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ABSTRACT Granular Computing is a powerful information processing paradigm for synthesizing advanced
pattern recognition systems in non-conventional domains. In this article, a novel procedure for the auto-
matic synthesis of suitable information granules is proposed. The procedure leverages a joint sensitivity-
vs-specificity score that accounts the meaningfulness of candidate information granules for each class
considered in the classification problem at hand. Only statistically relevant granules are retained for a
graph embedding procedure towards a geometric space, in which standard classification systems can be
used without alterations. Performance tests have been carried out by considering open access datasets
of fully labelled graphs with arbitrarily complex nodes and/or edges attributes that, by definition, must
rely on inexact graph matching procedures to quantify dissimilarities. Two variants of the procedure are
investigated: a standard variant, which aims at automatically finding suitable information granules for solving
the classification problem as a whole, and a class-specific metric learning variant, in which the optimization
procedure is performed in a class-aware fashion. In the latter case, each class will have its own set of
information granules, alongwith the corresponding parameters defining distinct instances of the dissimilarity
measure. Computational results show that the proposed algorithm is able to outperform the vast majority of
current approaches for graph classification, while at the same time returning a grey-box model, interpretable
by field-experts.

INDEX TERMS Inexact graph matching, graph embedding, granular computing, graph classification,
structural pattern recognition, supervised learning.

I. INTRODUCTION
Graph embedding is one of the mainstream approaches
when dealing with pattern recognition problems in the graph
domain. This ‘unconventional’ domain has fascinated com-
puter scientists andmachine learning engineers alike formore
than two decades, given the graphs capabilities of endowing
both topological and semantic information on the process to
be modelled. Indeed, the widespread use of graphs regarded
many research fields including biology, social network anal-
ysis, computer vision and text mining. The drawback when
dealing with graph-based pattern recognition lies on the com-
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putational complexity required to evaluate the (dis)similarity
between two graphs, that exponentially grows with respect to
the input size [1]. Furthermore, graphs are the quintessential
data structure lying in a non-metric space [2]. The same
does not hold in ‘conventional’ pattern recognition problems
where patterns are represented as multidimensional feature
vectors lying in a multidimensional vector space. In fact,
the resulting input space can be equipped by a properly-said
metric satisfying the known properties of non-negativity,
identity, symmetry and triangle inequality [2]–[4].

In the literature, there exist several strategies in order
to solve pattern recognition problems in the graph domain
[2], [5]–[7], notably feature engineering (see e.g., [8]–
[11]), the use of custom dissimilarities working directly
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in the input space (see e.g., [12]–[14]) and embedding
techniques. In turn, the embedding towards a vector space
can be performed in different ways: kernel methods, for
example, exploit positive-definite kernel functions in order
to (implicitly) map the input data towards a reproducing ker-
nel Hilbert space (see [15] for a detailed review on graph ker-
nels); neural approaches such as graph neural networks (see
e.g. [16]), in which the graph representation is learned via
a shallow or deep network, yet their interpretability and the
understanding of how they return the embedding is still out
of reach nowadays [17], [18]; via dimensionality reduction
techniques [19], [20] and information granulation. The lat-
ter paradigm is the core of this article and is based upon
the Granular Computing (GrC) paradigm [21]–[23]. GrC is
an information processing paradigm that mimics the innate
human ability to granulate and discretize the world around
in order to describe it and to support (more or less com-
plex) decision making activities [24]. Under a data-driven
viewpoint, this process of ‘granulation’ can be intended as
the extraction of entities (formally known as information
granules) arising from both the problem and the data at hand.
The importance of granulation resides in the ability to under-
line properties and relationships between data aggregates and
their synthesis shall follow the so-called indistinguishability
rule, according to which elements that show enough similar-
ity, proximity or functionality shall be grouped together [25].
With this approach, each granule is able to show homogenous
semantic information from the problem at hand [26]. Further-
more, a given system can be analyzed at different ‘levels‘
of granularity, depending on which different peculiarities
may emerge, with different atomic units that show different
representation of the system as a whole [27]–[30]. Hence,
an effective learning system able to automatically extract the
most informative and meaningful set of information granules
for both the data and the problem at hand is of paramount
interest and put GrC on the spotlight as a powerful framework
for analysing complex systems with the aim of providing
human-interpretable results, as confirmed by several research
works (see e.g. [5]–[7], [31]–[35] and references therein).
Once a suitable set of information granules is returned, a pat-
tern recognition problem can be cast towards the Euclidean
space by means of an embedding procedure known as sym-
bolic histograms, in which each original pattern (regardless of
its domain) is represented as a vector containing the number
of occurrences of each information granule within the pattern
itself. This allows to move the pattern recognition problem
towards a metric space, in which computational intelligence
tools can be used without alterations. Usually, data clustering
is employed for information granules extraction [5], [6], [32],
[34], [36]–[41] due to the tight connection between clusters
and information granules as ‘groups of similar data’. Despite
the effectiveness of clustering procedures, they are usually
featured by a non-negligible computational cost, especially
when custom dissimilarity measures have to be employed in
order to better suit the input space under analysis [36].

