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Abstract. We consider the homogenization of a parabolic problem in a per-
forated domain with Robin–Neumann boundary conditions oscillating in time.
Such oscillations must compensate the blow up of the boundary measure of the
holes. We use the technique of time–periodic unfolding in order to obtain a
macroscopic parabolic problem containing an extra linear term due to the ab-
sorption determined by the Robin condition.
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1. Introduction

In this paper we study homogenization of a parabolic problem with oscillating
coefficients in a domain with holes. That is we look at the problem

aε(x, t)∂uστε

∂t
− div (Aτε (x, t) ∇uστε) = f ,

in the perforated domain, and

Aτε(x, t) ∇uστε · ν + αστ (t)uστε = 0 ,
on the boundary of perforations. Here the coefficients have a suitably oscillating
character both in time (σ, τ) and in space (ε). Of course the parabolic problem is
completed by boundary and initial data. We are interested in the case where the
coefficient αστ is a strongly oscillating non–vanishing function in the limit. Our
approach is based on the time-periodic unfolding technique introduced in [3]. The
operators of time-periodic unfolding are inspired by the operators of space-periodic
unfolding introduced and applied in [11, 12, 13, 14, 16, 19].
Our interest in problems exhibiting oscillations in time originally arised from math-
ematical models for transport across biological membranes. It has been observed
that the pores on the membranes switch between a closed state and an open one,
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either periodically or according to a random scheme (see [1, 9]). A first stochastic
model was proposed in [24]. In [6], through homogenization techniques, it was
shown that the limiting behavior of problems of this kind sharply depends on the
relative scalings of the time and space variables; see also [8] for a MonteCarlo test
of the model. In [7] oscillations in the boundary conditions have been coupled to
time periodic changes in the diffusivity coefficient as a device to reproduce the
selection capability exhibited by biological membranes. A case of sign changing
capacity oscillating in space was also treated in [4, 5] by means of asymptotic ex-
pansions.
In this paper we apply and extend the results of [3] to the case of domains with
holes, having in mind a model of cell absorption of a selected protein or drug.
Let us compare our approach here to previous literature. The homogenization of
PDEs in perforated domains has been studied widely for many years (see among the
others [17, 18, 20, 22] and more recently [10, 12, 23] and references therein). The
homogenization via periodic unfolding of the stationary case in perforated domains
with Neumann boundary conditions on the holes has been treated in [12], while the
case of Robin boundary conditions was treated in [16]. There the blow up of the
area of the holes in the homogenization limit is compensated by the assumption
that the coefficient in the boundary condition becomes vanishingly small in the
limit. In this paper we deal with an evolutive problem where the coefficient in the
boundary data does not tend to zero uniformly as in [16]. Rather, the compensation
effect is implied by the switching in time between the Robin condition and a null
Neumann condition. This requires a suitable balance between the space and time
oscillations.
In Section 2 we introduce the basic definitions and properties of the time-periodic
unfolding operator for domains with holes. We identify two possible limiting behav-
iors depending on the relative magnitude of τ (the time-period of the oscillations)
and ε (the diameter of the holes and spatial period of the lattice). Notice that this
classification relies on the degeneracy of the estimate of the time derivative, whose
Lp–norm we assume to behave in the limit as a parameter θτ . We are in the case
of fast oscillations (in time) when

τθτ

ε
≤ C ,

and in the case of slow oscillations when

τθτ

ε
→ +∞ .

In Section 3 we introduce the oscillating Robin–Neumann parabolic problem and
obtain the relevant estimates needed for the homogenization process. There we
state precisely our assumptions and introduce a new parameter σ, that is the
fraction of the time–period when the boundary condition is absorbing i.e., of Robin
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type. In Section 4 we deal with the homogenization process in the case

σ

ε
→ β ∈ [0,∞) ,

considering the subcases of both fast and slow oscillations. We provide for the
homogenized problem, both the two–scale formulation and a more explicit formu-
lation relying upon factorization and cell functions. More precisely we obtain a
macroscopic model given by a parabolic equation containing an extra linear term
depending on αστ , β and the geometry. Notice that in our case θτ = 1√

τε
so that the

case of fast oscillations is defined by τ/ε3 ≤ C, while the case of slow oscillations
is defined by τ/ε3 → ∞. Finally in Section 5 we consider the case

σ

ε
→ ∞ ,

where, essentially, the solution uτ vanishes in the limit.

2. The Time-Periodic Unfolding Operator

2.1. Notation. Throughout the paper ε > 0 denotes the space period of the
microstructure, and likewise τ > 0 and σ > 0 denote its multiscale time periods.
Though this is not explicitly stressed by the notation for the sake of simplicity, we
always assume that three sequences are given: εi → 0, τi → 0, σi → 0 as i → ∞.
The limiting behavior of quantities depending on ε, τ and σ is denoted by

lim
τ→0

.

More exactly the parameter τ represents the time period of time oscillations for
example in the boundary condition. The parameter ε is the spatial period of the
microstructure and the characteristic dimension of the perforations of the domain
as well. Finally σ represents the fraction of the time period τ in which the Robin
absorbing boundary condition is in force. In the following, for the sake of notational
simplicity, we index only with τ some objects that depend on ε and σ too.

2.2. Definitions. Let Ω ⊂ RN be a bounded connected open set with Lipschitz
boundary, and set

Y = (0, 1)N , Σ = (0, 1) , Q = Y × Σ , ΩT = Ω × (0, T ) .

Thus Y is the microscopic space cell and Σ the microscopic time interval in rescaled
coordinates. Next we introduce an open set with Lipschitz boundary B such that
B ⊂ Y , and define

Y ∗ = Y \B , Q∗ = Y ∗ × Σ .
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Considering the tiling of RN given by the sets ε(ξ + Y ), ξ ∈ ZN we also define

Ξε =
{
ξ ∈ ZN , ε(ξ + Y ) ⊂ Ω

}
, Ω̂ε = interior

 ∪
ξ∈Ξε

ε(ξ + Y )

 ;

T̂τ =
{
t ∈ (0, T )

∣∣∣τ ([ t
τ

]
+ 1

)
≤ T

}
, Λτ = Ω̂ε × T̂τ .

Here and in the definitions below [r] denotes the integer part of r ∈ R. The
perforated domain Ωε is defined by

Ωε = Ω \

 ∪
ξ∈Ξε

ε(ξ +B)

 ,

and we set Ωε
T = Ωε × (0, T ). Moreover we denote

Γε =
∪

ξ∈Ξε

ε(ξ + ∂B) , Γε
T = Γε × (0, T ) , RN

ε = RN \

 ∪
ξ∈ZN

ε(ξ +B)

 .

For x ∈ RN and t ∈ [0,+∞) we define[
x

ε

]
Y

=
( [

x1

ε

]
, . . . ,

[
xN

ε

] )
,

and also denote

x = ε
([
x

ε

]
Y

+
{
x

ε

}
Y

)
, t = τ

([
t

τ

]
+
{
t

τ

})
.

Finally for σ such that 0 < σ < 1, define the sets

Qσ = Y × 1
σ

Σ , Q∗
σ = Y ∗ × 1

σ
Σ , Q∂

σ = ∂B × 1
σ

Σ ,

and

Aσ,τ =
[ T

τ ]−1∪
i=0

(τi, τ(i+ σ)) .

For any bounded open set H and any Lebesgue integrable function w in H, we
denote with MH(w) the integral average of w with respect to H.
The following operator was introduced in [3] (see [11] for the elliptic case)

Definition 2.1 (Time-Periodic Unfolding Operator). For w Lebesgue-measurable
in ΩT the Time-Periodic Unfolding operator Tτ is defined as

Tτ (w)(x, t, y, s) =

w
(
ε
[
x

ε

]
Y

+ εy, τ
[
t

τ

]
+ τs

)
, (x, t, y, s) ∈ Λτ ×Q ,

0 , otherwise.

