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ABSTRACT 

Spare parts management affects significantly costs and service level for supply chains. This paper deals 
with an inventory management problem for multi-item repairable systems via a systemic perspective 
based on a new efficient integer black-box optimization model. With respect to the traditionally used 
marginal allocation that considers items individually, the proposed black-box optimization model is a 
holistic approach in the fact that it exploits relationships among items. The authors propose a derivative-
free algorithm specifically tied to the application which exploits a new selection strategy for choosing 
entire subsets of items with the aim to get the best expected improvement in the objective function.  The 
approach has been tested on a real case study for optimizing stocks in an airline’s inventory network. The 
case study provides evidence about the good behavior of the exploratory geometry of the proposed 
approach in finding quickly a feasible and optimal solution for inventory control. 

INTRODUCTION 

Modern organizations are fully dependent on readily available spare parts to maximize operational 
capability in case of failures. Managing repairable inventories - which are spares normally characterized 
by high market value - represents an important managerial domain for improving operational readiness 
and reducing life-cycle costs for equipment (Yerpude et al., 2019). As a component downtime can be very 
costly, inventories are required to keep the stock-out time as low as possible. Nevertheless, an excessive 
number of spare parts may generate not negligible holding costs. Spare parts shall thus be thoroughly 



optimized to balance high system availability requirements and low cost of allocation (Sleptchenko et al., 
2018).  
 
Repairable items are usually managed following a one-for-one replenishment policy, where the part is 
ordered after each substitution in lots of one. This situation is usually represented as a (S-1, S) policy 
where S is the optimum number of items in the inventory, and S-1 is the re-order level, i.e. the number of 
items below which activates the need for a re-ordering. This latter remains meaningful for parts 
characterized by high inventory cost and low demand, where the economic order quantity tends to a size 
of one (Diaz and Fu, 1997). In case of failure, the defective part is removed from the equipment and 
substituted with a functioning one. In the meantime, the original defective part is sent to a maintenance 
facility to be repaired. 
 
Traditionally, inventory is balanced following an item-approach process, i.e. inventory levels for each 
item are set independently (Wong et al., 2006), failing to give a holistic optimization (Tripathi and Misra, 
2012). The assignment of over-simplified constraints and requirements at the item level becomes 
increasingly less adequate for the needs of the so-called HA-HCLDS (High Availability, High Cost and 
Low Demand Systems) (Costantino et al., 2018), which represent the focus of the current manuscript. 
Starting from the original contribution of Sherbrooke (1968), it is possible to set items’ stock levels 
jointly, adopting a systemic optimization, as for the so-called system-approach. The system-approach 
allows a holistic perspective on the system, being fed by systemic variables (e.g., total inventory budget, 
overall system’s availability), and supporting the identification of system-wide parameters (e.g., the 
budget required for an overall service level, the effect of a stock reduction on the overall system service 
level).  
 
The dominant system-approach model for repairable items is the Multi-Echelon Technique for 
Recoverable Item Control (METRIC), which relies on Palm’s theorem (Sherbrooke, 1968). Since the 
METRIC aims to respect a systemic perspective, it has to take into account a large number of variables, 
e.g. for each item at each local warehouse, the demand rate, the on-site repairing time, the turn-around-
time, the reparability level. The approach should be also subjected to constraints related to holding costs, 
and availability requirements. The corresponding algorithmic computational complexity – which is non-
linearly increasing with the number of items - forces the analysts to develop and adopt approximated 
optimization solutions.  
Traditionally, METRIC approaches adopt heuristics based on the so-called marginal allocation algorithm, 
as initially proposed by (Sherbrooke, 1968). The marginal allocation generates acceptable stock level 
solutions in a limited time interval, counting on the incremental benefits related to the combinatorial 
placement of an additional item in stock.  
 
After reviewing the literature on optimization algorithms for the METRIC, this paper explores possible 
enhancements for the marginal allocation heuristics in order to define an alternative optimization 
algorithm for solving the system-approach model for repairable items. The main contribution of this paper 
consists thus of advancing the existing literature on operational research for multi-item inventory systems 
through an enhanced time-effective optimization algorithm. More specifically, the METRIC-based model 
aims at defining the stock level for a single site that allows minimizing the holding costs whilst satisfying 
availability constraints.  
 
The discussed problem can be considered a non-linear optimization problem, where functions are not 
available in closed form but only as the output of a black-box system, which implies expensive evaluation 
and not available derivatives. Therefore, this manuscript describes an original black-box derivative-free 
algorithm (Audet & Hare, 2017) for solving such a problem which fully exploits the peculiar aspects of 
the application. The present document points out that our derivative-free approach allows tackling the 



non-linearity as is, without any decomposition in subproblem and without any approximation or necessity 
to check the feasibility of the solution.  
 
The algorithm is inspired by pattern search algorithms (Audet & Dennis, 2003) and it includes specific 
features both to exploit integrality of the variables and to locally explore promising feasible subregions by 
using suitable tailor-made rules. In particular, the algorithm considers an enhanced approach for the 
selection parameters based on the ratio between holding costs of each item at a local warehouse and the 
absolute value of the availability variation associated with a change in the stock of the same item at the 
local warehouse. The tailored selection rules allow improving performance in terms of needs of function 
evaluations which represent the main computational costs in black-box optimization. 
  
The remainder of the paper is organized as follows. Section 2 provides a literature review about METRIC 
with a focus on optimization approaches. Section 3 clarifies the analytic formulation of METRIC, as 
applied to spare management of a fleet of aircraft. Section 4 specifies the innovative black-box algorithm 
proposed for its optimization, and Section 5 details its application as a walk-through application in a 
simple case study, comparing the results obtained via the proposed approaches with the ones obtained via 
the traditional marginal allocation and a pattern search algorithm . Lastly, the conclusions summarize the 
outcomes of the paper and pave the way to future joint multi-disciplinary research combining advanced 
optimization algorithms and logistics.  

