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Abstract: A The AMEOS ( Assimilating Multi-source Earth Observation Satellite data for crop pests and diseases monitoring and
forecasting) project aims to bring together cutting edge research to provide pest and disease monitoring and forecast information,
integrating multi-source information ( Earth Observation, meteorological, entomological and plant pathological, etc.) to support
decision making in the sustainable management of insect pests and diseases in agriculture. The main objective of the project, that
is, improving crop diseases and pests monitoring and forecasting, will be achieved by utilizing EO data, developing new
algorithms, and combining new and existing data from multi-source EO sensors to produce high spatial and temporal land surface
information. The project foresees the assessment of the possibility of using available satellite images datasets to assess the
evolution of diseases on permanent (olive groves, vineyards) , or row crops (wheat) in Italy and China. The paper describes the
results of the research activity which focused on: (D) improving the classification of the agricultural areas devoted to winter wheat
and olive trees, starting from what has been made available from the Corine Land Cover initiative; @ developing an approach
suitable to be automated for estimating trees by using Sentinel 2 images; @) developing a new index, REDSI ( consisting of Red,
Re,, and Re; bands) , for detecting and monitoring yellow rust infection of winter wheat at the canopy and regional scale. The
research activity covers the: Province of Lecce, that is the ltalian area strongly affected, since 2015, by the Xylella fastidiosa
disease which causes a rapid decline in olive plantations. Province of Anyang, Neihuang county, which was affected by the yellow
rust disease in the spring 2017.
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The AMEOS project aims to develop innovative EO
based solutions to crop diseases and pests monitoring
and forecasting based on the complementary expertise
of Chinese, Italian research groups in remote
sensing, plant protection and data assimilation
through integrating multi-source information ( Earth
Observation-EO, meteorological , entomological and
plant pathological, etc.) to support decision making
in the sustainable management of insect pests and
diseases in agriculture. The main objective of this
project is to ensure food security by improving crop

diseases and pests monitoring and forecasting. This
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will be achieved through the utilization of EO data,
the development of new algorithms, and the fusion of
new and existing data products using multi-source
data to develop innovative methods for crop pests
and diseases monitoring and forecasting at regional
level, with a fungal disease of wheat ( stripe rust) ,
a serious insect pest ( ostrinia nubilalis) of maize
and an olive groves threat (xylella fastidiosa)'"?’ |
as examples. The specific objectives covers;

(D Multi-source space- and ground-based remote
sensing data integration, processing and scale trans-

formation. The research will focus on processing of
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near synchronously acquired various satellite- and
ground-based remotely sensed data, assimilation of
multi-source satellite data of various spatial resolution
based on scale transformation technique, thus provi-
ding a high spatial and temporal resolution datasets
for crop diseases and pests monitoring and forecas-
ting.

2 Research on crop diseases and pests monito-
ring with new-launched satellite data. Based on the
assimilated remote sensing data, the team will study
the spectral response of stripe rust in winter wheat,
ostrinia nubilalis in maize and xylella fastidiosa in
olive trees, analyze these spectral features, and es-
tablish monitoring methods through integrating spec-
tral , temporal and landscape features of satellite date
to better monitor diseases and pests in the early
stage.

@) Crop diseases and pests habitat factors re-
trieval through integrating multi-source data. With
the help of GIS, geostatistics and data fusion tech-
niques , the research team will focus on the key param-
eters for characterizing the habitat through integrating
multi-source information ( Earth Observation, mete-
orological, entomological and plant pathological,
etc.) , study the methods for key habitat factors ac-
curate extraction and retrieval, and provide basic in-
formation for diseases and pests forecasting.

@) Study on crop diseases and pests forecasting
through assimilating multi-source information. Based
on the diseases and pests’ prevalence mechanism
and dispersal pattern, assimilated multi-source da-
tasets and retrieved habitat factors, the project will
integrate these information to establish robust forecas-
ting models for crop diseases and pests monitoring at
regional scale.

(B Crop diseases and pests monitoring and fore-
casting for applied research and demonstration.
Based on the above methods and techniques, the re-
search team is conducting crop diseases and pests
monitoring and forecasting for applied research and
demonstration in North central plain in China consti-
tuting five provinces Hebei, Shandong, Henan,
Jiangsu and Anhui and South-Italy ( Apulia region).

