
ARTICLE

Non-linear Terahertz driving of plasma waves
in layered cuprates
Francesco Gabriele1, Mattia Udina1 & Lara Benfatto 1✉

The hallmark of superconductivity is the rigidity of the quantum-mechanical phase of elec-

trons, responsible for superfluid behavior and Meissner effect. The strength of the phase

stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates.

So far, THz light pulses have been used to achieve non-linear control of the out-of-plane

Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy

in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that

THz driving of both low-frequency and high-frequency plasma waves is possible via a general

two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to

markedly different thermal effects for the out-of-plane and in-plane response, linking in both

cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results

show that THz light pulses represent a preferential knob to selectively drive phase excitations

in unconventional superconductors.
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Order and rigidity are the essential ingredients of any phase
transition. In a superconductor, the order is connected to
the amplitude of the complex order parameter, related to

the opening of a gap Δ in the single-particle excitation spectrum.
The rigidity manifests instead in the quantum-mechanical phase of
the electronic wave function, associated with the phase of the order
parameter1. Twisting the phase is equivalent to an elastic defor-
mation in a solid, meaning that its energetic cost is vanishing for
sufficiently slow spatial variations. On the other hand, as phase
fluctuations come along with charge fluctuations, long-range Cou-
lomb forces push the energetic cost of a phase gradient to the
plasma energy ωJ

1,2. Although for ordinary superconductors, this
energy scale is far above the THz range, in layered cuprates
the existence of a weak Josephson coupling among neighboring
layers3–5 provides a natural mechanism to push down to the THz
range the frequency of the interlayer Josephson plasma mode (JPM),
as it was proposed long ago in order to account for the soft plasma
edge appearing below Tc in standard reflectivity experiments6–10.
More recently, the possibility to manipulate such interlayer JPM by
intense THz pulses has been experimentally proven11,12, and theo-
retically discussed within the context of the non-linear equation of
motion for the phase variable11–16. This approach turned out to
successfully capture the main features of a series of recent experi-
ments17,18, even though a full quantum treatment of the JPM able to
capture thermal effects across Tc is still lacking. On the other hand,
non-linear effects induced by strong THz pulses polarized in the
planes19–21 have been discussed so far only within the context of the
SC amplitude (Higgs) mode or BCS response, that consists in
lattice-modulated charge fluctuations in the clean limit22,23. Indeed,
as their excitation energy scales in both cases as 2Δ, which range
from 5 to 10 THz in cuprates, they appear in principle a better
candidate than high-energy in-plane plasma waves. As it has been
recently discussed by several authors24–27, even small disorder
affects significantly the non-linear response by triggering in general
all processes mediated by the paramagnetic electronic current, that is
no more conserved. This affects the relative strength of the various
processes, making ultimately the Higgs mode24–27 as well as charge/
phase modes27 dominant at strong disorder. The various processes
can be further distinguished by their dependence on the pump
polarization, and for cuprates the Higgs response is strongly iso-
tropic at all disorder levels, whereas the BCS one has a shallow
maximum for field polarized along the diagonal of square lattice
unit cell27. Nonetheless, the experiments show at least two features,
which do not easily match our current expectation for both the
Higgs and the BCS response: (i) a monotonic temperature depen-
dence as T increases20,21, with a persistence above Tc21 and (ii) a
finite and doping-dependent polarization dependence with a mini-
mum for field polarized along the diagonal19.

Here, we provide a complete theoretical description of the JPM
contribution to the non-linear response of layered cuprate
superconductors, focusing both on third-harmonic generation
(THG) and pump-probe protocols for pump fields applied both
out-of-plane and in plane. We first address the out-of-plane
response and we show that the basic mechanism behind non-
linear photonic of Josephson plasma waves is intrinsically dif-
ferent from the one of the Higgs mode, see Fig. 1. By pursuing the
analogy with lattice vibrations in a solid, the Higgs mode is like a
Raman-active optical phonon mode. It has a finite frequency at
zero momentum, and its symmetry allows for a finite quadratic
coupling to light22–33. The phase mode behaves instead like an
acoustic phonon mode, pushed to the plasma energy by Coulomb
interaction, carrying out a finite momentum at nonzero fre-
quency. As such, zero-momentum light pulses can only excite
simultaneously two JPMs with opposite momenta. As a con-
sequence the excitation of out-of-plane JPMs strongly depends on
the thermal probability to populate excited states and on the

matching condition between the pump frequency and the JPM
frequency scale, resulting in a non-monotonic dependence of the
THG in temperature. We then turn our attention on the in-plane
response. In this case, as the frequency scale of the in-plane JPMs
is much larger than Tc and of the THz pump frequency, the THG
monotonically scales in temperature with the in-plane superfluid
stiffness. In addition, in contrast to the Higgs mode22,26,27, for a
light pulse polarized in the planes the signal coming from JPMs is
in general anisotropic, as the momenta carried out by the two
plasmons can be along different crystallographic axes. All these
features not only contribute to the understanding of the existing
experimental measurements17–21, but they also offer a perspective
to design future experiments aimed at selectively tune non-linear
photonic of Josephson plasma waves in layered cuprates.

