can avoid this single value
query entirely, and rely only on comparison queries instead.
Surprisingly, for unit-sum valuation functions, we show that
this is indeed possible at no extra cost! More precisely, we
show that we can approximate the value of an agent for her
favorite alternative within a factor of 1±ε, using O(log2 m)
comparison queries.

For the sake of readability, we focus on a single agent and
write uj for her value for the alternative that she ranks at po-
sition j ∈ [m]. We take the same approach as in the proof of
Theorem 2 in order to build an approximate valuation pro-
file. Since everything in this profile is expressed in terms of
the largest value u1, we utilize the unit-sum assumption to
approximately solve for u1.

Theorem 3. For any constant ε ≥ 1/m, it is possible to
compute some u∗ such that (1 − ε)u∗ ≤ u1 ≤ (1 + ε)u∗,
using O(log2 m) comparison queries.

By inspecting the proof of Theorem 2, it is easy to see that
knowing the approximate valuation profile ṽ exactly or per-
turbed within a multiplicative constant factor, makes no dif-
ference asymptotically. Therefore, we augment k-ARV with
a pre-processing step where each maximum value v∗i is ap-
proximated according to Theorem 3 above. For k = logm,
this new mechanism, which we call modified (logm)-ARV,
achieves the same distortion guarantee and asks the same
number of queries (asymptotically) with (logm)-ARV.

Corollary 2. Modified (logm)-ARV achieves distortion
O(1) using O(log2 m) comparison queries per agent.

4 Achieving
√
m with Two Value Queries

Here we present a more sophisticated mechanism, which
makes two value queries per agent. The first query is used
to learn the value of each agent for her favorite alternative.
However, we would like to avoid making a naive second
query as we do with 2-PRV. Ideally, we would like to ask
each agent about an alternative that is qualitatively similar
to the one identified by 1-ARV. In other words, we would
like to reveal for each agent the position where her value is
roughly 1/

√
m of that for her favorite alternative. Although

maintaining the same guarantee as 1-ARV, while substitut-
ing each binary search with a single query seems far-fetched,
we do come very close. By utilizing the available ordinal

information globally rather than per agent, our mechanism
achieves distortion O(

√
m) with just two value queries, un-

der the assumption that n = Θ(m). The crucial idea is that
the second query for each agent depends on the number of
appearances of the alternatives in the whole ordinal profile.

For any threshold τ ∈ N we define a mechanism called τ -
Threshold Range Voting (τ -TRV). As noted above, the first
query for each agent is used to ask about her favorite alter-
native. The remaining queries are made in successive steps.
During the �-th step we make queries about alternatives that
are ranked within the first � positions by at least τ agents.
These queries are made only if they are meaningful and pos-
sible: we never repeat a query and never ask an agent more
than twice. After at most m steps, τ -TRV returns an alterna-
tive with maximum revealed welfare.

Theorem 4. The mechanism τ -TRV has distortion

D(τ -TRV) =

⎧⎨
⎩

O(m) when n = ω(m2), for τ = 1

O(
√
n) when n = O(m2), for τ =

√
n

O(
√
m) when n = Θ(m), for τ =

√
m.

Proof. We prove the case n = m for which the distortion
is O(

√
m); see the full version for the full proof. Consider

any instance with valuation profile v. Let y be the alternative
elected by

√
m-TRV, and let x be an optimal alternative. By

SWr(z|v) we denote the total value of the agents for alter-
native z ∈ A, among those that have been queried for z; we
refer to this quantity as the revealed welfare of z. By the def-
inition of the mechanism, SWr(y|v) = maxz∈A SWr(z|v).
Since SW(y|v) ≥ SWr(y|v), to prove the theorem, it suf-
fices to show that SW(x|v) ≤ (1 + 2

√
m) · SWr(y|v). We

have that

SW(x|v) = SWr(x|v) + SWc(x|v),
where SWc(x|v) is the concealed welfare of x, that is, the
total value of the agents for x, among those that have not
been queried for x. By the discussion above, we have that

SW(x|v) ≤ SWr(y|v) + SWc(x|v).
Next, we focus on bounding the quantity SWc(x|v). Let E�
be the set of eligible alternatives at step �, for which there
are at least

√
m agents who rank them in the first � positions.