Through applied research and demonstration, the re-

search will take advantage of newly multi-source EO
data and assimilation techniques to acquire re-al-
time crop diseases and pests information at regional
scale to support decision-making in agricultural man-
agement.

The outcomes of the project will not only promote
efficacy of pests and diseases management and pre-
vention by improving the accuracy of monitoring and
forecasting, but also help to reduce the amount of
chemical pesticides, with better management of pests
and diseases will achieve increase in production and
in turn ensure food security.

The explicit quantification of vegetation bio-
physical variables on large spatial scales is an impor-
tant aspect in agricultural management and monito-
ring'*'. Remotely sensed data from satellites and air-
borne sensors has great potential to provide informa-
tion on vegetation biophysical variables ( LAI, leaf
area index, chlorophyll content, water content,

temperature ) over large spatial and temporal

scales’ .

Plant diseases and pests can affect a wide range
of commercial crops, and result in a significant yield
loss. It is reported that at least 10% of global food

(7] Disease

production is lost due to plant diseases
and pest control could be more efficient if disease
and pest patches within fields can be identified timely
and treated locally. Remote sensing technology can
provide spatial distribution information of diseases
and pests over a large area at relatively low cost. The
presence of diseases or insect feedings on plants or
canopy surface causes changes in pigment, chemical
concentrations, cell structure, nutrient, water uptake,
and gas exchange'® . These changes result in differ-
ences in spectral reflectance characteristics and tem-
perature of the canopy which can be detectable by
remote sensingm .

Therefore, remote sensing provides a harmless,
rapid, and cost-effective means of identifying and
quantifying crop stress from differences in the
spectral characteristics of canopy surfaces affected by
biotic and abiotic stress agents.

During the last decades, scientific publications

have described the capability and potential of RS ap-
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proaches for plant disease detection. See Martinelli'""”
for a review. The RS scientific community defines
plant disease monitoring as: detection ( deviation
from healthy ) , identification ( diagnosis of specific
symptoms among others and differentiation of various
diseases) , and quantification ( measurement of dis-
ease severily, e.g., percent leaf area affected) ' .
Different sensors and techniques are required for de-
tecting plant response to various diseases and disease
severity. The ability of RS to diagnose plant disease
and severity are shown in works describing the appli-
cation of multispectral, hyperspectral and thermal

imagery for detecting disease in almond orchards''*’

] or tomato

[17]

or barley, wheat and sugar beet'"

[14] [15] [16]
b

plants' ™ or apple trees' ”" or pine ete.

This paper is devoted to describe the achieve-
ment of the DRAGON-4 AMEOS project in detecting
and discriminating yellow rust and xylella fastidiosa
('economically important disease and pest in winter
wheat in China and olive groves in ltaly) by using

field and satellite remote sensing.

1 Materials and Methods

1.1 Materials

1.1.1 Italian test site

The area of interest is shown in Fig.1. It corresponds
to the Province of Lecce, located in the Southern
part of the Apulia Region. 77 Sentinel-2 ( MSI)
cloud free images of the area of interest covering the
period February 2015—July 2017, were found in the
ESA database (tale T33XE). The list of images is
given in Tab.1.

A very high spatial resolution (VHR) acquired
by the GaoFen 1 Chinese satellite was obtained
through RADI. The characteristics of the EO sensor
on board of such satellite are given in Tab.2.

To validate the proposed approach only the part
of the Lecce Province covered by both S2A and S2B
images has been considered. Therefore, the actual
area interested by the analysis has been shown in
Fig.2, together with the map showing the point
where the tests for detecting the presence of the
diseases have been carried out by the local author-

ities.

