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A B S T R A C T

In this communication, the closure formulas of von Kármán-Howarth and Corrsin equations are obtained
through the Liouville theorem and the hypothesis of homogeneous isotropic incompressible turbulence. Such
closures, based on the concept that, in fully developed turbulence, contiguous fluid particles trajectories con-
tinuously diverge, are of non-diffusive nature, and express a correlations spatial propagation phenomenon be-
tween the several scales which occurs with a propagation speed depending on length scale and velocity standard
deviation. These closure formulas coincide with those just obtained in previous works through the finite scale
Lyapunov analysis of the fluid act of motion. Here, unlike the other articles, the present study does not use the
Lyapunov theory, and provides the closures showing first an exact relationship between the pair spatial corre-
lations calculated with the velocity distribution function and those obtained using the material separation line
distribution function. As this analysis does not adopt the Lyapunov theory, this does not need the definition and/
or the existence of the Lyapunov exponents. Accordingly, the present proof of the closures results to be more
general and rigorous than that presented in the other works, corroborating the previous results. Finally, the
conditions of existence of invariants in isotropic turbulence are studied by means of the proposed closures. In the
presence of such invariants and self-similarity, the sole evolution of velocity and temperature standard devia-
tions and of the correlation scales is shown to be adequate to fairly describe the isotropic turbulence.

1. Introduction

The von Kármán-Howarth and Corrsin equations are evolution
equations of longitudinal velocity and temperature correlations in
homogeneous isotropic turbulence, respectively. Both the equations,
being unclosed, need the adoption of proper closures [1–4]. In detail,
such equations include K and G, terms due, respectively, to inertia
forces and to temperature convective effect. These terms, directly re-
lated to the longitudinal triple velocity correlation and to the triple
velocity-temperature correlation, require an adequate modeling which
must take into account that inertia forces and convective effect do not
modify average kinetic and thermal energies. In addition K satisfies the
detailed conservation of energy [2] following which the exchange of
energy between wave-numbers is only linked to the amplitudes of such
wave-numbers and of their difference [5]. Although numerous articles
were written which concern the closures of the autocorrelation equa-
tions in the Fourier domain [6–14], few articles address the closures of
K and G in the physical space [15–18]. These latter, being based on the
eddy-viscosity concept, describe diffusive closure models. In such fra-
mework, Hasselmann [15] proposed, in 1958, a closure model which

expresses K through a complex expression, and Millionshtchikov de-
veloped a closure model which exhibits an empirical constant [16].
Although both these models propose two closures that in particular
conditions adequately describe the energy cascade, in general, these do
not satisfy some physical conditions. More recently, Oberlack and Pe-
ters [17] suggested a closure that exhibits a free parameter. The authors
show that, for a proper choice of such parameter, the closure re-
produces the energy cascade providing results in agreement with the
experiments [17]. Thereafter, Khabirov and Unal [19,20] studied the
non-closed von Kármán-Howarth equation by group theoretical
methods and suggested solutions to the closure problem of isotropic
turbulence, especially for the decay of the turbulence.

For what concerns the Corrsin equation, Baev and Chernykh [18]
(and references therein) analyzed velocity and temperature correlations
by means of a closure model based on the gradient hypothesis which
relates pair longitudinal second and third order correlations, by means
of empirical coefficients. Although other works regarding the von
Kármán-Howarth and Corrsin equations were written [21–28], to the
author’s knowledge a physical-mathematical analysis based on basic
statistical principles which lead to the analytical closures of these
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equations has not received due attention. Therefore, the purpose of this
article is to propose closures of the von Kármán-Howarth and Corrsin
equations by means of a theory which does not adopt the eddy-viscosity
paradigm.

Unlike the other works, the proposed analysis provides nondiffusive
closures in the physical space which are based on the Liouville theorem,
and on the concept that, due to bifurcations in developed turbulence,
contiguous fluid particles trajectories continuously diverge.
Specifically, the proposed closures are obtained through the rate of
material separation line distribution function in isotropic turbulence
whose analytical form is achieved by means of the Liouville theorem.
Such closures correspond to a spatial propagation mechanism of the
correlations between the scales which happens with a propagation
speed depending on length scale and velocity standard deviation. These
formulas coincide with those just obtained in Refs. [29–31] where the
author shows that these closures adequately describe the energy cas-
cade phenomenon, reproducing negative skewness of velocity differ-
ence in very good agreement with the literature data [32–37], pro-
viding the Kolmogorov law and temperature spectra in line with the
theoretical argumentation of Kolmogorov, Obukhov-Corrsin and
Batchelor [38–40], with experimental results [41,42], and with nu-
merical data [43,44].

Unlike the previous articles [29–31,45], which derive such closures
through finite scale Lyapunov theory and Liouville theorem, the present
analysis does not adopt the Lyapunov theory. The present formulation
only uses Liouville theorem and distribution function rate of the fluid
placement.

Specifically, the present proof of the closures is based on the fol-
lowing elements:

a) As the consequence of bifurcations properties and fully developed
chaos hypothesis, the material separation lines distribution function
is assumed to be statistically independent of the velocity field dis-
tribution function.
b) The material line distribution function is expressed by means of
the hypotheses of fluid incompressibility and statistical isotropy.
c) Due to statistical isotropy, an exact relation is first obtained be-
tween spatial correlations calculated using the distribution function
of material line and those obtained by means of the velocity field
distribution function. This relation, necessary for obtaining the
proposed closures, represents a novelty of the present work with
respect to the previous ones where such relationship was assumed to
be valid in an intuitive way.
d) Next, thanks to their properties of maintaining unaltered average
kinetic and thermal energies, K and G are recognized to be only due
to the rate of separation lines distribution function, where the latter
is formally expressed by means of the Liouville theorem.