LITERATURE REVIEW 

Multi-component systems such as aircraft fleets, nuclear power plants, oil refineries, etc., demand for a 
thorough analysis of system requirements before deciding how many spares should be kept in each 
warehouse. The analysis should consider multi-variate non-linear relations, which require an analytical 
formulation hard to made explicitly (Marseguerra et al., 2005). 
 
The METRIC starts from the assumption of a Poisson-distributed demand and of independent and 
identically distributed repair time, characterized by any distribution with a specified mean. Both these 
assumptions are representative of HA-HCLDS, and in analytical terms, they allow adopting Palm’s 
theorem. Once respected the above-mentioned assumptions, the theorem states that the steady-state 
probability distribution for the number of units in repair is still a Poisson distribution, where the mean can 
be calculated as a simple product of the mean demand (following a Poisson) and the mean repair time 
(Sherbrooke, 2004). From a logistics perspective, the theorem represents an important milestone that can 
significantly ease the mathematical formulation for the allocation problem, motivating the dominant role 
of the METRIC as one of the most used system-approaches, especially considering its reduced degree of 
mathematical sophistication (Sherbrooke, 2004). 
 
In terms of optimization, the METRIC traditionally adopts a marginal allocation algorithm, whose 
applications in literature confirm it to be a flexible method suitable for a variety of problems. As 
mentioned in the introduction, the marginal allocation can be originally found in the work of Sherbrooke 
(1968), who started promoting its advantage compared to a random trial-and-error stock assignment 
procedure (Sherbrooke, 1986; 2004). The concept of marginal analysis dates back to Gross (1956), and it 
has been re-organized by Sherbrooke to find the optimal stock solution which maximizes the backorder 
reduction-versus-cost increment when marginally adding a spare individually to each item. It remained a 
widely used approach in several early METRIC applications; see (e.g.) the multi-echelon METRIC model 
assuming a compound Poisson processes for modeling the demands (Graves, 1985); or the extended 
MOD-METRIC for multi-indenture systems by Muckstadt (1973). Furthermore, Kline & Bachman 
(2007) use the marginal allocation for their inventory optimization problem, where the volume of spares 
is calculated from the functioning time percentage requested for the system to work. Similarly, in the 
context of performance-based logistics, Nowicki et al. (2008) adopt a traditional marginal analysis for 



inventory optimization. De Smidt Destombes et al. (2009) use a marginal allocation as well for a joint 
optimization problem on the frequency of maintenance activities, the ability to repair and the spare level. 
A similar marginal analysis has been employed by Costantino et al. (2013) to solve a military inventory 
problem in a multi-item system with non-equal maintainability certification levels, imposing a weighted 
availability constraint on the number of equipment at each local warehouse. The adoptions of the 
marginal analysis can be also confirmed in the work of Xu et al. (2015), who in their METRIC approach 
relax the hypothesis of an infinite supplier’s capacity, rather assuming a prioritized maintenance service. 
The approach has been also used to optimize the stock level in a METRIC-based model relying on the 
Discrete Weibull distribution (Patriarca et al., 2019). Lastly, Basten & Van Houtum (2014) in their review 
about spare parts inventory indicate the METRIC as a dominant technique for rotable spare parts 
management, and present a greedy algorithm, which is largely based on the traditional marginal analysis. 
Their paper also refers to software in place for the adoption of METRIC, or its variant VARI-METRIC. 
 
More recently, even considering the benefits arising from the adoption of the METRIC, alternative 
optimization approaches have been discussed and explored in literature, mainly focused on genetic and 
pattern search algorithms. Kapoor et al. (2016) develop a simulation approach referring to METRIC 
theory for a two-echelon problem in a public transport fleet counting 9000 buses. Their version of a 
genetic algorithm provides optimal review periods and the level of spare parts for each site. Patriarca et 
al. (2016b) propose a Real Coded Genetic Algorithm, the MI-LXPM, to increase the randomness of a 
Mixed-Integer (MI) solution employing Laplace Crossover (LX) and Power Mutation (PM). Similarly, 
Patriarca et al. (2016a) adopt a similar genetic algorithm for a more computationally demanding problem, 
i.e. including also lateral transshipment of items. The advantage of these MI genetic algorithms is the 
possibility of providing integer values as outcomes of the optimization, which is meaningful outcome for 
any inventory problem optimization. In general terms, an integer solution obtained by approximating the 
real numbers to the nearest integer values may be not feasible or produce quite different results in terms 
of costs. Alternatively, Duran & Perez (2014) develop a hybrid Particle Swarm Optimization algorithm 
combined with local research to solve a multi-item problem. The explorative nature of this work is 
acknowledged by the authors themselves, who suggest to further consider different initialization 
strategies, fitness definitions, and replacement strategies. Another explorative contribution is the one 
developed by Costantino et al. (2014), who test a Pattern Search algorithm to determine the items to 
stock, and their quantity in a multi-item multi-indenture problem. The solution is obtained by 
implementing a Generalized Pattern Search (GPS) (Audet & Dennis, 2003), where however no specific 
parameters refinement is proposed. Even though not explicitly related to the METRIC, Nickel et al. 
(2006) address a similar problem by a pattern search algorithm for spare parts allocation. In their work, 
the target cost function is linear, while the constraints are highly non-linear and considered as black-box 
functions, i.e. very difficult (and expensive) to evaluate, whose derivatives are not available. The 
(resource-expensive) solution adopted in this case consists of performing a second pattern search 
algorithm for each solution point that is found by the initial pattern search at each iteration, to find a good 
integer solution. Other relevant approaches for inventory optimization can be linked to the work 
conducted by Topan et al (2017), and Wong et al. (2007), both in multi-echelon systems. Both the 
researches propose variations to the standard marginal allocation approach, but with a partly different 
focus: the former aimed at defining the order quantities, the reorder points at the central warehouse, and 
the base-stock levels at the local warehouse; the latter offers a multi-echelon representation which does 
not necessarily hold the same results for the single-echelon proposed in this research. 
 