Let �∗ ∈ {2, ...,m} be such that x ∈ E�∗ and x �∈ E�∗−1;
in other words, �∗ is the smallest index for which alternative
x became an eligible alternative. By definition, we have that
x ∈ E� ⇒ x ∈ E�+1, for any � ∈ [m − 1]. Thus, we can
further partition the concealed welfare of x as

SWc(x|v) = SW<�∗
c (x|v) + SW≥�∗

c (x|v),
where SW<�∗

c (x|v) is the contribution of agents who rank x

at some position � < �∗, and SW≥�∗
c (x|v) is the contribution

of agents who rank x at some position � ≥ �∗.
Note that since x �∈ E� for any � ∈ {2, ..., �∗ − 1}, there

are strictly less than
√
m agents who rank x before position

�∗. Therefore, we have that

SW<�∗
c (x|v) < √

m ·max
i,j

{vij} ≤ √
m · SWr(y|v).
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Finally, we consider the quantity SW≥�∗
c (x|v). Let i be

an agent who is not queried for x, ranks x at some position
k ≥ �∗, and is queried by the mechanism for the second time
at some step � ∈ {�∗, ...,m}. Since x ∈ E�∗ , it must be the
case that k > �. Hence, there exists an alternative b such that
i ranks b at position � and vib ≥ vix. Let T be the set of all
alternatives b, for whom there exists at least one such agent
i. Since there are n = m agents and any alternative b ∈ T
has to be eligible when queried for, it must be |T | ≤ √

m.
For every alternative b ∈ T , let Sb be the set of agents that

are queried for b instead of x and contribute to SW≥�∗
c (x|v).

Clearly, since y maximizes the revealed social welfare, we
have that

∑
i∈Sb

vib ≤ SWr(y|v). We now obtain

SW≥�∗
c (x|v) =

∑
b∈T

∑
i∈Sb

vix ≤
∑
b∈T

∑
i∈Sb

vib

≤ |T | · SWr(y|v) ≤
√
m · SWr(y|v).

The bound follows.

Of course, the cases of Theorem 4 are neither exhaustive
nor disjoint, yet they all deserve some attention. However,
due to space constraints, we focused on the highlight of this
section, i.e., on the fact that, when n = Θ(m), with only two
value queries per agent we deterministically match the lower
bound for any randomized ordinal mechanism, and beat the
best known randomized ordinal mechanism of Boutilier et
al. (2015) which achieves a distortion of O(

√
m · log∗ m).

5 Lower Bounds

In this section we explore the limitations of query-based
mechanisms, by presenting lower bounds on their distortion.
These bounds depend only on the number of value queries
the mechanisms are allowed to ask per agent, and are uncon-
ditional on how and where these queries are made.

Before we proceed with the presentation of the results of
this section, let us give a high-level idea of the constructions
used in the proofs. Assuming an arbitrary mechanism (that
is allowed to make a specific number of queries per agent),
we first define a single ordinal preference profile which is
given as input to the mechanism. Then we carefully define
the cardinal information that is revealed from all possible
queries the mechanism could make. This cardinal informa-
tion is such that it is always possible to complete the valua-
tion profile in a way that leads the social welfare of the opti-
mal alternative to be much higher than that of the alternative
selected by the mechanism. Since we do not know how the
mechanism makes its query selection, we need to take into
account every possible scenario, and therefore define many
different valuation profiles to capture different cases.

We start by showing that, for unrestricted valuations, any
mechanism that makes one value query per agent has linear
distortion. This also shows that the straightforward mecha-
nism 1-PRV from Section 3 is the best possible mechanism
among such mechanisms.