Tab.1 List of Sentinel-2 images available for the analysis

on area of interest in Italy

2015 2016 (cont) 2017 2017 (cont) 2017 (cont)

2015/07/15 2016/05/30 2017/01/02 2017/06/14 2017/08/18
2015/07/25 2016/06/26 2017/01/25 2017/06/21 2017/08/23
2015/08/01 2016/06/29 2017/02/11 2017/06/24 2017/08/25
2015/08/14
(0el)

2015/08/24 2016/07/09 2017/03/03 2017/07/04 2017/08/30
2015/08/31 2016/07/19 2017/03/06 2017/07/06 2017/09/02
2015/09/13 2016/07/29 2017/03/16 2017/07/09 2017/09/12
2015/10/23 2016/08/15 2017/03/23 2017/07/11 2017/10/17
2015/12/09 2016/08/25 2017/04/12 2017/07/14 2017/10/27
2015/12/22 2016/08/28 2017/04/15 2017/07/19 2017/10/29

2016 2016/10/14 2017/05/02 2017/07/21 2017/12/06
2016/01/01 2016/11/13 2017/05/05 2017/07/24 2017/12/08
2016/04/20 2016/11/23 2017/05/22 2017/07/29 2017/12/23
2016/04/30 2016/12/03 2017/06/01 2017/07/31 2017/12/31
2016/05/07 2016/12/16 2017/06/04 2017/08/05 —
2016/05/27 2016/12/26 — 2017/08/08 —

2016/07/06 2017/02/14 2017/07/01 2017/08/28

Fig.1  Area of Interest. On left the Province of Lecce is

shown with, in grey, the distribution of olive
groves, according to CORINE Land Cover ( CLC)
2012 map. In red some of the points analyzed by
the local authorities to monitor the presence of the
disease. On the right, in red are shown the two
CLC 223 polygons selected for illustrating the

results of the analysis (see following paragraphs)

Tab.2 GF1 sensor characteristics

VHR Sensor

HR sensor

Main sensor char- 2xHR (High Resolu-
tion Cameras)

Pan: 2m, MS: 8 m MS: 16 m
Pan: 0.45~0.90

Bl: 0.45~0.52 pm

B2: 0.52~0.59 pm

B3: 0.63~0.69 pm

B4: 0.77~0.89 pm

4xWFV ( Wide field of
acteristics view Cameras)

Spatial resolution

Bl: 0.45~0.52 pum
B2: 0.52~0.59 pm
B3: 0.63~0.69 um
B4: 0.77~0.89 um

Spectral  resolu-

tion

. . 830 km with 4 cameras
Swath width 69 km with 2 cameras

mosaic

Data quantization

Revisit capability

10 bit

4 days at equator (roll
needed )

10 bit

4 days (no roll nee-

ded)
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Fig.2 Distribution of the test sites (red triangles) ana-

lyzed, looking for the presence of the disease. On
the right a Sentinel-2 image showing the area of

interest considered in this paper

1.1.2  Chinese test site

The area of interest is shown in Fig.3. Two Sentinel-
2 multispectral images were acquired on 12 May
2017 (see in https: // scihub.copernicus.eu/) , and
the full coverage image was mosaicked by these two
images acquired simultaneously. Atmospheric correc-
tion for the Sentinel-2 images was conducted based
on the Sen2cor atmospheric correction toolbox in the
Sentinel Application Platform (SNAP) software. The
spatial resolution of all bands was resampled up to
10 m for subsequent analysis. The coastal aerosol
(B1), water vapor (B9), and cirrus (B10) bands
were removed from the study due to their irrelevance.
A ground survey was conducted on 9 May 2017, and
27 sample plots in the region were investigated. The
size of each sample point was 10 mX10 m, and five
sampling subplots with a 1 mx1 m in each plot (five-
point sampling) were used to record the average sever-
ity. Each plot’ s central coordinates were collected
using a Trimble GeoXT DGPS with submeter accuracy.
1.2 Methods

In a previous study of which a summary is reported
in the DRAGON 2018 brochure'™ the possibility to
detect olive groves affected by xylella and winter
wheat affected by yellow rust were demonstrated by
considering several fields and observing the behavior
of the annual variation of the NDVI ( Normalized

) H92) 1t is worthwhile

Difference Vegetation In-dex
to recall that olive trees present a reduced phenology
all along the year. Therefore, unchanged and
changed (eradicated) olive groves show a distinctive

behavior due to the change caused by the trees erad-

ication requested to stop the spread of the disease. In
the plot where the olive trees have been eradicated
the NDVISTDN increases significantly due to the re-
duced importance of the evergreen olive trees in
deter-mining the behavior of NDVI with respect to
the background characterized by the presence of
grass or shrub. NDVISTDN is the normalized
standard deviation of NDVI computed by using all
the images of the area of interest acquired during a

calendar year.

