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1 INTRODUCTION

In this paper we investigate a control theoretical
framework for a soft manipulator model, and we
present related numerical simulations. Our model al-
lows to deal with the case in which only a portion
of the manipulator is controlled, while the remain-
ing part of the device is driven by internal reaction
forces only. This scenario includes mechanical break-
downs, or a voluntary deactivation for energy saving
purposes: its investigation is one of the main novelties
also with respect to (?), where the model is originally
introduced.

Soft manipulators attracted the interest of re-
searchers due to their ability to adapt to constrained
enviroments, and their potential suitability for human-
robot interactions (?; ?). Starting from the first works
on hyper-redundant manipulators (?; ?), the challeng-
ing motion planning of tentacle-like soft manipulators
was attacked by several points of view: among many
others, we refer to (?) for the study of the kinemat-
ics, to (?; ?) for a discrete dynamical model, to (?; ?;
?) for a number theoretic approach, and to (?) for a
machine learning implementation. To the best of our
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knowledge, the approach in the present paper, based
on optimal control theory of PDEs (see for instance
(?)), appears to the be new.

Our device is modelled as an inextensible elastic
string with curvature constraints (i.e. the device can-
not bend over a fixed threshold), and whose curvature
is pointwise forced by a control term, modelling an
angular elastic internal force. The resulting dynam-
ics is an evolutive controlled non-linear fourth order
partial differential equation, generalizing the classical
Euler-Bernoulli equation. At this stage of our inves-
tigation, we adopt some simplifications in the model
–we are dealing with a theoretical object, a fully re-
sponsive, noise free planar manipulator with infinite
degrees of freedom– but this allows us to go into the
deep in the optimization process, by providing opti-
mal open loop controls for a reachability problem.

The paper is organized as follows. In Section ??
we introduce our model in full generality and we dis-
cuss some particular parameter settings. In Section
?? we investigate the problem of steering the tip of
the manipulator to a target point, while minimizing a
quadratic cost on the controls and the kinetic energy
at final time of the manipulator. Section ?? contains
some numerical simulations and finally in Section ??
we draw our conclusions.

2 A CONTROL MODEL FOR A
SOFT MANIPULATOR

Our goal is to describe the dynamics of a soft ma-
nipulator encompassing the following features:



Table 1: Exact constraint equations and related elastic po-
tentials derived from penalty method. The functions ν and
µ represent non-uniform elastic constants.

Constraint Constraint Penalization
equation elastic potential

Inextensibility |qs|= 1 None
Curvature |qss| ≤ ω ν(|qss|2−ω2)2

+

Control qs×qss = ωu µ(ωu−qs×qss)
2

- inextensibility: the manipulator can bend but not
stretch longitudinally.

- bending moment: the soft structure of the device
resists to bending via an angular elastic potential.

- bending constraint: the manipulator cannot bend
over a fixed threshold

- bending control: a time-varying, internal angular
elastic force is applied in order to pointwise force
the bending of the device.

From a morphological point of view, we regard the
manipulator as a three-dimensional body with an axial
symmetry, a non-uniform thickness and a fixed end-
point. In what follows we build up a system of PDEs
modelling the evolution of the curve on the plane rep-
resenting the symmetry axis. From a physical point
of view, such an axis is modelled as an inextensible
string, whose mass represents the mass of the whole
manipulator. Also bending constraints (and controls)
of the manipulator are projected on the axis: they are
identified by suitably weighted curvature constraints.
For instance, the bending constraint is translated into
forcing the curvature of the axis under a fixed (non-
uniform) threshold ω; the bending control is trans-
lated into forcing the signed curvature to the quantity
ωu, where u ∈ [−1,1] is the control map. The rela-
tion between the original three-dimensional problem
and the projected one is further discussed in Section
?? below. In what follows, we focus on the symme-
try axis evolution. The unknowns of our problem are
the curve q(s, t) : [0,1]×R+→ R2 parametrizing the
symmetry axis of the manipulator in arclength coor-
dinates, and the associated inextensibility multiplier
σ(s, t) ∈ R. We denote by qs, qss, qtt partial deriva-
tives in space and time respectively. The quantity
|qss| represents the curvature of q, whereas the prod-
uct qs×qss := qs ·q⊥ss represents the signed curvature,
where the symbol q⊥ss denotes the counter-clockwise
orthogonal vector to qss. With these notations, we
summarize the constraints described above in Table
??. Note that also the bending moment allows for a
description in terms of curvature constraints: impos-
ing the constraint |qss| = 0 by penalty method yields
the elastic potential ε|qss|2, for some elastic (constant

in time) function ε(s). We then consider the La-
grangian

L(q,σ) :=
∫ 1

0

(1
2

ρ|qt |2−
1
2

σ(|qs|2−1)