�
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In this paper we will mostly work in the set with holes Ωε; we define (see [12] for
the elliptic case)

Definition 2.2 (Time-Periodic Unfolding Operator in domains with holes). For
w Lebesgue-measurable in Ωε

T the Time-Periodic Unfolding operator T ∗
τ is defined

as

T ∗
τ (w)(x, t, y, s) =

w
(
ε
[
x

ε

]
Y

+ εy, τ
[
t

τ

]
+ τs

)
, (x, t, y, s) ∈ Λτ ×Q∗ ,

0 , otherwise.

�

It is an immediate consequence of the definition that if w1, w2 are Lebesgue–
measurable in Ωε

T

T ∗
τ (w1w2) = T ∗

τ (w1)T ∗
τ (w2) . (2.1)

Remark 2.3. Note that for w Lebesgue-measurable in ΩT , the definitions above
imply T ∗

τ (w) = Tτ (w) in Λτ ×Q∗. �

Definition 2.4 (Two Time Scales-Periodic Unfolding Operator). For w Lebesgue-
measurable inΩε

T we define the operator T ∗
τ,σ as T ∗

τ,σ(w)(x, t, y, r) = T ∗
τ (w)(x, t, y, σr),

for (x, t, y, r) ∈ Λτ ×Q∗
σ. �

Definition 2.5 (Boundary Two Time Scales-Periodic Unfolding Operator). For
w Lebesgue-measurable on Γε

T we define the operator T b
τ,σ as

T b
τ,σ(w)(x, t, y, r) =

w
(
ε
[
x

ε

]
Y

+ εy, τ
[
t

τ

]
+ τσr

)
, (x, t, y, r) ∈ Λτ ×Q∂

σ ,

0 , otherwise.

�

Note that T b
τ,σ(w) is the trace of T ∗

τ,σ(w) on ∂B if both are defined.

Remark 2.6. Note that analogues of property (2.1) are also satisfied by the oper-
ators T ∗

τ,σ and T b
τ,σ. �

2.3. Basic Properties of the Operators. In this Subsection we collect some
properties of the operators defined in Subsection 2.2. We refer the reader to [3]
for many proofs which stay essentially unchanged in this case, and which rely
essentially on [11, 12].
In the following p ∈ [1,∞) unless otherwise noted. Also functions depending on
the microscopic variables (y, s, r), or only on (x, t) are often considered trivially
extended to the appropriate macro-microscopic domain.
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Proposition 2.7. The operator T ∗
τ : Lp(Ωε

T ) → Lp(ΩT × Q∗) is linear and con-
tinuous.
In addition for all w ∈ Lp(Ωε

T ) we have

∥T ∗
τ (w)∥Lp(ΩT ×Q∗) ≤ ∥w∥Lp(Ωε

T ) , (2.2)

and ∣∣∣∣∣∣∣
∫

Ωε
T

w dx dt−
∫∫

ΩT ×Q∗

T ∗
τ (w) dx dt dy ds

∣∣∣∣∣∣∣ ≤
∫

Ωε
T \Λτ

|w| dx dt . (2.3)

Lemma 2.8. Let ϕ ∈ W 1,1(Ωε
T ×Q∗), and define

ϕτ (x, t) = ϕ
(
x, t,

x

ε
,
t

τ

)
, (x, t) ∈ Ωε

T , (2.4)

where ϕ has been extended by Q-periodicity to Ωε
T × RN

ε × R. Then in ΩT ×Q∗

∂

∂s
T ∗

τ (ϕτ ) = τT ∗
τ

(
∂ϕ

∂t

)
+ T ∗

τ

(
∂ϕ

∂s

)
, (2.5)

and

∇y T ∗
τ (ϕτ ) = εT ∗

τ (∇x ϕ) + T ∗
τ (∇y ϕ) . (2.6)

If we instead define ϕστ ∈ W 1,1(Ωε
T ×Q∗

σ) as

ϕστ (x, t) = ϕ
(
x, t,

x

ε
,
t

στ

)
, (x, t) ∈ Ωε

T , (2.7)

where ϕ has been extended by Qσ-periodicity to Ωε
T × RN

ε × R, then in ΩT ×Q∗
σ

∂

∂r
T ∗

τ,σ(ϕστ ) = στT ∗
τ,σ

(
∂ϕ

∂t

)
+ T ∗

τ,σ

(
∂ϕ

∂r

)
. (2.8)

Also T ∗
τ,σ (respectively T b

τ,σ) satisfies an analogue of (2.6) (respectively (2.8)) in

ΩT ×Q∗
σ (respectively in ΩT ×Q∂

σ).

Proposition 2.9. For ϕ measurable in Q∗, extended by Q-periodicity, define the
sequence

ϕτ (x, t) = ϕ
(
x

ε
,
t

τ

)
, (x, t) ∈ RN

ε × R .

Then

T ∗
τ (ϕτ )(x, t, y, s) =

{
ϕ(y, s) , (x, t, y, s) ∈ Λτ ×Q∗ ,

0 , otherwise.
(2.9)

Moreover, if ϕ ∈ Lp(Q∗) as τ → 0

T ∗
τ (ϕτ ) → ϕ , strongly inLp(ΩT ×Q∗) . (2.10)
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If ϕ has ∇y ϕ and ∂ϕ
∂s

in Lp(Q∗) then

∇y(T ∗
τ (ϕτ )) → ∇y ϕ , strongly inLp (ΩT ×Q∗) . (2.11)

∂

∂s
(T ∗

τ (ϕτ )) → ∂

∂s
ϕ , strongly inLp (ΩT ×Q∗) . (2.12)

Proposition 2.10. For ϕ measurable on Q∂
σ, extended by Y and 1

σ
Σ-periodicity,

define the sequence

ϕστ (x, t) = ϕ
(
x

ε
,

1
σ

{
t

τ

})
, (x, t) ∈ ∂RN

ε × R .

Assume also suppϕ ⊂ ∂B × Σ. Then

T b
τ,σ(ϕστ )(x, t, y, r) =

{
ϕ(y, r) , (x, t, y, r) ∈ Λτ × ∂B × Σ ,

0 , otherwise.
(2.13)

Moreover, if ϕ ∈ Lp(∂B × Σ) as τ → 0

T b
τ,σ(ϕστ ) → ϕ , strongly inLp(ΩT × ∂B × Σ) . (2.14)

The proof of Proposition 2.10 follows straightforwardly from the definitions. Notice
that ϕστ is periodic in time with period τ .
Next we recall the following results on the operator Tτ and converging sequences.

Proposition 2.11. Let {wτ } be a sequence of functions in Lp(ΩT ).
If wτ → w strongly in Lp(ΩT ) as τ → 0, then

Tτ (wτ ) → w(x, t) , strongly inLp(ΩT ×Q) . (2.15)

Proposition 2.12. If w ∈ Lp(ΩT ), then as τ → 0

T ∗
τ (w) → w , strongly inLp (ΩT ×Q∗) . (2.16)

If wτ is a bounded sequence of functions in Lp(Ωε
T ), p > 1, then up to subsequences

T ∗
τ (wτ ) ⇀ ŵ , weakly inLp (ΩT ×Q∗) , (2.17)

for a suitable function ŵ ∈ Lp(ΩT ×Q∗).

Proposition 2.13. If w ∈ Lip(ΩT ), then

∥T b
τ,σ(w) − w∥L∞(Λτ ×Q∂

σ) ≤
√
Nε∥∇w∥L∞(ΩT ) + τ∥wt∥L∞(ΩT ) ,

which implies

T b
τ,σ(w) → w , strongly in Lp(ΩT ×K) , (2.18)

for any bounded set K ⊂ ∂B × R.

The proof of Proposition 2.13 follows from standard arguments (see also [14]
(4.15)).
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Proposition 2.14. Let {wτ } be a sequence bounded in Lp(0, T,W 1,p(Ωε)), and
also satisfying the estimate∥∥∥∥∥∂wτ

∂t

∥∥∥∥∥
Lp(Ωε

T )
≤ θτ , with τθτ ≤ γ . (2.19)

Then, up to a subsequence, there exists a function w ∈ Lp(ΩT × Σ) such that

T ∗
τ (wτ ) ⇀ w , weakly inLp

(
ΩT ,W

1,p(Q∗)
)
. (2.20)

Moreover, if

lim
τ→0

τθτ = 0 , (2.21)

then w = w(x, t) ∈ Lp(ΩT ).