Legend
1 Administrative boundary
s planting area

Fig.3  The location of the test site in Neihuang county,

Henan province, China

However, this analysis was done on several
plots selected taking into account the sites where the
check of the presence of the disease was carried out.
As result of the inspection, in some cases it was not
necessary to remove the plants, in other cases the
olive plants were eradicated. The delineation of the
plots was carried out manually by visual inspec-tion
of the image. In fact, using the polygons taken from
the 2012 Corine Land Cover (CLC, see in hitps: //
land. copernicus. eu/pan-european/ corine-land-cover )
map which correspond to olive groves ( CLC 223)
was not effective since the variability of the surface
cover within such polygons is very high, see Fig.
4212 Thus, this paper focuses on the development
of a technique suitable to identify olive groves with
higher accuracy than CLC. The classification has
been carried out by using Sentinel-2 images. The
methodology and its results are described below.

However, olive groves are characterized by a signifi-
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cant variability in terms of tree density and we are
also interested in monitoring the number of trees for
each field to be able to follow their change as conse-
quence of the disease or the eradication intervention.
The approach followed, and the hypothesis on which
it is based, for counting the olive trees by using S2
images, and the fraction cover computed by using
NDVI values range in each field has been also de-
scribed in Literature[ 18].

To apply this approach an image segmentation is
needed. The CLC 223 polygons has been segmented
by using NDVI maps and a mathematical morphology
approach'??' . Fig.5 shows one of the images used
with, superimposed, the CLC polygons corresponding

to olive groves.

The procedure followed to segment the areas
within the CLC polygons is schematically presented
through the workflow of Fig.5. Instead, Fig.6 shows
the procedure adopted to classify pixels in olive

groves and not ( see following paragraph).

Fig.4

Example of the variability of the land cover within
a CLC class 223 polygon: left) Google Earth, 19
July 2015 right) Sentinel 2, 16 December 2016)

Sentinel-2
Image

DEM and
CLC 223 poly-

Clip image according to poly-
gons and compute max and min

1_*

Apply a gradient detection filter

l

Apply morphologic operator
to find foreground objects

v

Classify olive
groves with trees
density(FCOV)

Eliminate bare soil and not
olive groves vegetation

Fig.5 Example of the NDVI distribution on the area considered in the study. Sentinel-2 image of the 14 July 2017 (Left).

Simplified workflow of the segmentation algorithm implemented in Matlab ( Right)

The processing procedure has been implemented
in Matlab'**'. The segmentation approach allows to
identify similar areas but it is not intended to provide
a classification of such areas. The classification is
carried out by using an approach described in the
following paragraphs. The results of the study are de-
scribed in the following para-graph. The procedure
foresees the following steps.

@ Apply a segmentation function ( gradient fil-

ter) to each CLC polygon.

@ Compute foreground markers ( morphologic
operators ). These are connected blobs of pixels
within each of the objects.

@ Using classification map based on time
series of vegetation indices ( see next paragraph) the
polygons corresponding to olive groves are retained.

@ For each of these polygons max, min, aver-

age and standard deviation of NDVI are computed.
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® Estimate FVC ( Fraction of Vegetation
Cover, that is the fraction of trees in each polygon).

Fig.8 shows two examples of the results obtained
by combining the NDVI based segmentation with the
already available CLC polygons for olive groves.
1.2.1 Classification based on indices
Olive groves

A multi-temporal phenology based classification
algorithm was implemented to carry out the olive
trees classification over the study area ™. Sentinel 2
imagery was used over selected training sites to track
olive trees characteristic evolution over a reference
period of one year. Once the phenological develop-
ment had been recognized, a multivariate decision
tree was developed to classify the previously segmen-
ted areas. Although the aforementioned methodology
had proven itself to be quite effective on highly pop-
ulated olive tree orchards, an elevated number of
sparsely populated olive trees areas was completely
ignored by the algorithm. Missing areas are the result
of the pixel contamination operated by the olive trees
surrounding vegetation; because of that the olive
trees phenological profile is highly deviating from the
reference one. In order to overcome this drawback,
we introduce the tracking of the vegetation carotenoid
relative content with respect to chlorophyll, and we
finally assessed the effectiveness of such a combined
methodology by refining the classification land cover
map which had previously been developed, for the
province of Lecce, in the framework of the Corine
project.