−1
4

ν
(
|qss|2−ω

2)2
+
− 1

2
ε|qss|2

−1
2

µ(ωu−qs×qss)
2
)

ds ,

(1)

whose integral terms respectively represent the ki-
netic energy (ρ is the mass density), the exact inex-
tensibility constraint (σ is the Lagrange multiplier),
the curvature constraint, the bending moment, and the
curvature control. Equation of motions are then de-
rived via the least action principle – see (?). They
result in the following system:{

ρqtt =
(
σqs−Hq⊥ss

)
s−
(
Gqss +Hq⊥s

)
ss

|qs|2 = 1
(2)

for (s, t) ∈ (0,1) × (0,T ). The map G :=
G[q,ν,ε,ω] = ε + ν

(
|qss|2−ω2

)
+

encompasses the
bending moment and the curvature constraint –
(·)+ denotes the positive part. The map H :=
H[q,µ,u,ω] = µ(ωu−qs×qss) represents the control
term. Equation (??) is completed with suitable initial
data, and with the following boundary conditions for
t ∈ (0,T ):

- fixed endpoint conditions:{
q(0, t) = (0,0),
qs(0, t) =−(0,1)

- free endpoint conditions:
qss(1, t) = 0 (zero bending moment)
qsss(1, t) = 0 (zero shear stress)
σ(1, t) = 0 (zero tension boundary).

Note that the fixed endpoint conditions are a mod-
elling choice, while the free endpoint conditions
follow from the stationarity conditions for the La-
grangian L .

For technical details on the derivation of the equa-
tions we refer to (?).

2.1 Model parameter settings

We propose a parameter tuning in order to encompass,
in the one-dimensional model, the morphology of the
original three-dimensional manipulator. The key mor-
phological assumptions on the manipulator are the
following: axial symmetry and uniform mass density
ρv. In particular, we assume that in its position at rest



(i.e. when its symmetry axis has uniformly zero cur-
vature) the manipulator is a solid of rotation, gener-
ated by the function d(s), s ∈ [0,1]; we call Ω(s) the
circle of radius d(s) representing the cross section of
the manipulator at the point s ∈ [0,1] of its axis. Note
that d measures the thickness of the manipulator: in
octopus arm shaped manipulators, d is a decreasing
function. Choosing ρ(s) := πρvd(s)2 corresponds to
concentrate the mass of Ω(s) on its barycentre.

In our model, bending the manipulator determines
a compression/dilatation of the soft, elastic material
composing its body, for which we assume an uniform
yield point, i.e., the pointwise elastic forces must be
uniformly bounded by some Fmax in order to avoid
inelastic deformations. Now, due to the axial symme-
try, for every s ∈ [0,1], the maximal angular elastic
force in Ω(s) is attained on its boundary and it reads
F(s) = e|qss|d(s), where e is the elastic constant of
the material. Therefore the constraint F(s) ≤ Fmax is
equivalent to the curvature constraint |qss| ≤ω, where
we set ω(s) = Fmax/(ed(s)).

2.1.1 On mass distributions with exponential
decay

In our numerical simulations, we assume ρ to have
an exponential decay. By the arguments above, this
choice is consistent with the case of three dimensional
structures whose thickness decays exponentially, and
it can be viewed as an interpolation of self-similar,
discrete structures (?). In turn, self-similarity assump-
tion has several advantages from both a practical and
theoretical point of view. Indeed, asking for a manip-
ulator to be self-similar simply means to be composed
by identical, rescaled modules. From a geometrical
point of view, self-similarity is a powerful assump-
tion allowing, via fractal geometry techniques (?), for
a detailed investigation of inverse kinematics of the
manipulator, see for instance (?).

2.2 Control parameter settings

We now show how to set the control parameters to
model a mechanical breakdown of the actuators.