Based on this review, it emerges from the literature the continuous interest in spare parts optimization 
over the years. Nevertheless, recent research in the area confirms an increasing interest in developing 
alternative optimization techniques for such complicated problems (Nowicki et al., 2012), aimed at 
exploring the benefits of pattern search, genetic algorithms, and particle swarm optimization. 
These algorithms, however, are not widespread in the literature, partly due to their recent introduction and 
partly due to the large difference in terms of ease of implementation and required computational efforts. 



These pieces of evidence motivate the development for a heuristic for the METRIC to be both effective 
and efficient if compared (at least) with the marginal analysis. The black-box algorithm presented in this 
paper aims to provide optimal solutions in a reduced computational time. This original and efficient 
solution remains significant to allow quick systemic parametric analyses, in order to test multiple 
managerial options and allocations in a non-invasive approach. 
 

THE INVENTORY MANAGEMENT MODEL 

This section presents a black-box optimization model for a single-echelon multi-item inventory system. 
The authors consider a problem based on the METRIC for the minimization of the holding costs of items 
at a single site, whilst guaranteeing a required availability level.  

The single-echelon multi-item problem and assumptions 

The authors refer to the single-echelon multi-item system described in Figure 1, where: 
 CD (Central department) 

 MD (Maintenance Department) 

 LW  (Local Warehouse j = 1, ..., J, J= total number of LW) 

 LRU  (items, Line Replaceable Unit i =1, …, I, I = total number of LRU) 

 

Figure 1. Echelons structure for multi-item system. 
 

In Figure 1, it is important to clarify the authors assume the CD has no stock levels, and it is used only as 
a maintenance center with infinite capacity, i.e. it always holds an appropriate resources level to execute 
any needed operation. Furthermore, each LW  does not have a maintenance center. Hence each LRU  that 
requires maintenance at LW  must be sent to the CD. For these reasons, in analytical terms, the problem 
can be interpreted as a single-echelon optimization problem. 
 
The proposed formulation does not consider lateral transshipment among LW ; it further assumes that the 
back-order queues generated by each LW  at the CD are unrelated. Under these assumptions the authors 
can decompose the spare parts management problem of the LRUs on subproblems on each LW  for all 
j=1, …, J. The remainder of this section focuses on the definition of the optimization problem for each 
LW  for the detection of an optimal stock level 𝑠j* such as to minimize an objective cost function 𝐶 s  
subject to nonlinear restriction which enforces the availability of vehicles at each LW . 



Analytic formulation  

This section describes the analytical model at the local warehouse LW .  
As a first step, the authors define the decision variables which are the stock level 𝑠 ,  for all LRU , i =1, 
…, I, at the local warehouse LW . The goal is the minimization of the holding cost for all LRUs i at the j-
th local warehouse LW . Denoting 𝑐 ,  the unit cost for stocking the i-th item in the j-th local warehouse 
the authors get the overall holding cost for the local warehouse LW . 

𝐶 𝑠 , ∙ 𝑐 ,  

 

 
(1) 

At any time, the stock level 𝑠 ,  of LRU  at LW  can be split into the sum of three components: 
𝑠 , 𝐷𝐼 , 𝑂𝐻 , 𝐵𝑂 ,  (2) 

where: 
 𝐷𝐼 ,  is the number of Due In items of LRU waiting for repair by the CD; Under the hypothesis of 

no queue at CD, they are the items being repaired in the exact moment of the calculation 

  𝑂𝐻 ,  is the number of On Hand items  of LRU  currently available at LW  

 𝐵𝑂 ,   is the number of Back Orders of LRU  due to request arrived when the inventory was 
already out of stock at the LW  

The feasible values of 𝑠 ,  are thus constrained by two nonlinear constraints. The first constraint imposes a 
lower bound  𝐴  > 0. In addition, the availability at site 𝐴∗ has to verify the target availability 
constraint: 
 

𝐴∗ 𝐴 (3) 
 

The availability at site refers to the availability of the fleet planned for the site. In this case, the authors 
consider a fleet of machines, so that each site can be modelled as a passive redundancy system constituted 
by 𝑁  machines, when 𝑀  machines are active, the remaining 𝑁 𝑀  are put in cold stand-by ready to 
substitute the active machine in case of failure. 
The total availability 𝐴∗ , is described by the following formula (Costantino et al., 2013): 

𝐴∗ 𝐴
𝑀 ln 𝐴

𝑘!
 

 
(4) 

 

The availability of the single machine 𝐴  depends on the availability of the LRUs that affect it, so that a 
machine is available when all the items that contribute to form it are available. The mathematical relation 
is here simplistic described as a series: 
 

𝐴 𝐴 ,  
 

(5) 
 

 

where 𝐴 ,  is the availability of the single item 𝐿𝑅𝑈  at site j and it is expressed by: 

𝐴 , 1
𝐸 𝐵𝑂 ,

𝑁
 

 
(6) 

 



where 𝐸 𝐵𝑂 ,  is the expected value of the Back-Order corresponding to the stock level 𝑠  and the ratio 
between 𝐸 𝐵𝑂 ,  and 𝑁  is the unavailability level.  
   
Since 𝑠 ,  can only take non-negative integer values, at least one of 𝐵𝑂 ,  and 𝑂𝐻 ,  is zero, the Expected 
Back Order is the positive part of the delta between the Due In 𝐷𝐼 ,  and the stock level 𝑠 ,  (Costantino et 
al., 2018): 

 

𝐸𝐵𝑂 , 𝑠 , 𝐸 𝐵𝑂 , 𝐸 𝐷𝐼 , 𝑠 ,  (7) 
 

Hence the expected value of backorders 𝐵𝑂  is obtained, following the assumption of Poisson 
distribution, as: 
  

𝐸 𝐵𝑂 , 𝑥 𝑠 , 𝑓 , 𝑥
,

 
 

(8) 
 

 
where 𝑓 ,  represents the fraction of demand due to item i at site j (Sherbrooke, 2004): 

𝑓 ,
𝑚 , 1 𝑟 ,

𝑚 ,
 

 
(9) 

