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Abstract. We perform a qualitative analysis of a class of weakly coupled Hamilton—Jacobi
systems in the spirit of weak KAM theory. We define a family of related action functionals containing
the Lagrangians associated with the Hamiltonians of the system. We use them to characterize the
subsolutions of the system and to provide explicit representation formulae for subsolutions enjoying
an additional maximality property. A crucial step for our analysis is to put the problem in a suitable
random frame. The presentation is accessible to readers without a background in probability; only
some basic knowledge of measure theory is required.
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1. Introduction. This paper deals with weakly coupled Hamilton-Jacobi sys-
tems of the form

H1($,DU1) +A1 ‘U= Q,
(HJa)
Hyr(z, Dups) + AM -u =«

posed on the flat torus TV. Here u = (uq,...,ups) is the vector-valued unknown
function, Du; is the gradient of u;, « is a real number, and H; are mutually unrelated
convex Hamiltonians enjoying standard additional properties (see section 2). The
A" are the rows of the so-called M x M coupling matrix A := (A!---AM), which
constitutes the relevant item in the problem.

We are interested in the setting which should correspond in the scalar case, namely
when M = 1 and A is just a constant, to taking A = 0. In this case the system reduces
to a single equation on TV not directly depending on the unknown and classified as
being of Eikonal type.

In this framework a rich qualitative theory has been developed by linking PDE
facts to geometrical/dynamical properties. Representation formulae for (sub)solutions
have been provided through minimization of a suitable action functional. The exis-
tence of a unique value of a has been shown, called a critical value, for which (viscosity)
solutions do exist. This material has found applications in a variety of related asymp-
totic problems, and, furthermore, connections with Hamiltonian dynamics have been
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established. This body of results is a part of the so-called weak KAM theory; see
[1, 5,7, 8,9, 11] for details.

If instead A > 0, the corresponding equation can be uniquely solved on the whole
torus for any a and the solution is the value function of a related control problem
with A playing the role of discount factor.

To find an analogue of the Eikonal case for systems, it is convenient to start
from [12], where the class of monotone systems is introduced, and existence and
uniqueness results of (viscosity) solutions are established. Regarding our system,
being a monotone one corresponds to the following conditions on the coupling matrix:

e any nondiagonal entry of A is nonpositive;
e A is diagonal dominant, namely Zj\il Ajj > 0foranyie{l,...,M}
e strict diagonal dominance holds at least for one row.

This setting should be put in relation to strict positiveness in the scalar case, and
in this perspective it is consistent to focus on the limit setup where A satisfies the
following conditions:

e any nondiagonal entry of A is nonpositive;
e any row sums to 0.

It was first pointed out in [4, 17, 18, 19] that under the above assumptions some
phenomena, already occurring in the Eikonal scalar case, also take place for systems
and can be analyzed in the spirit of the weak KAM theory. The properties of the
critical value have been investigated, namely the minimal value for which the cor-
responding system admits subsolutions. Applications to asymptotic problems have
been considered as well. Control interpretation for the Hamilton—Jacobi system has
been investigated in [18, 19]. In [10], the weak KAM theorem has been studied in
connection with another type of system. In [3], the nonlinear adjoint method was
introduced to study the rate of convergence to the critical value of the systems, and
the solutions to the adjoint systems are related to the projected Mather measures.

A significant step forward in the qualitative analysis of systems has more recently
been performed in [6]. The authors have proved the existence of a subset A of the
torus, named after Aubry, with the property that any critical subsolution, maximal
among those taking a given admissible value at a point y € A, is indeed a solution.
Note that there is a restriction in the values that a subsolution of the system can
assume at any given point. This is a further relevant property pointed out in [6], which
genuinely depends on the vectorial structure of the problem and has no equivalent in
the scalar case.

All the above results pertain to the PDE side of the theory and are solely obtained
by means of PDE techniques. The geometric counterpart is so far missed, and the
intertwining between PDE and dynamical aspects, which is at the core of the weak
KAM theory, consequently still has to be understood in the framework of systems.
This is actually the primary task our paper is centered upon and is above all performed
by putting the problem in a suitable random frame.

As a first step we consider all the possible switchings between indices {1,..., M}
of the system on an infinite time horizon. This gives rise to the space of {1,...,M}-
valued cadlag paths, denoted by D, endowed with the Skorohod metric (see Appendix
B) and the corresponding Borel o-algebra F. The coupling matrix, under our as-
sumptions being the generator of a semigroup of stochastic matrices, induces a linear
correspondence between the simplex of probability vectors of RM, i.e., with nonneg-
ative components summing to 1, and a simplex of F-probability measures on D; see
subsection 3.1.

This construction is indeed equivalent to that of a Markov chain with rate matrix
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—A; formula (3.1) defining the family of probability measures is nothing but the usual
finite-dimensional distribution formula with given initial distribution. However, we
would like to emphasize that the advantage of our approach is avoiding having to
introduce an abstract probability space; we just work with concrete path spaces. We
also avoid explicitly using notions such as stochastic process, conditional probability,
and other probabilistic tools. This makes the presentation self-contained.

We make corresponding to elements of D RY-valued cadlag velocity paths and get
by integrating them the admissible random curves on T ; see subsection 3.3. Action
functionals are then obtained by averaging, with respect to the above probability
measures on D, line integrals over random curves of the Lagrangians associated with
the Hamiltonians of the system; see (4.1). This justifies the title of the paper.

The effectiveness of our approach is demonstrated by recovering some crucial
facts of the scalar case. Namely, we fully characterize all subsolutions of the system,
for any « greater than or equal to the critical value, as the functions from TV to
RM satisfying a suitable estimate with respect to our action functionals; see section
4 and Theorem 5.7. We use the action functionals to explicitly represent critical
and supercritical subsolutions enjoying an additional maximality property, through a
suitable minimization procedure; see Theorem 5.2. We characterize the values that
a subsolution can assume at a given point; see Theorem 5.5. By this way we also
provide a representation formula for critical solutions taking a prescribed admissible
value at a given point of the Aubry set, complementing the result of [6]; see Theorem
5.6.

The paper is organized as follows: In section 2 we set forth the problem and recall
some known facts about critical /supercritical subsolutions and the Aubry set. Section
3 is devoted to illustrating the random frame in which our qualitative analysis takes
place. The family of probability measures P, is introduced, for any probability vector
a of RM, and key notions such as admissible control and stopping time are given.
In section 4 we define the action functionals and prove the fundamental estimate for
subsolutions. Section 5 is about representation formulae for subsolutions and related
results. Finally, the two appendices gather basic material on stochastic matrices and
spaces of cadlag paths.

2. Setting of the problem. Here we introduce the system, which is the object
of investigation, as well as standing assumptions and basic preliminary facts. We refer
the reader to [4, 6, 17, 18] for proofs and more details on the results stated.