Proof. The proof is analogue to the one of Proposition 2.12 in [3]. In practice in
[3] we considered the special case where the quantity θτ appearing in (2.19) equals
τ−m with 0 ≤ m < 1. �

Remark 2.15. In our application, the quantity θτ becomes unbounded in the limit
τ → 0. �

As for the operator T ∗
τ , we have

Proposition 2.16. The operator T ∗
τ,σ : Lp(Ωε

T ) → Lp(ΩT × Q∗
σ) is linear and

continuous.
In addition for all w ∈ Lp(Ωε

T ) we have∥∥∥T ∗
τ,σ(w)

∥∥∥
Lp(ΩT ×Q∗

σ)
≤ 1
σ

1
p

∥w∥Lp(Ωε
T ) , (2.22)

and ∣∣∣∣∣∣∣
∫

Ωε
T

w dx dt− σ
∫

ΩT ×Q∗
σ

T ∗
τ,σ(w) dx dt dy dr

∣∣∣∣∣∣∣ ≤
∫

Ωε
T \Λτ

|w| dx dt . (2.23)

Proposition 2.17. The operator T b
τ,σ : Lp(Γε

T ) → Lp(ΩT × Q∂
σ) is linear and

continuous.
In addition for all w ∈ Lp(Γε

T ) we have∥∥∥T b
τ,σ(w)

∥∥∥
Lp(ΩT ×Q∂

σ)
≤
(
ε

σ

) 1
p

∥w∥Lp(Γε
T ) , (2.24)

and ∣∣∣∣∣∣∣
∫

Γε
T

w dσx dt− σ

ε

∫
ΩT ×Q∂

σ

T b
τ,σ(w) dx dt dσy dr

∣∣∣∣∣∣∣ ≤
∫

Γε
T \Λτ

|w| dσx dt . (2.25)
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Remark 2.18. From Propositions 2.7, 2.16 and 2.17 and Lemma 2.8, for any suit-
ably regular w : Ωε

T → R it follows

∥∇yT ∗
τ (wτ )∥Lp(ΩT ×Q∗) ≤ ε ∥∇xwτ ∥Lp(Ωε

T ) , (2.26)∥∥∥∥∥ ∂∂sT ∗
τ (wτ )

∥∥∥∥∥
Lp(ΩT ×Q∗)

≤ τ

∥∥∥∥∥∂wτ

∂t

∥∥∥∥∥
Lp(Ωε

T )
, (2.27)

∥∥∥∇yT ∗
τ,σ(wτ )

∥∥∥
Lp(ΩT ×Q∗

σ)
≤ ε

σ
1
p

∥∇xwτ ∥Lp(Ωε
T ) , (2.28)∥∥∥∥∥ ∂∂r T ∗

τ,σ(wτ )
∥∥∥∥∥

Lp(ΩT ×Q∗
σ)

≤ τσ1− 1
p

∥∥∥∥∥∂wτ

∂t

∥∥∥∥∥
Lp(Ωε

T )
, (2.29)

∥∥∥∥∥ ∂∂r T b
τ,σ(wτ )

∥∥∥∥∥
Lp(ΩT ×Q∂

σ)
≤ ε

1
p τσ1− 1

p

∥∥∥∥∥∂wτ

∂t

∥∥∥∥∥
Lp(Γε

T )
. (2.30)

�
The following results essentially state that, under assumptions (2.19), (2.21) the
dilation by 1/σ transforming T ∗

τ to T ∗
τ,σ does not destroy the weak convergence in

(2.20). Notice that this applies in the domain Q∗ not changing with σ.

Lemma 2.19. Let {wτ } be a sequence bounded in Lp(0, T ;W 1,p(Ωε)), p > 1 and
also satisfying the estimate (2.19), and (2.21). Then, up to a subsequence

T ∗
τ,σ(wτ ) ⇀ w , weakly inLp(ΩT ×Q∗) , (2.31)

where w=w(x, t) is the same weak limit as in (2.20).

Proof. From Proposition 2.14 we know that T ∗
τ (wτ ) converges weakly to w(x, t) in

Lp(ΩT ;W 1,p(Q∗)). Fix φ ∈ L
p

p−1 (ΩT ×Q∗) and define

Jτ (s) =
∫

ΩT

∫
Y ∗

[T ∗
τ (wτ )(x, t, y, s) − w(x, t)]

∫
Σ

φ (x, t, y, r) dr

 dx dt dy , s ∈ Σ .

Owing to (2.27) we know that Jτ is continuous in Σ for each τ > 0. Fix arbitrarily
δ > 0. The asserted weak convergence guarantees that a τδ > 0 exists such that∣∣∣∣∣∣

∫
Σ

Jτ (s) ds

∣∣∣∣∣∣ ≤ δ , 0 < τ < τδ .

It is easily seen that the continuity of Jτ then implies the existence of a point
s∗ ∈ Σ, possibly depending on τ , such that

|Jτ (s∗)| ≤ |Σ|−1δ , 0 < τ < τδ . (2.32)

Next we calculate∫
ΩT

∫
Q∗

[T ∗
τ,σ(wτ )(x, t, y, r) − w(x, t)]φ(x, t, y, r) dx dt dy dr = J1 + Jτ (s∗) ,
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where

J1 =
∫

ΩT

∫
Q∗

[T ∗
τ,σ(wτ )(x, t, y, r) − T ∗

τ (wτ )(x, t, y, s∗)]φ (x, t, y, r) dx dt dy dr =

∫
ΩT

∫
Y ∗

1
σ

σ∫
0

[T ∗
τ (wτ )(x, t, y, s) − T ∗

τ (wτ )(x, t, y, s∗)]φ
(
x, t, y,

s

σ

)
dx dt dy ds .

Clearly the statement will follow if we are able to prove that J1 → 0 as τ → 0.
Indeed we estimate

∣∣∣J1
∣∣∣ ≤ 1

σ

∫
ΩT

∫
Y ∗

σ∫
0

|T ∗
τ (wτ )(x, t, y, s) − T ∗

τ (wτ )(x, t, y, s∗)|p dx dt dy ds


1
p

×

σ ∫
ΩT

∫
Q∗

|φ(x, t, y, r)|
p

p−1 dx dt dy dr


p−1

p

≤ γ
1
σ

1
p

∫
ΩT

∫
Y ∗

σ∫
0

∣∣∣∣∣∣
s∫

s∗

∂

∂z
T ∗

τ (wτ )(x, t, y, z) dz

∣∣∣∣∣∣
p

dx dt dy ds


1
p

≤ γ
1
σ

1
p

∫
ΩT

∫
Y ∗

σ∫
0

 s∫
s∗

∣∣∣∣∣ ∂∂z T ∗
τ (wτ )(x, t, y, z)

∣∣∣∣∣
p

dz

 dx dt dy ds


1
p

≤ γ

∫
ΩT

∫
Q∗

∣∣∣∣∣ ∂∂z T ∗
τ (wτ )(x, t, y, z)

∣∣∣∣∣
p

dx dt dy dz


1
p

≤ γτ

∫
ΩT

∫
Q∗

∣∣∣∣∣T ∗
τ

(
∂

∂t
wτ

)
(x, t, y, z)

∣∣∣∣∣
p

dx dt dy dz


1
p

≤ γτθτ → 0 ,

(2.33)

where we have made use again of (2.5), (2.19) and (2.21). �

Then we consider the traces.

Proposition 2.20. Let {wτ } be a sequence bounded in Lp(0, T,W 1,p(Ωε)) with
p > 1, and also satisfying the estimate (2.19) and (2.21). Assume also

∥wτ ∥L∞(Ωε
T ) ≤ C , (2.34)

and
ε

σ
1
p

≤ C , (2.35)
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where 0 < C < ∞ is a constant independent of τ , ε and σ. Then up to a subse-
quence

T b
τ,σ(wτ ) ⇀ w , weakly in Lp(ΩT × ∂B × Σ) , (2.36)

where w=w(x, t) is the same weak limit as in (2.31) and (2.20).