In this work, as instead, we leverage a statistical index
(originally proposed in ecology) which aims at jointly quanti-
fying the sensitivity and specificity of candidate information
granules in order to preserve only those with the highest
discriminative power. Hence, our approach can be seen as
a pure filtering-based one, where we do not employ any
clustering procedure. This approach for extracting informa-
tion granules has already been explored in [7] and [42],
with successful results: in the first case, it has been used for
the analysis of metabolic pathways and in the second case
for text classification. In both cases, the evaluation of the
considered statistical index is straightforward: in fact, finding
meaningful chemical reactions in a metabolic pathway1 can
be performed in an exact manner by matching the labels of
the nodes (metabolites) involved in the chemical reaction
(edge); similarly, finding meaningful words in a document
can as well be performed in an exactmanner (i.e., a word does
either exist or not). Conversely, in this work we extend the
proposed methodology to fully labelled graphs (i.e., graphs
with arbitrarily complex attributes on both nodes and edges),
where an inexact matching procedure is mandatory. More
in detail, such statistical index aims at letting statistically
relevant information granules emerge from the training data.
The set of information granules forms a set of pivotal entities
thanks to which the embedding procedure from the graph
domain towards the Euclidean space can be performed: in
the latter, classification can be performed using any pattern
recognition technique. Furthermore, we present two variants
of the proposed system: a standard variant, which seeks at
automatically tuning suitable global parameters using an evo-
lutive metaheuristic and a class-specificmetric learning vari-
ant, where a swarm-based evolutionary optimization aims at
finding suitable systems parameters in a class-aware fashion,
thereby exploiting also the ground-truth class information.
Both variants are equipped with feature selection capabilities
in order to return a (possibly) small, yet informative, set of
information granules. The latter can be analyzed a-posteriori
by field experts in order to get further insights on the mod-
elled problem: this aspect perfectly fits the proposed method-
ology into the recent ‘‘Explainable Artificial Intelligence’’
trend [43], [44].

This article is organized as follows: in Section II we present
the proposed methodology in its standard form; in Section III
we propose an enhanced version which can also perform
class-specific metric learning; in Section IV the datasets used
for analysis, along with the computational results are pre-
sented and, finally, SectionV concludes the paper. This article
also features two appendices: in Appendix A we describe in
detail the inexact graph matching procedure between labelled
graphs, whereas in Appendix B we describe in detail the
dissimilarities between nodes and edges for all considered
datasets.

1Where each metabolic pathway can be represented by a graph with no
edge labels and with categorical node labels.
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II. PROPOSED METHODOLOGY
LetD be a dataset of graphs (i.e., a dataset where each pattern
is a graph along with its corresponding ground-truth label),
properly split into training set (DTR), validation set (DVL)
and test set (DTS) and let l be the corresponding ground-truth
class label vector, properly split accordingly (lTR, lVL, lTS)
whose values belong to a problem-related set L. In order to
spot suitable information granules from the training set, let us
recall a unified index called INDVAL (I ), originally proposed
in [45] for spotting representative species in different environ-
mental condition. Its philosophy is straightforward: a given
species s is representative, hence useful for the recognition of
a given environmental condition ec, if it satisfies both of the
following properties:

1) s must be present in only (or almost only) the ec-
positive objects

2) s must be present in all (or the great majority of) the
ec-positive objects.

The INDVAL score can be re-stated in order to spot signature
subgraphs in a set of training graph as [7], [42]:

Ai,j =
# graphs having subgraph i in group j

# graphs having subgraph i
(1)

Bi,j =
# graphs having subgraph i in group j

# graphs in group j
(2)

Ii,j = Ai,j · Bi,j · 100 (3)

By definition, since Ai,j ∈ [0, 1] and Bi,j ∈ [0, 1], then
Ii,j ∈ [0, 100]. The two supporting scores A and B have a
straightforward interpretation: the maximum value of A is
obtained when the ith subgraph can be found only in pat-
terns (graphs) belonging to class j, whereas the maximum
value for B is obtained if all patterns of class j have subgraph
i. Finally, the maximum INDVAL I corresponds to the max-
imum sensitivity and specificity for the ith subgraph within
group j: all patterns of class j have subgraph i and no patterns
belonging to other classes have subgraph i.
Given these preliminary definitions, the model synthesis

procedure and the testing phase follow.

A. TRAINING PHASE
1) ALPHABET SYNTHESIS
A set of subgraphs, say B, has to be extracted from graphs
in DTR in order to evaluate A and B. Then, one can fig-
ure A,B, I ∈ R|B|×|L| as compact matrix representations of
Eqs. (1)–(3), whose entries (i, j) are therein defined. Given
the boundedness of I , a threshold T ∈ (0, 100) can be
used in order to select meaningful subgraphs: in other words,
subgraphs corresponding to rows in Iwhose I score is greater
than (or equal to) T for at least one of the problem-related
classes (columns) are included in an alphabet A. The latter
contains the pivotal substructures to perform the embedding
towards a geometric space.

Despite the simplicity of the procedure, there are two
crucial facets that need to be addressed.

a: HOW TO CHOOSE B
In plain terms, B can be interpreted as the set of candidate
information granules and plays a crucial role in the alphabet
synthesis. The most intuitive idea to populate B may rely on
the exhaustive extraction of all possible subgraphs from the
training data up to a user-defined order: however, this leads
to unfeasible running times and possible memory footprint
issues given the combinatorial nature of exhaustive extrac-
tors, as thoroughly investigated in [5], [6]. Other ideas in
order to shrink the size of B might include the extraction
of narrow families of subgraphs such as cliques [46]–[48]
or graphlets [49], [50], whether useful in order to character-
ize the inner structure of the input graphs. For the sake of
generality, in this work we propose simple random walks.
Random walks trace back to the beginning of the 20th cen-
tury [51] and have been widely studied since, especially in the
context of Markov chains. Random walks have been further
used in graph theory and network analysis: for example,
random walk kernels have been proposed in order to measure
similarity between graphs [52] and Twitter (amongst others)
uses random walks for its recommender system [53]–[55].
The considered plain random walk generation procedure is
summarized in Algorithm 1.