Phenological profiles analysis implies the detec-
tion and recognition of characteristic trends and
growth/senescence stages in the yearly evolution of
the vegetal species' ™ . The NDVI is among the most
widely used parameter in the tracking of vegetation
seasonal trends and has been selected to investigate
the timeline of the olive trees development in South-
Italy. The temporal analysis is supported by the eval-
uation of the NDVIs’ intensity related with the olive
trees developmental stages by using a set of
thresholds which were previously assessed over se-

lected training sites.

Among the parameters that characterized olive
groves, the density of trees is the most important in
order to operate a proper discrimination on texture ba-
sis. Highly populated olive groves are characterized
by a texture which cannot be discriminated from the
one showed by forest areas; on the other hand, me-
dium to sparsely populated olive groves are charac-
terized by a very specific and distinctive texture. The
firsts can be effectively discriminated from forest
areas and other kind of vegetation by using the here
presented phenological approach alone; the same
approach, on the other hand, it’ s not as much ef-
fective on the seconds because of the pixel spectral
contamination due to the vegetation surrounding the
olive trees. This spectral contamination manifest
itself through the perturbation of the phenological
profile by altering, and in particular increasing, the
intensity levels. To support the phenological
approach toward the resolution of the classification
problem, the tracking of the carotenoid index was
introduced.

The carotenoid reflectance measurement is sen-
sitive to carotenoid pigments in plant leaves. The leaf
carotenoid content estimation is much more difficult
than chlorophyll estimation because of the overlap
between carotenoid and chlorophyll absorption
peaks. Usually the chlorophyll concentration is
higher than carotenoid. The carotenoid reciprocal re-
flectance is maximal at 510 nm and this value is also
influenced by chlorophyll. The reciprocal reflectance
at 550 nm, which is more purely influenced by chlo-
rophyll, is used to remove its effect on the measure-
ment. A greater carotenoid concentration with respect
to chlorophyll, is indicated by index higher values'””.
The evolution of the carotenoid content with respect
to chlorophyll was then implemented into the main
algorithm to make it keep scouting the residual areas
searching for accorded variation through the growth/
senescence stage of both the NDVI and the
carotenoid index. Making the main algorithm capable
of detecting low density olive groves, improves the

effectiveness of the whole classification process; the

workflow was then modified as showed in Fig.6.



Giovanni LANEVE et al.;Dragon 4-Satellite Based Analysis of Diseases on Permanent and Row Crops in Italy and China 113

Sentinel 2 II
Images

Carotenoid Index
computation

' ;

NDVI computation

Carotenoid { Phenology
w h w
&b &
Temporal de- =] Temporal de- "‘é
velopment & velornent e
] o
Intensity levels Intensity levels

Training Validation
sites sites

Multi-Variate
Decision Tree

Validation

Fig.6  The final approach to the olive groves classification problem. New profiles, based on the evolution of the relation be-

tween carotenoid/ chlorophyll content, are introduced. These profiles are mixed together with phenological data de-

termining a new set of decision rules to be exploited by the MDT algorithm

The proposed classification methodology allows
to refine the previous land cover map developed in
the framework of the Corine project, see next para-
graph devoted to describe the results.

Wheat disease affected areas

Following the integration processing of hyper-
spectral data, an independent t-test was applied to
examine the statistical significance of all bands based
on healthy, slightly, and severely infected samples
at the highest significance level (p-value<0.001).
We found that seven Sentinel-2 spectral bands (i.e.,
B3, B4, B5, B6, B7, B8, and B8a) manifested
excellent potential for discriminating healthy and in-
fected (slight and severe) samples (p-value<0.001).
According to the literature review, numerous
spectral vegetation indexes (SVIs) have been used
to identify crop diseases. An independent t-test was
used in this study to explore the significance of the
SVIs related to the above seven bands, and the most
significant ( p-value<0.001) SVIs were selected to
identify yellow rust. Fig.7 shows the distribution of
winter wheat in the area of interest. These SVIs in-
cluded conventional and red-edge vegetation indexes
(as shown in Tab.4). The conventional Vls, such as

