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Abstract
The present paper provides an investigation of the effects of linear slosh dynamics on aeroelastic stability and response of 
flying wing configuration. The proposal of this work is to use reduced order model based on the theory of the equivalent 
mechanical models for the description of the sloshing dynamics. This model is then introduced into an integrated modeling 
that accounts for both rigid and elastic behavior of flexible aircraft. The formulation also provides for fully unsteady aero-
dynamics modeled in the frequency domain via doublet lattice method and recast in time-domain state-space form by means 
of a rational function approximation. The case study consists of the so-called body freedom flutter research model equipped 
with a single tank, partially filled with water, located underneath the center of mass of the aircraft. The results spotlight that 
neglecting such sloshing effects considering the liquid as a frozen mass may overshadow possible instabilities, especially 
for mainly rigid-body dynamics.

Keywords Sloshing · Equivalent mechanical model · Flexible aircraft · Aeroelasticity

1 Introduction

Large passenger aircrafts are likely to have wings that are 
highly flexible structures, carrying an amount of fuel compa-
rable in weight to that of their structural components, which 
can deform significantly when atmospheric turbulence or 
gust is encountered. Then, the dynamic loads that act on the 
structure due to the oscillatory motion of the heavy liquid 
mass may represent a critical issue seriously influencing air-
craft performances or even its safety.

Sloshing means any motion of the free liquid surface 
caused by any disturbance to partially filled liquid contain-
ers. The basic problem of sloshing involves the estimation 
of pressure distribution, forces, and moments applied by the 
liquid to the tank.

Although sloshing can assume nonlinear behaviors 
experiencing possible instabilities due to tank high accel-
eration values [1], the main problem coped in this work is 
the estimation of the effects of linear sloshing onto aircraft 

aeroelastic stability and response to little perturbations. 
There are several analytic methods that account for slosh-
ing for simplified tank geometries (as parallelepiped or cyl-
inder): according to Refs. [2, 3], a realistic representation of 
the liquid dynamics inside closed containers can be approxi-
mated by an equivalent mechanical model (EMM), whose 
parameters can be suitably related with the physical quanti-
ties obtained from the linearized potential flow theory [4].

Among the mentioned literature [3, 4] which was stim-
ulated by specific needs of aerospace community, several 
contributions on sloshing in aeronautic applications can be 
found. In particular, the effects of sloshing on aircraft aer-
oelastic flutter stability was considered in Refs. [5, 6] where 
liquid dynamics were modeled by means of EMMs in Ref. 
[5] and frozen fluid approach in Ref. [6]. A detailed formula-
tion of fluid–structure interaction is also present in Ref. [7] 
that aim at integrating flight dynamics, aeroelasticity and 
sloshing dynamics of flexible launch vehicles. Specifically, 
a reduced order model of sloshing forces were obtained by 
means of boundary element method. The fuel sloshing was 
also investigated in Refs. [8, 9] to study its effect on aircraft 
component loads.

The final perspective of the present work is the integration 
of a reduced order model (ROM) based on the EMMs into 
the flexible aircraft flight physics, where flight dynamics, 
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aeroelasticity and controls are involved. We will rely on 
the approach mainly described in Ref. [11], where the fully 
coupled equation of motion have been derived by assuming 
practical mean axes constraints. The equations of motion 
were linearized around aeroelastic trim conditions and recast 
in time-domain state-space form by approximating doublet 
lattice method fully unsteady aerodynamics via rational 
polynomial functions, thus obtaining a model that includes 
rigid-body, elastic, and aerodynamic state variables, as well 
as the variables related to the aforementioned fluid slosh 
dynamics. The only maneuver considered in the analysis 
is the stationary level flight condition, although the present 
formulation can be used for any maneuvering condition.

Employing as reference aircraft the body freedom flut-
ter (BFF) with a parallelepiped tank (partially filled with 
water) placed underneath its center of mass, the effects of 
the sloshing dynamics on the stability and response have 
been investigated comparing the case in which the liquid is 
assumed as a frozen mass and the case in which the liquid is 
allowed to slosh. Finally, a simple proportional control law 
is assumed for system stability augmentation.

The paper is organized as follows: the equivalent mechan-
ical model along with its integration into the integrated 
framework of flight dynamics and aeroelasticity is intro-
duced in Sect. 2; the aeroelastic stability and response of the 
present test case, namely the considered flying wing research 
model, are illustrated in Sect. 3 along with the implementa-
tion of the control law; a section of concluding remarks ends 
the paper.