In the last relation 𝑚 ,  is the share of LRU  sent from LW  to the CD with probability 1  𝑟 ,  with 
respect to the total demand 𝑚 ,  of LRUs of all local warehouses. Since it is assumed that the local 
warehouses have no maintenance center the probability of a repair is 𝑟 , 0. 
Since the availability of the single item 𝐴 ,  is non-negative, from the formula (6), a second non-linear 
constraint is needed: 

𝐸 𝐵𝑂 , 𝑁 . (10) 
 

The whole formulation of the problem has to deal with is the following integer nonlinear constrained 
minimization for all local warehouse j=1, ..., J: 
 

  Minimize   𝐶 ∑ 𝑠 , ∙ 𝑐 ,  

Subject to 
(1)

  𝐴∗ 𝐴  (3)

  𝐸 𝐵𝑂 , 𝑠 , 𝑁  (10)

  𝑙𝑏 𝑠 , 𝑢𝑏 (11)

  𝑠 , ∈ 𝑍  (12)

The lower bound and the upper bound (11) limit the values that can be assumed by the inventory level. 
The lower bound 𝑙𝑏 is usually set to 0 to avoid those solutions that present one or more negative - 
unrealistic - values. The upper bound, on the other hand, can model different requirements such as a 
limitation in the space of storage or a precise restriction about the quantities in stock for one or more 
items. Since the authors consider indivisible goods, the authors must insert the last constraint (12) 
ensuring that the stock levels are integer. 
 



The authors note that constraints (3) and (10) link the values of the stock levels 𝑠 , , and are tackled 
explicitly in our algorithm scheme so that feasibility is retained at every trial solution.  
 
In table 1 the authors summarize the main parameters involved in the definition of the mathematical 
model. 
 

Tab. 1 Variables and parameters of the mathematical model. 

𝐼 Number of items (LRU) 

𝐽 Number of Local Warehouse (LW) 

𝑖 Item index / LRU index  𝑖 1: 𝐼 

𝑗 Warehouse index of the LW  𝑗 1: 𝐽 

𝑚 ,  Annual average demand of LRU 𝑖 at CD 

𝑚 ,  Annual average demand of LRU 𝑖 at 𝐿𝑊  

𝑠 ,  Stock level of LRU 𝑖 at 𝐿𝑊  

𝑠  𝑠 , , 𝑠 , , … . , 𝑠 , vector of stock levels of LRU i  

𝑟 ,  Repair rate of LRU 𝑖  at 𝐿𝑊  

𝑁  Number of vehicles at 𝐿𝑊  

𝑀  Number of active vehicles at 𝐿𝑊  

𝑐  Unit inventory holding cost of LRU 𝑖 at 𝐿𝑊  

𝐴∗ Fleet availability at 𝐿𝑊  

𝐴  Aircraft availability at site j 

𝐴 ,  Availability of LRUi at site j 

𝐴  Target value of availability for each LW 

𝐵𝑂 ,  Back Order level for LRU I at LW j 

lb, ub 
Lower and Upper bounds on stock level of LRU 𝑖 
at 𝐿𝑊  

𝑍 The set of integers 



 
 
 
 
 

Optimization using the Marginal Analysis 

At this step, it is possible to solve the above-described problem via marginal analysis, which represents 
the most common approach for METRIC-like problems. The following 7 steps summarize the main 
phases of a marginal analysis approach applied to inventory optimization: 

1. Set 𝑘 0  and choose the starting point (zero - vector in our case). k is an index used for the iteration. 
2. Calculate the expected backorder  

𝐸 𝐵𝑂 ,    

3. Calculate the rating vector, where 𝜌 ,  is a variable created to prioritize the solution (as for step 4)   

𝑅 𝜌 ,   
𝐸 𝐵𝑂 ,

𝑐 ,
∶  𝑖 1, . . 𝐼  

4. Select the index 𝚤̂ which returns the max
∈ 

𝜌 ,    

 

5. Calculate 𝑠  as 𝑠  
𝑠 ̂ 1 ∶ 𝑓𝑜𝑟 𝑖 𝚤̂

𝑠  : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

6. Evaluate the availability 𝐴∗  in 𝑆  

 
7. Stopping criterion 

If  𝐴∗ 𝐴    Set  𝑘 𝑘 1  and repeat from 2.  

If  𝐴∗ 𝐴   then evaluate the objective function and ends. 

 

The marginal analysis provides an incremental solution that does not consider complex re-combinations 
of different items: once an item is assigned, it cannot be removed from the optimal solution. 
Nevertheless, the solution provided by the marginal analysis can be used as a good starting point for more 
accurate and complex optimization algorithms, i.e. to define a feasible point. In this regard, one can note 
that the service level constraint (3) and the upper bound on the back order expected value (10) are highly 
non-linear constraints involving all the variable 𝑠 ,  which represent the hard constraints in the spare 
management problem. 

THE DETERMINISTIC BLACK BOX INTEGER FEASIBLE OPTIMIZATION  

In this section, the authors present the Derivative Free Optimization (DFO) method, which is an 
innovative deterministic feasible algorithm to deal with the integer black-box constrained problem 
represented by the inventory problem at hand. It is well known that the complexity of finding an optimal 
solution of black-box optimization problems increases exponentially with the number of variables 
(Vavasis, 1995).  Indeed, an exhaustive search is not conceivable because of the time-consuming 
evaluation of the objective function and of the constraints due to the simulations involved. Examples of 
recent efficient algorithms for black-box optimization are the NonMonotone Black-Box Optimization 

 
𝑇   

Number of items which may be considered all 
together during the optimization. It may limit the 
computational effort that is machine-dependent. 



Algorithm (NM-BBOA) developed by Liuzzi et al. (2018), or the Genetic Algortihm integrated with a 
Bounding Restart technique and derivate free Local Searchers (GABRLS) (Romito, 2017). 
 