Results
Two-plasmon non-linear response. To elucidate the basic
mechanism behind the two-plasmon non-linear response we first
discuss the case of the out-of-plane JPM. We take a layered model
with planes stacked along z. In the SC state the Josephson cou-
pling J⊥ of the SC phase ϕn between neighboring planes sets an
effective XY model:

H ¼ �J?
X
n

cosðϕn � ϕnþ1Þ: ð1Þ

An electric field polarized along z enters the Hamiltonian via the
minimal-coupling substitution1 θn→ θn− (2π/Φ0)dAz, with θn=
ϕn− ϕn+1, d interlayer distance and Φ0= hc/(2e). The corre-
sponding out-of-plane current density Iz=− ∂H/∂(cAz) is given by:

Iz ¼ Jc sinðϕnðtÞ � ϕnþ1ðtÞ � ð2π=Φ0ÞdAzðtÞÞ; ð2Þ
where Jc= 2eJ⊥/ℏS, with S surface of each plane. The Josephson
current (2) naturally admits an expansion in powers of Az to all
orders:

hIzi ¼ χð1Þz Az þ χð3Þz A3
z þ � � � ; ð3Þ

where the explicit time convolution of Eq. (3) has been omitted for
compactness. Here, following the same approach used so far to
investigate the Higgs response22,23,28,29, we rely on a quasi-
equilibrium description, where the leading effect of the intense
THz pump field is to trigger a third-order χ(3) response mediated by

Fig. 1 Non-linear excitation of phase and Higgs modes. a Schematic view
of the mexican-hat potential for the free energy F(ψ), with ψ the complex
order parameter of a superconductor below Tc. A phase-gradient excitation
corresponds to a shift along the minima, whereas a Higgs excitation moves
the system away from the minimum. An intense light pulse with almost
zero momentum can excite simultaneously two plasma waves with
frequency ωJ and opposite momenta (in red) or a single Higgs fluctuation
with frequency ωH= 2Δ (in blue). b–c Feynman-diagrams representation of
the b plasma waves or c Higgs contribution to the non-linear optical
response. Here wavy lines represent the e.m. field, solid/dashed lines the
plasmon/Higgs field, respectively.
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plasma waves. The quantum generalization of the model (1) has
been widely discussed within several contexts11,14,15,32,34,35. Here
we follow the approach of refs. 34,35 where long-range Coulomb
interactions are introduced within a layered model appropriate for
cuprates (see Methods). The Gaussian quantum action for the
phase mode at long wavelength has the usual form:

SG? ’ νS
2d

X
iωm;kz

4sin2ðkzd=2Þ ω2
m þ ω2

J

� �jϕðiωm; kzÞj2; ð4Þ

where ω2
J ¼ c2=ελ2c ¼ 8πedJc=_ε is the energy scale of the out-of-

plane JPM, iωm= 2πmT are Matsubara frequencies and ν = ℏ2ε/
(16πe2), with ε the background dielectric constant. In the classical
limit only ωm= 0 is relevant and one recovers the leading term of
Eq. (1), i.e., a discrete phase gradient along z, as expected for the
Goldstone mode.

To compute the third-order contribution in Eq. (3) we need to
derive the effective action S(4) for the gauge field up to terms of
order OðA4

zÞ (see Methods). By coupling the gauge field Az to the
phase mode via the minimal-coupling substitution in Eq. (2) and
by expanding the cosine term, one finds that:

S ¼ SG? þ π2J?
Φ2

0

X
n;ri

Z
dτA2

zðτÞθ2n;riðτÞ þ � � � ; ð5Þ

where dots denote additional terms not relevant for the χ(3)

response. The second term in Eq. (5) can be treated as a
perturbation with respect to SG?, see Supplementary Note 2, so
that integrating out the JPM one obtains:

Sð4ÞA ¼ R
dτ

R
dτ0A2

zðτÞK?ðτ � τ0ÞA2
zðτ0Þ

¼ P
iωm

A2
zðiωmÞK?ðiωmÞA2

zð�iωmÞ; ð6Þ

where A2
zðiωmÞ is defined as the Fourier transform of A2

zðτÞ and
K⊥(iωm) is the non-linear optical kernel of the system, given by
the convolution of two JPM propagators, as represented
diagrammatically in Fig. 1b. After analytical continuation to real
frequency we get:

K?ðωÞ ¼ K0
J2?
ωJ

cothðβωJ=2Þ
4ω2

J � ðωþ iγÞ2 ; ð7Þ

with K0 a constant prefactor and γ accounts for the
plasmon dissipation (see Supplementary Note 1 and 2). From
Eq. (6), it immediately follows (see Methods) that
hINLz ðtÞi ¼ 4

R
dt0AzðtÞK?ðt � t0ÞA2

zðt0Þ. Therefore, for a mono-
chromatic incident field Az ¼ A0 cosðωtÞ the non-linear current
admits both a term oscillating at ω, which gets mixed with the
linear response, and one oscillating at 3ω, whose intensity is given
by22,23,28,29

ITHG ¼ I0jKð2ωÞj2; ð8Þ
where I0 is an overall constant. The vanishing of the denominator
in Eq. (7) identifies the resonance of the non-linear kernel. As the
physical mechanism behind the THG is the excitation of two
plasma waves, the largest ITHG in Eq. (8) occurs when twice the
pump frequency matches the 2ωJ kernel resonance, i.e., ω= ωJ.
This has to be contrasted, e.g., to the case of the THG from the
Higgs mode. In this case, the electromagnetic (e.m.) field excites
non-linearly a single amplitude fluctuation δΔ, via a term like
A2δΔ22,23,28,29. As a consequence the non-linear kernel, identified
by the dashed line in Fig. 1c, is proportional to a single Higgs
fluctuation, and the THG (8) is resonant when the pump
frequency matches half the mode energy, i.e., when ω= ωH/2=
Δ, as observed in conventional superconductors28,31 for strong
(up to ~100 kV/cm) but not too intense fields36.

Out-of-plane THG. Once derived the two-plasmon contribution
to the non-linear optical kernel, let us compute the THG for a
field polarized in the out-of-plane direction. The temperature
dependence of the JPM non-linear kernel (7) and the corre-
sponding THG (8) for a narrow-band pulse are shown in
Fig. 2a–d for different values of the pump frequency ω. Here we
modeled J⊥(T) and the corresponding ωJ(T) according to the out-
of-plane superfluid stiffness measured in ref. 18. In general, the
THG for the out-of-plane response is not monotonic, as one has
to face with three different temperature effects in K(2ω): (i) the
suppression of J⊥(T) and ωJ(T) with temperature; (ii) the increase
of cothðβωJÞ with temperature, owing to thermal activation of the
plasmon population; (iii) the resonance condition 2ω= 2ωJ(T),
that is achieved at the temperature where the (fixed) pump fre-
quency matches the value of ωJ, and depends on the relative value
of the pump frequency ω with respect to ωJ(T= 0)≡ ωJ,0. In the
case where ω < ωJ,0, as for ω= ω3 in Fig. 2a, the temperature
dependence of ITHG(ω3) is dominated by the maximum at the
temperature where ωJ(T)= ω3. On the other hand, when ω ≥ ωJ,0,
as it is the case for ω= ω1, ω2, the resonant excitation of the
plasma mode cannot occur, and the temperature dependence of
the THG is controlled by the opposite effects (i–ii), which lead to
a non-monotonic dependence of ITHG(T). The thermal effect (ii)
is particularly pronounced for the out-of-plane JPM, as ωJ,0 is of
the same order of the critical temperature Tc. The absolute value
of ITHG depends also on the damping γ present in Eq. (7), which
has the same role of a linear damping term in the equations-of-
motion approach, see Supplementary Note 1. In Fig. 2c, d, we
show the results for a temperature-dependent γ(T)= γ0+ r(T),
where r(T)= r0e−Δ/T has been taken in analogy with previous
work16 to mimics dissipative effects from normal quasiparticles.
In this case the plasma resonance is progressively smeared out by
increasing temperature, and for out-of-resonance conditions, the
THG signal rapidly loses intensity as the system is warmed up.