Algorithm 1 Random Walk Sampling Procedure
Input: A graph G = (V, E), subgraph order o
Output: A subgraph G̃

1 Init G̃ as empty graph;
2 Select starting node u ∈ V uniformly at random;
3 Add u ∈ V in G̃;
4 while order(G̃) 6= o do
5 Collect N (u); F N (·) is the neighbours set
6 Select ending node v ∈ N (u) uniformly at random;
7 Add v ∈ V in G̃;
8 Add (u, v) ∈ E in G̃;
9 Replace starting node u← v;
10 end while
11 return G̃;

This procedure is repeated W times, where W = |B| is the
desired user-defined size for the set of candidate information
granules, each time selecting from the training set a randomly
chosen graph as input of Algorithm 1.

b: HOW TO CHECK FOR SUBGRAPHS INTO GRAPHS
From Eqs. (1)–(3) it is clear that the necessity of checking
whether a subgraph exists in a graph emerges. If graphs are
equipped with categorical node labels and have unlabelled
edges, this matching can be performed in an exactmanner [7].
In this work, we consider a more general scenario in which
nodes and/or edges can be equipped with arbitrarily complex
attributes, hence those matches have to be performed in an
inexact manner. Finding a subgraph G̃ in a graph G can be
accomplished by the following two-steps procedure:
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1) decompose G into its constituent parts (e.g., walks,
cliques, graphlets and the like)

2) match G̃ against each of the subgraphs from step 1 using
a suitable dissimilarity measure between graphs: a
match is considered as an hit if the dissimilarity mea-
sure is below a predefined threshold τ .

As regards step 1, an exhaustive decomposition would again
lead to unfeasible running times. In order to overcome this
problem, we consider a sub-optimal solution, summarized in
Algorithm 2, in which subgraphs are extracted thanks to a
Breadth First Search (BFS) graph traversing procedure while,
at the same time, not considering nodes that already appeared
in previously-extracted walks as root nodes. This choice
assures a complete coverage of the graph while keeping a low
number of resulting subgraphs.

Algorithm 2 Graph Constituent Parts Extraction
Input: A graph G = (V, E), subgraph order o
Output: List of subgraphs S

1 Init S as empty list;
2 for each node n ∈ V do
3 if n does not exists in paths in S then
4 Extract g = BFS(graph=G, seed=n, order=o);
5 Add g in S;
6 end if
7 end for
8 return S;

As regards step 2, let us consider a Graph Edit Dis-
tance (GED) as the driving tool in order to measure sim-
ilarity between graphs [13], [56]–[59]. GEDs inherit the
same idea behind well-known dissimilarity measures such
as the Levenshtein distance defined on the strings domain
[60]: that is, the dissimilarity between two objects is given
by the minimum amount of atomic operations (i.e., inser-
tions, deletions and substitutions) to be performed in order
to transform the two objects into one another. As graphs are
concerned, atomic operations can be performed on both nodes
and edges. Within the GEDs family, we consider a node Best
Match First (nBMF) strategy in light of its computational
complexity, which is linear with the number of nodes in
the graphs to be compared [32]. Let G1 = (V1, E1) and
G2 = (V2, E2) be the two graphs to be compared, which
we assume to be labelled on both nodes and edges, with
attributes pertaining to suitable sets Lv and Le, respectively.
Let de : Le × Le → R and dv : Lv × Lv → R
be two dissimilarity measures tailored to quantify the dis-
similarity between nodes and edges and let de and dv be
possibly parametric with respect to a set of parameters 5e
and 5v, respectively. Given these inputs, nBMF returns the
six costs for nodes/edges insertions/deletions/substitutions.
The six resulting costs (csubedge, c

ins
edge, c

del
edge, c

sub
node, c

ins
node, c

del
node)

can be weighted by six non-negative free parameters (wsubedge,
winsedge, w

del
edge, w

sub
node, w

ins
node, w

del
node) which encode the impor-

tance of each transformation. After weighting the cost of each

transformation, the overall dissimilarity between G1 and G2
is returned. Appendix A features an in-depth description of
nBMF.

In conclusion, in order to check whether a given subgraph
G̃ exist in a graph G, one needs to evaluate the pairwise GEDs
between G̃ and the constituent subgraphs extracted from G
(see Algorithm 2). As anticipated, a match is scored if the
dissimilarity is below a threshold τ .

2) EMBEDDING AND CLASSIFICATION
The aim of the alphabet synthesis is to return a set of mean-
ingful information granules properly collected in the alphabet
A. As anticipated in Section II-A1, the alphabet contains the
pivotal substructures for the embedding stage, by following
the symbolic histogram paradigm [2]. According to the latter,
a given graph G is mapped into an |A|-length integer-valued
vector h counting in position i the number of times the ith item
from A appears in the graph, that is:

h = [occ(A1,G), . . . , occ(An,G)] (4)

where n = |A| and where occ(a, b) is a function that counts
the number of times a appears in b. This counting (match-
ing) stage procedure follows the same procedures already in
Section II-A1.