Proof. The hypothesis (2.34) implies
∣∣∣T b

τ,σ(wτ )
∣∣∣ ≤ C and then, up to a subsequence

T b
τ,σ(wτ ) ⇀W , weakly in Lp(ΩT × ∂B × Σ) .

Then applying Lemma 2.19, and inequality (2.28), in view of (2.35), the trace
theorem applied to T ∗

τ,σ(wτ ) yields, for any φ ∈ C1(ΩT ×Q) such that suppφ ⊂
ΩT ×Q∫

ΩT

∫
∂B

∫
Σ

Wφνi dx dt dσy dr =

lim
τ→0

∫
ΩT

∫
∂B

∫
Σ

T b
τ,σ(wτ )φνi dx dt dσy dr =

lim
τ→0

∫
ΩT

∫
Q∗

∂

∂yi

(
T ∗

τ,σ(wτ )φ
)
dx dt dy dr =

∫
ΩT

∫
Q∗

∂

∂yi

(wφ) dx dt dy dr =
∫

ΩT

∫
∂B

∫
Σ

wφνi dx dt dσy dr , (2.37)

for i = 1, · · · , N , where ν = (νi) is the interior normal to ∂B. Then (2.37) implies
W (x, t, y, r) = w(x, t) in ΩT × ∂B × Σ. �
Under general assumptions on the parameters we are able to prove the following
Theorem, to be compared with Theorem 2.24.

Theorem 2.21. Let p > 1 and {wτ } be a sequence bounded in in Lp(0, T,W 1,p(Ωε)).
If T ∗

τ (wτ ) ⇀ w weakly in Lp(ΩT ,W
1,p(Q∗)) with w ∈ Lp(0, T ;W 1,p(Ω)) then up

to a subsequence, there exists w̃ ∈ Lp(ΩT × Σ;W 1,p
per(Y ∗))) such that MY ∗(w̃) = 0,

and as τ → 0
T ∗

τ (∇wτ ) ⇀ ∇w + ∇y w̃ weakly inLp (ΩT ×Q∗) . (2.38)

Proof. See Theorem 2.11 in [3] and, for the elliptic case, Theorem 3.5 in [11]. �
Remark 2.22. Even if Theorem 2.21 holds true for all the possible combinations
of parameters τ , ε and σ, we use this result only in the case of slow oscillations
defined by

lim
τ→0

τθτ

ε
= +∞ , (2.39)

for θτ as in (2.19). In the other cases (fast oscillations) we use the results in
Subsection 2.4. �
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Remark 2.23. In our application p = 2, θτ = 1/
√
τε and we need in general

Proposition 2.20 and specifically (2.21) and (2.35) to hold true. To achieve this,
taking into account (2.39), we have to restrict ourselves to the range τ ≪ ε and
ε ≤ γ

√
σ. In the case of slow oscillations in practice we further assume τ ≫ ε3

(see the assumptions of Theorem 4.3). �
2.4. Fast Oscillations. The case of fast oscillations is defined by the condition

τ

ε
θτ ≤ C , (2.40)

where C is a constant independent of τ , ε and σ. In this case we prove the following

Theorem 2.24. Let p > 1 and {wτ } be a sequence bounded in Lp(0, T ;W 1,p(Ωε))
and satisfying the estimate (2.19). If T ∗

τ (wτ ) ⇀ w weakly in Lp(ΩT ;W 1,p(Q∗))
with w ∈ Lp(0, T ;W 1,p(Ω)) and (2.40) holds true with

lim
τ→0

θτ → ∞ , (2.41)

then up to a subsequence there exists ŵ ∈ Lp(ΩT ;W 1,p
per(Q∗)) such that MQ∗(ŵ) = 0

and, as τ → 0

T ∗
τ (∇wτ ) ⇀ ∇w + ∇y ŵ weakly inLp (ΩT ×Q∗) , (2.42)

τ

ε
T ∗

τ

(
∂

∂t
wτ

)
⇀

∂ŵ

∂s
weakly inLp (ΩT ×Q∗) . (2.43)

If we replace hypotheses (2.40), (2.41) with

lim
τ→0

τ

ε
θτ = 0 ,

allowing θτ to stay bounded as τ → 0, then the limit relations (2.42) and (2.43)
still hold true and

∂ŵ

∂s
= 0 , (2.44)

so that ŵ = ŵ(x, y, t) does not depend on s.

Proof. See Theorems 2.16 and 2.18 in [3]. �

3. The Oscillating Robin–Neumann Parabolic Problem

3.1. Statement of the problem and assumptions. The requirements of this
subsection will be assumed in Sections 4 and 5 without further reference.
We need that

lim
τ→0

τ

ε
= 0 . (3.1)

Let a : ΩT × Y → R be a measurable function. We assume that a satisfy the
uniform estimates

0 < C−1 ≤ a ≤ C < ∞ , (3.2)
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for some C > 1. Let then

Aτ (x, t) = Aτ
(
x, t,

x

ε
,
t

τ

)
, Aτ = Aτ (x, t, y, s) ,

be a sequence of N ×N matrices such that for all τ > 0

∥Aτ
ij∥∞ ≤ C , i, j = 1, . . . , N ; Aτξ · ξ ≥ C−1|ξ|2 , ξ ∈ RN . (3.3)

We also assume that a is Lipschitz continuous in t and that∣∣∣∣∣∂a∂t
∣∣∣∣∣ ,

∣∣∣∣∣∂Aτ
ij

∂t

∣∣∣∣∣ ,
∣∣∣∣∣∂Aτ

ij

∂s

∣∣∣∣∣ ≤ C , (3.4)

for all i, j = 1, . . . , N and for all relevant arguments. We denote

aε(x, t) = a
(
x, t,

x

ε

)
.

We always assume that Aτ , aε, are measurable in ΩT .
We let

αστ (t) = α
( 1
σ

{
t

τ

})
,

where α ∈ Lip(R) is a function such that

α(r) ≥ 0 , suppα ⊂ (0, 1) , |α′(r)| ≤ C , mα :=
1∫

0

α(r) dr > 0 . (3.5)

Thus suppαστ ⊂ Aσ,τ and ∣∣∣∣∣dαστ

dt

∣∣∣∣∣ ≤ C
1
στ

.

Let f ∈ L∞(ΩT ) and let uτ be the solution of the following parabolic problem

aε(x, t)∂uτ

∂t
− div (Aτ (x, t) ∇uτ ) = f , (x, t) ∈ Ωε

T , (3.6)

Aτ (x, t) ∇uτ · ν + αστ (t)uτ = 0 , (x, t) ∈ Γε × (0, T ) , (3.7)

uτ (x, t) = 0 , (x, t) ∈ ∂Ω × (0, T ) , (3.8)

uτ (x, 0) = uτ
0(x) , x ∈ Ωε . (3.9)

In this Section we assume all the needed smoothness of the solution uτ , whose exis-
tence is classical under standard regularity assumptions [21]. This can be achieved
by means of a further approximation of the data and coefficients in the problem,
keeping the structure required here. Specifically the source f is approximated
with smooth functions vanishing for small times. Thus the constants in our final
estimates will not depend on τ , ε, σ.
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The choice of the initial data uτ
0 deserves some clarification. We always assume

that for a given u0 ∈ L∞(Ω)

uτ
0 → u0 , strongly in L2(Ω);

∫
Ω

|∇uτ
0|2 dx ≤ γ

τε
; ∥uτ

0∥L∞(Ω) ≤ ∥u0∥L∞(Ω) ,

(3.10)
and that

the compatibility conditions of order 1 are satisfied on ∂Ωε × {0}; (3.11)

see e.g., [21, Chapter IV].

Lemma 3.1. For any given u0 ∈ L∞(Ω) a sequence {uτ
0} as in (3.10), (3.11)

exists.

Proof. Given the data u0 ∈ L∞(Ω) we may construct a sequence {ũτ
0} ⊂ C∞(Ω)

such that

ũτ
0 → u0 , strongly in L2(Ω);

∫
Ω

|∇ ũτ
0|2 dx ≤ γ

τε
; ∥ũτ

0∥L∞(Ω) ≤ ∥u0∥L∞(Ω) .