2  Theoretical Background

In this section, the reader is first addressed to analytical 
models in Sect. 2.1, generally used in engineering applica-
tions to account for force and moments generated by small 
perturbations of simplified tank geometries. After that, the 

reduced order model obtained for the description of the 
sloshing is integrated into the aeroservoelastic model of a 
flexible aircraft in Sect. 2.2.

2.1  Lateral Sloshing Analytical Models

The analytical representation of linear sloshing for poten-
tial flows is here presented. Linear fluid slosh dynamics for 
almost rigid parallelepiped tank is featured by the excitation 
of lateral forces and moments when perturbing the system 
by means of a lateral acceleration and rotations. However, 
for such simplified geometries, vertical forces are not taken 
into considerations, since they arise only in the presence of 
more relevant nonlinear phenomena.

Starting from the basic assumptions generally adopted for 
such analytical models (mainly related to the fluid properties 
and tank geometry), the procedure here presented considers 
the formulation in Refs. [2–4] as a starting point with refer-
ence to a rectangular tank geometry. Indeed, the analytical 
models provide a Laplace domain expression of lateral force 
and moment about the center of mass of the liquid denoted 
as G arising by lateral motion and rotation of a 2D tank as 
a function of the tank size and filling level. Considering a 
rectangular tank as in Fig. 1, the force and moment can be 
expressed as:

Fig. 1  Representation of 2D rectangular tank
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where ~ represents the Laplace transformed variables, s 
is the Laplace variable, �n are the natural frequencies of 
the sloshing dynamics, � is the density of the fluid, g is the 
gravity acceleration, a and hf represent, respectively, the 
tank-edge length in y-direction and the height of the liquid 
mass and b is tank-edge length in x-direction. Equation 1 can 
eventually be recast as

where � is a linear sloshing operator derived by analytical 
models, hereafter referred as generalized-sloshing-forces 
matrix (GSF). Considering a limited number of sloshing 
dynamics Ns and according to the equivalent mechanical 
models (EMMs), the above equation can be rewritten as

where
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Ỹ

+ s2

⎧⎪⎪⎨⎪⎪⎩

−
𝜚a3b

12
+

∞�
n=0

𝜔2
n

g

8𝜚a3b

𝜋4(2n + 1)4

⎛
⎜⎜⎜⎜⎝

h

2
−

2a tanh

�
(2n + 1)

𝜋hf

2a

�

(2n + 1)𝜋
+

g

𝜔2
n

⎞
⎟⎟⎟⎟⎠

�
s2

s2 + 𝜔2
n

�
⎫⎪⎪⎬⎪⎪⎭

�̃�(G)

M̃(G)
x

=s2

⎧⎪⎪⎨⎪⎪⎩

−
𝜚a3b

12
+

∞�
n=0

𝜔2
n

g

8𝜚a3b

𝜋4(2n + 1)4

⎛
⎜⎜⎜⎜⎝

hf

2
−

2a tanh

�
(2n + 1)

𝜋hf

2a

�

(2n + 1)𝜋
+

g

𝜔2
n

⎞
⎟⎟⎟⎟⎠

�
s2

s2 + 𝜔2
n

�
⎫⎪⎪⎬⎪⎪⎭

Ỹ
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This allows us to express the Eq. 2 as follows

 by defining as �̃ the sloshing modal state space vector (in 
the Laplace domain) that collects the sloshing states, each 
of them representing a different dynamics of the fluid con-
tained into the tank. For a wide range of applications in 
the framework of linear sloshing of simplified tanks, these 
Laplace-domain models allow to obtain sloshing forces and 
moments by having as time-domain counterpart a set of lin-
ear ordinary differential equations.

2.2  Integration of Sloshing ROM into a Flexible 
Aircraft Model

The present work aims at including sloshing dynamics into 
the integrated modeling of flight dynamics and aeroelastic-
ity. Therefore, the equations of motion of the flexible aircraft 
require to be updated by adding further equations and further 
variables. The present modeling of coupled aeroelasticity 
and flight dynamics is based on the formulation in Refs. [11, 
12], in which the rigid body degrees of freedom are associ-
ated with a set of pratical mean axes (PMAs) and the lin-
earized structural dynamics is described as a combination of 
unconstrained aircraft mode shapes in the PMAs coordinate 
system that simplifies the inertial coupling description. The 
PMAs are featured by having the origin coinciding with the 
instantaneous center of mass of the aircraft, and the orienta-
tion of the principal axes remains constant in the deformed 
configuration.