The THG for a field polarized along z has been measured so far
only by means of a broadband pump18. To make a closer
connection with this experimental setup we then simulated (see
Methods) the THG for a short (τ= 0.85 ps) pump pulse Ep(t) with
central frequency Ω/2π= 0.45 THz, as shown in Fig. 2g. The
frequency spectrum of the resulting non-linear current INLz presents
then a broad peak around 3Ω, as shown in Fig. 2e. The integrated
spectral weight of the 3Ω peak is shown in Fig. 2f at several
temperatures. Following ref. 18 we used Ω≃ωJ,0, so the narrow-
band response should corresponds to the case ω=ω2 of Fig. 2d.
However, the broadband spectrum of the pump pulse enhances the
response at intermediate temperatures and apart from a small deep
around T= 0.2Tc the signal scales with the superfluid stiffness, in
good agreement with the available experimental data.

Out-of-plane pump-probe oscillations. In the broadband case,
the nature of the non-linear kernel can also be probed via a
typical pump-probe experimental setup, schematically summar-
ized in Fig. 2g. As it has been theoretically described in ref. 23,37

for the transmission geometry, the oscillations of the differential
probe field with and without the pump δEpr(tpp) as a function of
the pump-probe time delay can be directly linked to the resonant
non-linear optical kernel. In the case of the out-of-plane response
(7) one then obtains (see Methods):

δEprðtppÞ /
R
dtKðtpp � tÞA2

zðtÞ
¼ FðTÞ R tpp

�1 e�γðt�tppÞ sinð2ωJðtpp � tÞÞA2
zðtÞ

ð9Þ

where FðTÞ � J2? cothðβωJ=2Þ=ω2
J . When the pump pulse is short

enough one can approximate A2
zðtÞ ’ δðtÞ and Eq. (9) shows that

the differential field δEpr(tpp) oscillates at twice the JPM frequency,
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and not at the frequency of the mode, as it occurs for the Higgs
mode observed in conventional superconductors38. This prediction
is confirmed when a realistic pump pulse is used in Eq. (9), as
shown in Fig. 2h, which reproduces very well the 2ωJ oscillations
reported at low-temperature in pump-probe experiments in reflec-
tion geometry17.

In-plane THG. Let us consider now the effects of a strong THz
pulse polarized within the plane. In this case, we can generalize
the model (4) by taking into account both the two-dimensional
nature of the phase fluctuations in the plane and the anisotropy of
penetration depth measured experimentally in cuprates3–5, where
λc≃ 10−100λab depending on the material and the doping, and

λab≃ 2000Å, so that ωk
J ¼ c=

ffiffi
ε

p
λab is much larger than the out-

of-plane one. Following again the microscopic derivation out-
lined, e.g., in ref. 34,35 we obtain

SGk ’ v
2

X
iωm;k

k2 ω2
m þ ðωk

J Þ
2h i
jϕðiωm; kÞj2; ð10Þ

where k= (kx, ky) and we promoted the phase difference to a
continuum gradient for the in-plane phase mode. To describe the
non-linear coupling to the e.m. field, we rely again on a quantum
XY model, whose coupling constant is the effective in-plane
stiffness Jk ¼ _2c2d=16πe2λ2ab. Even though the microscopically
derived phase-only action is not in general equivalent to the XY
model35, for cuprates this can still represent a reasonable starting
point34. By minimal-coupling substitution∇ ϕ(r)− (2π/Φ0)A∥
we then obtain, in full analogy with Eq. (5), that:

S ¼ SGk þ Jk
4!

Z
drdτ A2

xðτÞð∂xϕÞ2 þ A2
yðτÞð∂yϕÞ2

h i
þ � � � : ð11Þ

By following the same steps as before we obtain a quartic action

of the form (6), but the non-linear kernel becomes a tensor, which
admits two different Kxx;xx and Kxx;yy components (see Methods):

Kxx;xx ¼ 3Kk; Kxx;yy ¼ Kk ð12Þ
where K∥ has the same structure of Eq. (7), provided that J⊥ and

ωJ are replaced by J∥ and ωk
J . The frequency and temperature

dependence of K∥ is shown in Fig. 3a. The in-plane stiffness J∥ is
taken as linearly decreasing, in analogy with experiments3–5. As

ωk
J ðT ¼ 0Þ � ωk

J;0 is of the order of the eV, we only considered

the case of THz pump frequencies ωi <ωk
J;0. As one can see, when

ωi is a fraction of ωJ,0 the resonance condition ωi ¼ ωk
J ðTÞ is still

attained at temperatures where the kernel is large enough to give
rise to a pronounced maximum in the THG intensity. However,

when ωi � ωk
J;0 the resonance is only attained near to Tc where

the prefactor has already washed out the two-plasmon resonance,
and the THG scales with the superfluid stiffness. This is easily
seen from Eq. (7), since by putting ω≃ 0 in the denominator, and