We recall that the controlled elastic potential is

U [q,µ,u,ω] :=
1
2

µ(ωu−qs×qss)
2.

and the associated elastic force is

F [q,µ,u,ω] :=−(Hq⊥ss)s− (Hq⊥s )ss

where H = µ(ωu−qs×qss). Clearly, to choose µ≡ 0
is equivalent to neglect F , and it yields the uncon-
trolled dynamics:

ρqtt = (σqs)s− (Gqss)ss. (3)

More generally, to set µ(s) = 0 for s ∈ [s1,s2] means
that the portion of q between [s1,s2] is uncontrolled: it
evolves according to (??) with (time dependent, con-
trolled) boundary conditions in q(s1, t) and q(s2, t).

We conclude with some remarks on how the con-
trol deactivation affects the equilibria of the system.
A general formula for the equilibria of (??) is pro-
vided in (?): if µ(1) = µs(1) = 0, then the signed cur-
vature κ := qs× qss of the (unique) equilibrium q of
(??) is proportional to µ, precisely it satisfies

κ(s) = µ(s)
ω(s)u(s)

µ(s)+ ε(s)
s ∈ (0,1).

In particular for µ ≡ 0 the equilibrium is given by
q(s, t) ≡ (0,−s) for all (s, t) ∈ [0,1]× (0,T ). More
generally, if q is uncontrolled in [s1,s2], i.e., µ(s) = 0
for all s ∈ [s1,s2], then |qss| = |κ(s)| = 0, that is the
corresponding portion of the device at the equilibrium
is arranged in a straight line.

3 THE REACHABILITY
OPTIMAL CONTROL
PROBLEM

In this section we address the problem of steer-
ing the tip of the device –i.e., q(1, t)– to a target point
q∗ ∈R2, using controls that optimize accuracy, steadi-
ness and energy consumption. In the framework of
optimal control theory, this problem can be restated
as a constrained minimization of a cost functional in-
volving:

- the tip-target distance: we want the tip to reach
and remain close to the target;

- a quadratic cost on the controls, that is we want to
force the device –precisely, its symmetry axis– to
bend as least as possible.

- the kinetic energy of the whole manipulator at fi-
nal time.

More formally, given q∗ ∈ R2 and T,τ > 0, we want
to minimize the functional

J (q,u) =
1
2τ

∫ T

0
|q(1, t)−q∗|2dt

+
1
2

∫ T

0

∫ 1

0
u2dsdt

+
1
2

∫ 1

0
ρ(s)|qt(s,T )|2ds,

(4)

among all the controls u : [0,1]× [0,T ]→ [−1,1], and
subject to the symmetry axis dynamics (??). The first
two terms in J account respectively for the tip-target
distance and the quadratic cost on the controls, during



all the evolution, whereas the last term corresponds to
the kinetic energy at the final time T .

In what follows we give the first order optimality
conditions for this control problem, that is we write
a system of PDEs, called the adjoint system, whose
unknowns are the stationary points (q,σ,u) of J (sub-
ject to the symmetry axis dynamics), and the related
multipliers (q̄, σ̄) called the adjoint states. Roughly
speaking, if a control u∗ is optimal, then the adjoint
system admits a solution of the form (q,σ,u∗, q̄, σ̄).
The adjoint system is composed by a variational in-
equality for the optimal control and four PDEs: two
of them describe the evolution of the adjoint states,
and two of them are simply the dynamics the sys-
tem is subject to, i.e., the equations of motion of the
symmetry axis (??). Following (?), the adjoint states
equations are:

ρq̄tt =
(
σq̄s−Hq̄⊥ss

)
s−
(
Gq̄ss +Hq̄⊥s

)
ss

+
(
σ̄qs− H̄q⊥ss

)
s−
(
Ḡqss + H̄q⊥s

)
ss

q̄s ·qs = 0
(5)

for (s, t) ∈ (0,1)× (0,T ), where
- the maps G and H are defined in Section ??.

- the maps Ḡ and H̄ are the linearisations of G and
H, respectively. In particular

Ḡ[q, q̄,ν,ω] = g[q,ν,ω]qss · q̄ss ,

H̄[q, q̄,µ] = µ(q̄s×qss +qs× q̄ss) ,

where g[q,ν,ω] = 2ν1(|qss|2−ω2) and 1(·) stands
for the Heaviside function, i.e. 1(x) = 1 for x≥ 0
and 1(x) = 0 otherwise.