Hence, a set of graphs to be embedded is transformed into
an integer-valued feature matrix with |A| columns and as
many rows as there are patterns, suitable to be fed to a classifi-
cation algorithm, along with the corresponding ground-truth
class labels.

3) OPTIMIZED TRAINING PROCEDURE VIA EVOLUTIONARY
METAHEURISTIC
An automatic synthesis of A is of utmost importance given
the number of free parameters that are strictly problem-
and data-dependent and hardly known a-priori. To this end,
we employ a differential evolution algorithm [61] for auto-
matic parameter tuning and alphabet synthesis. Each individ-
ual from the evolving population is a candidate solution to the
optimization problem, whose form reads as:[

T τ w 5e 5v H
]

(5)

where

• T ∈ (0, 100) is the INDVAL threshold for promoting
candidate symbols to the alphabet

• τ ∈ (0, 1) is the GED threshold for scoring hits
• w =

[
wsubedge,w

ins
edge,w

del
edge,w

sub
node,w

ins
node,w

del
node

]
∈

[0, 1]6 is the 6-weights vector in charge of weighting
atomic operations on nodes and edges

• 5e and 5v are the sets of dissimilarity measure param-
eters for nodes and edges, if applicable

• H contains the hyper-parameters for the classification
system.

The objective function, to be minimized, reads as a linear
convex combination between the classifier performances on
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FIGURE 1. Model synthesis block diagram. The behaviour of a single individual is framed in the dotted box.

the validation set and the size of the alphabet, that is:

f = α · e+ (1− α) ·
|A|
|B|

(6)

with e being an error function and α ∈ [0, 1] being a user
defined parameter weighting the two terms. The rightmost
term accounts for the dimensionality of the embedding space
and can play a huge role in terms of model interpretability.

Each individual from the evolving population:

1) receives B and the expanded versions (according to
Algorithm 2) of the graphs belonging to training set and
validation set (say STR and SVL, respectively)

2) evaluates A, B and I (see Section II-A1) by scoring
matches thanks to a GED equipped with w,5e and5v
(if applicable). The GED is thresholded thanks to τ

3) the matrix I is thresholded thanks to T and the alphabet
A is built

4) the two sets STR and SVL are embedded thanks to A
in order to return the two instance matrices HTR ∈

R|DTR|×|A| and HVL ∈ R|DVL|×|A|. The symbolic
histogram counting procedure leverages the same GED
as for step 2

5) a classifier with hyper-parametersH is trained on HTR
and its error rate is evaluated on HVL

6) the fitness function is returned.

At the end of the optimization, the best genetic code is
retained. This allows to synthesize the optimal alphabet A?

against which it is possible to build the instance matrix H?TR.
In Figure 1 we summarize the model synthesis discussed

so far. The proposed classification system starts by reading
the training set and the validation set. Each graph belong-
ing to these sets is expanded thanks to the BFS traversal
strategy (see Algorithm 2), hence returning STR and SVL.

The training set is also fed to the random walk block in
charge of sampling candidate information granules (seeAlgo-
rithm 1) and populatingB. With these actors, the optimization
phase may take place: each individual from the differential
evolution optimizes the INDVAL threshold T , the classifier
hyper-parameters H and the GED parameters and weights
(see Eq. (5)) in order to minimize Eq. (6).

4) AN (OPTIONAL) ALPHABET REFINEMENT PHASE
The choice of α in the fitness function (see Eq. (6)) weights
the trade-off between performance and number of items in
the alphabet. The value for α that better suits this trade-off
is hardly known a-priori. In order to refine the alphabet
selection and overcome this problem, a second optimization
stage can be placed after the alphabet synthesis stage. Recall
that the alphabet synthesis stage returns an optimal alphabet
A? and the embedded version of the training set H?TR. Simi-
larly, let H?VL be the embedded version of the validation set
against A?.
This second (optional) alphabet refinement phase can be

performed thanks to an evolutionary metaheuristic procedure
as well. Each individual from the evolving population has the
form [

m H
]

(7)

where H contains the hyper-parameters of the classification
system and m ∈ {0, 1}|A

?
| is a binary mask in charge of

filtering out unpromising features (i.e., corresponding to 0’s).
The objective function, to be minimized, reads as a linear

convex combination between the classifier performances on
the validation set and the ratio of selected features, that is:

fFS = β · e+ (1− β) ·
|{i : mi = 1}|
|m|

(8)
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FIGURE 2. Feature selection block diagram. The behaviour of a single individual is framed in the dotted box.

FIGURE 3. Test phase block diagram. Here, we suppose that the feature selection phase has been adopted,
otherwise one can easily let A?

←A?, H
?
TR ← H?TR and H

?
TS ← H?TS.

Hence, each individual from the evolving population:

1) projects H?TR and H?VL on the subspace spanned by 1’s
in m

2) trains a classifier with hyper-parameters H on the pro-
jected version of H?TR and evaluates its performances
on the projected version of H?VL

3) evaluates the cost of the binary mask (i.e., rightmost
term in Eq. (8))

4) the fitness function is returned.

At the end of the optimization, the best genetic code is
retained. This allows to shrink the optimal alphabet A? by
retaining symbols corresponding to 1’s in the best binary
mask, say A?

. Similarly, the embedded versions of training
and validation set can be reduced, i.e. H?TR → H

?

TR and
H?VL → H

?