Next we introduce a sequence of cutoff functions {ητ } ⊂ C∞(Ω) such that

ητ (x) = 1 , dist(x,Γε ∪ ∂Ω) > τ ; ητ (x) = 0 , dist(x,Γε ∪ ∂Ω) < τ/2 ;
|∇ ητ (x)| ≤ γτ−1 , x ∈ Ω .

We use here (3.1). We define

uτ
0(x) = ũτ

0(x)ητ (x) , x ∈ Ω .

The motivation of this construction is threefold: First uτ
0 satisfies the compatibility

conditions on Γε at t = 0 required for the regularity of the solution. Second,
recalling that |Γε| ≤ γ/ε, we have as τ → 0∫

Ω

|u0 − uτ
0|2 dx ≤ γ

∫
Ω

|u0 − ũτ
0|2 dx+ γ∥u0∥2

∞

∫
Ω

(1 − ητ )2 dx

≤ γ
∫
Ω

|u0−ũτ
0|2 dx+γ∥u0∥2

∞(|Γε|+|∂Ω|)τ ≤ γ
∫
Ω

|u0−ũτ
0|2 dx+γ∥u0∥2

∞τε
−1 → 0 .

(3.12)

Finally we have reasoning as in (3.12)∫
Ω

|∇uτ
0|2 dx ≤ γ

∫
Ω

{
(ητ )2|∇ ũτ

0|2 + (ũτ
0)2|∇ ητ |2

}
dx ≤ γ(∥u0∥∞) 1

τε
. (3.13)

�
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As a consequence of the strong convergence uτ
0 → u0 in L2(Ω) one can easily prove

for all ϕ ∈ L2(Ω) ∫
Ωε

uτ
0(x)ϕ(x) dx → |Y ∗|

∫
Ω

u0(x)ϕ(x) . (3.14)

3.2. Estimates and convergence. A routine integration by parts and Gronwall’s
inequality prove the standard estimate

max
0≤t≤T

∫
Ωε

u2
τ dx+

∫
Ωε

T

|∇uτ |2 dx dt+
T∫

0

∫
Γε

αστ (t)u2
τ dσx dt ≤ γ . (3.15)

Proposition 3.2. The solution uτ of problem (3.6)–(3.9) satisfies

∥uτ ∥L∞(Ωε
T ) ≤ M , (3.16)

with 0 < M := ∥f∥L∞(ΩT )
min(a) T + ∥u0∥L∞(Ω).

Proof. Let us here set for the sake of brevity

∥f∥∞ = ∥f∥L∞(ΩT ) , ∥u0∥∞ = ∥u0∥L∞(Ω) .

The function w(x, t) = uτ (x, t) − ∥f∥∞
min(a)t− ∥u0∥∞ satisfies

aε ∂w
∂t

− div (Aτ ∇w) = f − aε ∥f∥∞
min(a) , (x, t) ∈ Ωε

T ,

A∇w · ν + αστ (t)w = −αστ (t)
(

∥f∥∞
min(a)t+ ∥u0∥∞

)
, (x, t) ∈ Γε × (0, T ) ,

w(x, t) = − ∥f∥∞
min(a)t− ∥u0∥∞ , (x, t) ∈ ∂Ω × (0, T ) ,

w(x, 0) = uτ
0 − ∥u0∥∞ , x ∈ Ωε .

Then on multiplying the differential equation by the positive part w+ and integrat-
ing by parts in Ωε

T we obtain w ≤ 0 and then uτ ≤ M . The inequality uτ ≥ −M
is proved in a similar way. �

Proposition 3.3. We have the estimate∫
Ωε

T

(
∂uτ

∂t

)2

dx dt+ max
0≤t≤T

∫
Γε

αστ (t)uτ (x, t)2 dσ + max
0≤t≤T

∫
Ωε

|∇uτ (x, t)|2 dx ≤ γ

τε
.

(3.17)

Proof. We use ∂uτ

∂t
as a test function for problem (3.6)–(3.9) and integrate by parts

in the space variables in Ωε
T , obtaining∫

Ωε
T

aε

(
∂uτ

∂t

)2

+
∫

Ωε
T

Aτ ∇uτ · ∇
(
∂uτ

∂t

)
−

T∫
0

∫
Γε

Aτ ∇uτ · ν ∂uτ

∂t
=
∫

Ωε
T

f
∂uτ

∂t
. (3.18)
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Hence by an application of Cauchy-Schwarz inequality and integration by parts in
time in the second integral in (3.18) we obtain

∫
Ωε

T

∣∣∣∣∣∂uτ

∂t

∣∣∣∣∣
2

+
∫

Ωε

|∇uτ |2 (T ) ≤ −γ
T∫

0

∫
Γε

αστuτ
∂uτ

∂t

+ γ

τ

∫
Ωε

T

|∇uτ |2 + γ
∫

Ωε
T

|f |2 + γ
∫

Ωε

|∇uτ
0|2 ; (3.19)

we have also made use of (3.3)–(3.4). The first integral on the right hand side of
(3.19) can be estimated as follows

T∫
0

∫
Γε

αστuτ
∂uτ

∂t
= 1

2

∫
Γε

αστ (T )uτ
2(T ) −

T∫
0

∫
Γε

dαστ

dt
uτ

2

≥ 1
2

∫
Γε

αστ (T )uτ
2(T ) −M2

∫
Aσ,τ

∫
Γε

C(στ)−1 ≥ 1
2

∫
Γε

αστ (T )uτ
2(T ) − γ

τε
. (3.20)

Here we have used |Aσ,τ | ≤ γσ and |Γε| ≤ γ/ε. Finally (3.17) follows when we
collect (3.19)–(3.20), and use (3.15). Indeed, T in the proof can be replaced with
an arbitrary time. �

Proposition 3.4. If 0 < δ < T/2 for any 0 < h < δ/2 we have

T −δ∫
δ

∫
Ωε

|uτ (x, t+ h) − uτ (x, t)|2 dx dt ≤ γ
(√

h+
√
σ

ε
h
)
. (3.21)

Here γ depends on the constants in (3.15), (3.16) and on δ.

Proof. Let δ ∈ (0, T/2), 0 < h < δ/2, and define

φh(x, t) = −ζ(t)
t+h∫
t

uτ (x, s) ds ,

where ζ ∈ C1
0(δ/2, T − δ/2) is a nonnegative function such that ζ = 1 in (δ, T − δ)

and |ζ ′| ≤ γ/δ. Here for any v = v(x, t) we denote by ṽ(x, t) = v(x, t+ h) its time
shift.
Testing equation (3.6) written at times t and t+ h with φh we get on subtracting
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the two integral formulations

−
T∫

0

∫
Ωε

[
ãεũτ − aεuτ

] ∂φh

∂t
−

T∫
0

∫
Ωε

[
ãε

t ũτ − aε
tuτ

]
φh

+
T∫

0

∫
Ωε

Ãτ ∇ ũτ · ∇φh −
T∫

0

∫
Ωε

Aτ ∇uτ · ∇φh =

T∫
0

∫
Γε

[α̃στ ũτ − αστuτ ]φh +
T∫

0

∫
Ωε

[f̃ − f ]φh . (3.22)

The first integral on the left hand side of (3.22) equals

T∫
0

∫
Ωε

[
ãεũτ − aεuτ

]ζ ′
t+h∫
t

uτ (x, s) ds+ ζ[ũτ − uτ ]

 =
T∫

0

∫
Ωε

[ũτ − uτ ]2ζaε

+
T∫

0

∫
Ωε

[
ãεũτ − aεuτ

]
ζ ′

t+h∫
t

uτ (x, s) ds+
T∫

0

∫
Ωε

ũτ [ũτ − uτ ]ζ[ãε − aε] . (3.23)

The first term on the right hand side of (3.23) essentially is the one estimated in
the statement. The second integral there can be majorized by means of Hölder
inequality by

γ ∥ζ ′∥∞

∫
Ωε

T −δ/2∫
δ/2

|ũτ |2 + |uτ |2


1
2
∫

Ωε

T −δ/2∫
δ/2

∣∣∣∣∣∣
t+h∫
t

uτ (x, s) ds

∣∣∣∣∣∣
2

1
2

≤ γ ∥uτ ∥2
L2(Ωε

T )

√
h . (3.24)

The third term on the right hand side of (3.23) is estimated, invoking the time
regularity of a, by

γ
∫

Ωε

T −δ/2∫
δ/2

|ũτ |
(

|ũτ | + |uτ |
) ∣∣∣ãε − aε

∣∣∣ ≤ γ ∥uτ ∥2
L2(Ωε

T ) h . (3.25)

The other integrals over Ωε
T appearing in (3.22) can be estimated by

γ
(
∥uτ ∥2

L2(Ωε
T ) + ∥∇uτ ∥2

L2(Ωε
T ) + ∥f∥2

L2(Ωε
T )

)√
h .