System (??) is completed with the following final and
boundary conditions, derived as well from the opti-
mality conditions:

- final conditions:

q̄(s,T ) =−qt(s,T ), q̄t(s,T ) = 0

for s ∈ (0,1). We point out that initial conditions
for q are replaced in the adjoint system with final
conditions for q̄: this is a quite fair consequence of
the fact that the optimization process takes into ac-
count the dynamics on the whole timeline (0,T ).

- fixed endpoint boundary conditions:

q̄(0, t) = 0, q̄s(0, t) = 0

for t ∈ (0,T ) – remark the symmetry with the
fixed endpoint conditions on q;

- free endpoint boundary conditions:
q̄ss(1, t) = 0
q̄sss(1, t) = 1

τε

(
(q−q∗) ·q⊥s

)
q⊥s (1, t)

σ̄(1, t) =− 1
τ
(q−q∗) ·qs(1, t)

for t ∈ (0,T ). Note that we recover the zero bend-
ing moment condition, as for the free endpoint of
q. On the other hand, as one may expect, both the
shear stress condition on q̄ and the adjoint tension
boundary condition on σ̄ are affected by the fact
that the system is forced towards the target q∗.

Finally, the variational inequality for the control is∫ T

0

∫ 1

0
(u+ωH̄[q, q̄]) (v−u)dsdt ≥ 0 . (6)

for every v : [0,1]× [0,T ]→ [−1,1], which provides,
in a weak sense, the variation of the functional J with
respect to u, subject to the constraint |u| ≤ 1.

4 NUMERICAL SIMULATIONS

The optimal control problem discussed in Section
?? is approached in two phases. At a first stage we
look at a stationary optimal control problem, involv-
ing the equilibria of the system (??). Then such sta-
tionary solutions are used as initial guess for the orig-
inal dynamic optimal control problem, i.e., for the nu-
merical solution of the system composed by (??), (??)
and (??).

4.1 Stationary optimal control problem

First of all we remark that if (q,σ) is an equilibrium
for the symmetry axis equation (??) and if µ(1) =
µs(1) = 0, then q is the solution of the following sec-
ond order ODE:

qss =
µω

µ+ ε
uq⊥s in (0,1)

|qs|2 = 1 in (0,1)
q(0) = (0,0)
qs(0) =−(0,1).

(7)

The stationary optimal control problem is the follow-
ing

min
{

1
2

∫ 1

0
u2ds+

1
2τ
|q(1)−q∗|2

}
, (8)

subject to (??) and to |u| ≤ 1. Note that the above cost
functional is the stationary version of J : a quadratic
cost on the controls and a tip-target distance are still
involved, whereas time integrals and time-dependent
terms as the kinetic energy are clearly neglected. Us-
ing the first two equations of (??), we have |qss| =
ω̄|u|, where ω̄ := µω/(µ+ ε). Therefore we can get
rid of the dependence from u in (??) and look for the



Parameter description Setting
mass distribution ρ(s) = exp(−s)
bending moment ε(s) = 10−3(1−0.9s)
curvature constraint ν(s) = 10−3(1−0.09s)
penalty

curvature control µ(s) = (1− s)e−0.1 s2

1−s2

penalty
curvature constraint ω(s) = 3π(1+ s2)
target point q∗ = (0.3563,−0.4423)
target penalty τ = 10−4

Discretization step ∆s = 0.05
Table 2: Global parameter settings.

solutions of the following Euler elastica’s like prob-
lem:

min
{

1
2

∫
(0,1)\I

1
ω̄2 |qss|2ds+

1
2τ
|q(1)−q∗|2

}

subject to


|qs|2 = 1 in (0,1)
|qss| ≤ ω̄ in (0,1)
q(0) = (0,0)
qs(0) =−(0,−1),

(9)

where we set I := {s ∈ (0,1) | µ(s) = 0}. In other
words we are looking for the curve q –with length
1 and curvature bounded by ω̄– minimizing the total
curvature and the distance of its tip from q∗. Dot-
multiplying by q⊥s both sides of the first equation of
(??), we obtain that the optimal control for the origi-
nal stationary problem (??) is then given by

u(s) =

{
qss(s)·q⊥s (s)

ω̄(s) if µ(s) 6= 0,

0 otherwise.
(10)

Note that in (?) we assumed µ > 0 in (0,1). Here we
also consider the case µ(s) = 0. As a matter of fact,
for µ(s) = 0, the dynamics and its equilibria are inde-
pendent from u(s): it can be arbitrarily chosen. The
particular choice u(s) = 0 in I allows the cost func-
tional (??) to be consistent also with the case of un-
controlled regions.