VL. Figure 2 summarizes the feature selection
phase described so far.

B. TESTING PHASE
The testing phase consists in expanding the test set (see
Algorithm 2) and embedding against the best alphabet A?

(A?
, if the alphabet refinement phase is adopted) in order to

get H?TS (H
?

TS, if the alphabet refinement phase is adopted).
By using the best hyper-parameters H?, the classifier can be
trained onH?TR (H

?

TR) and finally tested on the embedded ver-
sion of H?TS (H

?

TS). For the sake of completeness, the testing
phase is summarized in Figure 3.

III. ADDING CLASS-SPECIFIC METRIC LEARNING
CAPABILITIES
With metric learning [62], [63] in pattern recognition one
refers to the ability of an intelligent system to learn suit-
able parameters for a (parametric) dissimilarity measure in
order to optimize some predefined criteria (see e.g., [64]–
[67]). In Section II, the whole system has been described
with a differential evolution scheme in charge of optimizing
suitable parameters for the dissimilarity measure (namely
w, 5e and 5v) in a global manner, i.e. by considering the
same parameters instance for comparing all possible pairs of
patterns. With local metric learning one refers to learning
suitable weights in a cluster-aware fashion in order to better
characterize each cluster [68], [69]. For example, in amultidi-
mensional Euclidean space, different clusters might lie in dif-
ferent subspaces, hence the detection of the cluster involves
also the detection of the subspace in which such cluster lies
[70], [71]. A third possibility is to design automatic proce-
dures able to perform class-specific metric learning, where
each decision region (possibly described by the union of more
than one cluster) is characterized by its own dissimilarity
measure parameters.

In order to introduce the class-specificmetric learning vari-
ant, recall |L| be the number of classes for the classification
problem at hand. The set of candidate symbolsB is re-defined
as a set-of-sets B = {B1, . . . ,B|L|}, where Bi contains
subgraphs (i.e., random walks) drawn from training graphs
belonging to class i. The size of each set Bi is proportional to
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the frequency of the ith class within the training set in order to
ensure a fair amount of subgraphs for each problem-related
class [6]. Specifically, as for Section II-A1, let W be the
user-defined size of B, then Bi = W · |D(i)

TR|/|DTR|, where
D(i)

TR denotes the subset of training patterns belonging to the
ith class. Hence, it holds that W =

∑|L|
i=1 |Bi|.

The alphabet synthesis phase is methodologically simi-
lar to the one described in Section II-A1, but instead of
employing a single swarm, |L| swarms operate in parallel,
where the ith swarm processes symbols from Bi. The goal
of each swarm is to return class-specific symbols Ai to be
included in the alphabet along with its best genetic code, con-
taining the (sub-)optimal GED parameters, classifier hyper-
parameters, weights and thresholds for discriminating the ith

class (cf. Eq. (5)). The fitness function for each swarm still
reads as Eq. (6). However, since the ith swarm works on
the ith class, the fitness function is evaluated in a one-vs-all
fashion: training and validation sets are relabelled with the
ith class being positive and all other classes being negative.
At the end of each swarms’ evolution, the overall alphabetA?

sees the concatenation of the class-specific alphabets A?
=

{A?
1, . . . ,A

?
|L|}. The training and validation matrices (H?TR,

H?VL) are evaluated according to the symbolic histograms
paradigm (cf. Section II-A2): however, the matching of each
symbol must be performed thanks to the symbol-specific
GED parameters, weights and scoring threshold.

The feature selection phase does not change with respect
to Section II-A4: however, in order to keep the ensemble-like
nature of the system, |L| classifiers are trained in a one-vs-all
fashion.

The testing phase is the same as for Section II-B: yet,
the embedding of the test set must as well follow a
symbol-specific matching.

IV. TESTS AND EXPERIMENTS
A. DATASETS DESCRIPTION
In order to validate the proposed approach, five datasets freely
available from the IAM Graph Database Repository2 [72]
have been considered:

AIDS: each graph represents a molecular compound show-
ing either activity or inactivity against HIV (2 classes).
Graphs are built by considering atoms as nodes and
covalent bounds as edges. The dataset contains a total
of 2000 graphs, split as: 250 (training set), 250 (val-
idation set) and 1500 (test set). Nodes are compared
thanks to a custom non-parametric dissimilarity mea-
sure, whereas edge labels are discarded.

GREC: each graph represents an architectural or electronic
drawing. Graphs are built by considering corners, cir-
cles and intersections as nodes. The datasets contains
a total of 1100 graphs, divided in 22 classes and split
as: 286 (training set), 286 (validation set) and 528 (test

2All datasets can be downloaded from http://www.fki.inf.unibe.ch/
databases/iam-graph-database.

set). Nodes and edges are compared thanks to custom
parametric dissimilarity measures.

Letter: each graph represents a distorted (capital) Roman
letter drawing. Graphs are built by considering lines as
edges and endpoints as nodes. Three different datasets
account for different amount of distortion (low, medium,
high – hereinafter Letter-L, Letter-M and Letter-H,
respectively). These datasets, divided in 15 classes each,
are split as: 750 (training set), 750 (validation set), 750
(test set). Edges are unlabelled, whereas the dissimi-
larity between nodes reads as plain Euclidean distance
between node attributes.

Training, validation and test splits have been kept as provided
by the IAM Repository. Details on nodes and edges dissimi-
larities for the five datasets can be found in Appendix B.