The equations of motion of the unrestrained flexible air-
craft are provided below by including the conservation of 
momentum and angular momentum along with the structural 
dynamics equations:

where �
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stiffness and external force. The equations of motion in Eq. 7 

are then recast with respect to a body frame of reference and 
linearized around a level flight aeroelastic trim condition:

where � is the inertia tensor, and � is the angular velocity. It 
is worth noting that the inertial coupling terms in Ref. [11] 
are here neglected.

Moreover, the dynamics of the control surfaces along 
with their effects on rigid-body and structural dynamics 
enriches the present modeling [13]. In the present formula-
tion, the variables associated with a second-order dynamics 
are grouped in the following vector:

where
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coordinates is given by
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coordinate system, respectively. The linearized relation 
between Δ� in Eq. (12) and Δ� is expressed as

with

which allows to highlight the link between the variables 
expressed in the PMAs and those defined in the inertial ref-
erence system (being �∗

1
 a square matrix with dimension 

( 9 + Ne)).
As far as it concerns the small-disturbance aerodynamics, 

in this work it is modeled via the doublet lattice method 
(DLM) available in MSC Nastran for steady and unsteady 
linear aeroelastic analyses [14]. In particular, the MSC Nas-
tran flutter solver provides the so-called generalized aerody-
namic force (GAF) matrix � . This provides a frequency-
domain fully unsteady representation of small-disturbance 
aerodynamics due to perturbations of rigid body and elastic 
degrees of freedom. Specifically, the aerodynamics is pro-
vided as a function of the reduced frequency that coincides 
with Strouhal number and is expressed as k = Re(p) =
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 . 
Although � is generally provided by assuming modes defined 
in the inertial frame of reference, it can be easily transformed 
as done in Refs. [11, 12] to be applied when body-frame 
coordinates are used instead. The GAF matrix is then 
approximated via following rational-polynomial interpola-
tion in the reduced frequency domain

Then, analytical expansion allows to express unsteady aero-
dynamic forces in time domain as it follows:
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The aeroservoelastic model in level flight can be 
expressed in the Laplace domain as follows:
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are the mass, damping and stiffness matrices, respectively, 
which are such as to include in their definition the matrices 
�̂2, �̂1 and �̂0 deriving from the finite states interpolation of 
the GAF matrix.

This interpolation leads to the definition of a representa-
tive vector of the wake dynamics, indicated with Δ� , which 
can be expressed in the Laplace domain as

where p ∶= sb∕U∞ is the non-dimensional Laplace variable 
(b is the reference half-chord). The mass �e , damping �e , 
and stiffness �e matrices of the integrated system are the 
same as in Refs. [11, 12]. Moreover, the description of the 
aircraft motion in the PMA non-inertial reference requires 
accounting for the projection of the weight force on the air-
craft body reference. Under the assumption of small per-
turbation with respect to the trimmed configuration, such 
a contribution was modeled as an additional stiffness term 
indicated as �

�
 . Finally, �̃� in Eq. (16) is the vector col-

lecting the generalized modal forces applied at the control 
surfaces. To integrate sloshing into the presented model, it is 
worth noting that the sloshing forces in Eq. (6) are expressed 
with respect to the center of mass of the undisturbed fluid 
that depends on the filling level of the tank. Generally, for 
finite element applications, it is useful to express forces and 
moments with respect to a fixed point, which in this case 
can be associated with the geometric center of the tank. This 
needs to introduce a transformation matrix, indicated as � , 
that is given by

Subsequently, other transformation matrix indicated as �t 
is introduced to express the state variables of the tank (that 
now refer to the geometric center of the tank) with respect 
to the perturbation variables of the complete aircraft. �t is 
defined as

where �(�) is the rotation matrix , related to the tank, which 
allows to pass from a ”tank” frame of reference to the FE 
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model frame of reference. The angle � measures the devia-
tion between these two systems. �t instead, represents a 6 
× (9 + Ne) matrix whose columns are the modal shape vec-
tors associated with the rigid and structural modes (assum-
ing empty tank) and referred to the node where the tank is 
located. Therefore, it is now possible to express the system in 
Eq. (16), including sloshing liquid inside the tank, as follows

where �̃ is the generalized sloshing load, and its expression 
is given by

The sloshing modal coordinate Δ�̃ has been assumed equal to

having considered the following transformation:

The vectors Δ� and Δ� can be subsequently augmented by 
taking into account the modal coordinates associated with 
sloshing dynamics

The equations of motion of the global system, defined in the 
Laplace domain and in a second-order form, are given by the 
following expression
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Fig. 2  Case study configuration with a tank placed below the central 
body of the BFF

Fig. 3  Elastic mode shapes of the model. Captions indicate their nat-
ural frequencies

Table 1  Geometry Parameter Value

Side in dir. x 0.25 m
Side in dir. y 0.22 m
h (height) 0.04 m
h
f
 (filling level) 0.5%

Table 2  Natural frequency Sloshing mode Value (rad/s)

First (dir. x) 5.5088
First (dir. y) 6.2416
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It is worth noticing that the introduction of sloshing terms 
recalls the dynamic condensation (i.e., Craig–Bambton 
reduction, Ref. [15]), where the finite states, Δ�̃ , define the 
sloshing substructure dynamics. In this framework, the mas-
ter DoFs have been projected onto the vibration modes of 
structure with the empty tank. Moreover, the matrix �̄ arises 
because of volume forces that depend on the mass displace-
ment. In the definition of the matrix �̆ , the term −�̄�∗

1
 comes 

from the kinematic relationships expressed in Eq. (13) that 
are used to complete the integrated model. The state space 
vector � ∈ ℜ(2(9+Ne+Ns)+Na) can be expressed as follows

Finally the global integrated and linearized system can be 
recast as
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}
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moments applied at the different control surface hinges (see 
Ref. [13]). The state-space matrix � and the input matrix 
�H are

where �∗, �̆ and �̆ have been created to fit the dimension 
of the state-space vector (including the sloshing dynamics), 
considering respectively as first block, matrices �∗

1
, �̂ and �̂ , 

and all the remaining elements equal to zero and �̂ is a selec-
tion matrix having dimension [(9 + Ne + Ns) × 3].

3  Sloshing Integrated Aeroelastic Analysis

In the present work, the finite element model presented in 
Ref. [13] has been employed to obtain an aeroservoelas-
tic model to be integrated with the sloshing reduced order 
model. The model mentioned above is the body-freedom-
flutter (BFF) research model which is an unmanned flying-
wing research aircraft, developed for studying the effects 
of mutual coupling between the rigid-body motion and 
the structural vibration of the aircraft. The first six elas-
tic modes, with their respective frequencies, are shown in 
Fig. 3. To study the effects of the sloshing dynamics on the 
stability and the response of the complete aircraft, it is possi-
ble to consider different configurations that foresee the pres-
ence of one or more tanks. The configuration considered in 
the present work is equipped with a rectangular tank (con-
taining water) underneath the center of mass of the aircraft. 
This configuration is represented in Fig. 2.

The geometrical parameters of the tank are reported in 
Table 1, whereas the two natural frequencies of sloshing are 

(30)
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Fig. 4  Computational framework for integrated stability and response

Fig. 5  Frozen case
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reported in Table 2. In the present analysis, only one slosh-
ing mode has been chosen for both the dynamics along x and 
y. However, the performed sensitivity analysis did not show 
any particular difference in terms of stability and response.

From the point of view of the FEM solver, the presence 
of the tank was managed by creating a node located in the 
geometrical center of the tank, linked to the body of the 
aircraft by means of the rigid body element (RBE). A con-
centrated mass (assigned in Nastran by CONM2 element) 
is considered to represent the structural mass of the tank. A 
numerical code has been developed to perform the analysis 
concerning the stability and the response of the integrated 
system. Its flowchart is shown in Fig. 4.