considering that cothðβωk
J Þ ’ 1 at all relevant temperatures, from

ωk
J /

ffiffiffiffi
Jk

p
one finds

ITHGðT;ω � ωk
J;0Þ � JkðTÞ: ð13Þ

The scaling of the THG intensity in the THz regime with J∥ has
several consequences. First, ITHG monotonically increases below Tc,
in striking contrast with the pronounced maximum one would
expect for resonance at ωi=Δ(T), owing to the Higgs28,29 or BCS
response22–25,27. Second, the superfluid stiffness appearing in the
THG response is the one measured at THz frequencies. As such,
owing to both fluctuations effects and inhomogeneity it vanishes in
cuprates well above Tc21,39,40. Interestingly, whatever is the origin of
persistence of the finite-frequency stiffness above Tc, it directly

Fig. 2 Non-linear excitation of out-of-plane JPM. a–d Narrow-band pulse. Temperature and frequency dependence of the non-linear kernel (7) ∣K(2ω, T)∣,
normalized to its T= 0 value for the pumping frequency ω=ωJ,0, for constant a and temperature-varying c damping γ. The dashed line denotes ωJ(T)/ωJ,0.
b, d show the corresponding ITHG(ωi, T) for three values ωi of the pump frequency, normalized to its T= 0 value for the pumping frequency ω2=ωJ,0. The
dashed line represents J⊥(T)/J⊥(0). e–h Broadband pulse. e Spectrum of the non-linear current INLz as a function of frequency, normalized to the central
frequency Ω of the pump pulse, shown explicitly in g. The intensity of the THG signal is now obtained by integrating the peak around 3Ω (gray region in e).
Its temperature dependence, normalized to its T= 0 value, is shown in f, with the same color code of the curves of e. g Schematic of the pump-probe
setup: a weak probe field Epr(t) impinges on the sample with a variable time delay tpp with respect to the intense pump pulse Ep(t). g Time-dependence of
the differential probe field δEpr(tpp) measured with and without the pump, at different temperatures. The periodicity of the oscillations matches the 2ωJ(T)
value at each temperature. Here we set ωJ,0/2π= 0.47 THz in accordance with the experiments17.
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implies a persistence of the ITHG above Tc, as we exemplify in
Fig. 3c, where we report a simulation of the superfluid stiffness with
a finite tail above Tc (see also Supplementary Note 3 for more
details). Both the monotonic suppression20 and the persistence of
non-linear effects above Tc20,21 have been recently reported in THG
and THz Kerr measurements in cuprate superconductors. As
explained above, they can hardly be reconciled with the typical 2Δ
resonance expected for the BCS response or for the Higgs mode,
both within clean22,23 and disordered24,25,27 models for super-
conductors. A second experimental finding that does not properly
fit the BCS and Higgs scenario for the in-plane pump field is the
polarization dependence of the response, i.e., the dependence of
ITHG on the angle θ, which the pump field forms with the x crys-
tallographic axis. Indeed, within a disordered superconducting
model with a realistic band structure, the Higgs signal has an iso-
tropic contribution, while the BCS one has a relative maximum for
a field applied along the diagonal27. As a consequence, the recent
observation19 of a sizeable response with a minimum along the
diagonal direction in optimal and over-doped Bi2212 compounds
cannot be simply ascribed to these collective excitations. It is then
worth exploring the polarization dependence of the JPM signal.
Owing to the tensor structure of the in-plane kernel (12), the non-
linear current owing to JPM for a pump field with a polarization
angle θ scales with:

KðθÞ ¼ KA1g
þ KB1g

cos2ð2θÞ ð14Þ
where we introduce the standard decomposition of the kernel by
means of the irreducible representation of the square lattice, i.e.,

KA1g=B1g
¼ ðKxx;xx ±Kxx;yyÞ=2. The resulting ITHG(θ)∝ ∣K(θ)∣2 is

shown in Fig. 3d. According to Eq. (12), for JPM is KA1g
=KB1g

¼ 2.

As mentioned above, so far JPM are the only candidate to give a B1g
contribution to the THG. In this view, the doping dependence of
the anisotropy observed experimentally within the Bi2212 family19,
and the reported cuprate-family dependence20, both offer a
potentially privileged knob to explore the relative importance of
phase-fluctuation effects in cuprates. It is worth noting that the
anisotropy of the kernel for JPMs follows form the intrinsics ani-
sotropy of the two-plasmon excitation process, and the ratio
KA1g

=KB1g
¼ 2 only holds within the phenomenological approach

based on the quantum XY model, where the overall coupling
constant of the action (11) is isotropic. However, within a micro-
scopically derived phase-only model the interacting terms in the
phase can differ from the one obtained within the XY model, as
discussed for the clean case in ref. 35. As a consequence, although
one expects, in general, an anisotropy of the non-linear JPM
response, the value of the KA1g

=KB1g
ratio could also be influenced

by microscopic details.