This follows from routine reasoning, but see however [3]. We deal in greater detail
with the boundary integral in (3.22). We use the maximum principle for uτ ,
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obtaining∣∣∣∣∣∣
T∫

0

∫
Γε

[α̃στ ũτ − αστuτ ]φh

∣∣∣∣∣∣ ≤ γ

 T −δ/2∫
0

∫
Γε

∣∣∣∣√α̃στ ũτ

∣∣∣∣2 + |
√
αστuτ |2


1
2

×

 T −δ/2∫
0

∫
Γε

∣∣∣∣∣∣
[√

α̃στ +
√
αστ

] t+h∫
t

|uτ (x, s)| ds

∣∣∣∣∣∣
2

1
2

≤ γ ∥
√
αστuτ ∥L2(Γε×(0,T )) M(σ)

1
2 |Γε|

1
2 h .

(3.26)

We have used the fact that |Aσ,τ | ≤ γσ. Finally recalling that |Γε| ≤ γ/ε and
collecting all the estimates above we get (3.21). �

Remark 3.5. By using estimates (3.15) and (3.21) we can prove the strong conver-
gence of T ∗

τ (uτ ) in L2(ΩT ×Q∗), up to a subsequence. �

Lemma 3.6. There exists an extension uτ ∈ L2(0, T ;W 1,2(Ω)) of uτ , and a u ∈
L2(0, T ;W 1,2(Ω)) such that, up to a subsequence,

uτ → u , strongly in L2(ΩT ) , (3.27)

∇uτ ⇀ ∇u , weakly in L2(ΩT ) . (3.28)

Proof. We may use the linear and continuous extension operator P as in the proof
of [15, Lemma 2.1]; the extension uτ (t) = P(uτ (t)) of uτ in Ω satisfies the estimates

∥P(uτ (t))∥L2(Ω) = ∥uτ (t)∥L2(Ω) ≤ γ ∥uτ (t)∥L2(Ωε) ,

∥∇(P(uτ (t)))∥L2(Ω) = ∥∇uτ (t)∥L2(Ω) ≤ γ ∥∇ uτ (t)∥L2(Ωε) ,

where γ is a constant independent of ε. Time compactness for uτ follows from
the estimates above, the linearity of the extension operator P and Proposition 3.4.
Indeed, using the same notation as therein, we get

T −δ∫
δ

∫
Ω

|P(uτ )(t+ h) − P(uτ )(t)|2 =
T −δ∫
δ

∫
Ω

|P(uτ (t+ h) − uτ (t))|2

≤ γ

T −δ∫
δ

∫
Ωε

|uτ (t+ h) − uτ (t)|2 ≤ γ
(√

h+
√
σ

ε
h
)
.

Then by the standard theory of Sobolev spaces we get the strong convergence of
uτ in L2(ΩT ), by extracting a subsequence if necessary. The weak convergence of
the space gradients follows simply by the boundedness of P and by (3.15). �

The introduction of the extension operator is motivated by the following
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Proposition 3.7. We may extract a subsequence of uτ such that

T ∗
τ (uτ ) ⇀ u , weakly in L2(ΩT ,W

1,2(Q∗)) (3.29)

and u ∈ L2(0, T ;W 1,2(Ω)).

Proof. Convergence (3.29) is a consequence of Proposition 2.14 with θτ = 1/
√
τε

applied to uτ . To prove that u ∈ L2(0, T ;W 1,2(Ω)), we consider an extension of
uτ to ΩT as in Lemma 3.6, so that invoking first (3.29) we have

u = weak L2- lim
τ→0

T ∗
τ (uτ ) = weak L2- lim

τ→0
Tτ (uτ )|ΩT ×Q∗

= strong L2- lim
τ→0

Tτ (uτ )|ΩT ×Q∗ = u|ΩT ×Q∗ = u . (3.30)

The last two equalities in (3.30) are a consequence of Proposition 2.11, which
implies that u = u(x, t). Here we have used the strong convergence of uτ , so that
we may apply (2.15) to infer that the limit of Tτ (uτ )|ΩT ×Q∗ can be actually taken
in the strong sense. We conclude that u = u ∈ L2(0, T ;W 1,2(Ω)). �

Remark 3.8. The result in Proposition 3.7 allows us to apply Theorems 2.21 and
2.24 to uτ . �

4. The limit problem in the case σ ≤ γε

Recall that by virtue of Proposition 3.3 we may choose θτ = 1√
τε
, so that (2.19)

and (2.21) are satisfied owing to (3.1). In this section we assume

lim
ε→0

σ

ε
= β ∈ [0,∞) , (4.1)

and consider two different subcases.

4.1. The case of fast oscillations. We consider here the case when

τθτ

ε
=
(
τ

ε3

) 1
2

≤ C . (4.2)

Assume throughout that there exist bounded functions A0 : ΩT × Q∗ → RN2
,

b : ΩT × Y ∗ → R such that

T ∗
τ (Aτ ) → A0 , strongly in L1(ΩT ×Q∗) , (4.3)

T ∗
τ (aε) → b , strongly in L1(ΩT × Y ∗) . (4.4)

We also need to assume

T ∗
τ (aε

t) → bt , strongly in L1(ΩT × Y ∗) , (4.5)

and the convergence at time t = 0

T ∗
τ (aε(0)) ⇀ b(0) , weakly in L2(Ω × Y ∗) . (4.6)
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Remark 4.1. Actually the only classes of functions for which the convergences
(4.3)–(4.4) are known to hold in this context, are sums of the following cases:
ϕ = f1(x, t)f2(y, s), ϕ ∈ Lp(Q;C(ΩT )), ϕ ∈ Lp(ΩT ;C(Q)). In all such cases
T ∗

τ (ϕτ ) → ϕ strongly in Lp(ΩT ×Q). See [2, 11, 13]. The other requirements obey
a similar remark. �
Theorem 4.2. Let (4.1)–(4.6) hold true. Let uτ be the solution of problem (3.6)–
(3.9); then there exist u ∈ L2(0, T,W 1,2(Ω)) and û ∈ L2(ΩT ,W

1,2
per(Y ∗)) so that

MY ∗(û) = 0 and

T ∗
τ (uτ ) ⇀ u , weakly in L2(ΩT ,W

1,2(Q∗)) , (4.7)

T ∗
τ (∇uτ ) ⇀ ∇u+ ∇y û , weakly in L2(ΩT ×Q∗) , (4.8)

τ

ε
T ∗

τ

(
∂uτ

∂t

)
⇀ 0 , weakly in L2(ΩT ×Q∗) . (4.9)

The pair (u, û) is the solution of the problem

1
|Y ∗|

∫
ΩT

∫
Y ∗

{
−u(bφ)t + MΣ(A0) (∇x u+ ∇y û) · (∇x φ+ ∇y Ψ)

}
dx dt dy+

βmα
|∂B|
|Y ∗|

∫
ΩT

uφ dx dt =
∫

ΩT

fφ dx dt+
∫
Ω

b(x, 0)u0(x)φ(x, 0) dx , (4.10)

for all φ ∈ W 1,2(ΩT ) with φ = 0 on ∂Ω × (0, T ) and on t = T , and Ψ ∈
L2(ΩT ,W

1,2
per(Y ∗)).