The algorithm proposed in this paper is inspired by the pattern search framework and it includes specific 
features both to exploit integrality of the variables and to locally explore promising areas of the feasible 
region by using tailor-made rules. A generic DFO pattern search algorithm starts from a first feasible 
solution and at each iteration produces points that lie on a rational lattice. Elementary directions are 
combined and scaled with a step length parameter on a finer and finer grid to meet, where possible, 
convergence requirements. Elementary displacements are movement along one direction with unit step-
length. The set of used directions must constitute a positive spanning set (Regis, 2016) such as in any 
positive basis method (Coope & Price, 2002). In our algorithm, the set of chosen directions coincides with 
the Cartesian axes  𝑒 , where 𝑒  represents the 𝑖-th column of the identity matrix I.  
 
Key elements that influence the performance of a DFO algorithm are the rules for selecting the 𝑖-th 
elementary displacement and the number of trial points along the selected direction. 
The proposed contribution stays in the definition of tailor-made rules for selecting the mesh of trial points 
that exploit the relationship among constraints and objective function. The tailored selection rules allow 
improving performance in terms of needs of function evaluations which represent the main computational 
costs in black-box optimization. 

DeB2IFO (Deterministic Black Box Integer Feasible Optimization) 

As previously discussed, the main innovative aspect of the proposed algorithm is to explore the feasible 
integer mesh as best as possible using tailor-made rules. Indeed, the authors aim to avoid expensive 
function computations at points where the expected value of the objective function is locally worse than 
the current best solution. Thus, the authors introduce a parametric selection strategy for choosing subsets 
of items with the best expected improvement in the objective function. The selection strategy of an item 𝑖 
is based on the trade-off between its holding cost and the percentage availability variation due to a unit 
variation of the stock 𝑠 . The idea of using similar ratios has been also explored in (Wong et al., 2007) 
within a greedy procedure to find a feasible solution. 
 
Formally the authors introduce the selection indicator (13) for each item i-th and the local warehouse LWj 
 

𝑘 ,
𝑐 ,

∆𝐴 ,
 (13) 

 
which is the ratio between the storing cost of the item 𝑖 at LW  and the value of the change in availability 
∆𝐴 ,  due to a change of the stock ∆𝑠 ,  of the item 𝑖 at the same LW .  The authors discuss some issues in 
order to explain the role played by 𝑘 ,  in the construction of the new trial point. 
  
Two scenarios may occur following a unit variation of stock ∆𝑠 , : 

 when ∆𝑠 ,  = +1, namely the stock increases, the availability 𝐴 ,  increases too so that the 
difference ∆𝐴 ,  is positive and the cost of storage increases by 𝑐 ,  (the unit storage price of the 
item i-th in LW  

 when ∆𝑠 ,  = -1, namely the stock decreases, the availability of the item 𝐴 ,  is reduced, so the 
difference ∆𝐴 ,  is negative and the cost of storage is reduced by 𝑐 ,   

 
Hence for each LW  the authors construct two vectors 𝑘 𝑘 , : ,

   ,    𝑘 𝑘 , : ,
  



corresponding respectively to positive or negative variations on all the components ∆𝑠 ,  , with 
components sorted in ascending order, namely such that 
 

𝑘 h 𝑘 h+1   and 𝑘 h 𝑘 h+1 (14) 
 

The authors can heuristically select combinations of items that seem to be more promising to provide a 
decrease in the cost in order to obtain an improvement of the objective function. The authors select the 
items corresponding to the first 𝑇  components of 𝑘  and 𝑘 , which are linked respectively to a 
positive and negative unit variation of availability, and therefore to an elementary displacement on the 
integer mesh. Our algorithm moves along a grid defined by selecting a bunch of items of cardinality 
2 𝑇 . The authors denoted with 𝑘  the vector made up of the 2 𝑇  selected items 
 

𝑘 𝑘 , 𝑘  (15) 
 
Note that, at first glance, using items i-th corresponding to the values in 𝑘 may appear to be useless. In 
fact, if the stock increases, the cost function increases too, thus deteriorating the objective function. 
However, it is essential to consider the positive variations due to the presence of the service level 
constraint. Merely decreasing the stock could lead to a reduction in availability, with a possible violation 
of the corresponding constraint. What is of interest now are 𝐴 ,  and 𝐴 ,  which represent respectively the 
increase and reduction in availability due to a change in stock of items in 𝑘 , 𝑘 . These availability 
factors are combined in order to maintain feasibility. The core idea of this approach consists of choosing 
items corresponding either to low reduction in availability at a high cost or high increase in availability at 
a low cost, thus reducing the total cost whilst satisfying the service level constraint.  
 
The parameter 𝑇  plays a crucial role in the computational effort needed by the algorithm. The authors 
explore the neighbourhood of feasible points combining in all possible feasible ways the changes in the 
stock of at most 2𝑇  items corresponding to different components of vectors 𝑘 , 𝑘 . It makes no sense 
to consider combinations related to the same item which will lead either to a null displacement or a 
double displacement which is not allowed in the algorithm. The number of combinations is exponential in 
𝑇 . In principle the authors use an iterative incremental strategy to select the value 𝑇  starting from a 
minimum number 𝑇  of two items, in order to limit the computational effort at the first iterations when 
the authors are far from the optimal solution. All search points are therefore determined for the current 
iteration as the most promising subset of the mesh points in a neighborhood of 𝑠  with radius 𝑇 . 
Now the authors proceed to the last step, the Direct Search. Consider a starting point 𝑠  for the current 
iteration with value of the objective function 𝐶 . This value of the objective function is the target for the 
considered iteration. The algorithm plans to move to the search points earlier identified. For each of them, 
indicated by 𝑠  , the value of the objective function 𝐶 𝑠   is calculated. 
 
Only if  

𝐶 𝑠   𝐶      (16) 
 
the correspondence of the point 𝑠   to the bounds and to the constraints is verified, while if 

 
𝐶 𝑠   𝐶     (17) 

 
the point is discarded.  
 



In the case 𝑠  satisfies both the constraints and the bounds, the value of the objective function 

𝐶 𝑠  is stored in a matrix, called Cost Matrix, while 𝑠   is put in a second matrix, called Stock 
Matrix. 
 