Hence, the present analysis does not require the Lyapunov theory
and results to be more general and rigorous than the formulations
presented in [29–31,45], showing that the Lyapunov theory is a suffi-
cient analytical tool for achieving the same formulas, corroborating the
previous results.

Thereafter, the conditions of existence of invariants are analyzed
using the proposed closures, with particular reference to the integrals of
Loitsianskii and of Saffman-Birkhoff [46,47] and to self-similarity
produced by the same closure formulas. We show that, in the presence
of self-similarity and invariants, the sole evolution of velocity and
temperature standard deviations and of the correlation scales provides
a fair description of isotropic turbulence.

We conclude this section by remarking the way in which the pro-
posed closures are obtained. These formulas are not achieved by pas-
sing directly from the Navier-Stokes and heat equations to the corre-
lations equations (dashed line, see Fig. 1) for instance by means of
phenomenological hypotheses. Such closures are here determined ac-
cording to specific analytical formulation and hypotheses reported in

the boxes 1), 2), 3) of the flowchart (solid line) and presented in this
work.

2. Background

This background has the purpose to summarize the link between
Navier-Stokes equations bifurcations, fluctuations of velocity and tem-
perature fields, and fluid particles trajectories divergence, which is
useful for the present analysis. To this end, consider now the Navier-
Stokes equations and heat equation

∇ = ∂
∂

= −∇ −
∇

+ ∇
t

p
ρ

νu u u u u· 0,x x
x

x
2

(1)

∂
∂

= − ∇ + ∇
t

χuϑ · ϑ ϑx x
2

(2)

=u u t x( , ), =p p t x( , ) and = t xϑ ϑ( , ) are velocity, pressure and
temperature fields, ν and =χ kρ C/ p are fluid kinematic viscosity and
thermal diffusivity, being =ρ const, k and Cp density, fluid thermal
conductivity and specific heat at constant pressure, respectively. In this
study ν and χ are supposed to be independent from the temperature,
thus Eq. (1) is autonomous with respect to Eq. (2), whereas Eq. (2) will
depend on Eq. (1).

The bifurcations of the partial differential system (1) and (2) are
propely defined in line with Refs. [31,45], reducing first Eqs. (1) and
(2) to the symbolic form of operators. In detail, the pressure is elimi-
nated in the momentum Navier-Stokes equations through the continuity
equation, therefore Eqs. (1) and (2) formally read as follows

= νu N u̇ ( ; ), (3)

= χM uϑ̇ ( , ϑ; ) (4)

wherein N is a quadratic operator which includes, among the other
terms, the integral nonlinear operator which provides∇ px as functional
of the velocity field, being

Fig. 1. Scheme of the proposed analysis.
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The pressure, being a functional of u, produces nonlocal effects [48],
and the Navier-Stokes equations, reduced to be an integro-differential
equation, is formally given by Eq. (3) in the symbolic form of operators.
For what concerns Eq. (4), it is the evolution equation of ϑ, where M is
a linear operator of ϑ.

At this stage of the present study, Eqs. (3) and (4) can be dealt with
according to the analysis of Ref. [49] where the authors supposed that
the infinite dimensional space of velocity field u{ } can be replaced by a
finite-dimensional manifold. Hence, Eqs. (3) and (4) can be reduced to
be one equation of the kind studied by Ruelle and Takens in Ref. [49],
and the classical bifurcation theory of ordinary differential equations
[49–51] can be formally applied to Eq. (3) and (4). This can be con-
sidered to be valid in the limits of the formulation proposed in Ref.
[49]. As M is linear with respect to ϑ, transition and turbulence are
caused by the bifurcations of Eq. (3), where −ν 1 plays the role of the
control parameter. Such bifurcations occur in the points of u{ } where
the Jacobian ∇ Nu exhibits at least an eigenvalue with zero real part
(NS-bifurcations), and this occurs when

∇ =Ndet( ) 0.u (6)

Such bifurcations are responsible for multiple velocity fields ̂u which
correspond to the same field u̇. In fact, during the fluid motion, mul-
tiple solutions ̂u and ̂ϑ can be determined, at each instant, through
inversion of Eq. (3),

̂ ̂ ̂= = =− −ν ν χu N u u N u M u̇ ( ; ), ( ̇ ; ), ϑ (ϑ̇, ; )1 1 (7)

One single Navier-Stokes bifurcation, which produces doubling of the
values of u, also causes doubling of all the characteristics associated
with velocity and temperature fields, with particular reference to their
characteristic scales [45]. Therefore, in fully developed turbulence, the
number of the Navier-Stokes equations bifurcations diverges, and ve-
locity and temperature fields and their length scales are continuously
distributed [45].

On the other hand, the fluid volume changes its placement and
deforms its shape according to

= = + −x x ξ x ξ xt t tu u u̇ ( , ), ̇ ( , ) ( , ), (8)

Eqs. (8) provide fluid displacement evolution and relative kinematics,
where x t( ) and = +y x ξt t t( ) ( ) ( ) are two arbitrary fluid particles
trajectories, and ξ is the corresponding separation vector. One point of
the physical space is of bifurcation for the velocity field (kinematic
bifurcation) if ∇ tu x( , )x has at least an eigenvalue with zero real part,
and this happens when its determinant vanishes, i.e.