Theorem 5. For unrestricted valuation functions, the distor-
tion of any mechanism that uses one value query per agent
is Ω(m).

Proof. Let M be an arbitrary mechanism that makes one
value query per agent, and consider an instance with m ≥
4 alternatives and n = m − 2 agents, where m is an
even number. We denote the set of alternatives as A =
{a1, ..., am−2, x, y}. Using the notation [z, w] to denote the
fact that alternatives z and w are ordered arbitrarily in the
ranking of an agent, we define the ordinal profile as follows.
The ranking of agent i ≤ n

2 is

ai �i x �i y �i [a1, ..., ai−1, ai+1, ..., am−2],

while the ranking of agent i > n
2 is

ai �i y �i x �i [a1, ..., ai−1, ai+1, ..., am−2].

Depending on the positions at which M queries, we re-
veal the following cardinal information: For every query at
a first position we reveal a value of m−1; for every query at
a second or third position we reveal a value of m−2; for any
other position we reveal a value of 0.

We claim that M must query all agents at the first po-
sition, as otherwise its distortion is Ω(m). Assume that M
does not query agent 1 for alternative a1; this is without loss
of generality due to symmetry. We now define two valuation
profiles v1 and v2, which are both consistent with the or-
dinal profile and the revealed information, but differ on the
value that agent 1 has for alternative a1. In particular:

• In both v1 and v2, every agent i ≥ 2 has value m−1 for
alternative ai, m−2 for alternatives x and y, and 0 for ev-
eryone else;

• In both v1 and v2, agent 1 has value m−2 for alternatives
x and y, and 0 for every alternative ai for i ≥ 2. The value
of agent 1 for alternative a1 is m−2 in v1, and 1 in v2.

These two profiles are utilized in the following way: If M
selects a1, then the valuation profile is set to be v1, while if
M selects some other alternative, then the valuation profile
is set to be v2. Now, observe that

SW(ai|v1) = SW(ai|v2) = m−1

for every i ≥ 2, and

SW(x|v1) = SW(x|v2) = SW(y|v1) = SW(y|v2)

= (m− 2) ·m−2 ≤ m−1.

If M selects a1, the social welfare of a1 is SW(a1|v1) =
m−2 and therefore any alternative ai for i ≥ 2 is optimal,
yielding distortion m. Similarly, when M selects some al-
ternative different than a1, then a1 is optimal with social
welfare SW(a1|v2) = 1, yielding distortion at least m.

Hence, M must query all agents at the first position in or-
der to learn a value of m−1 for every alternative ai, i ∈ [n].
We now define three valuation profiles v3, v4 and v5, which
are consistent with the ordinal profile and this revealed in-
formation, but differ on the values that the agents have for
alternatives x and y; in particular, v4 and v5 are symmetric.

• In all three profiles, every agent i ∈ [n] has value m−1 for
alternative ai, and 0 for any alternative aj such that j �= i;

• In v3, all agents have value m−1 for alternatives x and y;
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• In v4, all agents have value m−2 for alternative y, every
agent i > n/2 (who ranks x after y) has value m−2 for x,
and every agent i ≤ n/2 (who ranks x before y) has value
m−1 for x.

• In v5, all agents have value m−2 for alternative x, every
agent i ≤ n/2 (who ranks y after x) has value m−2 for y,
and every agent i > n/2 (who ranks y before x) has value
m−1 for y.

If M selects some alternative ai for i ∈ [n], then the valu-
ation profile is set to be v3, while if M selects alternative
y or x, then the valuation profile is set to be v4 or v5, re-
spectively. Given this, observe that if M decides to select
alternative ai for some i ∈ [n], then since

SW(ai|v3) = SW(ai|v4) = SW(ai|v5) = m−1,

for every i ∈ [n], and

SW(x|v3) = SW(y|v3) = (m− 2) ·m−1 = 1− 2m−1,

the distortion is at least m − 2. Similarly, if M decides to
select alternative y, then since

SW(y|v4) = (m− 2)m−2 ≤ m−1

and

SW(x|v4) =
(m
2

− 1
)
m−1 +

(m
2

− 1
)
m−2

=
1

2

(
1−m−1 − 2m−2

)
,

the distortion is at least 1
2 (m−1−2m−1) ≥ m

4 for any m ≥
4. The case where M selects x is symmetric and follows by
v5. In any case, M has distortion Ω(m).