Once this procedure has been repeated for all the selected displacements, the stock level is chosen from 
the Stock Matrix related to the respective lowest value in the Cost Matrix. This level of inventory is 
imposed as the starting point of the next iteration and the corresponding value of the objective function 
becomes the new target. The number of elements taken for the combinations must be increased in those 
cases where it would not be possible to determine a point better than the starting point, i.e. one of the 
following situations does not hold: 

 value of the objective function 𝐶 𝑠  lower or equal than the target value 𝐶  of the current 
iteration 

 𝑠   satisfies the bounds 

 𝑠   satisfies the constraints 

 
The algorithm stops when the number of elements taken to construct the combinations is equal to the 
number of items 𝑇  previously identified as reasonable choice for computational resource limitation. 
The authors point out that by setting 𝑇  equal the number of items, the algorithm is able to perform an 
exhaustive search in the feasible domain. 
The evaluation of the cost function is the first step because the cost function is much less onerous, in 
terms of computational time, than the constraint functions. This allows to avoid the calculation of the 
latter for those points which, in any case, will not be chosen at the end of the iteration, since they present 
a value of the cost function greater than the target one. The following section shows formally the 
algorithm steps for each LW . 
 

Optimization using the DeB2IFO 

In agreement with the described black-box approaches, the following steps detail the algorithm as applied 
to the inventory optimization problem at hand. This section presents the approach intended to enhance the 
traditional optimization based on the marginal analysis. 
 

1. Set 𝑙 0 as an index for the iteration of the algorithm, 𝑇 𝑇  for the number of items to be 

optimized jointly, and find the starting point 𝑠   , through marginal analysis and evaluate its 

availability 

𝑠  𝑠 ,  ∶   𝑖 1, … , 𝑛             

𝐴 𝐴 , 𝑠 ,  ∶   𝑖 1, … , 𝑛  

2. Perturb  𝑠  and find 

𝑠 𝑠 1  

𝑠 𝑠 1  

3. Calculate the corresponding availability 𝐴  and 𝐴  

𝐴 𝐴 , 𝑠 ,  ∶  𝑖 1, … , 𝑛  

𝐴 𝐴 , 𝑠 ,  ∶  𝑖 1, … , 𝑛  



4. Calculate the delta availability w.r.t. the base scenario ∆𝐴  and ∆𝐴  

∆𝐴 𝐴 𝐴  

∆𝐴 𝐴 𝐴  

5. Calculate the ratio to rank the solutions 𝑘  and 𝑘  for all the items 

 𝑘 𝑘 ,   |  𝑘 , 𝑐 , ∆𝐴 ,⁄    𝑝𝑒𝑟 𝑖 1, … , 𝑛   . 

𝑘 𝑘 ,   |  𝑘 , 𝑐 , ∆𝐴 ,⁄    𝑝𝑒𝑟 𝑖 1, … , 𝑛  

6. Sort  𝑘  and 𝑘  in ascending order to facilitate the ranking 

 
7. Create vector 𝑘  by selecting a subset of items, i.e. the first 𝑇  values of 𝑘  and 𝑘  

 

𝑘 𝑘 , … , 𝑘 , … , 𝑘  , 𝑘 , … , 𝑘 , … , 𝑘  

8. Create all the possible combinations of values of 𝐴  and  𝐴  corresponding to the 

components of 𝑘  to be used for explore the feasible space 

 
9. Eliminate combinations involving two or more displacements along the same direction.  

 
10. Evaluate the expected availability for each remaining combination 𝑝 1, … , 𝑃 

𝐴 ,

⎩
⎪
⎨

⎪
⎧𝐴 ,

,  | 𝐴 ,
,  𝐴 , 𝑠 ,  ∶  𝑖 ∈ 𝐼 , 𝑖 linked to ℎ → 𝑘 ∈ 𝑘    

𝐴 ,
,  | 𝐴 ,

,  𝐴 , 𝑠 ,  ∶  𝑖 ∈ 𝐼 , 𝑖 linked to ℎ → 𝑘 ∈ 𝑘    

𝐴 ,
,  | 𝐴 ,

,  𝐴 , 𝑠 ,  ∶  𝑖 ∈ 𝐼 , 𝑖 not linked to any ℎ in 𝑘        

, 𝑖 1, … , 𝑛

⎭
⎪
⎬

⎪
⎫

 

11. Eliminate configurations whose expected availability 𝐴 ,  is less than the target value 𝐴   

12. Construct complex trial displacements 𝑠 ,  , 𝑝 1, … , 𝑃 

13. Evaluate and compare trial mesh points 𝑠 ,  w.r.t. the current best solution �̂�  

If  𝐶 𝑠 , 𝐶 �̂�     and   𝑠 ,  is feasible  

�̂� 𝑠 ,  

end 
14. Stopping criterion 

 If   𝑇 𝑇   
  Set  𝑙 𝑙 1,  𝑇 𝑇 1  

  Repeats from 2 
  else 

  Return an optimal (local) solution  �̂�∗ �̂�  

 end 

 

 



CASE STUDY 

In this section, the authors illustrate an application of the DeB2IFO for a single-site case study for a fleet 
of aircraft. 

Scenario description 

The system under investigation is a multi-item system constituted by one CD and 3 LWs. This problem 
becomes a single-echelon scenario where each LW is responsible for a different fleet of aircraft. The case 
study is intended to test the proposed optimization process for a subset of items (23 items) which 
constitute the main LRU for an aircraft flight system. The items considered in this explorative research 
are linked to an aircraft hydraulic plant.  
Each site has the possibility to activate cold stand-by aircraft. This situation is representative of several 
civil aviation real operating contexts, in which the stand-by aircraft can be used to guarantee fleet 
operability and deal with unexpected failures generating the so-called AoG (aircraft on ground), i.e. a 
problem serious enough to prevent an aircraft from flying. 
For each LW, the efficient number of aircraft must satisfy an availability target equal to 0,96. In operating 
contexts, the availability level is usually set by the decision-maker based on the company scheduled 
service level and it depends on the market competitiveness, as well as customers’ expectations. 
The sites are characterized respectively N1 =97, M1= 96; N2 = 23, M2 =22; N3 = 202; M3 = 201, while the 
holding cost are distributed between 104 €/piece and 5705 €/piece, and an average value of about 1300 
€/item. 
 