∇ =tu xdet( ( , )) 0.x (9)

Now, the Navier-Stokes bifurcations have significant implications for
what concerns the relative kinematics of velocity field. Specifically, Ref.
[31,45] show that, the continuous doubling of velocity field values and
of the corresponding scales cause non smooth spatial variations of

>t tu x( , ), 0, which in turn deternine very frequent kinematic bi-
furcations, and that, in fully developed turbulence, the fluctuations of ξ
are much more rapid and statistically independent with respect to the
time variations of velocity field. Due to the fluid incompressibility, two
fluid particles will describe chaotic trajectories, x t( ) and

= +x ξt t ty( ) ( ) ( ), which diverge with each other with a local rate of
divergence quantified by the local velocity longitudinal component U

= ξ
ξ

U
ξ

·̇
(10)

Because of its definition (10) and according to the analysis of Ref.
[31,45], U is a fluctuating quantity much faster than u and ϑ, whose
distribution function directly arises from the statistics of ξ .

Accordingly, in fully developed turbulence, the time-scales of ξ are

expected to be completely separated from those associated with u and ϑ
in the sense that ξ and (u, ϑ) exhibit chaotic behavior and their power
spectra are supposed to be located in frequency intervals which are
completely separated [52]. Thus, ξ and (u, ϑ) are considered to be
statistically uncorrelated. This means that the effect of the trajectories
divergence is much more rapid and statistically uncorrelated with re-
spect to the variations of the velocity field. This property is supported
by the arguments presented in Refs. [53,54] (and references therein),
where the author observes the that: a) The fields xtu( , ), (and therefore
also + −x ξ xt tu u( , ) ( , )) produce chaotic trajectories also for rela-
tively simple mathematical structure of the right-hand sides xtu( , )
(also for steady fields!). b) The flows given by xtu( , ) (and therefore
also + −x ξ xt tu u( , ) ( , )) stretch and fold continuously and rapidly
causing an effective mixing of the particles trajectories.

3. Distribution functions of x ξu, ϑ, , and U

According to this analysis, xu, ϑ, and ξ are fluid state variables,
thus, in the framework of Liouville theorem for nonlinear equations
[55,56], the distribution function of these quantities, say P, follows the
Liouville equation associated with Eqs. (3) and (4)

∂
∂

+ + + ∂
∂

+ ∂
∂

=
x

x
ξ

ξP
t

δ
δ

P δ
δ

P P P
u

u·( ̇ )
ϑ

·( ϑ̇) ·( ̇) ·( )̇ 0
(11)

where, following the notation of Eqs. (3) and (4), δ δu/ and δ δ/ ϑ are
functional partial derivatives with respect to u and ϑ, respectively and
∂ ∂∘( / )· stands for the divergence with respect to ∘. In line with the
previous sections and with Refs. [31,57,45], P can be factorized as
follows

=x ξ x ξP t F t P tu u( , , ϑ, , ) ( , , ϑ) ( , , )ξ (12)

being F and Pξ the distribution functions of (u, ϑ), and of (x ξ, ), re-
spectively. Observe that Eq. (12) represents the crucial point of this
study, being the hypothesis of fully developed turbulence of this ana-
lysis. The instantaneous rates of F and Pξ are formally obtained from Eq.
(11), taking into account the aforementioned statistical independence
(12). On the other hand, in homogeneous isotropic turbulence, Pξ does
not depend on x , and results to be a function of ∣ ∣ −ξ r , where r plays
the role of finite scale. Moreover, as ∣ ∣ξ is considered to be given at each
instant, Pξ is a distribution of ξ strongly peaked in ∣ ∣ =ξ r . This implies
that, at each instant, in homogenous isotropic turbulence in infinite
fluid region, the distribution function of ξ can be represented by the
following form

= − = ∣ ∣ ∀ ⩾ξP
πr

δ ξ r ξ t1
4

( ), , 0ξ 2 (13)

and its variation rate effects can be formally calculated by means of Eq.
(11).

Also U is statistically independent of the velocity field and is con-
tinuously distributed in its range of variation, being

∈ = =U U U U U U U( , ), inf{ }, sup{ }m S m S (14)

In order to determine the interval U U( , )m S in incompressible isotropic
turbulence, consider first the volume built on the separation vectors
ξ ξ,1 2 and ξ3 initially orthogonal with each other such that
∣ ∣ = ∣ ∣ = ∣ ∣ =ξ ξ ξ ξ1 2 3 , which satisfy Eq. (8). This volume can be ex-
pressed by

V = ×ξ ξ ξ( )·1 2 3 (15)

thus, its rate reads as follows

V = × + × + ×ξ ξ ξ ξ ξ ξ ξ ξ ξd
dt

( ̇ )· ( ̇ )· ( )· ̇
1 2 3 1 2 3 1 2 3 (16)

If these vectors are infinitesimal in the sense that →ξ 0, due to con-
tinuity V ≡d dt/ 0. On the contrary, when ξ is finite, the rate ofV can be
different from zero. Nevertheless, due to homogeneous and isotropic
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turbulence, the average of Vd dt/ is expected to be equal to zero, i.e.