To numerically solve (??) we encompass the con-
straints |qs| = 1 and |qss| ≤ ω̄ via an augmented La-
grangian method, and we discretize it with a finite dif-
ference scheme. The non-linear terms of the resulting
discrete system of equations are treated via a quasi
Newton’s method. Parameters settings are reported in
Table ??.

We investigate the problem in three scenarios, see
Table ??: in the first we assume that µ is positive in
(0,1), in the second and third experiment we neglect
µ in some sub-intervals of (0,1). The latter cases rep-
resent situations in which we cannot control a portion
of the device – see Section ??. In particular, for a

Test Control deactivation region
Test 1 I = /0

Test 2 I = [0.35,0.65]
Test 3 I = [0.25,0.4]∪ [0.6,0.75]

Table 3: Control deactivation settings related to µI .
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Figure 1: In (a) the solution q of Test 1, in (b) the related
signed curvature κ(s) (bold line) and curvature constraints
±ω̄ (thin lines).

given I ⊂ (0,1), we employ the following curvature
control penalty parameter

µI(s) =

{
0 if s ∈ I
µ(s) otherwise.

In Figure ?? we report the results of Test 1 –see
Table ??. In Figure ?? and ?? we show the results
of Test 2 and Test 3, respectively. In these cases the
controls are in-actuated in a subset of (0,1): the cor-
responding regions are depicted in red. The particular
choice of q∗ allows for it to be reached in all these
three cases, but clearly, with different optimal solu-
tions.
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Figure 2: In (a) the solution q of Test 2, in (b) the related
signed curvature κ(s) (bold line) and curvature constraints
±ω̄ (thin lines).

4.2 Dynamic optimal control problem

We address the minimization of the cost functional J
subject to a dissipative version of the dynamical sys-
tem (??):

ρqtt =
(

σqs−Hq⊥ss

)
s
−
(

Gqss +Hq⊥s
)

ss

−βqt − γqsssst .
(11)

In particular, the term −βqt represents an environ-
mental viscous friction proportional to the velocity;
the term −γqsssst an internal viscous friction, propor-
tional to the change in time of the curvature. This
implies that if we plug in (??) the optimal stationary
(constant in time) control u given in Equation (??),
then the system converges as T →+∞ to the optimal
stationary equilibrium q described in Section ?? - see
Equation (??). Here we look for time-varying optimal
controls, i.e., for solutions u∗ of the dynamic optimal
control problem described in Section ??. The adjoint
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Figure 3: In (a) the solution q of Test 3, in (b) the related
signed curvature κ(s) (bold line) and curvature constraints
±ω̄ (thin lines).

Parameter description Setting
Environmental friction β(s) = β(s) := 2− s
Internal friction γ(s) := 10−6(2− s)
Final time T = 2
Time discretization step ∆t = 0.001

Table 4: Dynamic parameter settings.

states equations in the dissipative version read:


ρq̄tt =

(
σq̄s−Hq̄⊥ss

)
s−
(
Gq̄ss +Hq̄⊥s

)
ss

+
(
σ̄qs− H̄q⊥ss

)
s−
(
Ḡqss + H̄q⊥s

)
ss

+βq̄t + γq̄sssst

q̄s ·qs = 0

(12)

for (s, t) ∈ (0,1)× (0,T ).
The adjoint system composed by (??), (??) and

(??) can be discretized using a standard finite differ-
ence scheme in space-time, then solved by an adjoint-
based gradient descent method. The key idea is the
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Figure 4: Time evolution of target energy Jq∗ for the static
(a) and dynamic (b) optimal control.

following: starting from an initial guess u given by the
stationary optimal control, we first solve the equation
of motion (??) forward in time. Then the solution-
control triplet (q,σ,u) is plugged into (??) which is
solved backward in time. Finally, we use the vector
(q,σ,u, q̄, σ̄) in (??) to update the value of the u. The
procedure is iterated up to convergence on the control.