As already pointed out in the introduction, we will be interested in the one-
parameter family of systems of the form

H1($,DU1) +A1 ‘U= Q,
(HJa)
Hyr(z, Dups) + AM -u =«

posed on the flat torus TV identified with RY /ZN. Here u = (u1,...,ups) is the
vector-valued unknown function, A® are the vectors given by the rows of the M x M
coupling matriz A, and « varies in R. The following conditions will be assumed
throughout the paper without any further mentioning. On the Hamiltonians H; we
require the following:

(H1) H; is continuous in both variables;

(H2) H; is convex in p;

(H3) H; is superlinear in p.
The growth condition in (H3), together with (H1), (H2), allows defining the corre-
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sponding Lagrangians via the Legendre—Fenchel transform, namely
Li(z,q) = max (p- q — Hi(z,p)) for any i,
pER™

and they inherit from H; the properties of being continuous, convex, and superlinear
at infinity.

We furthermore require on coupling matrix A the following:

(H4) any nondiagonal entry of A is nonpositive;

(H5) any row of A sums to 0;

(H6) A is irreducible.
Irreducible means that, given any nonempty subset of indices I C {1,..., M}, there
isiel,j¢ I with Aj; # 0; loosely speaking, this condition means that the system
cannot be split into separated subsystems.

As made precise in Appendix A, the key point is that (H4), (H5) are equivalent
to —A being the generator of a semigroup of stochastic matrices. We also recall that
under (H4), (H5), (H6) the matrix A is singular with rank M — 1 and kernel spanned
by 1, namely the vector with all components equal to 1; moreover, im(A) cannot
contain vectors with strictly positive or negative components. This in particular
implies im(A) Nker(A) = {0}.

NOTATION 2.1. The projection of RY onto TV = RN /ZN induces the structure
of an additive group on TV . To ease notation we will indicate throughout the paper by
the usual symbols +, — the corresponding operations between elements of the torus.

The notion of viscosity (sub/super)solution can be easily adapted to systems such
as (HJa); we will drop in the following the term viscosity since no other kind of weak
solution will be considered.

DEFINITION 2.2. A continuous function u = (u1,...,un) is a subsolution (resp.,
supersolution) of (HJa) if the inequality

Hi(z,Dy(x)) + A" -u(z) < o (resp.,> a)

holds for every x € TV, i € {1,...,M}, and ¢ € C*(T") such that u; — ¢ attains a
mazimum (resp., minimum) at x. We call u a solution if it is both a subsolution and
a supersolution.

Remark 2.3. One could wonder why we are considering systems with the same
constant appearing in the right-hand side of any equation, while a more natural
condition should be to have instead a vector of RM, say a, with possibly different
components. We point out that, under our assumptions, such a setting is actually no
more general. In fact, if we write the vector a as a; + a; with a; = a1 € ker(A),
as € im(A), where this form is uniquely determined because im(A) Nker(A) = {0},
and pick b with Ab = —ay, then u is a (super/sub)solution to (HJ«) if and only if
u + b satisfies the same properties for the system obtained from (HJ«) by replacing
in the right-hand side a1 by a.

Remark 2.4. Due to the coercivity condition, any subsolution to (HJ«) is Lip-
schitz continuous. Moreover, owing to the convexity of the Hamiltonians, the notion
of viscosity and a.e. subsolutions are equivalent for (HJ«). Furthermore, we can
express the same property using generalized gradients of any component in the sense
of Clarke. Namely, w is a subsolution to (HJ«) if and only if

Hi(z,p) + A" -w(z) < a
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for any x € TV, p € Ow;(x), i € {1,...,M}, where Ow;(x) indicates the generalized
gradient of w; at z.

Here are two basic propositions.

PROPOSITION 2.5. The family of all subsolutions to (HJa), if nonempty, is equi-
Lipschitz continuous with Lipschitz constant denoted by £,,.

PROPOSITION 2.6. The family of subsolutions to (HJa) taking the same value at
a given point, if nonempty, admits a mazximal element.

We define the critical value 7y as
v =inf{a € R | (HJa) admits subsolutions}.

The infimum in the definition of v is actually a minimum, as made precise below.

PROPOSITION 2.7. The critical system (HJ7) is unique in the one-parameter fam-
ily (HJa), a € R, for which there are solutions.

Following [6], we give the definition of the Aubry set A C TV from the PDE point
of view.

DEFINITION 2.8. A point y belongs to the Aubry set A if any maximal critical
subsolution taking a given value at y is a solution to (HJy).

Roughly speaking, the Aubry set, which is a closed nonempty subset of TV, is the
place where the obstruction in getting subsolutions of system below the critical level
is concentrated. More specifically, there cannot be any critical subsolution which is,
in addition, locally strict at a point in A, in the sense of the above definition.

DEFINITION 2.9. For a given critical subsolution u, a component u;, for some
i €{1,...,M}, is said to be locally strict at a point y € TV if there is a neighborhood
U of y and a positive constant & with

Hi(x,Dui)—FAi-ug y—06 ae x€ U.

In analogy with the scalar case, we have the following property.

PROPOSITION 2.10 (see [6, Proposition 3.9]). A pointy € A if and only if for any
given index i € {1,..., M} there exists a critical subsolution u with u; locally strict at
Y.

An interesting fact pointed out in [6] is that there is a restriction on the values
that a subsolution to (HJa) can attain at a given point. This is a property due to
the vectorial structure of the problem and has no counterpart in the scalar case. The

authors refer to it as rigidity property or rigidity phenomenon. For o > ~, we define
for z € TV

(2.1) Fo(x) = {b € R™ | 3 u subsolution to (HJa) with u(z) = b}.

Notice that F,,(z) is convex because of the convex character of the Hamiltonians;
in addition, if b € F,(z), then b+ p1 is still in F(z) for any p € R, being that
1 € ker(A). This is in a sense the equivalent of adding a constant to a subsolution in
the scalar case. We have the following rigidity phenomenon on A.

PROPOSITION 2.11 (see [6, Theorem 5.1]). The admissible values for critical sub-
solutions at a given point y in A are of the form

b+ pl,
where b € RM depending on y, and p € R.
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3. Random setting.

3.1. A family of probability measures. To build up the random frame ap-
propriate for systems, we introduce a family of probability measures defined on D,
namely the space of cadlag paths taking values in {1,...,M} endowed with the o-
algebra F; see Appendix B. Averaging with respect to such measures will play a
crucial role in the subsequent analysis. We will more precisely show that the coupling
matrix A induces a correspondence between the simplex S of probability vectors of
RM and a simplex of probability measures on D.

It is convenient for later use to start by recalling that the family of cylinders of
F, or of F; for any ¢t > 0, is a semiring (see Appendix B for the definition of cylinder
in F). Namely, it contains the empty set, it is closed by finite intersections, and the
difference of two cylinders is a finite disjoint union of cylinders. Therefore, taking into
account that F, F; are generated by cylinders, we get the approximation theorem for
measures; see [14, Theorem 1.65].

PROPOSITION 3.1. Let pu be a finite measure on F. For any E € F, there is a
sequence E,, of multicylinders (see Terminology B.1) in F with

lim pu(E,AE) =0,

where I\ stands for the symmetric difference. If, in addition, E € F; for somet > 0,
then the approximating multicylinders E,, can be taken in F;.

As a consequence we see that two finite measures on D coinciding on the family
of cylinders are actually equal.

We go on, as announced, by performing a converse construction, namely by defin-
ing through the coupling matrix A, for any a € S, a suitable function on cylinders
and then uniquely extending it to a probability measure on D.