V = 〈 × + × + × 〉 =ξ ξ ξ ξ ξ ξ ξ ξ ξd
dt

( ̇ )· ( ̇ )· ( )· ̇ 0
ξ

ξ1 2 3 1 2 3 1 2 3
(17)

where 〈∘〉ξ denotes the average of ∘ calculated, through Pξ . Adopting the
longitudinal components of velocity differences ξk̇, defined as

= =ξ
ξ

U
ξ

k̇ · , 1, 2, 3k k
k

k (18)

Eq. (17) can be written in terms of Uk in the following manner

〈 + + 〉 =U U U ξ 0,ξ1 2 3
2 (19)

where, because of statistical hypothesis of isotropy, each addend of Eq.
(19) can be expressed in such a way that

= + − =

〈 〉 = 〈 〉 = 〈 〉
= = ≡

( )U A ε k π k

A A A
A A A A

cos ( 1) , 1, 2, 3,

,
sup{ } sup{ } sup{ } ,

k k

ξ ξ ξ

S

2
3

1 2 3

1 2 3 (20)

in which ε has to be determined, whereas Ak play the role of fluctuating
variables. Now, according to the hypothesis of fully developed chaos,
the number of kinematic bifurcations diverges, thus it is expected that

≡ ⩾U Usup{ }S 0 will assume its maximum value compatible with Eq.
(20), whereas ≡ ⩽U Uinf{ }m 0 is consequently determined. Therefore,US
is calculated as

=

≡ ⩾
=

= = =

U U U U

U U U

sup { , , }

sup {{ } , { } , { } } 0,

S
A A ε

ε
A A A A A A

,
1 2 3

1 2 3

k S

S S S1 2 3 (21)

and the corresponding value of ε, say εS, is then formally written as

= = = =ε U U Uargmax{sup{{ } , { } , { } }}S A A A A A A1 2 3S S S1 2 3 (22)

This implies that = −ε k π k2( 1) ,S =1, 2,…, and that Um is

= = − ⩽
=

= = =U U U U Uinf {{ } , { } , { } }
2

0,m
ε ε

A A A A A A
S

1 2 3
S

S S S1 2 3 (23)

That is

∈ ⎛
⎝
− ⎞

⎠
U U U

2
,S

S (24)

Hence, the distribution function of U, say PU , can be formally ex-
pressed by means of Pξ through the Frobenius-Perron equation [55]

∫ ⎜ ⎟= ⎛

⎝
− ⎞

⎠

ξ ξ
P U P δ U

ξ
d( )

·̇
ΞU ξΞ (25)

With reference to Eq. (25), when ξ sweeps the sphere ∣ ∣ =ξ r U, de-
scribes the corresponding interval given by Eq. (24).

In isotropic turbulence there are no privileged directions, thus the
longitudinal component of the velocity difference ξ ξ ξ·̇ / results to be
uniformely distributed in its variation range as ξ varies in such a way
that ∣ ∣ =ξ r . The distribution function of U is then formally obtained
substituting Eq. (13) in Eq. (25)

= ⎧
⎨
⎩

∈ −( )P U U, if ,

0 elsewhere
U U

U
S

2
3

1
2S
S

(26)

Such distribution function provides 〈 〉 >U 0ξ and, among the other
properties, gives in particular the link between 〈 〉U ξ and 〈 〉U ξ

2 , ac-
cording to

〈 〉 = 〈 〉 >U U1
2

0.ξ ξ
2

(27)

We conclude this section by observing that, the distribution (26) is the
result of two elements: fully developed chaos and fluid in-
compressibility. The fully developed chaos produces, in any case, the

particles trajectories divergence, and, in the particular case of infinite
fluid domain, also the flow statistical isotropy. The combined effect of
trajectories divergence and fluid incompressibility determines the do-
main of PU : the trajectories divergence, representing element of in-
stability, is responsible for the variation intervals where >U 0, whereas
the incompressibility acts in opposite sense preserving the volume and
determining regions where <U 0. Next, the statistical isotropy, pro-
viding no privileged directions, causes an uniform distribution of
∈ −U U U( /2, )S S . These results are in agreement with those just ob-

tained in Ref. [57], where, the author, adopting the Lyapunov theory,
shows that the finite scale Lyapunov exponent associated with Eq. (8)
results to be uniformely distributed in its variation range.

4. Relation between spatial correlations in isotropic turbulence

One of the consequences of the hypotheses of fully developed tur-
bulence and statistical isotropy is the link between the statistical spatial
correlations calculated through Pξ and those obtained by means of F.
Such property, in conjunction with the previous analysis, leads to the
analytical forms of the closures of the von Kármán-Howarth and Corrsin
equations.

Among the various statistical spatial correlation functions, consider
for our purposes the pair correlation of the longitudinal components of
velocity 〈 ′〉u ur r . This can be calculated in terms of F as follows

U
U
∫〈 ′〉 ≡ ′u u F u u dr r r r (28)

where 〈∘〉 denotes the average of ∘ calculated, through F,
U U= × du{ } {ϑ}, stands for the corresponding elemental volume, and

= ′ = +u t
r

u t
r

u x r u x r r( , )· , ( , )· ,r r (29)

On the other hand, following the present analysis, in fully developed
turbulence, the kinematic bifurcations diverge. This result and the hy-
pothesis of statistical isotropy allow to analytically express 〈 ′〉u ur r as the
average of ∗u uξ ξ calculated as the surface integral over the spherical
surface =ξS ξ r( ): , i.e.