Discussion. Our work establishes the theoretical framework to
manipulate and detect JPMs in layered cuprates across the
superconducting phase transition. The basic underlying
mechanism relies on the excitation of two plasma waves with
opposite momenta by an intense field. For the out-of-plane
response, we support the well-established approach based on
non-linear sine-Gordon equations11,14,15,17,18, adding a complete

Fig. 3 Non-linear excitation of in-plane JPM. a Temperature and frequency dependence of the non-linear kernel ∣K∥(2ω, T)∣, normalized to its T= 0 value
for the pumping frequency ω=ωJ,0, for constant damping γ. The dashed line denotes ωk

J ðTÞ=ωk
J;0. b ITHG(ωi, T) for three ωi values of the pump frequency,

marked in a, normalized to ITHG(ωi, 0). The dashed line represents J∥(T)/J∥(0). As one can see, when ωk
J;0=ωi is increased the THG intensity progressively

approaches the temperature dependence of the stiffness. c Effect of superconducting fluctuations on the THG. Here the dashed line simulates the
experimental behavior of the J∥(T) measured at THz frequencies, with a pronounced tail above Tc. When ωk

J;0=ωi is increased also the THG signal survives
above Tc, following the fluctuating stiffness. d Angular dependence of ITHG(θ)= ∣K(θ)∣2, where K(θ) is given by Eq. (14).
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description of thermal effects and highlighting the possibility to
tune the resonant excitation of JPMs by changing the tempera-
ture. For the in-plane response, we suggest the possible relevance
of JPMs to explain several puzzling aspects emerging in recent
measurements in different families of cuprates19–21. Although for
the out-of-plane response the strong incoherent quasiparticle
transport automatically suppresses all electronic mechanisms,
leaving the JPM as the only plausible candidate to explain non-
linear effects, for the in-plane case an open question remains a
quantitative estimate of the signal coming from the JPMs, as
compared with the one owing to the Higgs or to BCS quasi-
particle excitations. Indeed, as the recent theoretical work on
disordered superconducting models demonstrated24–27, even
weak disorder becomes crucial to estimate the relative strength of
the various possible processes, and to establish the polarization
dependence of the response27. Nonetheless, as we have shown,
even in the absence of a quantitative estimate of the hierarchy of
the various effects the temperature and polarization dependence
of the non-linear response can be used to discriminate different
contributions. In our modeling, the large value of the in-plane
plasma frequency comes along with a large value for the in-plane
stiffness J∥, which controls the non-linear coupling of the JPM to
the e.m. field. This suggests that especially near optimal doping,
where J∥ attains its maximum value, a two-plasmon THG signal
can be comparable to other effects. An interesting additional
question is a possibility that a finite supercurrent triggered by a
very strong THz field, as the one recently discussed within the
context of second-harmonic generation in conventional super-
conductors31,41, could also allow for single-plasmon excitations
processes. From this perspective, the theoretical and experimental
investigation of non-linear phenomena induced by intense THz
pulses represents a privileged knob to probe the relative strength
of pairing and phase degrees of freedom in unconventional
superconducting cuprates.

Methods
Effective quantum action. The derivation of the quantum action for the phase
degrees of freedom can be done following a rather standard approach, see, e.g.,
refs. 1,34,35 and references therein. The basic formalism relies on the quantum
action representation of a microscopic superconducting model in the presence of
long-range Coulomb interactions. The collective variables corresponding to the
amplitude, phase, and density degrees of freedom are introduced via an
Hubbard–Stratonovich decoupling of the interacting superconducting and Cou-
lomb term. This allows one to integrate out explicitly the fermionic degrees of
freedom in order to obtain a quantum action in the collective variables only, whose
coefficients are expressed in terms of fermionic susceptibilities, computed on the
SC ground state. The result for the Gaussian phase-only action in the isotropic
three-dimensional case reads:

Seff ½θ� ¼
1
8

X
iωm ;q

_2ω2
m~χρρ þ Dsq

2
h i

jϕðiωm; qÞj2: ð15Þ

Here Ds= ℏ2c2/4πe2λ2 and ~χρρ is the density–density susceptibility dressed at RPA
level by the Coulomb interaction V(q):