For a probability vector a € RM | we define for any cylinder C(ty, ..., t5; 1, ., jx)

(31) ,ua(c(tlv s 7tk;j17 s 7.jk)) = (ae—tlA) i1 H (e_(tl_tlil)A)

j ) .
1=2 Ji—1J1

This function enjoys the following key properties:

(i) it is, for any k € N, a probability measure on the family of cylinders of the
form C(t1,...,tg; J1,-- -, jk) obtained by keeping (¢1,. .., tx) fixed and varying
(J1y -y Jk)In {1,..., M}k, which is actually a o-algebra being in a one-to-one
correspondence with the family of all subsets of {1,..., M}k;

(ii) if (ti,,...,t;) is a subsequence of (t1,...,tx) with | < k, then for any
G ye-ndl) €41, MY

palCltir ot gt g = S HalCltnr oty )
(J1se-dr) €T

where
J = {(jlaajk) |j1m :jz*m for m = 1571}
The latter condition is known as the Kolmogorov consistency condition, and its valid-
ity in this context depends upon e~** being a stochastic matrix for any s, which is in
turn equivalent, as shown in Proposition A.5, to requiring (H4), (H5) on the coupling
matrix A.
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We are then in position to use the Kolmogorov extension theorem; see, for in-
stance, [14, Theorem 14.36], [21, Theorem 1.2], which ensures, under the previous
conditions (i), (ii), the existence of a unique probability measure, denoted by P,, on
(D, F) which extends pa on the whole F.

It comes from (3.1) that the map

a— P, is linear;
consequently the measures P,, for a = (a1, ..., a,,) varying among probability vectors
of RM make up a simplex of measures spanned by P; := Pe,, for i € {1,...,M}, and

M
]Pa = Z a; Pi.
i=1

Since by (3.1) the measures P; are supported in D; € Fy (see (B.4) for the
definition of D;), we also deduce that

M
Pa(A) =Y a;Pi(AND;)  forany AcF
=1

and

a; = Pa(D;) for any 7 € {1,...,M}.

Also notice that all measures P, corresponding to strictly positive a are equivalent
in the sense that they have the same null sets, and these are the £ € F with

Pi(E) =0 for any <.

TERMINOLOGY 3.2. By a random variable we mean any measurable map from
(D, F) to a Polish space endowed with the Borel o-algebra. A simple random variable
is one that takes on finitely many values. We denote by E, the expectation operators
relative to Pa and put for simplicity E; in place of Ee,. We say that some property
holds almost surely, a.s. for short, if it is valid up to a Pay-null set for some and
consequently for all a > 0, where > must be understood componentwise.

We consider the push-forward of the probability measure P,, for any a € S,
through the flow ¢y, on D defined in (B.8). For a cylinder C' := C(t1,...,tg; j1,-- -5 Jk),
we have for anyae S

o #Pa(C) = Pafw [ dn(w) € O} = Pa(C(tr + Ay oy ti + B3 k)

k—1
_ (aef(tlJrh)A)

R SN

J1 i—s Juji—1
which implies that
O #Pa(E) =Py o—na (F) for any F € F.

We have therefore established the following.
ProposiTION 3.3. Foranyae S, h >0,

On Py = Py o—na.
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Accordingly, for any measurable function f : D — R, we have by the change of
variables formula

32 Baflon)= [ FOuw)dPa= [ ) dr#P=Fupnt

We consider, for ¢ > 0, the random variables with values in {1,...,M} given by the
evaluation maps at t, i.e., w — w(t). By (3.1),

wW(t)#Pa(i) = Pa({w | w(t) =i}) = (ae*m)i
for any index 7 € {1,...,M} so that
(3.3) w(t)#Py = ae™ A

Consequently, if we look at an M-dimensional vector, say b, as a (measurable) function
from {1,...,M} to R, we have

(3.4) Eabo) =ae ™ - b.

Formula (3.3) can be partially recovered for measures of the type P, L E (P,
restricted to E), where E is any set in F.

LEMMA 3.4. For a given a € S, E € F; for somet > 0, we have
w(s)#(PaL E) = (w(t)#(PaL E)) e~ TN for any s > t.
Proof. We first assume F to be a cylinder
E=C(t1,---,tk;J1,---5Jk)

for some times and indices. Then the condition E € F; is equivalent to t > t;. We
have

W(tk)#(PaLE)(i) = Pa(E N C(tM z))a

which implies that
w(tk)#(Pa L E) = ]Pa(E) €

and, according to the definition of P, in (3.1),
w(s)#(PaL E) = (w(tp)#(Pal E)) e 7% for s> ;.
Consequently,
w(s)#(PaL E) = (w(ty)#(PaL E)) e” 08 o= (5=0A = ((1)4(Pa L E)) e~ 70N

for s > t, as claimed. The result can be extended by linearity to any multicylinder.
Finally, if E is any set in F, then we consider a sequence of multicylinders E,, in
Fi with Pa(E,AE) — 0. By Proposition 3.1,

lirrlnw(s)#(]P’al_En)(i) = li??llPa(En NC(s;1)) =Pa(ENC(s;4)) = w(s)#(Pal E)(7).
Therefore,

w(s)#(PaL E) = limw(s)#(PaL E,) = (w(t)#(PaL E)) e~ 7D, -

n
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3.2. Stopping times. A stopping time, adapted to F; (see Appendix B), is a
nonnegative random variable 7 (see Terminology 3.2) satisfying

{r<t}leF for any t,

which also implies that {7 < t}, {T =t} € F;.
For a bounded random variable 7, we set

(35) =3 A ({r € G- 1/2"5/2)

J

where I(-) stands for the indicator function of the set at the argument, namely the
function equal to 1 at any element of the set and 0 in the complement. The above
sum is finite, 7 being bounded, so the 7,, are simple stopping times, and letting n go
to infinity we get the following.

PROPOSITION 3.5. For a bounded stopping time T, 7, defined as in (3.5), make
up a sequence of simple stopping times with

Th > T, Tpn— T uniformly in D as n — oco.

We consider a simple stopping time of the form

1
(3.6) T=> t;1(E;)
j=1
where the sequence t1,...,%; is strictly increasing and E; are mutually disjoint sets

of F; in addition, E; € F;, by the very definition of stopping time. The symbol I(-)
again stands for the indicator function.
We define
Fy ={r > t;}

so that

F; e Fy, for any j.

Jj—1

It is clear that

(3.7) Fy=D\|JE forj>1, F=E
=1

We derive that 7 can be equivalently expressed as

l
(3.8) T=> (t; —t;1) I(F),
j=1

where we have set tp = 0 to simplify notation. The two expressions of 7 given by
(3.6), (3.8) are different: in (3.6) the sets E; are mutually disjoint, while in (3.8) they
are decreasing with respect to j.
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For a stopping time 7, we consider the map defined as
(3.9) a— w(r)#Pa

since the push-forward of P, through w(7) is a probability measure on {1,..., M},
which can be identified with an element of S; we see that the relation in (3.9) defines
a map from S to S which is, in addition, linear. Thanks to Proposition A.2, it can
consequently be represented by a stochastic matrix; we will denote analogously to the
case of deterministic times (see (3.3)) by eA7, acting on the right. In other terms,

(3.10) ae ™ = w(T)#Pa for any a € S.