∫〈 ′〉 = ∗ ξu u
πr

u u dS1
4

( ),r r S ξ ξ ξ2 ( ) (30)

being

= = +∗ξ
ξ

ξ
u t

ξ
u t

ξ
u x u x( , )· , ( , )· ,ξ ξ (31)

Now, from Eq. (13), the surface integral of Eq. (30) is the layer integral
calculated through Pξ following the Minkowski content measure [58].
Hence, in isotropic fully developed turbulence, the correlation 〈 ′〉u ur r
can be also expressed in terms of Pξ as follows

∫〈 ′〉 = ≡ 〈 〉 ∀ >∗ ∗u u P u u d u u rΞ , 0r r ξ ξ ξ ξ ξ ξΞ (32)

where ≡ ξΞ { } and dΞ denotes the corresponding elemental volume.
More in general, a link of the kind of Eq. (32) will regard the several
spatial correlations built through velocity and/or temperature fields
with both the distribution functions. This represents the novelty of the
present work with respect the previous ones. While in the previous
articles, Eq. (32) is assumed to be hold intuitively, here this equation is
obtained by means of the isotropy hypothesis and of the properties of
Pξ .

It is worth to remark that Eq. (32) holds only when r is strictly
positive and when the kinematic bifurcations diverge. On the contrary,
in case of non developed turbulence, such as during the transition
through intermediate stages of turbulence, or in more complicate si-
tuations with boundary conditions, for instance near the wall, Eq. (32)
cannot be applied.

In conclusion, although F and Pξ are two different and independent
distribution functions, the hypotheses of fully developed turbulence and
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statistical isotropy relate the various spatial correlations calculated
through F to those achieved by means of Pξ .

5. Closure of von Kármán-Howarth and Corrsin equations

The closures of von Kármán-Howarth and Corrsin equations are
here obtained using the Liouville theorem, the statistical independence
(12), and the properties of Pξ given by Eqs. (32) and (68) (see Ap-
pendix). These equations, properly obtained from the Navier-Stokes and
heat equations written in two points of space, x and ′ = +x x r, read as
follows

= + + +

= + + +

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂( )

( )ν f

χ f

2 ,

2 ,

f
t

K
u

f
r r

f
r

ν
λ

f
t

G
θ

f
r r

f
r

χ
λ θ

4 10

2 12

T

θ θ θ

θ

2

2

2 2

2

2

2 2 (33)

whose boundary conditions are

= =

= =
→∞

→∞

f f r

f f r

(0) 1, lim ( ) 0,

(0) 1, lim ( ) 0,
r

θ r θ (34)

where = 〈 ′〉f u u u/r r
2 and = 〈 ′〉f θϑϑ /θ

2 are the pair correlations of
longitudinal velocity components and of temperature,
≡ 〈 〉 ≡ 〈 〉u u θ, ϑr

2 2 , being ≡ − ″λ f1/ (0)T and ≡ − ″λ f2/ (0)θ θ
Taylor and Corrsin microscales, respectively. K and G, arising from
inertia forces and convective terms, give the energy cascade, and are in
terms of velocity and temperature fields according to [1,3,4]

+ = 〈 ′ − ′ 〉

= 〈 ′ − ′ 〉

∂
∂

∂
∂

∂
∂

( )r K u u u u

G u u

3 ( ) ,

ϑϑ ( ) ,
r r i i k k

r k k

k

k (35)

where the repeated index denotes the summation convention. K and G
are linked to the longitudinal triple velocity correlation function k, and
to the triple correlation between ur and ϑ following

= + =

= + =

′

′

∂
∂

〈 〉

∂
∂

∗ ∗ 〈 〉

( )
( )

K r u k r k r

G r uθ m r m r

( ) ( ), where ( ) ,

( ) 2 ( ), where ( ) ,

r r
u u

u

r r
u
θ u

3 4

2 2 ϑϑ

r r

r

2

3

2 (36)

Without particular hypotheses about the statistics of u and Kϑ, and G
are unknown quantities [1,3,4] which can not be expressed in terms of f
and fθ, thus at this stage of this analysis, both the correlations Eqs. (33)
result to be unclosed. To obtain analytical forms of K and G, observe
that these latter, representing the energy flow between length scales, do
not modify the total amount of kinetic and thermal energies [2,3]. On
the other hand, the proposed statistical independence (12) allows to
express ∂ ∂P t/ as sum of two terms

∂
∂

= ∂
∂

+
∂
∂

P
t

P F
t

F
P
tξ
ξ

(37)

the first one of which, related to ∂ ∂F t/ , provides the time variations of
velocity and temperature fields, whereas the second one, linked to
∂ ∂P t/ξ , not producing changing of u2 and θ2, identifies the energy cas-
cade effect. Therefore, K and G arise from the second term of (37), and
can be written, using the Liouville theorem (11) in terms of material
displacements ξ , taking into account flow homogeneity and fluid in-
compressibility. Specifically, from Eq. (11), K and G directly arise from
− ∂ ∂ξ ξF P( )̇/ξ and are calculated as follows

U

U

U

U

∫ ∫

∫ ∫

+ = −

= −

∂
∂

∂
∂

∗

∂
∂

∗

( ) ξ

ξ

r K F P u u d d

G F P d d

3 ·( )̇ Ξ,

·( )̇ ϑϑ Ξ,
ξ

ξ

r ξ i i

ξ

Ξ

Ξ (38)

where U = × = ξu{ } {ϑ}, Ξ { } and Ud and dΞ are the corresponding
elemental volumes, and

= = + =
= = +

∗

∗
x x ξ

x x ξ
u u t u u t i

t t
( , ), ( , ), 1, 2, 3,

ϑ ϑ( , ), ϑ ϑ( , ),
i i i i

(39)

Integrating Eqs. (38) with respect to U , and considering that in in-
compressible isotropic turbulence 〈 ′〉u ui i is related to f through [2,1]