the NDVI, are often used to evaluate crop’s growth

state, and RGR has been used to estimate leaf pig-

ments. GNDVI ( Green Normalized Difference Vege-
tation Index) and VARI
Resistant Index) have been used to monitor crop
disease. The red-edge VIs include the NDVI,,
which is similar to the NDVI but uses one of the red-
edge bands (B5, B6, B7) instead of the red band
(B4). NREDI is the index of normalized red-edge
bands, and PSRI ( Plant Senescence Reflectance In-
dex) and ARI ( Anthocyanin Reflectance Index) in-

conditions and leaf

( Visible Atmospherically

green

crop physiological

pigments, respectivelym] .

dicate

Random forest ( RF') is an ensemble of learning
algorithms. It assumes an original training set, and
each instance with M attributes (M is the number of
the feature dimensionality. In our case M = 10
because we selected 10 vegetation indices as the RS
descriptors of the wheat rust surface attributes) . m is
randomly selected in each computing node, in order
to calculated the importance ( weight) of each
feature in the RF. During the forest construction
process, “Random” performs in two aspects; (D Tt
samples a new training set with replacement at each
iteration, and the new training set is the same size as
the original set; (2) Rather than choosing the best
split among all attributes, m attributes are randomly

chosen from M at each node and then these m attrib-
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utes are used to split the node according to the prin-
ciple of the decision tree algorithm, where m<<M,
and it is held constant during the forest construction
process. Because the algorithm does not use all sam-
ples for model training at one time, this makes it
possible to use the remaining samples (out of bag
data) to evaluate the out of bag error ( OOB error).
Moreover, the principle of the feature importance
ranking is to compare the difference in OOB error of
each feature before and after adding noise to deter-

mine the importance of each feature. Thus, the im-

portance of each feature is directly proportional to

the difference. What we want is to reduce the

original high-dimensional feature space, and
improve the computing efficiency for real-time detec-
tion and classification of wheat rust. So, we do our
best to filter the information in both the feature pre-
selection stage or model training stage. We used the
RF algorithm to calculate the importance ranking of
features in our study. The more detailed information

about our method had been reported in Literature

[28—30].

Tab.4 Summary of spectral vegetation indexes used for detecting yellow rust ( Sentinel 2 case)

SVls Definition Formula
NDVI Normalized difference vegetation index (Rivg=Rg)/(Ryp+Ry)
EVI Enhanced vegetation index 2.5(Ry—Rg)/(Rygt6Rz=0.5R;+1)
RGR Ration of red and green Rp/R;
VARL, .o Visible atmospherically resistant index (Rg=Ry)/(Rp+Ry)
NDVIR(\,I Normalized difference vegetation index red-edgel * (Ryp _RR::I )/ (Rypg +RRc] )
NREDI1 Normalized red-edgel index (Rge, =Ry, )/ (Ryo, +Rg, )
NREDI2 Normalized red-edge2 index (Rgey =Ry, )/ (Ry, +Rg, )
NREDI3 Normalized red-edge3 index ( RRF3 Ry, )/( Ry, =Ry, )
PSRI Plant senescence reflectance index (Re=R¢) /RRel
REDSI Red edge disease stress index 4 (705-665) - (RRe3 -R,)-(783-665) - (Rnel -Ry))/2- R,

* RRel s RRez’ Ry,

3

correspond to Sentinel-2 red-edge channels 5, 6 and 7, respectively.

#% 665, 705, 783 represent the central wavelengths of the Sentinel 2 channel 4, 5 and 7.

N

A

Legend
[ Administrative boundary

B wheat planting area i

024 8 12 16

Fig.7 The extraction of winter wheat area of Neihuang coun-
ty, Henan province of China
2 Results

The results, based on Sentinel-2 imagery, of the clas-

sification carried out as said above are summarized
herein through Fig.8 and the Tab.3. Fig.8 compares
the olive groves polygons in CLC (class code 223)
with those computed using our approach. Areas vege-
tated but not covered by olive trees ( woodland,
shrubland, etc.) are represented in marron (legend
value 1. 1). Tab. 3 describes the improvement
obtained in the identification of olive groves with re-
spect to the CLC classification map.