3.3. Admissible controls. We call control any random variable = taking values
in D(O, +00; RN) such that
(i) it is locally (in time) bounded, i.e., for any ¢ > 0 there is R > 0 with

(3.11) sup |2(t)| < R a.s.;
[0,¢]

(ii) it is nonanticipating; namely, for any ¢ > 0,
(3.12) w1 =wg in [0,t] = Z(w1) = E(we) in [0,¢].

The second condition can be equivalently rephrased requiring = to be adapted
to the filtration JF;, namely requiring that Z(¢) be F;-measurable for any ¢. In fact,
if (3.12) holds true, then the value of Z(w)(¢) just depends on the restriction of w
to [0, ], which actually implies that Z(¢) is F;-measurable. The converse implication
comes from a version of the Doob—Dynkins lemma for Polish spaces (see [13, Lemma
1.13], asserting that if the o-algebra spanned by a random variable # 1 is contained
in that spanned by # 2, then # 1 is a measurable function of # 2 . In our case, # 1 is
E(s) for s € [0,t] and #2 is

w +— restriction of w to [0, ],

which takes value in D(0,¢;{1,...,M}).

The paths in D(O, +o0; RV ) being right continuous, the condition of being adapted
implies (see [21, p. 71]) that = is, in addition, progressively measurable; namely, for
any t, the map

(s,w) = E(s,w)

from [0,#] x D(0, +o00; {1,..., M}) to RY is measurable with respect to the o-algebras
B[0,t] x F; and B, where B[0,t], B denote the family of Borel sets of [0,¢] and RY
with respect to the natural topology.

For a control E, Z(Z) is also a random variable with values in C(O, +00; TN); in
addition, Z(Z) is adapted and consequently progressively measurable.

For a time ¢, we say that a control is piecewise constant in [0, ¢] if it is of the form

ZXk ]I([Sk,S]H_l)) in [O,t)
k=1

for some Fj, -measurable R¥-valued bounded random variables X}, where

(3.13) sk is an increasing finite sequence with s; =0, s, =t
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and I(-) is as usual the indicator function. For any control = and s as in (3.13), the
Z(sk) are Fs,-measurable R¥-valued bounded random variables for any k, so that

{ Z:lel Z(sk) I([sk, sk41)) in [0,1),

in [t, +00)

—

s_;O:

is a control piecewise constant in [0,¢]. We therefore directly derive from Proposition
B.3 the following.

PROPOSITION 3.6. For any control = and t > 0, there is a sequence of controls
=, piecewise constant in [0,t] and locally (in time) uniformly bounded with

2, — = in the Skorohod sense in D(O, —I—oo;]RN) for any w.

4. An estimate for subsolutions. For a > v, an initial point = in TV, a
bounded stopping time 7, and a control =, we consider in this section the action
functional

(4.1) Ea {/OT Lys)(x +Z(E)(s), —E(s)) + ads

Notice that I(Z)(r) belongs to TV for any w; see (B.9). The meaning of the sum
between elements of TV is made precise in Notation 2.1.
We aim at proving the following.

THEOREM 4.1. For a > =, let u, 7, Z, a be a subsolution to (HJa), a bounded
stopping time, a control, and a probability vector in S, respectively. For any initial
point x € TV, we have

(4.2)
Ea [uw(o)(x) — Ugy(7) (T —|—I(E)(T))] < Ea [/0 Ly (x +Z(E)(s), —E(s)) + ads| .

The difficulty in proving Theorem 4.1 is that the two integrals appearing in (4.2)
do not commute due to the presence of the random time 7. It is worthwhile to point
out that this difficulty never happens in the study of evolutionary problems for weakly
coupled systems (see [18, Proposition 2.5] for more details). Joint measurability prop-
erties guarantee that the Fubini theorem can be applied in regions where stopping
time is constant. The idea is then to approximate 7 by a sequence of simple stop-
ping times 7, and then exploit the subsolution property of u separately in the regions
where 7,, are constant. We will take advantage of some properties about probability
measures P, we have gathered in section 3.

Throughout the section we put @ = 0 to ease notation.

LEMMA 4.2. Let u, a be as in the statement of Theorem 4.1; we further consider
ta>11 >0, EeFyy, & € D(O,—l—oo;RN), and zo € TN. Then

/E (Ueo(t1) (20) = Uas(r) (20 + Z(€0) (t2 — t1))) dP4

< /E (/t2 Ly(s)(20 + Z(&0) (s — t1), —50(8))615) dPa.

ty

Proof. We can assume zg = 0 without losing generality in the proof. Since u is a
subsolution to (HJ«), we have

(4.3) —p-q<Li(z,—q) + Hi(z,p) < Li(z,—q) — A u(z)
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for any i € {1,...,M}, 2 € TV, ¢ € RN, p € Ou;(z) (see Remark 2.4). We define
d =w(t)#(Pal E),

and we have for a.e. s € (¢1,12)

L ((ae ) u(z(Eo)(s — 1)

ds

= ((aem =) (= Au((€)(s — 1)) + (' (s = 12) - €o(s = 1), -, ™ (s — 1) - €o(s = 11)) )
where p’(s —t;) is a suitable element in du;(Z(&y))(s — t1) for any i. Combining this
last equality with (4.3) and setting L = (Lq, ..., Las), we deduce that

i () ) e) < (de ) L)), ~6o(s)
and consequently
d-u(Z(g) (1)) — d eV (T () (k) = / 2= (@) - ui@(E) ) as

< /: (de—(S—t1)A) (LT (€0)(s), —Eo(s)) ds.

We have by the definition of d, (3.4), Lemma 3.4, and E € F,

/E (tater) (T(E0) (1)) — ts(eny (T(€0) (£2))) dPa = d - (u(Z(€0)(t1) — e~ 2 u(T(€) (12)
, B @@ —en(e) = (ae7) - @) ~6r(5)

for any s in [t1,t2]. By plugging these relations in the last inequality and using the
Fubini theorem, we get

[ (i @) 1)) = vy (TN 2 P < [ /:('Lw(l(go),—fo)ds) aP..
O

LEMMA 4.3. Given a control E and a bounded stopping time T, let Z,, T, be
sequences of controls and bounded stopping times, respectively, with

(4.4) E, = =2 a.s. with respect to the Skorohod metric,
(4.5) Tp = T uniformly in D,
Tn > T a.s. for any n.

Assume, in addition, that for any T > 0 there is R = R(T) > 0 with

(4.6) sup |Z.(s)| <R a.s. for any n.
s€[0,T)

Then .
Ea [/ L,(z+Z(Z,), —En)ds}
0
converges in R to

E, [/O Lo(z + Z(2), -5) ds}
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and
(4.7) Ea [uw(o)(x) — Ugy(r,) (T + I(En)(Tn)} — Ea [uw(o)(x) — Uy (ry(z +I(E) (Tﬂ

for anyz € RN, ac S.

Proof. We set x = 0. We know that conditions (4.4), (4.6) hold true outside a
Py-null set denoted by D'. If w € D\ D', the Z,,(w) are uniformly bounded in [0, 7(w)],
and we derive from (B.1), (B.5) that Z,(w) converges pointwise a.e. in [0, 7(w)] to
E(w). Also taking into account the continuity of L and Z(-) (see Proposition B.7), we
get through the dominated convergence theorem

(4.8) /OTLW(I(En),—En)ds — /OTLW(I(E),—E)ds a.s.