B. COMPUTATIONAL RESULTS
In a first test campaign, the performances of the proposed
classification system in both of its variants, hereinafter named
as ‘RECTIFIER’3 (RECogniTIon oF graphs via Indval gEo-
metRic embedding – Section II) and ‘Dual RECTIFIER’4

(Section III), are thoroughly investigated. The investigation
leverages three different indices, which account both perfor-
mance and structural complexity of the model, namely:

1) the accuracy on the test set
2) the size of A? (the number of symbols, i.e. the dimen-

sionality of the embedding space, after the optimization
phase)

3) the size of A?
(the number of symbols, i.e. the dimen-

sionality of the embedding space, after the feature
selection phase).

The differential evolution for the automatic alphabet synthe-
sis routine is configured as follows:

• 20 individuals for maximum 20 generations
• crossover probability: 0.8
• mutation with dithering in range [0.5, 1]
• early stop criterion triggered if σ (F) ≤ 0.01 · µ(F),
where µ(·) and σ (·) denote mean and standard deviation
and F contains the absolute value of the fitness values
at current generation.

The differential evolution for the feature selection stage
is configured as for the previous one, with the following
exceptions:

• 100 individuals for maximum 20 generations
• trade-off parameter in the fitness function (see Eq. (8))
β = 0.9.

As classification system, a plain K -Nearest Neighbours [73]
is considered, hence the set of hyper-parameters to be tuned
reads asH = {K }.

3As the legendary Mesa/Boogie R© RECTIFIER R© guitar amp head.
4Which allows a dual explainability facet in terms of both information

granules to be analyzed and class-specific dissimilarity measure parameters,
just like the Mesa/Boogie R© Dual RECTIFIER R© guitar amp head that
features dual hi-gain channels.
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FIGURE 4. RECTIFIER results at α = 0.5.

FIGURE 5. RECTIFIER results at α = 0.7.

A sensitivity analysis is performed on the trade-off param-
eter α in the fitness function for automatic alphabet synthesis
(see Eq. (6)), where candidate values are α = {0.9, 0.7, 0.5},
and on the random walk subsampling rate, where candidate
values are W = {5%, 10%, 30%, 50%, 80%} of the maxi-
mum number of random walks (of maximum order 5) that
can be drawn from the training graphs. Subgraphs in B are
equally distributed across orders that range from 2 to 5.

Due to randomness in the model synthesis, results herein
presented have been averaged across 10 runs. Figures 4, 5
and 6 show the results for RECTIFIER for α = 0.5, α = 0.7
and α = 0.9, respectively, whereas Figures 7, 8 and 9 are the
counterparts for Dual RECTIFIER.

As both RECTIFIER and Dual RECTIFIER are con-
cerned, the accuracies of the proposed classification systems
are quite robust with respect to the subsampling rate, with
non-negligible shift performances observed for harder clas-
sification problems (Letter-M and Letter-H) at α = 0.5. For

RECTIFIER, changing α from 0.9 to 0.5 leads to a maximum
accuracy shift of 12% for Letter-M and 11% for Letter-H,
whereas for the other three datasets shifts in accuracy are
always below 7%. Similar results hold for Dual RECTIFIER,
where changing α from 0.9 to 0.5 leads to a maximum accu-
racy shift of 13% for Letter-M and 14% for Letter-H.

Changing the subsampling rate leads to a common (and
expected) trend for both RECTIFIER and Dual RECTIFIER:
for a given value of α, increasing W (i.e., lowering the sub-
sampling rate) leads to more symbols in the alphabet (both
after and before the feature selection phase). Yet, the proper
number of selected symbols indeed depends on α, the lat-
ter being part of the fitness function: the lower the value,
the lower the number of symbols.

By matching the results in terms of embedding space
dimensionality, it can be seen that Dual RECTIFIER always
returns a lower number of symbols with respect to RECTI-
FIER, both before and after feature selection, with the only
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FIGURE 6. RECTIFIER results at α = 0.9.

FIGURE 7. Dual RECTIFIER results at α = 0.5.

exception being AIDS: in fact, since AIDS contains only two
classes, only one swarm would suffice. Another interesting
aspect of Dual RECTIFIER is that for some cases (Letter-M
and Letter-L, α = 0.5, 5−10% subsampling rate) the number
of selected symbols after feature selection is approximately
equal to the number of original symbols, suggesting that the
class-aware alphabet synthesis approach already returns a
suitable set of symbols and the feature selection phase would
be superfluous.

In conclusion, despite the two approaches have comparable
results in terms of performances, Dual RECTIFIER seems to
be preferable in terms of knowledge discovery because of the
following two aspects:

1) smaller alphabet: this fosters the a-posteriori knowl-
edge discovery phase by field-experts, since less sym-
bols have to be analyzed;

2) each problem-related class has its own dissimilarity
measure parameters and weights, making each class
easier to characterize.

On the other hand, the training phase of Dual RECTIFIER
is slower with respect to RECTIFIER. In fact, we experimen-
tally observed that the former is (on average) 35%, 32%, 36%,
41% and 57% slower with respect to the latter for Letter-L,
Letter-M, Letter-H, AIDS and GREC, respectively.