⎜ ⎟〈 〉 = ⎛
⎝

+ ∂
∂
⎞
⎠

∗u u u ξ
ξ

f ξ3 ( )i i
2

(40)

we obtain

∫

∫

∫

+ = − 〈 〉

= − +

= −

∂
∂

∂
∂

∗

∂
∂

∂
∂

∂
∂

( )
( ) ξ

ξ

ξ

r K u P u u d

u P ξ f ξ d

G θ P f ξ d

3 ·( )̇ Ξ

·( )̇ 3 ( ) Ξ,

·( )̇ ( ) Ξ,

ξ

ξ

ξ

r ξ i i

ξ ξ

ξ θ

2
Ξ

2
Ξ

2
Ξ (41)

As Pξ is represented by a Dirac’s delta distribution (13), thanks to Eq.
(68) (see the Appendix), to the fluid incompressibility and to the iso-
tropy, K and G read as

∫

∫

+ = +

= +

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( ) ( )
( )

ξ

ξ

r K u r P d

u r P d

3 3 · ̇ Ξ

3 · ̇ Ξ,

ξ

ξ

r r ξ
f

r ξ
f
ξ ξ

2
Ξ

2
Ξ (42)

∫ ∫=
∂
∂

=
∂
∂ξ

ξ
ξ

ξG θ P
f

d θ P
f
ξ ξ

d· ̇ Ξ · ̇ Ξ,ξ
θ

ξ
θ2

Ξ
2

Ξ (43)

Next, K does not modify the average kinetic energy (K (0)=0), Eq. (42)
admits first integral which cancels + ∂ ∂r r(3 / ), thus K and G are

∫

∫

= = 〈 〉

= = 〈 〉

∂
∂

∂
∂

∂
∂

∂
∂

K u P U d u U

G θ P U d θ U

Ξ ,

Ξ ,

ξ
f
ξ

f
r ξ

ξ
f
ξ

f
r ξ

2
Ξ

2

2
Ξ

2θ θ
(44)

Furthermore, the variance of U is linked to the velocity correlation by
means of the relationship

〈 〉 ≡ 〈 − 〉 = −

= ′ = +

∗

ξ

U u u u f r

u t u tu x u x

( ) 2 (1 ( )),

being ( , )· , ( , )·ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

2 2 2

(45)

where f is now calculated as the average of ∗u u u/ξ ξ
2 through Pξ using Eq.

(32), and 〈 〉U ξ and 〈 〉U ξ
2 are related with each other through Eq. (27).

This leads to the closure formulas of K and G in terms of auto-
correlations and of their gradients

=

=

− ∂
∂

− ∂
∂

K r u

G r uθ

( ) ,

( ) ,

f f
r

f f
r

3 1
2

2 1
2

θ
(46)

These closures, being not based on the eddy viscosity concept, do not
exhibit second order derivatives of correlations, thus Eq. (46) do not
represent a diffusive model. These equations are the result of the tra-
jectories divergence in the continuum fluid, for which the mechanism of
turbulence cascade consists in a propagation phenomenon of the pair
correlations f and fθ between the several scales r with a variable pro-
pagation speed cT which depends on r and u, according to

=
−

c u
f1

2T (47)

The main asset of Eq. (46) with respect to the other closures is that such
equations are not the result of phenomenological assumptions, being
these achieved by means of Liouville theorem and statistical in-
dependence of ξ and u expressed by Eq. (12). It is worth to remark the
importance of this latter. Such equation, being the hypothesis of fully
developed turbulence of this analysis, allows to analytically express K
and G separating the effects of the trajectories divergence in the phy-
sical space from those of the velocity field fluctuations in the Navier-
Stokes phase space. Due to their theoretical foundation, Eq. (46) do not
exhibit free model parameters or empirical constants which have to be
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identified.
These closures coincide with those just obtained by the author in the

previous works [29–31,45]. While these latter derive such formulas
exploiting, among the other things, the finite-scale Lyapunov theory,
here, unlike the previous articles, Eq. (46) are obtained only using the
Liouville theorem and the hypothesis of fully developed chaos, showing
that the proposed closures do not need the finite-scale Lyapunov theory,
resulting this latter to be a sufficient theoretical tool for achieving the
same formulas.

As regards the results obtained with the proposed closures, the
reader is referred to the data presented in the previous works
[29,59,30,31,45] In brief, we recall that Refs. [29–31,59] show that
such closures adequately describe the energy cascade phenomenon,
reproducing, negative skewness of velocity difference

≡
〈 〉
〈 〉

=
−

H r
u

u
k r
f r

( )
(Δ )

(Δ )
6 ( )

(2(1 ( )))
r

r
3

3

2 3/2 3/2 (48)

such that

= −H (0) 3
7

,3 (49)

in very good agreement with the literature [32–37], the Kolmogorov
law and temperature spectra in line with the theoretical argumentation
of Kolmogorov, Obukhov-Corrsin and Batchelor [38–40], with experi-
mental results [41,42], and with numerical data [43,44]. Furthermore,
Ref [45] shows that the proposed closure formulas give a Kolmogorov
constant of about 2, and produce correlations self-similarity in proper
interval of r, directly caused by the continuous fluid particles trajec-
tories divergence.

We conclude this section by observing the limits of the proposed
closures (46). These limits directly derive from the hypotheses under
which Eq. (46) are obtained: Eq. (46) are valid only in regime of fully
developed chaos where the turbulence exhibit homogeneity and iso-
tropy. Otherwise, during the transition through intermediate stages of
turbulence, or in more complex situations with particular boundary
conditions, for instance in the presence of wall, Eq. (46) cannot be
applied.