Let T be such that 7 < T a.s.; by (4.6),

n%a):(r] IZ(En)(s)| < RT for any n, outside a P,-null set,
s€|0,

and consequently the sequence
-
/ L,(Z(E,),—E,)ds
0

is a.s. uniformly bounded. Also taking (4.8) into account, we can thus obtain the
claimed convergence with 7 in place of 7,, in the approximating sequence, again via
the dominated convergence theorem. We further have

/OT" Lo(Z(En), ) ds — /OT Lo(Z(E,), ~Z,) ds

< [ La@E), Sl

Owing to (4.5) and the uniformly boundedness property of the integrand, the right-
hand side of the above formula becomes infinitesimal, as n goes to infinity, uniformly
in w so that

This shows the first convergence in the statement. The limit relation (4.7) can be
proved similarly using the continuity of u in T™. a

/ L, (I(En)v _En) ds — / Lw(I(En)7 _En) ds
0 0

| o

LEMMA 4.4. Assume
l
(4.9) =Y t;I(E))
=1

to be a simple stopping time, with the t; making up an increasing sequence of times,
and set F; = {1 > t;} for any j € {1,...,1}. Let u, Z, a, = be as in the statement of
Theorem 4.1; then

Eaq {/OTLw(x—FI(E),—E) +ads] = Z/FJ (/:1 L,(x+ZI(2),—E) +ads> dP,,

l
=3 [ (et o+ TE 2D i (o + TE() P
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Proof. We set tyg =0 and

I=E, [/ L,(z+Z(2),-5) —l—ads} .
0

Taking into account the definition of 7 and that the ¢; are monotone, we have

I= Z// oz +Z(E),-5) +ads—ZZ// w(@+Z(E), ) + ads

=1 j=1
—ZZ/ / (@ +T(E),~E) + ads
j=11i>j
and, owing to (3.7),
Z/ / w(z+Z(2), E)—Fads-/ / w@+Z(E), =)+ ads
i>7 tj-1
for any j € {1,...,1}. Therefore, summing over j we get

AT

Jj—1

w(@+ZI(E), E)—i—ads) dP,,

as desired. The second equality in the statement can be proved along the same lines;
we provide some detail for the reader’s convenience. We start by defining

J = Ea [tg0)(®) =tz + Z(E(7))];

then we have

l
J= Z/ (t(0) (%) = ths(e) (@ + L(E(t;)))) dPa

_ZZ/ sty 1)+ TE(t1)) — e (@ + TE()))) dPa

lljl

Yy / oty 1)@+ T(E(t51)) — e (@ + T(E(E;)))) dPa

j=11i>j

and, again exploiting (3.7),

3 / ey 1) (@ + T(E(ty1)) — ey (@ + TEW)))) dPa

i>]

— [ (o o+ TEl1)) =t o + TEE) s

J

for any j € {1,...,1}. We conclude the proof summing over j. O

PROPOSITION 4.5. The assertion of Theorem 4.1 is true if we take the stopping
time T simple, say of the form (4.9), and the control Z piecewise constant in [0,T)]
for some T > t;.
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Proof. Since T' > t;, we can assume that = has the form
== ZXk]I([Sk—lask)) in [O,tl),
k=1

where X}, are R¥-valued random variables and sy, is a finite increasing sequence with
so = 0 and s, = #;; we can assume, in addition, that all the times ¢;, j = 1,...,1,
belong to the sequence. Consequently, an index j can be univocally associated to
any interval [si_1, sg) such that [sy_1,sk) C [tj—1,t;). Due to the nonanticipating
character of =,

(4.10) Xy, is Fs,_,-measurable.

We fix indices k, j such that [sy_1, si) is contained in [t;_1,t;); by (4.10), there
is a sequence of simple F;, ,-random variables

taking values in RY and converging a.s. to X}, (see [15, Theorem 1.4.4]) with y? € RV
and B € F,,_, for any n. Then, slightly modifying the argument in Lemma 4.3, we
get that

Sk
(4.11) / / Loy (Z(E(sk-1)) + Z(Yn)(s — sk-1), —Yn) ds
Fy Jsp_1
converges to
Sk
[ @& ) + I (s = sio0), - X0 ds
Fj Jsk_1
as n goes to infinity, and similarly

(4.12) / (o) (T (E(sk-1)) = Uao(s) (Z(E(sk-1) + L(Yn) (sk — 58-1)))))

J

converges to

/ (ter(sp1) (Z(E(sr-1)) = Ua(s) (Z(E(sr-1) + L(Xk) (58 — 586-1)))))-

Fj

Due to the form of Y, the integrals in (4.11), (4.12) can in turn be written as
Sk
S B @Eee) + 0 (s s dsdPa,
r FjﬂBz Sk—1

St (FE 1)) oy (T(Esi1) + 97 (51~ 51-1)) }

respectively. Since F; € Fi,_1, B € Fs,_y, and sp_1 > t;_1, we deduce that F;NB; €

Fs,._,, and we can apply Lemma 4.2 to any term of the previous sum. This yields

/ (o oy 1) (TE(55-1)) = tony T(E(55-1) + 97 (55 — 55_1))))) dPa
F;NBrT,

Sk
< / / Loy (T(E(551)) + 47 (5 — 551, —y7) ds dP
FjﬁB;: Sk—1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/23/21 to 151.100.50.232. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

836 H. MITAKE, A. SICONOLFI, H. V. TRAN, AND N. YAMADA

for any r. By summing over r and passing to the limit as n goes to infinity, we further
get

/F (tes(sr—) (L(E(58-1)) = Uao(s) (L(E(sk-1) + L(Xp) (s — $8-1))))) dPa

Sk
S/ / Lw(s)(I(E(Skfl)) +Z(Xk-1)(s — sg—1), —Xk) ds dPs,.
Fy Jsp_1

By summing all inequalities as above corresponding to intervals [si_1, i) in [t;-1,%;),
we obtain

[ (ot o EE ) ~ iy FECD) P < [ [ L (T(E (), ~2(0) ds b,

J
We conclude the proof summing over j and exploiting Lemma 4.4. d

Proof of Theorem 4.1. By Proposition 3.5, 7 can be approximated uniformly in w
by a sequence of simple stopping times 7, with 7, > 7 and 7,, < T for some constant
T'; in addition, by Proposition 3.6, = can be approximated a.s. with respect to the
Skorohod metric by a sequence of control Z,, piecewise constant in [0, 7] and locally
(in time) uniformly bounded.

Owing to Proposition 4.5, inequality (4.2) holds true if we replace 7, E by 7, Ey,
respectively, for any n. We conclude by passing at the limit as n goes to infinity and
exploiting Lemma 4.3. d

NOTATION 4.6. For a bounded stopping time T and a pair x, y of elements of TV,

we set
K(r,y—z)={E€K|Z(E)(r) =y —z a.s.}.