C. COMPARISON AGAINST CURRENT APPROACHES
In this second test campaign, the comparison involves the
INDVAL embedding (both RECTIFIER and Dual RECTI-
FIER variants) and current approaches in graph classification,
with Table 1 summarizing the results. The comparison is
restricted to the five datasets considered in this work, with a
dash (-) indicating that a given dataset has not been tested in
the literature on the correspondingmodel. Competitors span a
variety of approaches for graph classification, including clas-
sifiers working on the top of pure graph matching similarities
[72], [74], kernel methods [77], [80] and several embedding
techniques [75], [76], including GrC-based [5], [6], [33] and
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FIGURE 8. Dual RECTIFIER results at α = 0.7.

FIGURE 9. Dual RECTIFIER results at α = 0.9.

neural ones [78], [79]. As regards subsampling-based imple-
mentations, in Table 1 are reported the performances obtained
at different subsampling rates in the form of min–max range.
The accuracies of the last ten methods are obtained from
our own experiments. For the remaining competing algo-
rithms, we directly quote the values from their respective
papers.

Clearly, the proposed approaches are able to reach state-
of-the-art performances on all five datasets: the shift in accu-
racy with respect to the most performing technique is below
1% for AIDS, GREC and Letter-H, and below 3% for the
remaining two datasets (Letter-M and Letter-L). In particular,
the proposed approaches greatly outperform ODD kernel and
CGMM on AIDS and G-*-Perceptron on GREC, Letter-M
and Letter-H. Especially on harder problems (i.e., Letter-H
and Letter-M), the proposed approaches also outperform
GRALG (another GrC-based classification system which can
also be equipped with random walk procedures in order to

reduce the computational complexity5) and C-*-NN. The
proposed approaches are also comparable with the Lipschitz
Embedding (the overall most performing technique amongst
the competing ones).

Nonetheless, the proposed approaches (alongside [5], [6],
[33]) are able to return an interpretable model: in fact,
the resulting symbols from the alphabet (possibly after fea-
ture selection) can be analyzed by field-experts and allow
a further a-posteriori knowledge discovery phase, as antici-
pated in Section IV-B. Conversely, neural approaches such
as G-*-Perceptron and C-*NN are well known of lacking
any interpretability. The same holds for kernel methods
(ODD, HCK, WJK, EK, SEK) and plain dissimilarity-based
classifiers.

5For GRALG10%, 30% and 50% subsampling rates have been considered
to foster a fair comparison.
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TABLE 1. Test set accuracy (expressed in percentage) comparison amongst RECTIFIER, Dual RECTIFIER and current approaches for graph classification.
In bold, for each dataset, we highlight the most performing approach.

V. CONCLUSION
In this article, we proposed a novel filtering-based informa-
tion granulation procedure. The filtering operation relies on a
unified index called INDVALwhich accounts both specificity
and sensitivity of substructures (i.e., candidate information
granules) stochastically drawn from the training data with
respect to the problem-related classes, with the final goal of
electing as information granules only substructures endow-
ing the highest discriminative power. The set of resulting
information granules (i.e., the alphabet) composes the pivotal
substructures in order to perform the embedding procedure
from the original input space (labelled graphs, in this work)
towards a Euclidean space. The overall synthesis is driven
by an evolutionary optimization procedure in order to tune
thresholds, dissimilarity measure parameters and, possibly,
the classifier hyper-parameters. A second (optional) evolu-
tionary optimization procedure aims at reducing the size of
the alphabet in order to enhance the knowledge discovery
capabilities of the proposed system. In fact, not only the
considered index has a straightforward interpretation, but also
the set of resulting information granules allow the definition
of an explainable model.

Two variants of the samemethodology have been proposed
and investigated: a standard variant, where the optimization
stage takes care of synthesizing an alphabet and dissimilar-
ity measure parameters for solving the overall classification
problem globally, and a class-specific metric learning variant,
where class-aware swarms aim at extracting class-specific
alphabets along with class-specific dissimilarity measure
parameters.

In order to validate the proposed approaches (with and
without class-specificmetric learning), five datasets for graph
classification have been considered, with graphs having
attributes on nodes and/or edges. Both approaches are able to
reach remarkable results even with low subsampling rates and
even when using simple (uniform) random walks to extract
candidate information granules.

The proposed scheme allows some degrees of general-
ization: in fact, plain random walks can be replaced by
extraction procedures based on cliques, graphlets or other
types of random walks [81]–[86]; the classifier can as well
be personalised; the graph dissimilarity does not necessarily
have to be the nBMF and other GEDs can be employed
instead [14], [74]. On a higher level, the proposed scheme
can be personalized towards virtually any structured input
domain, provided that one can extract candidate informa-
tion granules and fill B (e.g., k-mers in case of sequences)
and define a suitable dissimilarity measure for matching
(e.g., the Levenshtein distance between k-mers).

APPENDIX A
THE nBMF DISSIMILARITY MEASURE
In order to properly introduce the nBMFheuristic, let us recall
some basic notation from Section II-A1:

• let G1 = (V1, E1) and G2 = (V2, E2) be the two graphs
to be compared. For the sake of generalization, let us
assume that graphs have different sizes, i.e. |V1| 6= |V2|

• let Lv and Le be the sets of possible nodes and edges
attributes
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• let de and dv be two dissimilarity measures tailored to
quantify the dissimilarity between nodes and edges. For
the sake of generalization, let us assume these dissimi-
larity measures to be parametric

• let 5e and 5v be the sets of parameters for de and dv,
respectively

• let wsubedge, w
ins
edge, w

del
edge, w

sub
node, w

ins
node and wdelnode be six

non-negative free parameters weighting each of six edit
costs (csubedge, c

ins
edge, c

del
edge, c

sub
node, c

ins
node, c

del
node).