Note that the proposed scenario remains representative also of an MRO company (Maintenance, Repair, 
Overhaul) network. In this case, the company remains responsible for a subset of maintenance 
interventions for an airline, or a pool of airlines, and has to manage the spare parts to be located in 3 LWs 
intended for maintenance operations. 
The aim of the computation experiment presented in this case study is twofold without the ambition of 
being exhaustive. First, the authors wanted to compare the DeB2IFO with the traditional marginal 
analysis; secondly, the authors chose one of the most efficient and effective metaheuristics, the Pattern 
Search, to assess the quality of the tailored grid search around feasible solutions. 

Results 

The authors start from the results of marginal analysis and then compare the classical direct search 
alternatives and the proposed approach on 23 demand scenarios. The authors focus on Pattern Search 
algorithms as a common alternative to marginal analysis to show the gain obtained through the proposed 
approach. The software environment the authors have used is MATLAB 
(https://it.mathworks.com/help/gads/patternsearch.html).  
Since the Pattern Search algorithms integrated into the MATLAB optimization toolbox allow several 
parametrizations, the authors have made a preliminary analysis to select the most robust tuning. The 
fundamental three parameters the authors have tuned concern the search directions:  

 Poll method (Generalized Pattern Search, Generating Set Search, Mesh Adaptive Direct Search 
(Audet & Dennis, 2006) combined to positive basis 2N).  

 Polling order (random, success, consecutive) 
 Complete search (on/off) 

To ensure an optimal setting of parameters, twelve different configurations have been considered setting 
an overall computational time (limited to 1h) and the total cost on the 23 demand scenarios. The best 
configuration corresponds to MADS algorithm combined to a positive basis 2N as reported in table 2. 
This configuration is used in the following comparisons. 



Table 2 Selected Configuration. 
Poll Method  Polling Order Complete Search 

MADS 2N Random Off 

 
Now it is possible to compare the results of the proposed algorithm with the ones of the marginal analysis 
and the Pattern Search indicated in Table 2. The authors adopt the default stopping criterion for the 
Pattern Search (MATLAB options) while setting 𝑇  𝑇 4 (i.e. the maximum number of items 
to be considered jointly during the optimization) in the DeB2IFO algorithm. 
Fig. 2 shows the total amount of the costs for the 23 demand scenarios per each LW, while Table 3 
summarize the total costs on all LW and the saving w.r.t. the best solution found. It is interesting to 
observe how the DeB2IFO ensures a cost reduction of approximately 3.6% w.r.t. MADS 2N, or about 
6.6% w.r.t. a traditional marginal analysis.  
A comparative table with detailed results on the 23 demand scenarios is provided in the appendix. 
 
 

 

Figure 2. Total costs for each 𝐿𝑊  (23 items) 
 

Table 3 Total costs and cost effort w.r.t. DeB2IFO 
DeB2IFO MADS 2N Marginal Analysis  

Total Cost € 1863360,70 € 1929780,69 € 1985996,33 

∆ cost w.r.t. min cost - € 66540,21 € 122755,85 

% cost w.r.t. min cost - % 3,57 % 6,59 

Total time (sec.) 3427 1832 281 

% time w.r.t. min time 11,20 5,52 - 

 
All these results are highly satisfactory and confirm the goodness of the optimization procedure and the 
effectiveness of the proposed approach.  
 

CONCLUSIONS 

A novel strategy to reduce the costs associated with spare parts management has been presented. The 
proposed approach started by modeling the spare parts management problem as an integer constrained 
minimization of a linear objective function. Then the focus of the manuscript was devoted to the 

 DeB2IFO 



introduction of the DeB2IFO algorithm, a deterministic interior method that takes into account the 
relationships between different items and a robust selection strategy for subsets of items with the most 
promising impact in reducing the total cost function.  
The advantages of DeB2IFO are the ability to handle integer solutions always satisfying feasibility and 
the tailor-made criterion of choosing only subsets of promising directions that avoid costly evaluations of 
the objective function and constraints. The results of comparison with the traditional marginal analysis 
and another common black-box algorithm were satisfactory both in terms of quality of the solutions and 
computational time. Nevertheless, the focus of this paper was mainly devoted to the definition of the 
analytical formulation of the algorithm itself and as such, there are several possibilities for further 
research. Firstly, the algorithm might be tested in more complex logistic networks, with other logistic 
solutions (e.g.) multi-echelon, lateral transshipment, cannibalization. It could be also relevant to expand 
the proposed solution enhancing the objective function via other ordering costs related to transportation or 
administrative aspects. The proposed algorithm could be also used for optimization related to additional 
METRIC-like solutions referred to the management of performance-based contract, such as the PBC-
METRIC (Patriarca et. al., 2016b). Moreover, with respect to multi-echelon scenarios, it will be relevant 
to compare, and possibly integrate the results of this research with other algorithms developed as a 
variation of the greedy algorithm, or Dantzig-Wolfe decomposition and Lagrangian heuristics (Wong et 
al., 2007; Topan et al., 2017). There might be also possible to combine route optimization algorithms 
(Linqiao et al., 2016), or to test the algorithm in multi-indenture systems: systems whose LRUs are made 
up of multiple SRUs (Shop Replaceable Units), i.e. items at a lower level of the bill of material. In this 
case, it is expected to further increase the effects of reduced computational efforts for the proposed 
solution. Lastly, as for the general formulation, the DeB2IFO remains conceptually suitable for a wide 
range of spare parts optimization problems, where items are subject to 1 by 1 replenishment policy (S-1, 
S) to guarantee high service levels. 
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Appendix   

The following table provides the details of item’s holding costs at each LW. 