Notice that both 1(Z)(1) and y—x are elements of TV ; see (B.9) and refer to Notation
2.1 for the meaning of y—x. Also notice that Z(Z)(7) is a random variable taking value
in RY because Z is progressively measurable and T is a stopping time. We recall that
the diction a.s. must be understood with respect to the family of equivalent measures
P,, a > 0. We will call, with some abuse of language, the controls = belonging to
K(7,0) 7-cycles.

Remark 4.7. For x, y in TV, the family of controls (7, y — x) is nonempty when-
ever essinf 7 > 0. In fact, for such a stopping time, select € > 0 with € < essinf 7 and
define a control = setting for any w,

_ [ 2 forse|0,e),
E(w)(s) = { o0 for s € [E,iOO),

where zg is any vector of RY with proj(e z9) = y — = (proj is the projection of RY
onto TV). It is indeed apparent that = belongs to K(7,y — ).

Using Notation 4.6, we derive from Theorem 4.1 the following.

COROLLARY 4.8. For any pair of points z, y in RY, subsolution u to (HJa),
a € S, bounded stopping time T, and = € K(1,y — ), we have

(413)  Ea[uwo) () — tw@r) ()] <Ea {/OT Lysy(@ +Z(E)(s), —E(s)) + ads

In the next section we will show (see Theorem 5.7) that (4.2) actually characterizes
subsolutions to (HJ«).
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5. A representation formula for subsolutions. Throughout the section we
consider a constant a greater than or equal to 4. For 3 in RN, b € RM, we define

(5.1) vi(x) = inf E; {/0 Ly(x+Z(2), —E) + ads + by(q)

for any i € {1,...,M}, 2 € RY, where the infimum is taken with respect to any
bounded stopping times 7 and = € K(7,y — z). We have the following.

PROPOSITION 5.1. The function v = (vi,...,vn) defined in (5.1) is bounded in
TN.
Proof. Taking into account that 1 € ker(A), we see that if by € F,(y) (see (2.1)

for the definition of F), then by + ul € F,(y) as well for any p € R. We can
consequently find a subsolution u to (HJ«) with

u(y) <b.

Owing to Corollary 4.8, we then have
E; [/ Loy (x +Z(E)(s), —E(s)) + ads + by (r)
0
> E,; [/0 Ly (x +Z(E)(8), —E(8)) + ads + uyr)(y) | > ui(z)
for any i € {1,...,M}, x € RY, bounded stopping time 7, and = € K(7,y — x). This

implies that
v(z) > u(x) for any z,

where > must be understood componentwise. On the other side, by setting 7 = |z —yl|,

== ‘i:@;‘ and taking into account that L is locally bounded, we see that v is also
bounded from above. d

We aim at showing the following.
THEOREM 5.2. The function v defined by (5.1) is a subsolution to (HJa).

We postpone the proof after some preliminary material. The crucial point is to
prove a dynamic programming principle-type result. We will use the flow ¢; defined
in (B.8) in Appendix B and the change of variables formula (3.2).

PROPOSITION 5.3. Let h, x, &, j be a positive time, a point in RN, a path in
D(O, +00; RN), and an index in {1,..., M}, respectively. Then

h
(5.2) vj(z) <E; [/o Ly (x +Z(60), —60) + ads + vy (x +I(€0)(h))] -

Proof. Fix € > 0, and set a = 0, z = x4+ Z(§)(h) to ease notation. Denote, for
any ¢, by 7, Z; bounded stopping times and controls in (7%, y — z) with

(5.3) vi(z) > E; [/ Ly(z4+Z(E;),—=;)ds + bw(fi)] —e.
0

We define new stopping times and controls via

T=T1, Z=5 in D; for any i;
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it is clear that = € K(7,y — z). We set
T(w) = 7(on(w)) + h for any w € D;
this is still a stopping time since, for any ¢ > h,
{w]Tw) <t} ={w|7(dnw)) <t —h} =, ({w | T(w) <t —h}),
which actually yields by Proposition B.5
{w|7(w) <t} € F,
as desired. We further set

&) forwe D, s €[0,h),
(W)(s) = { EO(qSh (w))(s—h) forw e D, s € [h,+0).

(112

To justify = being an admissible control, we define a map ¥ from D(O, ~+00; RN) to
itself through

€o(s) for s € [0, h),
(E)(s) = { S(ES —h) for s € [h,+00).

According to the very definition of convergence in D(O, +oo0; RN ), this mapping is
continuous in the sense of Skorohod; in fact, if &, — € and g, is the corresponding
time scale deformation, then we define

(s) = { s for s € [0, h),

g gn(s —h) +h for s € [h,+00),

and it is straightforward to check that g,, locally uniformly converges to the identity
function in [0, 400) and ¥(£)(g,,(s)) locally uniformly converges to ¥(£)(s). We can

rephrase the definition of = above as

E(w) = U(E(¢n(w)),

which shows that = is a random variable as composition of continuous and measurable
maps. If wy = ws in [0,¢] for some ¢ > h, then

On(w1) = dp(wa) in [0,¢ — A,
which implies that
E(¢pn(w1)) = E(¢n(w2))  in [0, — hl;
therefore,
E(w1) =& =Z(wy)  in[0,h],
E(wi () = E(dn(w1))(s = h) = E(¢n(ws))(s —h) = E(wn)(s)  in [h1],

which shows that Z is nonanticipating. Finally, the uniformly boundedness condition
is clearly fulfilled. We conclude that = is an admissible control. To show that it
belongs to K(7,y — x), we consider for w € D

T(w) _ h 7(w) T(pn(w))
/O Z(w) ds = /O €0 ds+ /h Z(6n (W) (5—h) ds = 2—a+ /0 Z(6n(w))(s) ds.
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Owing to Z € K(7,y — 2) and Proposition 3.3 we have for any a > 0 in S

7(ép(w)) 7(w)
Pa {w | /0 E(th(w))(s)ds;ﬁy—z} =P,-na {w | /o E(w)(s)ds;ﬁy—z} =0.

This establishes that = € K(7,y — ). We compute for s > 0

~ h s+h~
(5.4) x+Z(E)(w)(s+h) :x+/0 &o d7‘+/h E(w)dr
=2+ /OS E(on(w))dr =z 4+ Z(dn(w))(s).

According to the very definition of v, we then have

(5.5) vj(z) <E; l[)T Lw($+z(§),—§) dS—Fbw(;)

h 7 L
=E;, / Lw(a:+I(£0),—§0)ds+/ Ly(z4+Z(2), —E) ds + by
0 h

Using the definitions of 7 and Z, the change of variables formula (3.2), and (5.4),
we have

Ej / L, ($ + I(E), —é) ds + bw(;(w))]
h

F—h B B
=E; /O Lo(syny (@ + Z(E)(w)(s + h), =E(w)(s + h)) ds + bw(?(w))]

(én(w))
=E; /O Ly, ) (2 +Z(Z)(on(w)(s), —=(dn(w)(s)) ds + bm(@(dm@)))]

7(w)
=Ee, ¢-na l/ L,(z4+Z(E)(w)(s), —E(w)(s))ds + bw(T)] i
0

Using (5.3), we further get

7(w)
Eg, e—na l/ Lo(z +Z(E)(w)(s), —E(w)(s)) ds + by(r)
0

:; (eje™ . &))E; l/OT

< Z (eje ™ ;) (vi(2) +e) =eje ™ v(2) +e=Eju,m(2) +e.

i

Lo(z + Z(Ei)(s), —Ei(s)) ds + bw(rw]

Combining the last two computations, we get

E;

/ L,(z+ I(é), —é) ds + bw(;(w))‘| < Ejvw(h) (2) +¢,
h
and recalling (5.5) and the definition of z we finally obtain

+ €.

h
v;(x) < K / Lo+ T(€0), —Eo) ds + vy ( + Z(0) (1)
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Taking into account that ¢ is arbitrary and that we have set o = 0, in the end we
obtain the assertion. O
LEMMA 5.4. The function v defined by (5.1) is Lipschitz continuous in TV .