We assume that µ(s) = 0 in a subinterval I =
[0.35,0.65] of (0,1) – this choice corresponding to
Test 2 in Section ??, see Table ?? and Figure ??. In
other words, we are modelling the scenario in which
approximately one third of the central actuators of the
device are out of order. The parameters related to
the dynamical aspects, in particular those involved by
friction forces and time discretization are reported in
Table ??. The other parameters are set as in Section
??, see Table ??. We compare the performances of
optimal stationary and dynamic controls in terms of
the evolution of the three components of our integral
cost: the tip-target distance, the control energy and
the kinetic energy.

In Figure ?? we plot the function

Jq∗(t) := |q(1, t)−q∗|2

representing the tip-target distance at time t ∈ [0,2],
in both cases of statically and dynamically optimized
controls. More precisely, in Figure ??(a) we plugged
in the system (??) a constant in time control us, that
we call static optimal control, given by the solution of
the stationary control problem (??). We then consid-
ered the resulting trajectory q(s, t) and measured the
tip-target distance Jq∗(t). In Figure ??(b) we see the
tip-target distance of the trajectory q obtained by nu-
merically solving the adjoint system, that is the trajec-
tory corresponding to a time-dependent optimal con-
trol ud that we call in the sequel dynamic optimal con-
trol. In agreement with the theoretical setting, in par-
ticular with the strong dependence of the cost func-
tional J on the tip-target distance (see also the value
for the weight τ in Table ??), the dynamical optimiza-
tion process yields, up to some oscillations, a much
lower Jq∗(t) than the stationary case. We also remark
the damping of the oscillations of Jq∗(t) in the dynam-
ical case: this confirms that the dynamical optimiza-
tion process tends to reach and stay close to the target
as soon as possible.

In Figure ?? we plot the function

Ju(t) :=
∫ 1

0
u2(t)ds

representing the quadratic cost on the controls at time
t ∈ [0,2]. In the case of static controls, Jus(t) is con-
stant by construction. The dynamic optimal controls
Jud (t) are on average smaller than Jus(t): this implies
that the dynamical optimization process actually re-
duces the total cost of the controls∫ T

0
Ju(t)dt

with respect to the stationary optimization. Also note
that the dynamic optimal control ud yields a large
variation of its cost Jud (t) at the beginning of the evo-
lution, while stabilizing it around the static control
cost Jus(t) in a second time. This implies that the op-
timization process tends to concentrate the variation
of controls at the beginning, while the second part of
the evolution is demanded to small adjustments, con-
firming what we already remarked by looking at the
tip-target distance evolution.

Finally, in Figure ?? we plot the function

Jv(t) :=
1
2

∫ 1

0
ρ(s)|qt(s, t)|2ds

representing the kinetic energy of the whole axis at
time t ∈ [0,2] in the cases of stationary and dynamic
optimal controls. Note that the evolutions of the Jv
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Figure 5: Time evolution of control energy Ju for the sta-
tionary (a) and dynamic (b) optimal control.

are comparable, but at final time T , dynamical opti-
mal controls yield a kinetic energy Jv(T ) lower than
the one associated to the stationary optimal controls.
This is consistent with the fact that the cost functional
J depends only on the kinetic energy at final time.
Finally note that, since the system is converging to
an equilibrium due to frictional forces, Jv(t)→ 0 as
t → +∞: it is then reasonable to expect a larger time
frame to improve the performances of the kinetic en-
ergy in both dynamic and stationary cases. For the
dynamically controlled case only, steadiness can also
be traded with accuracy by increasing the weight of
the term Jv(T ) in the functional J .

5 CONCLUSIONS

In this paper we addressed the optimal control of
a planar soft manipulator, modelled as an inextensible
elastic string with non-uniform mass, curvature con-
straints and curvature controls. Parameters are set in
order to encompass in the one-dimensional model the
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Figure 6: Time evolution of kinetic energy Jv for the static
(a) and dynamic (b) optimal control.

morphology of a three-dimensional manipulator. We
looked in particular to the case in which a part of the
device is uncontrolled and, consequently, driven only
by internal reaction forces. Optimal open loop con-
trols are obtained via a constrained minimization of
a cost functional in both the stationary and dynamic
case. Numerical simulations are provided in the spe-
cial case of partially actuated controls. They agree
with the theoretical control model.

A challenging open question is to find alterna-
tive, not necessarily open loop, optimal strategies.
Then we plan to investigate other optimization tech-
niques, such as model predictive feedbacks and ma-
chine learning algorithms.