~χρρ ¼
χ0ρρ

1þ VðqÞχ0ρρ
; ð16Þ

where χ0ρρ represents the bare charge susceptibility, which reduces in the static limit

to the compressibility of the electron gas, i.e. χ0ρρðωn ¼ 0; q ! 0Þ � κ. The nature
of the Goldstone phase mode is dictated by the form of the charge susceptibility.
For the neutral system, Coulomb interactions are absent and ~χρρ in Eq. (15) can be

replaced by the bare one χ0ρρ . Thus, in the long-wavelength limit the pole of the
Gaussian phase propagator defines, after analytical continuation to real frequencies
iωn→ ω+ iδ, a sound-like Goldstone mode: ω2= (Ds/κ)q2. On the other hand, in
the presence of Coulomb interaction the long-wavelength limit of the charge
compressibility (16) scales as ~χρρ ! 1=VðqÞ. In the usual isotropic three-
dimensional case V(q)= 4πe2/q2, where ε is the background dielectric constant,
and one easily recovers from Eq. (15) that

Seff ½ϕ� ¼
1
2

X
iωm ;q

_2

4VðqÞ ω2
m þ ω2

P

� �jϕðiωm; qÞj2; ð17Þ

where ω2
P � 4πe2Ds=_

2ε ¼ c2=λ2ε coincides with the usual 3D plasma frequency.
In the case of cuprates, one should start from a layered model where the in-plane
and out-of-plane superfluid densities are anisotropic, so that the Dsq2 term in Eq.
(15) is replaced by ð4D?=d

2Þsin2ðkzd=2Þ þ Dkk
2
k , with D?=k ¼ _2c2=4πe2λ2c=ac . In

addition, one can also introduce an anisotropic expression for the Coulomb
interaction, to account for the discretization along the z direction34. Following, e.g.,
the derivation of ref. 34 one then recovers in the long-wavelength limit the two
expressions (4) and (10). Notice that at long-wavelengths the result (4) coincides
also with the one based on the non-linear sine-Gordon equations, as shown in
refs. 11,14,15. In this case, however the effect of long-range forces is included via the
coupling to the electromagnetic gauge and scalar potentials, which are eliminated
to derive the equations of motion for the phase variables. Further technical details
on this analogy are provided in Supplementary Note 1.

Computation of the non-linear kernel. The current Iα in the α= (x, y, z) direction
is defined as usual as the functional derivative with respect to Aα of the action SA.
Thus, to compute the third-order contribution to Iz in Eq. (3) we need to expand
the e.m. action up to terms of order OðA4

zÞ. The coupling term of the JPM to A2
z in

Eq. (5) leads to a A4
z contribution after integrating out the plasmon, see Supple-

mentary Note 2. This is represented by the Feynmann diagram of Fig. 1b. Here
each solid line denotes the Gaussian phase mode, obtained by Eq. (4) as

hjϕðiωm; kzÞj2i ¼ 4sin2ðkzd=2Þ ω2
m þ ω2

J

� �� ��1
. With straightforward calculations

one gets:

Sð4ÞA ¼ K0

X
iωm

T
X
iω0

m

A2
zðiωmÞJ2?A2

zð�iωmÞ
½ðωm þ ω0

mÞ2 þ ω2
J �½ω0

m
2 þ ω2

J �
; ð18Þ

where A2
zðiωmÞ ¼

P
iω0

m
Azðiω0

mÞAzðiωm � iω0
mÞ is the Fourier transform on A2

zðτÞ.
Eq. (18) coincides with Eq. (6), once defined K?ðiωmÞ ¼ K0

J2?
ωJ

cothðβωJ =2Þ
4ω2

J þω2
m
. After

analytical continuation iωm→ ω+ iδ to real frequencies one then recovers Eq. (7).
From Eq. (18) one directly derives

IzðiωnÞ ¼ �∂Sð4ÞA =∂Azð�iωnÞ ¼ �4
P

iω0
m
Azðiωn � iω0

mÞKðiω0
mÞA2

zðiω0
mÞ, we used

the parity of the kernel to write the four possible derivatives in the same way. After
analytical continuation to real frequency one has:

INLz ðωÞ ¼ 4
Z

dω0Azðω� ω0ÞK?ðω0ÞA2
zðω0Þ; ð19Þ

whose Fourier transform to real time gives hINLz ðtÞi ¼ �4
R
dt0AzðtÞK?ðt � t0ÞA2

zðt0Þ,
as stated in the main text. For a monochromatic field, A(ω) is proportional to a delta
function peaked at the pump frequency, and one recovers Eq. (8). Notice that the
infinitesimal positive δ in the analytical continuation of the kernel is promoted here to
a finite and temperature-dependent value γ(T)= γ0+ r0e−Δ/T to account for plasmon
dissipative effects, as explained in Supplementary Note 1. To better reproduce the
pump-probe experimental findings17, in Fig. 2 we fixed γ0/2π= 0.08 THz, while r0=
0.3ωJ,0 in panels c,d and r0= 0.6ωJ,0 in panels e–h. Here ωJ,0/2π= 0.47 THz is the out-
of-plane plasma frequency at T= 0. In Fig. 3, instead, we set γ0= 0.1ωJ,0, where now
ωJ,0/2π= 240 THz is the T= 0 value of the in-plane plasma frequency.