Proof. Here we may assume in any case that u is the limit function introduced in
Proposition 3.7, so that (4.7) holds true, at least for a subsequence.
If τ/ε3 → 0, on recalling the estimate (3.17) and Remark 3.8 we may apply The-
orem 2.24. In this way we infer the existence of û as in (2.42)–(2.44), so that
û = û(x, t, y).
If τ/ε3 ≤ C so that (2.40) holds true, we use Theorem 2.24 to obtain a function û
still satisfying (2.42) and (2.43). In order to show that û is independent of s even
in this case, we reason as follows. We test equation (3.6) with the function

τ

ε
φ(x, t)ψ

(
x

ε
,
t

τ

)
,

where φ ∈ C∞(ΩT ) with the support of φ bounded away from ∂Ω × [0, T ] and
Ω × {T}, and ψ ∈ W 1,2

per(Q∗). We calculate

τ

ε

∫
Ωε

T

aε∂uτ

∂t
φψ dx dt+ τ

ε

∫
Ωε

T

Aτ ∇uτ · (∇φ)ψ dx dt+ τ

ε2

∫
Ωε

T

Aτ ∇uτ (∇y ψ)φ dx dt

+ τ

ε

∫
Γε

T

αστuτφψ dσ dt = τ

ε

∫∫
Ωε

T

fφψ dx dt . (4.11)
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Clearly, with the exception of the first one, all the terms in (4.11) are vanishingly
small as τ → 0; we remark explicitly that the last term on the left hand side is
bounded by γτ/ε2. On unfolding the first integral we therefore get

τ

ε

∫
ΩT

∫
Q∗

T ∗
τ (aε)T ∗

τ

(
∂uτ

∂t

)
T ∗

τ (φ)T ∗
τ (ψ) dx dt dy ds → 0 . (4.12)

Using (2.43) we obtain in the limit exactly ∂û
∂s

= 0.
Next we use φ as above as a test function for problem (3.6)–(3.9). Integrating by
parts in Ωε

T we get

−
∫

Ωε
T

aεuτφt dx dt−
∫

Ωε
T

aε
tuτφ dx dt+

∫
Ωε

T

Aτ ∇uτ · ∇φ dx dt

+
∫

Γε
T

αστuτφ dσ dt =
∫

Ωε
T

fφ dx dt+
∫

Ωε

aε(x, 0)uτ
0(x)φ(x, 0) dx . (4.13)

Unfolding we get

−
∫

ΩT

∫
Q∗

T ∗
τ (aε)T ∗

τ (uτ )T ∗
τ (φt) dx dt dy ds−

∫
ΩT

∫
Q∗

T ∗
τ (aε

t)T ∗
τ (uτ )T ∗

τ (φ) dx dt dy ds

+
∫

ΩT

∫
Q∗

T ∗
τ (Aτ )T ∗

τ (∇uτ )T ∗
τ (∇φ) dx dt dy ds

+ σ

ε

∫
ΩT

∫
∂B

∫
Σ

T b
τ,σ(αστ )T b

τ,σ(uτ )T b
τ,σ(φ) dx dt dσy dr =

∫
Ωε

T

fφ dx dt

+
∫
Ω

∫
Y ∗

T ∗
τ (aε(x, 0))T ∗

τ (uτ
0(x))T ∗

τ (φ(x, 0)) dx dy +Rτ , (4.14)

where Rτ = o(1), as τ → 0. Notice that the last integral on the left hand side
of (4.14) is in principle calculated over the domain Σ/σ of the ultra-micro time
variable. However as a matter of fact, T b

τ,σ(αστ ) = 0 outside of Σ, owing to the
definition of αστ .
Then, in the case β > 0, we take the limit τ → 0, considering the strong con-
vergence of uτ

0 and also exploiting Proposition 2.14, as well as Proposition 2.20.
Indeed in the case β > 0 (2.35) with p = 2 is clearly fulfilled. Thus we get

−
∫

ΩT

∫
Q∗

u(bφ)t dx dt dy ds+
∫

ΩT

∫
Q∗

A0(∇x u+ ∇y û) · ∇φ dx dt dy ds

+β|∂B|
∫

ΩT

∫
Σ

α(r)uφ dx dt dr = |Y ∗|
∫

ΩT

fφ dx dt+ |Y ∗|
∫
Ω

b(x, 0)u0(x)φ(x, 0) dx .

(4.15)
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We have used also Proposition 2.13 for φ. If β = 0 we obtain the same result since
the integral multiplied by σ/ε in (4.14) is uniformly bounded. The macroscopic
part of (4.10) follows when we note that all the functions in (4.15) are independent
of s and r, excepting A0 and α(r), and of course we divide by |Y ∗|. By density
the just proved integral equation holds for φ ∈ W 1,2(ΩT ) vanishing on ∂Ω and for
t = T .
Finally in order to prove the microscopic part of (4.10) we use as a test function

εφ(x, t)ψ
(
x

ε

)
,

with φ as above and ψ ∈ W 1,2
per(Y ∗). We obtain

− ε
∫

Ωε
T

uτ (aεφ)tψ + ε
∫

Ωε
T

Aτ ∇uτ · (∇φ)ψ +
∫

Ωε
T

Aτ ∇uτ · (∇y ψ)φ

+ ε
∫

Γε
T

αστuτφψ = ε
∫

Ωε
T

fφψ + ε
∫

Ωε

aε(x, 0)uτ
0(x)φ(x, 0)ψ

(
x

ε

)
. (4.16)

All the terms in (4.16) clearly tend to 0, with the possible exception of the third
and fourth ones on the left hand side. These can be unfolded leading us to∫

ΩT

∫
Q∗

T ∗
τ (Aτ )T ∗

τ (∇uτ )T ∗
τ (∇y ψ)T ∗

τ (φ) dx dt dy ds

+ ε
σ

ε

∫
ΩT

∫
∂B

∫
Σ

T b
τ,σ(αστ )T b

τ,σ(uτ )T b
τ,σ(φ)T b

τ,σ(ψ) dx dt dσy dr = Rτ . (4.17)

We apply again (2.42) to the first term in (4.17), while it is now clear that the
second one there vanishes in the limit. Hence we conclude∫

ΩT

∫
Y ∗

MΣ(A0) (∇u+ ∇y û) · (∇y ψ)φ dx dt dy = 0 . (4.18)

On invoking the density of the tensor product C∞(ΩT )⊗W 1,2
per(Y ∗) in L2(ΩT ,W

1,2
per(Y ∗))

we see that (4.18) holds for every Ψ ∈ L2(ΩT ,W
1,2
per(Y ∗)).

Uniqueness of solution can be proven by means of standard arguments, exploit-
ing the linearity of the problem (see Theorem 4.2 in [3]). Notice that uniqueness
implies the convergence of the whole sequence uτ . �
Next we give a more precise formulation of (4.10). Let us denote the elements of
the limit matrix in (4.3) by

A0(x, t, y, s) = (bi,j(x, t, y, s))1≤i,j≤N ,

then, as usual in literature, we factorize

û(x, t, y) = −∇xu(x, t) ·
N∑

i=1
χi(x, t, y)ei , (x, t, y) ∈ ΩT × Y ∗ , (4.19)
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where χi for 1 ≤ i ≤ N satisfy MY ∗(χi) = 0. By using (4.19) in (4.10) with φ = 0
we find that χi are the Y -periodic solutions of the problem

N∑
j,k=1

∂

∂yj

(
MΣ(bj,k)(x, t, y)∂(χi − yi)

∂yk

)
= 0 in ΩT × Y ∗, (4.20)

N∑
j,k=1

MΣ(bj,k)(x, t, y)∂(χi − yi)
∂yk

· ν = 0 on ΩT × ∂B, (4.21)

χi are Y -periodic. (4.22)

Then considering (4.10) with Ψ = 0 and using again (4.19), we find that u solves

MY ∗(b)ut − div
(
MY ∗

(
MΣ(A0)

(
I − [∇yχ1| · · · |∇yχN ]

))
∇u

)
+ βmα

|∂B|
|Y ∗|

u = f , (x, t) ∈ ΩT , (4.23)

and

u(x, t) = 0 , (x, t) ∈ ∂Ω × (0, T ) , (4.24)

u(x, 0) = u0 , x ∈ Ω . (4.25)

4.2. The case of slow oscillations. We consider here the case when (4.2) does
not hold. Clearly we may assume

lim
τ→0

τ

ε3 = ∞ . (4.26)

Even if τ/ε3 does not stay bounded in the limit we can still get a limit problem,
but we need to restrict ourselves to the case

Aτ (x, t) = Aτ
(
x, t,

x

ε

)
, Aτ = Aτ (x, t, y) . (4.27)

We also assume that there exist bounded functions A0 : ΩT × Y ∗ → RN2
, b :

ΩT ×Y ∗ → R such that (4.3)–(4.6) hold true. The main difference with respect to
the case studied in Subsection 4.1 is that the microscopic function ũ does depend
on s in this setting. See Remarks 4.5 and 4.6.