Proof. We consider two points z # x and set 79 = |z — x|, 29 = ﬁ =: q. Then,

according to (5.2),

vi(x) —e; e 1THA Ly (2) < Ky

)

lx—2z]
/ Lw(s)(x—l—sq,—q)—i—ads
0

from which we derive

lx—2z]
(5.6) vi(z)—vi(z)+e; (I - e‘lx_zm) v(z) <E; /0 L)@+ 5q¢,—q) + ads

We take a constant R which is at the same time an upper bound of both L(z,q)
in TV x B(0,1) and |v(z)| in TV (see Proposition 5.1), and in addition a Lipschitz
constant of

t—ee ™ in [0, +00)

for any i; see Proposition A.6. We deduce from (5.6) that
vi(z) —vi(2) < (R+a+ R?) |z — 2|.

This completes the proof. a

Proof of Theorem 5.2. We consider a point € RY where all components of v(z)
are differentiable and fix a nonvanishing vector ¢ € RY; further, we take & = ¢, and
accordingly

x+Z(&)(s) =+ sq for any s > 0.

Formula (5.2) then reads as

h
vi(z) —eje ™ v(z+hg) < / eje "N L(z+sq,—q) +ads,
0

which implies that

vj(@) —eje™ viz + ha) <1 /he-e_SA-L(a:+sq —q) + ads
=~ ' s .
0

h h

Passing to the limit as h goes to 0, and taking into account that all the v; are
differentiable at =, we get

A -v(z) — Duj(z) - ¢ < Lz, —q) + v
q being arbitrary, we further obtain

N v(z) + Hj(z,Dv;(x)) = N v(z) + Sl;p{—D’Uj(fE) -q—Lj(z,—q)} < a.

This shows that v(z) is a.e. and so a viscosity subsolution of the system (HJa). O
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THEOREM 5.5. Fory € TV, b € F,(y) if and only if
(5.7) E; [/ Los)(y +Z(E)(s), —=E(s)) + ads — bj + by(ry| >0
0

for any i € {1,...,M}, bounded stopping times 7, and T-cycles =.

Proof. We denote as usual by v the function defined in (5.1). By taking the
stopping time 7 = 0 and the control = = 0, we see that

v(y) <b,

where < must be understood componentwise. If (5.7) holds, then we also get the
converse inequality so that v(y) = b, which proves b € F,(y), v being a subsolution

to (HJa).
Conversely, if there is a subsolution u of (HJa) with u(y) = b, then (5.7) is a
direct consequence of Corollary 4.8. d

We give a characterization of the Aubry set from the Lagrangian point of view.

THEOREM 5.6. Assume the element b appearing in (5.1) to be in F,(y); then

(i) v(y) = b;
(ii) v 14s the mazimal subsolution to (HJa) taking the value b at y;
(iii) if a = andy € A, then v is a critical solution.

Proof. Ttem (i) has already been proved in Theorem 5.5. If u is a subsolution to
(HJa) with u(y) = b, then by Corollary 4.8 we get

u;(y) <E; {/OT Loy +Z(E)(s), —E(s)) + ads + byy(7)

for any i € {1,...,M}, bounded stopping time 7, and 7-cycle =. This shows that
v >u.

Item (iii) comes directly from the definition of the Aubry set. O

We finish the section by showing that for any « > « inequality (4.13) actually
characterizes subsolutions to (HJ«).

THEOREM 5.7. A function u : TV — RM s a subsolution to (HJa) if and only
if inequality (4.13) holds true for any pair of points z, y in TV, a € S, any bounded
stopping time T, and = € K(1,y — z).

In view of Corollary 4.8 , it is enough to show the following.

PROPOSITION 5.8. If a function u: TV — RM satisfies inequality (4.13) for any
pair of points x, y in TV, a € S, any bounded stopping time T, and = € K(1,y — x),
then u is a subsolution to (HJa).

Proof. By using the same argument of Lemma 5.4, we see that u is Lipschitz
continuous. Fix i € {1,..., M}, and take a differentiability point y of u;; define v as
in (5.1) with u(y) in place of b, and then, owing to Theorem 5.6,

v>u inTV and v(y)=u(y).

Hence u; is subtangent to v; at y, which implies that Du,(y) € dv;(y), and, v being
a subsolution to (HJ«), by Theorem 5.2 and Remark 2.4 we get

Hi(y, Du(y)) + A" u(y) = Hi(y, Dui(y)) + A" v(y) < o

This concludes the proof. a
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Appendix A. Stochastic matrices. In this appendix we collect some basic
material on stochastic matrices. All matrices appearing below are square matrices.
We refer the reader to [16, 20] for the results stated without proof.

We denote by S € RM the simplex of probability vectors of RM, namely with
nonnegative components summing to 1.

DEFINITION A.l. A (right) stochastic matriz is a matriz possessing nonnegative
entries and with each row summing to 1.

PROPOSITION A.2. A matriz B is stochastic if and only if
(A1) aB €S wheneveracS.

Proof. B is stochastic if and only if all its rows are probability vectors or, in other
terms, if and only if
e,-BeS for any .

This is in turn equivalent to (A.1). O
By the Perron—Frobenius theorem for nonnegative matrices, we have the following.

PRrROPOSITION A.3. Let B be a stochastic matrix; then its mazimal eigenvalue is
1, and there is a corresponding left eigenvector in S.

By the Perron—Frobenius theorem for positive matrices, we have the following.

PROPOSITION A.4. Let B be a positive stochastic matrix; then its mazimal eigen-
value is 1 and is simple. In addition, the unique corresponding left eigenvector be-
longing to S is positive.

Even if it is an elementary fact, we give for completeness the proof of the key
property that the coupling matrix of the Hamilton—Jacobi system under investigation
spans a semigroup of stochastic matrices.

PROPOSITION A.5. For a matriz A, e~

(H4), (H5) hold with A in place of A.