6. Conditions for the correlation equations invariants and self-
similarity

Using the proposed closures, the existence conditions of the corre-
lation equations invariant are here studied, with particular reference to
the integrals of Loitsianskii and of Saffman-Birkhoff [46,47].

Thereafter, given these invariants, the sole knowledge of the time
evolution of (u λ, T) and of (θ λ, )θ is shown to be a sufficient element to
adequately describe the decay of isotropic homogeneous turbulence if
the similarity of the spectra is self-preserved.

To study the first question, observe that the correlations equations
admit, under certain conditions, the following invariant integrals

∫
∫

∫

=

=

= +

∞

∞

∞ ∂
∂( )

I u fr dr

I θ f r dr

I f r r dr

,

,

3 ,

u

θ θ

SB
u f

r

2
0

4

2
0

2

2 0
22

(50)

where Iu and ISB are, respectively, Loitsianskii integral and Saffman-
Birkhoff invariant [46,47], two quantities associated with the von
Kármán-Howarth equation based on angular momentum [63] and
linear momentum, whereas Iθ is the invariant associated with the
Corrsin equation.

Now, to determine the existence conditions of such invariants
compatible with the proposed closures, observe that the time evolutions
of I I,u SB and Iθ are linked to f and fθ through the correlation equations,
i.e.

= + ⎡⎣ ⎤⎦

= + ⎡⎣ ⎤⎦

= + ⎡
⎣

+ ⎤
⎦

∞ ∂
∂

∞

∗ ∞ ∂
∂

∞

∞ ∂
∂

∂
∂

∞( )

u r k νu r

uθ r m χθ r

r K νu r f r

[ ] 2 ,

2 [ ] 2 ,

[ ] 3

dI
dt

f
r

dI
dt

f
r

dI
dt r

f
r

3 4
0

2 4
0

2 2
0

2 2
0

1
2

3
0

2 2

0

u

θ θ

SB

(51)

Without correlation equations closures, the existence condition of such
invariants should be analyzed supposing that the asymptotic behaviors
( → ∞r ) of k and f –as well as those of m* and fθ– are independent.
Here, assuming the proposed closures, double and triple correlations
are related with each other according to

= ≡

= ≡

− ∂
∂

∂
∂

− ∂
∂

∂
∂

∗

K u r k

G uθ r m

( ),

2 ( ),

f f
r

u
r r

f f
r

uθ
r r

3 1
2

4

2 1
2

2θ

3
4

2
2 (52)

As the result, the conditions for the existence of Iu and Iθ must prescribe
that velocity correlations ( f k, ) and temperature correlations ( ∗f m,θ )
tend to zero more rapidly than −r 4 and −r 2, respectively. More in par-
ticular

≈
>
⩾ ∣ ∣ < ∞

=−f r
m
m I

dI
dt

,
4 in general,
5 for

for 0,m

u

u

(53)

≈
>
⩾ ∣ ∣ < ∞

=−f r
n
n I

dI
dt

,
2 in general,
3 for ,

for 0,θ
n

θ

θ

(54)

In fact, if ≈ −f r m and ≈ −f rθ
n as → ∞r , then from Eq. (52)

≈ +− −k r c rm
u

4 and ≈ +∗ − −m r c rn
θ

2, where cu and cθ are arbitrary
constants. Therefore, assuming = =c c 0u θ , >m 4 and >n 2, both the
terms at the R.H.S. of Eq. (51) vanish and Iu and Iθ maintain both their
initial values during the decay. Viceversa, if ⩽m 4, ⩽n 2, the quan-
tities kr 4 and ∗m r2 diverge as → ∞r , and are different from zero if
>m 4 and >n 2 with ≠c 0u , ≠c 0θ , thus Iu and Iθ will vary and can

diverge during the decay. This agrees with Proudman and Reid [64,65]
following which Iu can be not an invariant as →∞krlimr

4 is not in general
equal to zero, and is also in line with Saffman [47] which showed that Iu
can diverge in certain conditions.

As far as the Saffman-Birkhoff invariant is concerned, ISB is pre-
served if f goes to zero more rapidly than −r m, that is

≈
>
⩾ ∣ ∣ < ∞

=−f r
m
m I

dI
dt

,
2 in general,
3 for ,

for 0.m

SB

SB

(55)

Eqs. (53)–(55) represent the conditions for which I I,u θ and ISB are in-
variants, respectively, compatible with the proposed closures.

Now, the existence of such invariants and the self-similarity pro-
duced by the proposed closures, allow to show that the evolution of
u θ λ, , T and λθ can be sufficient to describe the isotropic turbulence
decay. To study this, the evolution equations of u θ λ, , T and λθ are first
deducted by taking the coefficients of order r0 and r2 of Eq. (33) which
arise from the Taylor series expansion of f and fθ [1,3,4]

= − + +…

= − + +…( )
( )f f t r

f f t r

1 ( , 0) ,

1 ( , 0) ,

r
λ

IV

θ
r

λ θ
IV

1
2

2 1
4 !

4

2 1
4 !