 
Demand  LW DeB2IFO MADS 2N Marginal Analysis 

1 

LW1 € 23566,89 € 24634,95 € 28714,21 

LW2 € 22251,05 € 22381,09 € 22881,35 

LW3 € 40547,17 € 41303,13 € 42436,93 

Total € 86365,11 € 88319,17 € 94032,48 

2 
LW1 € 18478,07 € 19250,1 € 20324,77 

LW2 € 19648,67 € 21950,27 € 22216,94 

LW3 € 40354,59 € 41201,48 € 44397,73 



Total € 78481,33 € 82401,86 € 86939,44 

3 

LW1 € 23566,89 € 27804,65 € 28714,21 

LW2 € 22251,05 € 22323,77 € 22881,35 

LW3 € 40547,17 € 41303,13 € 42436,93 

Total € 86365,11 € 91431,55 € 94032,48 

4 

LW1 € 18478,07 € 18668,77 € 20324,77 

LW2 € 19648,67 € 21586,64 € 22216,94 

LW3 € 40354,59 € 42238,63 € 44397,73 

Total € 78481,33 € 82494,03 € 86939,44 

5 

LW1 € 19533,26 € 19786,78 € 19786,78 

LW2 € 25537,68 € 28269,57 € 29388,45 

LW3 € 35999,3 € 36175,46 € 36175,46 

Total € 81070,25 € 84231,81 € 85350,69 

6 

LW1 € 19888,64 € 19993,07 € 19993,07 

LW2 € 23223,02 € 25071,17 € 26092,98 

LW3 € 36661,16 € 36652,83 € 37771,71 

Total € 79772,82 € 81717,07 € 83857,76 

7 

LW1 € 17026,2 € 17026,2 € 17026,2

LW2 € 25289,88 € 26761,21 € 28052,14 

LW3 € 41502,06 € 41502,06 € 41502,06 

Total € 83818,14 € 85289,47 € 86580,41 

8 

LW1 € 23566,89 € 24036,82 € 28714,21 

LW2 € 22251,05 € 22323,77 € 22881,35 

LW3 € 40547,17 € 42436,93 € 42436,93 

Total € 86365,11 € 88797,52 € 94032,48 

9 

LW1 € 18478,07 € 20108,45 € 20324,77 

LW2 € 19648,67 € 21229,59 € 22216,94 

LW3 € 40354,59 € 42181,94 € 44397,73 

Total € 78481,33 € 83519,98 € 86939,44 

10 

LW1 € 19896,23 € 20082,71 € 20082,71 

LW2 € 23463,68 € 24177,38 € 25252,05 

LW3 € 29185,68 € 29523,72 € 29804,3

Total € 72545,59 € 73783,81 € 75139,07 

11 

LW1 € 23566,89 € 25838,95 € 28714,21 

LW2 € 22251,05 € 22705,19 € 22881,35 

LW3 € 40547,17 € 41929,7 € 42436,93 

Total € 86365,11 € 90473,84 € 94032,48 

12 

LW1 € 18478,07 € 20058,1 € 20324,77 

LW2 € 19648,67 € 22056,57 € 22216,94 

LW3 € 40354,59 € 41304,58 € 44397,73 

Total € 78481,33 € 83419,25 € 86939,44 
13 LW1 € 20941,92 € 21467,49 € 21907,11 



LW2 € 23791,91 € 23829,2 € 23829,2

LW3 € 38853,24 € 38853,24 € 38853,24 

Total € 83587,07 € 84149,93 € 84589,55 

14 

LW1 € 23462,76 € 25741,03 € 25741,03 

LW2 € 25987,32 € 25987,32 € 25987,32 

LW3 € 35194,15 € 36935,04 € 37132,71 

Total € 84644,23 € 88663,39 € 88861,06 

15 

LW1 € 18458,65 € 18709,53 € 18885,69 

LW2 € 25279,49 € 27236,69 € 27236,69 

LW3 € 34999,58 € 36151,27 € 36943,91 

Total € 78737,72 € 82097,49 € 83066,29 

16 

LW1 € 19497,57 € 19497,57 € 19497,57 

LW2 € 23458,77 € 26143,33 € 26334,03 

LW3 € 42952,91 € 43070,86 € 43070,86 

Total € 85909,25 € 88711,76 € 88902,46 

17 

LW1 € 24420,26 € 24596,42 € 24890,19 

LW2 € 21168,16 € 21168,16 € 21168,16 

LW3 € 34985,39 € 35440,78 € 37627,36 

Total € 80573,81 € 81205,36 € 83685,71 

18 

LW1 € 17382,66 € 17382,66 € 17382,66 

LW2 € 22690,73 € 23282,41 € 25316,91 

LW3 € 33593,27 € 34093,53 € 34093,53 

Total € 73666,65 € 74758,6 € 76793,1

19 

LW1 € 17977,21 € 18137,58 € 18137,58 

LW2 € 23985,26 € 26654,01 € 27528,09 

LW3 € 40660,19 € 40660,19 € 40660,19 

Total € 82622,65 € 85451,78 € 86325,87 

20 

LW1 € 17539,25 € 17992,39 € 18096,82 

LW2 € 20521,95 € 22440,21 € 25397,01 

LW3 € 36946,9 € 38673,65 € 41996,76 

Total € 75008,1 € 79106,25 € 85490,59 

21 

LW1 € 18972,43 € 19244,69 € 19442,36 

LW2 € 25488,18 € 26233,23 € 26233,23 

LW3 € 37843,51 € 38481,3 € 39038,88 

Total € 82304,11 € 83959,22 € 84714,47 

22 

LW1 € 24296,02 € 24993,76 € 25568,12 

LW2 € 23999,27 € 24444,95 € 24556,84 

LW3 € 31173,85 € 34168,79 € 35387

Total € 79469,14 € 83607,5 € 85511,96 

23 
LW1 € 16432,94 € 16432,94 € 16630,6

LW2 € 24501,81 € 24501,81 € 25059,38 

LW3 € 39310,65 € 41255,31 € 41549,67 



Total  € 80245,39 € 82190,05 € 83239,66 
Total € 1863360,7 € 1929780,69 € 1985996,33 

∆ w.r.t. min value - € 66540,21 € 122755,85 

% w.r.t. min value - % 3,57 % 6,59 

 