For what concerns the in-plane JPM, we follow the same procedure starting
from the interaction term of Eq. (11). In this case, the quartic action has a structure
similar to Eq. (18) provided that K⊥ is replaced by a two-component tensor:

Sð4ÞA ¼
X
iωm

A2
i ðiωmÞKii;jjðiωmÞA2

j ð�iωmÞ ð20Þ

where Kii;jj(iωm)=MijK∥, and Mij ¼
P

k
k2i k

2
j

k4
. As a consequence, up to an overall

normalization factor, one has that Mxx ¼ Myy /
R 2π
0 dϕ cos4ϕ ¼ 3π=4 while

Mxy ¼ Myx /
R 2π
0 dϕ cos2ϕ sin2ϕ ¼ π=4, leading to Eq. (12). If θ is the angle of the

pump field in the plane, i.e., A ¼ ðA cos θ;A sin θ; 0Þ, then the polarization angle-
dependence of the in-plane non-linear optical kernel is22:

KðθÞ ¼ Kxx;xxðcos4θ þ sin4θÞ þ 2Kxx;yycos
2θsin2θ; ð21Þ

that can be rewritten in the form of Eq. (14).

Broadband pump pulse. For a narrow-band multicycle pulse, one can assume a
monochromatic incident field, and the THG is simply related to the non-linear optical
kernel via Eq. (8). However, for a broadband pulse with central frequencyΩ, the THG
is more generally associated with the 3Ω component in the non-linear current22,23.
We then computed the non-linear current from Eq. (19) by using a realistic pump
spectrum A(ω), obtained by Fourier transform of AzðtÞ ¼ A0e

�t2=τ2 sinðΩtÞ. The
result for Iz is shown in Fig. 2e at different temperatures. The τ= 0.85 ps andΩ/2π=
0.45 THz parameters are set in such a way that the e.m. field Ez(t)∝−∂Az(t)/∂t
reproduces accurately the experimental pulse profile of ref. 18.

Pump-probe configuration. In a pump-probe experiment designed to excite the
out-of-plane JPM, both the pump and probe fields are polarized along z, i.e., Ez=
Epr(t)+ Ep(t). Here, we will refer for simplicity to the transmission configuration,
as discussed in ref. 23,37, where one measures the variation δEpr(t) of the
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transmitted probe field with and without the pump, so that terms not explicitly
depending on the pump field cancel out. This allows one to express it as
δEprðtÞ /

R
dt0A pr

z ðtÞKðt � t0ÞðAp
z Þ2ðt0Þ. By considering a fixed tg acquisition time

and implementing the time delay tpp between the pump and the probe, δEpr(tg; tpp)
becomes a function of tpp only, as given by the first line of Eq. (9). Finally, by
computing from Eq. (7) the non-linear kernel in time domain, i.e.,
KðtÞ ¼ R

dω
2π KðωÞe�iωt ¼ FðTÞe�γt sinð2ωJ tÞ, we derive the last line of Eq. (9). For

the reflection geometry used in ref. 17 the basic mechanism is the same, so that one
expects that the differential reflectivity signal scales with the convolution of the
non-linear kernel times the pump field squared given in Eq. (9). For the simula-
tions in Fig. 2e–h, we used the broadband pump pulse described above. For the in-
plane response measured in ref. 21, the huge frequency mismatch between the

spectral components of the gauge field and 2ωk
J implies that only the term with t=

tpp survives in the integral (9). As a consequence, the oscillations are absent and
δEpr(tpp) simply scales as the square of the pump field, modulated by F(T) and by
the polarization encoded in the kernel (12). Indeed, if the pump field forms an
angle θ with the x axis and the probe is applied, e.g., along the x axis, from Eq. (9),
properly generalized for the planar configuration, one easily sees that
δEx � Kxx;xxcos

2θ þ Kxx;yysin
2θ ¼ KA1g

þ KB1g
cosð2θÞ. This is exactly the

decomposition used to analyzed the transient reflectivity measured in ref. 19.

Data availability
All data generated during this study are included in this published article (and its
supplementary information files).
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