4

T

θ (56)

This leads to the following equations

= −

= −

u

θ

,

,

du
dt

ν
λ

dθ
dt

χ
λ

10 2

12 2

T

θ

2
2

2
2 (57)

= − + −

= − + −

( )
( )
f t λ

f t λ

( , 0) 5 ,

( , 0) 6

dλ
dt

u ν
λ

IV
T

dλ
dt

u λ
λ

χ
λ θ

IV
θ

2
7
3

4

2
5
6

4

T
T

θ θ
T θ (58)

Eq. (58) are not closed because incorporate f t( , 0)IV and f t( , 0)θ
IV

which in turn need an adequate estimation. To fairly estimate these
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latter in function of u θ λ, , T and λθ, this analysis exploits the possible
existence of the invariants I I,u θ and ISB, and the properties that the
proposed closures generate self-similarity of f and fθ in proper ranges of
r [45]. In such these intervals, velocity and temperature correlations
can be approximated by

≃

≃ ( )
( )f t r f

f t r f

( , ) ,

( , ) ,

r
λ t

θ θ
r

λ t

( )

( )

T

θ (59)

Hence, Eq. (59) provides the following relations, each for a single in-
variant

≃ =
≃ =
≃ =

u λ I
u λ I
θ λ I

const, if const,
const, if const,
const if const

T u

T SB

θ θ

2 5

2 3

2 3 (60)

Now, combining Eq. (60) with Eqs. (57) and (58), one obtains a link
between correlation scales and the fourth order derivatives of the cor-
relations which holds for the proposed closure formulas

= + =

= + =

= ⎛
⎝

+ ⎞
⎠

=( )
( )

f t λ t R I

f t λ t R I

f t λ t R Pr I

( , 0) ( ) (14 ), if const,

( , 0) ( ) , if const,

( , 0) ( ) 20 , if const,

IV
T T u

IV
T T SB

θ
IV

θ T
λ
λ θ

4 3
14

4 3
14

50
3

4 3
5

2
θ
T (61)

being =R uλ ν/T T and =Pr ν χ/ Taylor scale Reynolds number, and
Prandtl number, respectively. Hence, the evolution laws of u λ θ λ, , ,T θ

are

= + = ⎛
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⎠

=

= + = ⎛
⎝
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⎠

=

= + = ⎛
⎝
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⎠

=

−

−

−
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I

I

1 , 1 , if const,

1 , 1 , if const,

1 , 1 , if const,
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λ
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θ

χt
λ θ

( )
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(0)
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4
(0)
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(0)
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3 (0)
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(0)
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3 (0)
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(0)
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8
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T
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2
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2 2
2
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2
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2 2 (62)

For what concerns RT , it varies according to

= ⎛
⎝

+ ⎞
⎠

=

= ⎛
⎝

+ ⎞
⎠

=

−

−

I

I

1 , if const,

1 , if const,

R t
R

νt
λ u

R t
R

νt
λ SB

( )
(0)

4
(0)

3/4

( )
(0)

20
3 (0)

1/4

T
T T

T
T T

2

2 (63)

For the proposed closures, in the presence of self-similarity and in-
variants, the sole evolution equations of (u λ, T) and (θ λ, θ), which re-
present an ordinary differential system in homogeneous isotropic tur-
bulence, can be considered to be sufficient to adequately describe the
turbulence decay.

7. Conclusion

The closure formulas of von Kármán-Howarth and Corrsin equations
are achieved using Liouville theorem and rate of the material lines
distribution function in isotropic homogeneous turbulence. These clo-
sures coincide with those given in previous works which adopt also the
finite-scale Lyapunov analysis. The present work corroborates the pre-
vious results, giving a proof of the closures more general and more
rigorous than that presented in the previous works, and showing that
such closures do not need the Lyapunov analysis, the latter being a
sufficient theoretical element that leads to the same formulas.
Furthermore, this study analyzes the existence conditions of invariants
of the closed correlation equations, and shows that, in the presence of
self-similarity and such invariants, the isotropic turbulence can be fairly
described through the sole evolution of (u λ, T) and (θ λ, θ), compatible
with the present closure formulas.

Acknowledgments

This work was partially supported by the Italian Ministry for the
Universities and Scientific and Technological Research (MIUR).

Appendix A. Some properties of Dirac’s delta distribution

This section renews some of the more significant properties of the Dirac’s delta distribution [60–62] useful to the purposes of the present analysis.
As well known, the Dirac’s delta distribution, δ x( ), is a generalized function obtained as limit of a class of strongly peaked functions [61]. The

Dirac’s delta exhibits the basic property

∫ − =
−∞

∞
δ x x f x dx f x( ) ( ) ( )0 0 (64)

where f is an arbitrary smooth function of x. Among the other properties, we mention the equations which involves the Dirac’s delta, its derivatives
δ x( )h( ) and arbitrary differentiable functions f

∫ ∫= −
∂
∂

= …
−∞

∞

−∞

∞ −δ x f x dx δ x
f
x

dx h( ) ( ) ( ) , 0, 1, 2,h h( ) ( 1)
(65)

which lead to express the Dirac’s delta derivatives in terms of δ

= − = …δ x δ x h
x

h( ) ( ) ( 1) ! , 0, 1, 2,h
h

h
( )

(66)

In a n-dimensional space ≡ …S x x xx, ( , , , )n
n1 2 , the Dirac’s delta is defined as

∏=
=

δ δ xx( ) ( )
k

n

k
1 (67)

If ≡ …f f ff ( , , , )n1 2 , such this distribution and f satisfy the following identity

∫ ∫ ∫ ∫ ∫ ∫… ∇ = − … ∇
= …

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞

−∞
∞δ dX δ dX

dX dx dx dx
x f x f( )· ( ) · ,

where ,n

x x

1 2 (68)

f f,1 2,…, fn are arbitrary smooth scalar functions of x, and · and∇ ·x , stand for respectively, inner product and divergence operator, both defined in Sn.
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