The new methodology has been applied over the
areas previously classified by Corine and, at the
same time, over the whole geographic area covered
by Corine, resulting in: reducing of the olive grove
areas as proposed by Corine; adding of new olive
grove areas inside the covered area, and not previ-
ously classified by Corine.

Tab.3 shows the extent of the improvements to
the land cover map with regard to olive groves

achieved with the approach described above.
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Tab.3 Comparison between Corine classification and

the new methodology described in the text

. . Olive groves total Difference Difference
Classification

extension/ha /ha /(%)
Corine (CLC) 78 982 — —
Dragon ( Corine polygon) 56 642 -22 340 -28
Dragon (new areas ) 103 801 +24 819 +23

Fig.8 Details of the classification obtained by using vege-

tation index (green areas) compared with the one
provided by Corine (red polygon). White regions
in the Corine polygons correspond to areas in
which less of the 80% of the surface is classified
as olive groves. A qualitative estimate of the olive
trees fraction cover, in each of the blue polygons
obtained by image segmentation, is given. Areas
with density values larger than 1 correspond to

woodland/forest

Now, for each of the polygons computed by
using the segmentation based on mathematical mor-
phology, using the classification map based on vege-
tation indices, we can;

- Assessing if the polygon cover an olive
groves or winter wheat field.

- If pixels in the polygon are mainly appertai-
ning to the class ‘olive’ (80 % pixels classified as
olive groves) or ‘winter wheat’ we can proceed with
estimating max, min, average and standard deviation
of NDVI.

- Using the NDVI values for each polygon we
can compute the FVC (or fraction of olive trees cov-
er) in each polygon.

+ Introducing an hypothesis on the olive trees
size, from the previous, we can further counting the

number of olive trees in each polygon.

Fig.8 shows the olive trees density distribution
in terms of pixel fraction cover (FVC) computed as
said above. Only polygons covering an area larger
than 2 ha have been considered. Pixels falling in
polygons corresponding to olive groves and character-
ized by a different density distribution of trees, are
represented in a colors scale. Five (Fig.8) fraction
cover levels are considered.

After that, having estimated the olive trees frac-
tion cover and then the trees density (Fig.9), we
can attempt to assess the trees number by assigning
an averaged size for each tree. For instance,
assuming that olive trees have an averaged canopy

diameter of 6 m we obtain the map shown in Fig.10.
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Fig.9 Example of the distribution of the density of olive
trees computed as described in the text within two of
the polygons corresponding to the class 223 ( olive

groves) of the Corine Land Cover
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Fig.10 Example of the distribution of the total number of
olive trees for each field computed as described in
the text within two of the polygons corresponding to

class 223 (olive groves) of the Corine Land Cover

However, combining the classification based on
Sentinel 2 images and very high resolution ( VHR)
images, a direct counting of the olive trees has been

done. The watershed transform technique®"’ has been



116 Journal of Geodesy and Geoinformation Science 2020 Vol.3 No.4

htttp: /jggs.sinomaps.com

used. The watershed transform finds “catchment ba-
sins” or “watershed ridge lines” in an image by trea-
ting it as a surface where light pixels represent high
elevations and dark pixels represent low elevations. If
the topographical function is itself a distance
function, then the topographical distance becomes
identical with the geodesic distance function and the
watershed becomes identical with the skeleton by
zone of influence. This technique has been applied to
the panchromatic image provided by the VHR sensor
on board of the GF1 satellite. The results were com-
pared with those obtained by applying the
methodology based on FVC ( Fraction of Vegetation
Cover) to S2 images.

The validation of the results shown in Fig.9 and
10 has been carried out by using VHR satellite ima-
ges. Unfortunately, we were not able to fly on the ar-
ea with our drone equipped with a multi-spectral
camera ( MicaSense-RedEdge sensor on board a
UAV SkyRobotics-VTOL-SF6) due to a failure of
the image-geolocation system. The VHR image we
are referring to is the one provided by RADI
acquired by the Chinese satellite GF 1. The sensor
characteristics are given in Tab.2.

The results of the validation are presented in Fig.
11. In particular, Fig.11 (upper) shows provides a
comparison between the trees density [ trees/ha ]
computed using the two approaches described above.
As it can be seen, the trees density computed by
using an approach based on VHR image seems more
stable with respect to the 98 olive groves considered.
In several cases the approach based on FVC seems
to overestimate the trees density. The reason of this
behavior can be explained by using Fig.11 (lower).