The inputs to the developed code are the aircraft FEM 
and DLM models along with a set of parameters related 
to the tank geometry and the stowed fluid. Based on these 
inputs, the code collects results from MSC Nastran linear 
structural and aeroelastic analyses and from the equivalent 
mechanical model of the fluid to build a database of modal 
steady/unsteady aerodynamics and sloshing characteristics, 
that, in turn, are used to compute the state and input matri-
ces in Eq. 30. Trim analysis plays a key role in all this pro-
cess. Its determination involves calculating the forces and 
the trim variables in level flight. Also slosh dynamics plays 
an important role in the computation of trim: it contributes 
through the presence of the matrices �̄ and �̄ defined in 
Eq. 22. Finally, once the aircraft database is built, the code 
is able to perform both stability and response analyses of the 
integrated system of flight dynamics and aeroservoelasticity 
coupled with slosh dynamics.

3.1  Stability Analysis

In this section, the results obtained from the stability analy-
sis of the integrated model are presented highlighting the 
differences between the case in which the fluid contained 
in the tank is frozen and the case in which the fluid is free 
to slosh side to side of the tank. Frozen fluid mass means 

that no oscillatory behavior is present. So in this specific 
case, the fluid contribution corresponds simply to a ballast. 
The traditional approaches employed to describe fuel in the 
aeronautical tanks consider the fuel as a frozen mass. It is 
therefore evident that it is important to highlight the varia-
tions introduced in the study of stability and response by the 
introduction of such sloshing effects. The stability analysis 
consists in determining the eigenvalues of the state matrix 
expressed in Eq. 30, varying the free stream velocity U∞ 
(from 15 up to 30 m/s). In this framework, the Mach num-
ber is kept fixed at 0.2. The results obtained in the afore-
mentioned cases are shown in  Figs. 5 and 6, showing the 
stability scenario in frozen fluid configuration (Fig. 5) and 
sloshing fluid case (Fig. 6). 

As it can be noted from Fig. 5b spiral, phugoid and 
dutch roll modes are stable, whereas Fig. 5a shows flut-
ter occurring with the pole originated from short period 
coupling with the bending mode dynamics. By defrosting 
the fluid mass, some differences arise. In Fig. 6b it is 
possible to identify two poles associated with the slosh-
ing modes. Slosh dynamics clearly influences the lateral 
directional stability of the aircraft, since the dutch roll 
mode becomes unstable. Furthermore, the system gains 
stability by increasing the free stream velocity, The con-
sidered flutter mode involves mainly the sloshing mode 
and this triggers phugoid to be less stable than the previ-
ous case. So the integration of the sloshing in the aircraft 
model, by means of a tank placed underneath the aircraft 
center of mass, has a relevant influence on the lateral 
dynamics of the aircraft.

3.2  Response Analysis

The previous section provided that the most critical problem 
for the present case study consists in the lateral directional 
stability. Thus, the present section presents the response of 
the aircraft to a command to the ailerons by means of a 
specified hinge moment. This kind of command has been 

Fig. 6  Sloshing modes case
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assumed as a sinusoidal impulse, having the following 
expression:

where the command period is Tctr = 1 m/s. The maximum 
amplitude of the impulse is assumed to be equal to 0.5 Kg 
m. The reference velocity is fixed at 15 m/s. For this value 
of the aircraft speed, the system is stable only in the case of 
frozen fluid. The results are shown in the Fig. 7.

Again, It is evident the influence of the sloshing dynamics 
on the response of the considered aircraft. After the applica-
tion of the aileron hinge moment, the aircraft starts moving 
laterally (see Fig. 7a, d), increasing its velocity in direction y 
(see Fig. 7b, e). This causes the fluid to slosh inside the tank. 
Specifically, the fluid is excited by the translational motion 
in y-direction and the rotation about the x-axis of the tank, so 
causing a positive feedback generating of a moment which 
amplifies the lateral motion. From Fig. 7e–g, the coupling 
between the lateral-directional dynamics and the sloshing 
mode (in y-direction) is evident. Indeed, velocity in direction 
y, vG , roll angle � , sloshing mode r1 and, slightly less, the 
yaw angle � present an evident oscillatory behavior, with a 
divergent amplitude. It should be noted that this representa-
tion does not take into account nonlinear effects that arise 
with the free surface breakage on the tank walls, which may 
increase the damping as well as limiting the response of 
the aircraft to a limit cycle oscillation. An extension of the 
present approach may consider the modeling of nonlinear 
damping associated with higher free surface oscillations.