Proof. Assume that A satisfies (H4), (H5). Then, givent > 0, I — % is stochastic

for n suitably large, and consequently (I — %)n is stochastic because the product of
stochastic matrices is still stochastic, and

et = lim <1— ﬂ)

n—00 n

1s stochastic for any t if and only if

is stochastic because stochastic matrices make up a compact subset in the space of
square matrices. Conversely, if e"*4 is stochastic, then the relation

I — —tA
A=lim ——
t—0 t
implies that A satisfies (H4), (H5). O
PrOPOSITION A.6. The function
t—e; et

is Lipschitz continuous in [0, +00) for any i € {1,...,M}.
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Proof. We have

d _

aeie tA = —eiAe tA,
which is bounded in ¢ € [0, +00) because the matrices e "**, being stochastic, vary in
a compact subset of the space of M x M matrices. a

Appendix B. Path spaces. We refer the reader to [2] for more details about
this section. The term cadlag corresponds to the French acronym continue a droite
limite a gauche, namely continuous on the right and with left limit. We consider the
space of cadlag paths defined in [0, +00), with value in {1,..., M} and RY, denoted by
D= D(O, +o0;{1,..., M}) and D(O, —l—oo;RN), respectively. For any ¢ > 0, we also
indicate by D(0,t;{1,...,M}) the space of cadlag paths defined in [0, ¢] with values
in {1,...,M}. The following can be proved:

(B.1) Any cadlag path has at most countably many discontinuities.
(B.2) Any cadlag path is locally (in time) bounded.
TERMINOLOGY B.1. To any finite increasing sequence of times ti,...,ty, with

k € N, and indices ji,..., 5, in {1,...,M} we associate a (thin) cylinder defined as
(B.3) Clti, - stk g1y -y dk) = {wlw(t) = j1,...,w(ty) = jr} C D.

To ease notation, we set

(B.4) D; =C(0;14) for any i€ {1,...,M}.

We call multicylinders the sets made up by finite unions of mutually disjoint cylinders.

We endow D with the o-algebra F spanned by cylinders; those of the type C(s; j)
fors > 0,7 € {1,...,M} are indeed enough. A natural related filtration F; is obtained
by picking, as generating sets, just the cylinders C(t1,...,tx;j1,...,Jk) with ¢t < ¢
for any fixed t > 0.

Using the same construction, mutatis mutandis can be performed in D (0, +-00; RY);
in this case, the o-algebra is spanned by cylinders of the type

{€ € D(0, +00;RY) | &(s) € E}

for s, E varying in [0, +00) and in the Borel o-algebra related to the natural topology
of RY, respectively.

Both D and D(O, —l—oo;RN) can be endowed with a metric, named after Skoro-
hod, which make them Polish spaces, namely complete and separable, and such that
the aforementioned o-algebras are the corresponding Borel o-algebras. See [2] for a
comprehensive treatment of the topic.

Remark B.2. A consequence of the previous definitions is that F is the minimal
o-algebra for which the evaluation maps

t— w(t), t € [0, 400),

are measurable, and the same holds true for the o-algebra in D(O, +oo; RN ) with
respect to the evaluation maps

& — &(1).
A map Z : D — D(0,400;RY) (resp., ¢ : D — D) is accordingly measurable if
and only if the maps w + Z(w)(t) from D to RV (resp., w — ¢(w)(t) from D to
{1,...,M}) are measurable for any .
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The convergence induced by the Skorohod metric can be defined, say in
D(0,+00;RY) to fix ideas, requiring that there exists a sequence g, of increasing
continuous functions from [0, +00) onto itself (then g, (0) = 0 for any n) such that

gn(s) = s uniformly in [0, +00),
&n(gn(s)) = &(s) locally uniformly in [0, +00).

This is basically locally uniform convergence, up to a uniformly small deformation
of the time scale given by the g,,. We infer from the previous definition that

(B.5) &, — & in the Skorohod sense = &, (t) — £(t) at any continuity point of &,
which in particular implies that
(B.6) &, — & in the Skorohod sense = £,(0) — £(0).

Moreover, we have the following:
(B.7)
Any sequence convergent in the Skorohod sense is locally uniformly bounded.

For t > 0, we say that a path in D(O, +00; RN) is piecewise constant in [0,¢] if it
is of the form

-1
> wk1([sk, sk41))  for s € [0,1),
k=1

where 2, € RY and s; is an increasing sequence of times with s; = 0, s; = t. We
will use the following approximation result (see [2, section 12, Lemma 3]) in a version
slightly accommodated to our needs.

ProposiTION B.3. Fort >0 and £ € D(O, —I—OO;RN), let s, k=1,...,l,, bea
family of strictly increasing finite sequences with st =0, s =t, and

supsy — sy, — 0 as n goes to infinity;
k

then the sequence of (piecewise constant in [0,t]) paths

e L SetED st sp) i (0.0,
" 13 in [t,+o0)
converges to £ in D(O, ~+00; RN).
For any h > 0, we consider the shift flow ¢, on D defined by

(B.8) on(w)(s) =w(s+h) for any s € [0, +00), w € D.

Notice that ¢j is not in general continuous since the fact that w, — w in the
Skorohod metric does not in general imply that ¢p(w,)(0) = w,(h) = ¢n(w)(0) =
w(h), unless of course h is a continuity point for w, and hence does not in turn imply,
by (B.6), that ¢y (wy,) converges to ¢p,(w). However, we directly derive from Remark
B.2 the following.

ProprosITION B.4. The shift flow ¢ : D — D is measurable for any h > 0.

ProprosITION B.5. For nonnegative constants h, t, we have

&n ' (Ft) C Fign
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Proof. For any t; >0, j; € {1,...,M} we have

¢, (C(t1341)) = Clt1 + h, j1).

The assertion thus comes from the fact that F; is spanned by cylinders of the form
C(t1;41), with t; <t, and in this case C(t; + h; j1) € Frin- d

We also consider the space C (0, +o0; TV ) of continuous paths defined in [0, +00)
taking values in TVV. It is endowed with a metric giving it the structure of a Polish
space, which induces the local uniform convergence.

We define a map

T: D(O,+OO;RN) — C(O, —I—oo;']I‘N)
(B.9) T()(t) = proj ( / fds) ,

where proj indicates the projection from RY onto T .
PROPOSITION B.6. The map Z(-) is continuous.

Proof. Let us consider a sequence &, in D(O, +o0; RV ) converging to some &; then
by (B.7) it is locally (in time) uniformly bounded, and by (B.1), (B.5)

En(s) = &(s) a.e. in [0, +00).
Then, by the dominated convergence theorem and the continuity of proj,
(B.10) (&) () = Z(O() for any t.

Furthermore, from the uniformly boundedness of &, and the fact that proj is non-
expansive, we derive that the Z(,) are locally equi-Lipschitz continuous and locally
uniformly bounded. By the Arzela—Ascoli theorem with (B.10), we get

Z(&n) = Z(&) locally uniformly in time,

as desired. 0

Forwe D, t >0, z € RY, we consider the function

(B.11) = / Lo (@ +Z()(s), ~€(s)) ds

from D(O, —+00; RN) to R.
PROPOSITION B.7. The function defined in (B.11) is continuous.

Proof. Let &, be a sequence converging to some & in D(0, +00; RY); then the &,
are uniformly bounded in [0, ¢] and converge pointwise to & a.e. by (B.1), (B.5), (B.7).
Furthermore, bearing in mind Proposition B.6, we know that Z(&,,) converges to Z(§)
in C(O, +00; TN). Using the continuity of L;, for any i, we derive that

Lw(s)($ +I(€n)7 _gn) - Lw(s) ({E +I(§)a _5) a.e. in [Oat]

and, in addition, that the L) (z +Z(£,), —&,) are uniformly bounded. We thus get
the assertion through the dominated convergence theorem. d
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