We will now focus on mechanisms that make a number
λ ≥ 1 of queries per agent, and will show a weaker lower
bound on the distortion which depends on λ. The construc-
tion that gives us the next theorem is more delicate and the
proof is significantly more technical.
Theorem 6. For unrestricted valuation functions, the dis-
tortion of any mechanism that uses λ ≥ 1 value queries per
agent is Ω

(
1

λ+1 ·m 1
2(λ+1)

)
.

Using Theorem 6, we can deduce several lower bounds.
Corollary 3. For unrestricted valuation functions, the dis-
tortion of a mechanism M that uses λ queries per agent is

D(M) =

⎧⎨
⎩
Ω
(
m

1
2(λ+1)

)
, for any constant λ ≥ 1

Ω (log logm) , for λ = O
(

logm
log logm

)
.

Next, we turn our attention to unit-sum valuation func-
tions. Coming up with constructions that satisfy the very re-
stricted structure of such valuation functions and at the same
time capture all mechanisms is quite challenging. In the fol-
lowing, we consider mechanisms that are allowed to make
only one value query per agent. For this case, we are able
to show a weaker lower bound of Ω(

√
m), which indicates

(but does not prove) some separation between unrestricted
and unit-sum valuation functions.
Theorem 7. For unit-sum valuation functions, the distortion
of any mechanism that uses only one value query per agent
is Ω(

√
m).

6 Conclusions and Future Directions

We studied mechanisms for general single winner elections,
and we explored the potential of improving their distor-
tion by making a limited number of cardinal queries per
agent. On this front, we obtained a definitive positive answer.
Among other results, we showed that it is possible to achieve
constant distortion by making O(log2 m) value or compari-
son queries, while only two value queries are enough to guar-
antee distortion O(

√
m) when n = Θ(m), thus outperform-

ing the best known randomized ordinal mechanism.
Quite interestingly, our positive results for value queries

hold without any normalization assumption, which makes
them even stronger. On top of that, by carefully inspecting
the proofs of our upper bounds, one can easily observe that it
is not actually necessary for the agents to be able to answer
value queries exactly. Our arguments follow through even
when the queries are noisy, as long as the answers are at
most a (multiplicative) constant factor away from the truth.
Finally, we complemented these results by showing (nearly)
tight lower bounds for many interesting cases.

Possibly the most obvious open problem is to fill in the
gaps between our upper and lower bounds. To this end, we
make the following two conjectures.
1-Query Conjecture. There exists a mechanism that
achieves a distortion of O(

√
m) using one value query per

agent, for unit-sum valuation functions.
logm-Queries Conjecture. There exists a mechanism
that achieves a constant distortion, using O(logm) value
queries per agent, even for unrestricted valuation functions.

We consider settling these two conjectures the most in-
teresting problems left open in our work. Since our upper
bounds for value queries do not make use of the unit-sum
normalization, it is conceivable that some clever use of that
extra information could possibly lead to better trade-offs.

Another natural direction is to consider randomized
mechanisms. Actually, one could study two different levels
of randomization: mechanisms that decide randomly what
queries to make, but select the winner deterministically, and
mechanisms that use randomization for both querying and
making the final decision.

Our work takes a first step towards exploring how power-
ful ordinal mechanisms with limited access to cardinal infor-
mation can actually be. Of course, the same idea can be ap-
plied to many different contexts, such as participatory bud-
geting, multi-winner elections, or the metric distortion set-
ting, which has been extensively studied over the past years.
As we mentioned in the introduction, Abramowitz, Anshele-
vich, and Zhu (2019) already take a step in this direction in
the metric setting.
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