3.3  Implementation of a Proportional Feedback 
Control Law Using Measured Outputs 
with Sensor

The goal of this section is to provide a feedback proportional 
control to the aileron to control the instabilities arisen in the 
previous section. The control strategy takes advantage of the 
measurements obtained by a virtual inertial measuring unit 
(IMU) placed on an FE node close to the tank. Depending 
on the node of positioning of the IMU, different outputs in 
terms of accelerations and rotations can be obtained, and 
in turn, different control strategy must be considered. This 
arises because different nodes of the FE model are charac-
terized by having different modal participations. The Nout 
outputs measured by the sensors can be expressed as follows:

where �a , �v and �d are the selection matrices able to express 
the measurements by means of vector Δ�s and its derivatives, 
and �̂ is the measurement noise (which will be considered 

{
� = 0.5�a sin

[
2𝜋

Tctr

(
t − t0

)]
if t0 < t < Tctr + t0

� = � if t < t0

,

(31)� = �aΔ�̇�s + �vΔ𝜈s + �dΔ𝜂s + �̂,

null in the present analysis, assuming ideal measurements). 
The proportional feedback control action implemented is 
defined as �� = �̂ �y � , where �y is a matrix containing the 
proportionality coefficients having dimension 

(
3 × Nout

)
 . So, 

by including this control action into the state space form of 
Eq. (26), a new closed loop system having the following 
updated mass, damping and stiffness matrices is obtained:

In this simplified control modeling, �y matrix is basically 
a zero matrix with non-null elements in [1, 2] and [3, 5], 
and respectively equal to 0.05 and 1. To perform the stabil-
ity and response analysis, the mass, damping and stiffness 
matrices in Eq. (30) have to be replaced by the ones defined 
in Eq. (32). An updated state matrix is thus obtained, which 
provides the stability scenario in Fig. 8 represented by vary-
ing the free stream velocity from 15 up to 30 m/s. It can be 
easily noted that in this case, the control action guarantees 
that, for the considered speed range, all the rigid modes as 
well as the sloshing modes are stable. Furthermore, after the 
application of such control, flutter occurs due to the cross-
ing of the imaginary axis by the poles originated by the I 
bending mode.

4  Concluding Remarks

In this work, an investigation on the sloshing-tank effects 
on integrated aircraft modeling for aeroelasticity and flight 
dynamics has been carried out. Equivalent-mechanical mod-
els (EMMs) theory has been used to perform its integration 
into the aeroservoelastic model of the flexible aircraft, aim-
ing at representing the complete aircraft system that takes 
into consideration also the sloshing dynamics. The refer-
ence case study consisted of the body-freedom flutter (BFF) 
research aircraft, to which a parallelepiped tank, partially 
filled with water, was positioned underneath its center of 
mass. Neglecting the inertial coupling between rigid body 
and elastic body dynamics and considering the leveled flight 
as reference maneuver, stability and response analyses were 
performed to show the influence of the sloshing dynamics 
on the global system.

The results obtained were compared to the ones related 
to the case in which the tank fluid is considered as frozen, 
and therefore a simple ballast. The stability scenario and the 
control time response highlighted the coupling between the 
lateral-directional dynamics of the aircraft and the sloshing 
of the fluid inside the tank, causing a loss of stability of 
the dutch roll mode. Taking advantage of the use of a IMU 
that the FE formulation allows to place in any grid point of 
the structure FE model, it has been possible to implement 

(32)
�� =

(
�̆ − �̂�y�a

)
�� =

(
�̆ − �̂�y�v

)
�� =

(
�̆ − �̂�y�d

)
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a proportional feedback control law able to shut down the 
instabilities due the presence of sloshing fluid dynamics.

The natural extension of this work is the possibility of 
exploiting data derived from the implementation of high 
fidelity numerical codes to describe more general sloshing 
phenomena, taking into account any shape of tank, and pos-
sibly also tank deformations. Indeed, they may provide also 
a consistent database to build a CFD-based reduced order 
model for sloshing, whose mathematical structure may be 
identical to that used for EMMs. The final challenge will 
be to accurately model the phenomenon of sloshing in all 
its aspects. For this aim, it will be necessary to perform 
fully coupled simulation of different physics, as that con-
cerning violent fluid sloshing. By exploiting different ROM 
techniques, as for example the response surface methodol-
ogy (RSM), a simplified descriptive model of the nonlinear 
vertical sloshing can be obtained, allowing its subsequent 
inclusion in the current integrated formulation.
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