Theorem 4.3. Let (4.1), (4.3)–(4.6) and (4.26) hold true. Let uτ be the solution
of problem (3.6)–(3.9). Then there exist u ∈ L2(0, T,W 1,2(Ω)) and ũ ∈ L2(ΩT ×
Σ,W 1,2

per(Y ∗)) with MY ∗(ũ) = 0 so that up to subsequences

T ∗
τ (uτ ) ⇀ u , weakly in L2(ΩT ,W

1,2(Q∗)) , (4.28)

T ∗
τ (∇uτ ) ⇀ ∇u+ ∇y ũ , weakly in L2(ΩT ×Q∗) . (4.29)
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If we define ũΣ(x, t, y) = MΣ(ũ)(x, t, y), the pair (u, ũΣ) is the solution of the
problem

1
|Y ∗|

∫
ΩT

∫
Y ∗

{
−u(bφ)t + A0 (∇x u+ ∇y ũΣ) · (∇x φ+ ∇y Ψ)

}
dx dt dy

+ βmα
|∂B|
|Y ∗|

∫
ΩT

uφ dx dt =
∫

ΩT

fφ dx dt+
∫
Ω

b(x, 0)u0(x)φ(x, 0) dx , (4.30)

for φ ∈ W 1,2(ΩT ) with φ = 0 on ∂Ω × (0, T ), φ(x, T ) = 0 for x ∈ Ω, and
Ψ ∈ L2(ΩT ,W

1,2
per(Y ∗)).

Proof. Here we may assume that u is the limit function introduced in Proposi-
tion 3.7 with θτ = 1/

√
τε, so that (4.28) holds true. We may apply Theorem 2.21

in order to obtain (4.29).
Next we reason as in the part of the proof of Theorem 4.2 following (4.13), we
obtain

−
∫

ΩT

∫
Q∗

u(bφ)t dx dt dy ds+
∫

ΩT

∫
Q∗

A0(∇u+ ∇y ũ) · ∇φ dx dt dy ds

+β|∂B|
∫

ΩT

∫
Σ

α(r)uφ dx dt dr = |Y ∗|
∫

ΩT

fφ dx dt+ |Y ∗|
∫
Ω

b(x, 0)u0(x)φ(x, 0) dx ,

(4.31)

for all φ ∈ C∞(ΩT ) with suppφ bounded away from ∂Ω × (0, T ) and t = T . Since
in (4.31) u and φ, as well as A0, do not depend on the microscopic time variables,
we readily obtain from it the macroscopic part of (4.30).
Similarly, for φ as above and ψ ∈ W 1,2

per(Y ∗), we find reasoning as in Theorem 4.2∫
ΩT

∫
Q∗

A0 (∇u+ ∇y ũ) · (∇y ψ)φ dx dt dy ds = 0 , (4.32)

and on integrating over Σ this amounts essentially to the microscopic part of
(4.30). On invoking the density of the tensor product C∞(ΩT ) ⊗ W 1,2

per(Y ∗) in

L2(ΩT ,W
1,2
per(Y ∗)) we see that (4.32) holds for every Ψ ∈ L2(ΩT ,W

1,2
per(Y ∗)).

Uniqueness of solution can be proven as in Theorem 4.2. Notice that this does not
imply the uniqueness of the function ũ. Indeed, up to subsequences, in the limit
we might obtain different functions satisfying (4.29) and having null Y –average; all
these functions have also the same Σ–average, which is part of the unique solution
of (4.30). �
Remark 4.4. Notice that uniqueness of the solution implies that (4.28) holds true
for the whole sequence uτ . �
Remark 4.5. We note that the result in Theorem 4.3 holds true also in the case of
fast oscillations defined by (4.2) that is (2.40). However in that case we can take
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advantage of estimate (3.17) and of Theorem 2.24, obtaining the stronger result
stated in Theorem 4.2. �

Remark 4.6. We remark that we can obtain the limit relations (4.31) and (4.32)

even if Aτ (x, t) = Aτ
(
x, t, x

ε
, t

τ

)
. However in this case we cannot appeal to (2.43) or

(2.44) in Theorem 2.24. Then ũ may depend on s and in principle one would like to
choose also the testing function ψ depending on s in the proof of Theorem 4.3. But
this is impossible since the micro–time derivative would yield a term not treatable
in the limit. This is why we introduce the averaged ũΣ in (4.30), which is possible
under assumption (4.27). �

As for the case of fast oscillations we give a more precise formulation of (4.30). In
this case we factorize

ũΣ(x, t, y) = −∇xu(x, t) ·
N∑

i=1
χi(x, t, y)ei , (x, t, y) ∈ ΩT × Y ∗ , (4.33)

where χi for 1 ≤ i ≤ N satisfy MY ∗(χi) = 0. By using (4.33) in (4.30) and
choosing alternatively φ = 0 and Ψ = 0, we find that χi and u satisfy again
(4.20)–(4.25). The only difference with the case of fast oscillations is that in this
one A0 = A0(x, t, y) so that MΣ(A0) = A0 and MΣ(bi,j) = bi,j.

5. The case of σ/ε → ∞.

In this section we assume

lim
τ→0

σ

ε
= ∞ . (5.1)

Then the limiting behavior of the sequence {uτ } is trivial in the following sense.

Theorem 5.1. Let (5.1) hold true. Then the sequence {uτ } of solutions to (3.6)–
(3.9) satisfies as τ → 0

T ∗
τ (uτ ) → 0 , strongly in L2(ΩT ×Q∗) . (5.2)

Proof. Since we may appeal to Proposition 3.7 we only need show that u = 0.
Let us choose an α0 > 0 and an interval K ⊂ (0, 1) such that

α(r) ≥ α0 > 0 , r ∈ K . (5.3)

Then we go back to (3.15). Unfolding the boundary integral there we get

γ ≥ σ

ε

∫
ΩT

∫
∂B

∫
Σ

α(r)T b
τ,σ(uτ )2(x, t, y, r) dx dt dσy dr

≥ α0
σ

ε

∫
ΩT

∫
∂B

∫
K

T b
τ,σ(uτ )2(x, t, y, r) dx dt dσy dr .

(5.4)



26

Then owing to Proposition 2.20, taking into account that (5.1) implies (2.35) with
p = 2, on using (5.4) we get∫

ΩT

∫
∂B

∫
K

u(x, t)2 dx dt dσy dr

≤ lim
τ→0

∫
ΩT

∫
∂B

∫
K

T b
τ,σ(uτ )2(x, t, y, r) dx dt dσy dr ≤ lim

τ→0
γ
ε

σ
= 0 . (5.5)

�
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RAIRO-Modélisation mathématique et analyse numérique, 22(4):561–607, 1988.

[21] O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva. Linear and quasi-linear equations
of parabolic type. volume 23. American Mathematical Society, 1968.

[22] J.L. Lions. Asymptotic expansions in perforated media with a periodic structure. Rocky
Mountain J. Math, 10(1):125–140, 1980.

[23] L. Tartar. The general theory of homogenization. A personalized introduction, volume 7 of
Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin, 2009.

[24] A.M.J. VanDongen. K channel gating by an affinity-switching selectivity filter. Proceedings
of the National Academy of Sciences of the United States of America, 101(9):3248–3252,
2004.