In fact, this figure, clear shows as FVC ap-
proach tends to overestimate the number of trees
present in a field as the size of the field increases.
This is due to the fact that, if some sparse vegetation
(grass, scrub) is present this will con-tribute to the
final value of FVC and the to the computation of the
total number of olive trees in the field. This effect is
as much as significant as the size of the field increa-
ses. However, for most of the fields the results are

satisfactorily similar.
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(a) Comparison between the trees density compu-
ted using VHR imagery and FVC on Sentinel-2
imag-es. (b) Comparison of the total number of
trees computed for each field by using VHR image

and Sentinel 2 image

Fig. 12 demonstrates the spatial distribution of
healthy
obtained using the threshold value of 59.7 based on

and  yellow-rust-infected winter wheat
REDSI. The yellow rust infection occurred in most of
the area in the yellow rust infection spatial
distribution map, especially in the northern part of
the study area. The distribution of winter wheat in-
fected with yellow rust was almost the same as the
entire winter wheat planting area in the region, while
the distribution of yellow rust infection was scattered
in the remaining areas. Such a pattern of disease dis-
tribution is consistent with the actual occurrence of
yellow rust in winter wheat in this region. The
optimal threshold method for REDSI achieved good
identification results at the regional scale with a
kappa coefficient of 0.67 and an overall accuracy of
85.2%. Consequently, REDSI ( based on Sentinel-2
MSI data) demonstrated its ability to identify winter

wheat yellow rust infection at regional scale.
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Fig. 12

The occurrence distribution of the yellow rust in

Neihuang county, Henan province of China

3 Conclusions

The general objective of the AMEOS project is the
delivery of information, based on assimilation of
multi-sources satellite images, suitable to support
the monitoring and forecast of insect pests and disea-
ses in agriculture.

The specific objective of the two Chinese-Italian
research groups regards the exploitation of available
satellite images datasets to assess the evolution of dis-
eases on winter wheat and permanent crops ( olive
groves, vineyards). In particular, in China the study
concerns the monitoring of the yellow rust spread in
winter wheat crop in the Neihuang county whereas, in
Italy the study concerns the spread of phytosanitary
threats as the Xylella fastidiosa (olive groves).

The research activity on Xylella fastidiosa threats
of olive groves follows three main approaches .

- Improving the classification of the agricultural
areas devoted to olive trees, starting from what has
been made available from the Corine Land Cover ini-
tiative.

+ Developing an approach suitable to be automa-
ted for estimating trees by using Sentinel 2 images.
This tool will be used to monitor the spread of pest.

+ Developing an approach suitable to be auto-

mated for counting trees by using very high spatial
resolution images in areas at high risk of infection.

This paper describes the results obtained in
pursuing the first two approaches. In particular, the
approach exploiting the characteristics olive tree
phenology and carotenoid indices allowed to improve
the classification of the olive groves in the area of in-
terest with respect to the Corine Land Cover.
Further, the use of a morphological approach on
NDVI computed by using Sentinel-2 images of 2017
allowed to assess the olive groves density and trees
number for each crop field. The quality of the results
were validated by using a VHR image. The next step
consist in carry out the same analysis on images ac-
quired in previous years (2015 or 2016) in order to
verify the possibly to monitor the decrease in the
number of olive trees as a consequence of the spread
of the xylella fastidiosa disease. The third point is
still on-going as part of the activity of the PhD
student funded by ESA.

The research activity on winter wheat disease
used canopy hyperspectral data to simulate the corre-
sponding multispectral bands of Sentinel-2, based on
the relative spectral response (RSR) function of the
Sentinel-2 multispectral sensor, and developed a
new index, REDSI ( consisting of Red, Rel, and
Re3 bands ), for detecting and monitoring yellow
rust infection of winter wheat at the canopy and re-
gional scale. Compared with other common spectral
vegetation indexes, REDSI has excellent performance
in detecting and monitoring yellow rust in winter
wheat at the canopy and regional scale, with the
overall accuracy of 84.1% and 85.2%, respectively.
However, the index needs to be continually validated
with other diseases and other cultivars to guide agri-

culture precision management.
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