The nBMF strategy starts by matching most similar nodes as
follows:

1) initialize node substitutions, insertion and deletion
costs as csubnode = cinsnode = cdelnode = 0

2) initialize a set which will collect matched nodes, say
P = ∅

3) for a given node u ∈ V1, find the most similar node
v ∈ V2 according to dv

4) add the pair (u, v) to P and count this operation as a
node substitution with cost csubnode+ = dv(u, v,5v)

5) remove u from V1 and remove v from V2
6) repeat from step 3 until either V1 or V2 is empty
7) if |V1| > |V2|, then this counts as node deletions with

cdelnode = |V1| − |V2|

8) if |V1| < |V2|, then this counts as node insertions with
cinsnode = |V2| − |V1|.

nBMF now proceeds in matching induced edges:

1) initialize edge substitutions, insertion and deletion
costs as csubedge = cinsedge = cdeledge = 0

2) for a given (u, v) pair in P , check:

• whether edge e1 = (u, v) exists in E1 and whether
e2 = (u, v) exists in E2: if so, this counts as an edge
substitution with cost csubedge+ = de(e1, e2,5e)

• whether (u, v) only exists in E1: if so, this counts
as an edge insertion with cinsedge+ = 1

• whether (u, v) only exists in E2: if so, this counts
as an edge deletion with cdeledge+ = 1

3) repeat from step 2 until all pairs in P are processed.

The overall dissimilarities between nodes and edges (dV and
dE , respectively) are defined as:

dV (V1,V2) = wsubnode · c
sub
node + w

ins
node · c

ins
node + w

del
node · c

del
node

(9)

dE (E1, E2) = wsubedge · c
sub
edge + w

ins
edge · c

ins
edge + w

del
edge · c

del
edge

(10)

and in order to avoid skewness due to graphs having different
sizes, are normalised as:

d ′V (V1,V2) =
dV (V1,V2)

max(|V1|, |V2|)
(11)

d ′E (E1, E2) =
dE (E1, E2)

1
2 (min(|V1|, |V2|) · (min(|V1|, |V2|)− 1))

(12)

Finally, the dissimilarity between G1 and G2 reads as:

d(G1,G2) =
1
2

(
d ′V (V1,V2)+ d ′E (E1, E2)

)
(13)

APPENDIX B
DISSIMILARITY MEASURES BETWEEN NODES AND
EDGES
A. LETTER-L, LETTER-M AND LETTER-H
Node labels are real-valued 2-dimensional vectors v of (x, y)
coordinates, therefore the dissimilarity measure dv between
two given nodes, say v(a) and v(b), is defined as the plain
Euclidean distance:

dv(v(a), v(b)) = ‖v(a) − v(b)‖2

Conversely, edges are not labelled.

B. AIDS
Node labels are composed by a string value Schem (chem-
ical symbol), an integer Nch (charge) and a real-valued
2-dimensional vector v of (x, y) coordinates. For any two
given nodes, their dissimilarity is evaluated as:

dv(v(a), v(b)) = ‖v(a) − v(b)‖2 + |N
(a)
ch − N

(b)
ch |

+ds(S
(a)
chem, S

(b)
chem)

with ds(·, ·) reading as a plain delta distance:

ds(S
(a)
chem, S

(b)
chem) =

{
1 if S(a)chem 6= S(b)chem

0 otherwise

Conversely, edge attributes are discarded since not useful for
the classification task.

C. GREC
Node labels are composed by a string (type) and a
real-valued 2-dimensional vector v. The dissimilarity mea-
sure dv between two different nodes reads as:

dv(v(a), v(b))

=

{
(1− χ ) · 1

√
2
‖v(a) − v(b)‖2 if type(a) = type(b)

χ + (1− χ ) · 1
√
2
‖v(a) − v(b)‖2 otherwise

Edge labels are defined by an integer value freq (frequency)
that defines the number of (type,angle)-pairs where, in turn,
type is a string which may assume two values (namely, arc
or line) and angle is a real number. Given two edges, say
e(a) and e(b) their dissimilarity is defined as follows:

1) If freq(a) = freq(b) = 1

de(e(a), e(b)) =



α · d line(angle(a), angle(b))
if type(a) = type(b) = line

β · darc(angle(a), angle(b))
if type(a) = type(b) = arc

γ otherwise

2) If freq(a) = freq(b) = 2, de(e(a), e(b)), as shown at the
top of the next page.
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de(e(a), e(b)) =


α
2 · d

line(angle(a)1 , angle
(b)
1 )+ β

2 · d
arc(angle(a)2 , angle

(b)
2 ) if type(a) = type(b) = line

α
2 · d

line(angle(a)2 , angle
(b)
2 )+ β

2 · d
arc(angle(a)1 , angle

(b)
1 ) if type(a) = type(b) = arc

γ otherwise

3) If freq(a) 6= freq(b)

de(e(a), e(b)) = δ

where d line(·, ·) and darc(·, ·) are the module distance nor-
malized respectively in [−π, π] and [0, arcmax]. Parameters
χ, α, β, γ, δ ∈ [0, 1] compose the sets 5v = {χ} and 5e =

{α, β, γ, δ} defined in Section II-A1 (alsoAppendixA)which
shall be optimized by the genetic algorithm.
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