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ABSTRACT

Fog computing infrastructures must support increasingly complex
applications where a large number of sensors send data to inter-
mediate fog nodes for processing. As the load in such applications
(as in the case of a smart cities scenario) is subject to significant
fluctuations both over time and space, it is fundamental to provide
load balancing across the infrastructure. In this paper we study
a fully distributed algorithm for load balancing based on random
probing of the neighbors status. A qualifying point of our study
is that we take into account the impact of delay during the probe
phase and we show how the presence of stale information impact
on the algorithm performance. We propose a theoretical model for
the loss of correlation between actual load on a node and stale in-
formation arriving to the neighbors with a network-induced delay.
Furthermore, we analyze through simulation the performance of
the proposed algorithm considering a wide set of parameters and
comparing it with an alternative approach from the literature that
is based on random walks. Our analysis points out under which
conditions the proposed algorithm can outperform the alternatives.
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1 INTRODUCTION

Fog computing is becoming a de-facto standard for the support
of large distributed applications, such as smart cities applications,
where data from a plethora of sensors is pre-processed, filtered and
aggregated by intermediate fog nodes and is then sent to a cloud
data center for additional analysis and storage. The fog vision is a
clear step ahead compared to a traditional cloud-only approach be-
cause it can provide lower response times (because latency-bound
tasks can be placed on the network edge at the level of fog nodes)
and better utilization of the available network resources (thanks to
the data filtering and aggregation on the fog nodes) [12, 15]. How-
ever, for the success of the fog computing vision, resource allocation
is a key challenge due to finite resources at the fog level, increas-
ing number and complexity of applications, and heterogeneity of
incoming load due to mobile traffic [5]. In particular, achieving an
adequate load balancing by distributing requests over the comput-
ing resources of the distributed fog infrastructure is a critical task
for the support of the deployed applications. A fully centralized
approach can achieve competitive performance [18], but it has the
weakness of high computational complexity and huge reporting
overhead. Therefore, the centralized approach is not suitable for dis-
tributed fog computing systems. This consideration motivates our
research on algorithms and protocols to support a fully distributed
approach to load sharing, without any need for a centralized com-
ponent that act as data storage or orchestrator. Although resource
sharing is a classical and well-studied topic in the computer sci-
ence community, the model of fog computing does not fit all the
assumptions of the studies available in the literature. In particular,
the following elements are peculiar to the fog deployment: (i) the
absence of a centralized entity that acts as a load balancer; (ii) the
heterogeneity among resource availability and local scheduling
policies; (iii) delayed state information among nodes.

The main contribution of this paper is a study of the impact of
network latency on the effectiveness of randomization, which is
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the base of an important class of load balancing protocols, used to
allocate on fog nodes jobs that are continuously generated from
end devices (on-line load balancing). As a part of this analysis,
we consider a power-of-random choices algorithm, namely probe-
based where a fog node asks its neighbors’ information on their load
before taking forwarding decisions. This job offloading is regulated
by a threshold ® while workload information reflects the state of the
probed node 7 time units before the decision . We show that if 7 is
comparable with the service time, the load balancing performances
deviate remarkably from the power-of-random choice’s one and
are similar to blind forwarding decisions.

Furthermore, the probe-based algorithm is analyzed by means
of simulation and compared with an existing alternative approach
based on random walks, namely sequential forwarding. For our
evaluation, we rely on a discrete event simulator developed starting
from the Omnet++ framework and we consider a wide set of param-
eters over two main scenarios: a simplified one, namely uniform
mesh scenario, and a more complex geographic scenario derived
from a realistic topology based on a medium-size city in Italy. Our
experimental evaluation highlights how the query fan-out (FO)
parameter may play a complex role in the algorithm performance,
including the possibility that a herding effect [6] may occur with a
consequent deterioration of the performance. Our experiments also
show that the probe-based algorithm may outperform the sequen-
tial forwarding alternative especially in the geographic scenario
characterized by a higher level of heterogeneity in terms of in-
coming load. Another important result concerns the impact on the
performance of the FO parameter and of the herding effect, which
is much less evident in a geographic heterogeneous scenario, thus
identifying the proposed solution as the preferable choice for a
realistic deployment scenario.

The rest of this paper is organized as following. Section 2 dis-
cusses related works. Section 3 describes the proposed probe-based
algorithms and the sequential forwarding algorithm used as a term
of comparison. Section 4 presents a mathematical model to describe
system performance. In Sec. 5 we provide an evaluation of the pro-
posed load balancing algorithm based on the Omnet++ simulation
framework over two different scenarios. Finally, Sec. 6 presents the
conclusions and future research directions.

2 RELATED WORK

In this section we briefly analyze the state of the art regarding load
distribution and load balancing algorithms in the context of fog
computing systems.

In [13], an algorithm called Multi-tenant Load Distribution Al-
gorithm for Fog Environments (MtLDF) has been proposed to op-
timize load balancing in Fogs environments considering specific
multi-tenancy requirements. However, the proposed load balancing
scheme adopts a centralized fog management layer that receives
all the state information about the fog nodes. On the other hand,
our solution relies on a fully distributed approach.

In [8], the incoming jobs consist of tasks that are characterized
according to their computational nature and, based on this classifi-
cation, they are allocated to the appropriate node. Edge networks
communicate through a brokering system with IoT systems in an
asynchronous way via the Pub/Sub messaging pattern. However,
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again the approach relies on a centralized component, that is a
workload balancer, which is required by the solution.

In [18], an approach similar to the sequential forwarding al-
gorithm is used. However, the proposed solution requires either
a centralized repository to store the load state of each fog node
or needs a specific protocol to send updates on the load state of
each node. Our approach, exploiting a probe-based approach, pro-
vides good performance without requiring coordination structures
involving all nodes but reducing the information exchange to a
limited set of nodes.

The solution presented in [16] is based on the periodical distribu-
tion of the incoming tasks in the edge computing network in order
to increase the number of tasks that can be processed at the edge of
the network and at the same time to satisfy the quality-of-service
(QoS) requirements of the incoming tasks. The model, however,
assumes the availability of a batch of tasks to be assigned, i.e., the
tasks are not processed online, as it typically occurs in smart cities
applications considered in our approach.

The studies in [1, 2] adapted the idea of randomly select nodes
to offload a task used in the class of power-of-choices algorithms
to the fog computing model. The Sequential Forwarding algorithm,
based on the random node selection and used as a comparison
for the performance evaluation in this paper, was proposed by
the same authors, in [3]. The proposal of a probe-based algorithm
represents a clear step ahead with respect to the blind approach of
the Sequential Forwarding algorithm, both in terms of performance
and advantage in the case of a (more realistic) heterogeneous fog
infrastructure.

Finally, in [6] the problem of managing stale load information
and mitigating herding effect in Web-based systems is analyzed.
Our approach analyzes these effects in a different fog-related sce-
nario, pointing out the similarities and providing a more general
theoretical framework for this type of effects.

3 ALGORITHMS DEFINITION

We now introduce the load balancing algorithm proposed in our
research to support workload management in a distributed fog com-
puting infrastructure. Specifically, we first introduce the proposed
probe-based algorithm and we present also a load-blind algorithm
already presented in literature [3] that is used as a comparison in
the performance evaluation.

3.1 Probe-based algorithm

Figure 1 depicts a model of the probe-based algorithm outlining its
main functional components including probe messages, job forward-
ing and node system load status. Furthermore the figure outlines
the presence of network delays.

In detail, the algorithm relies on a threshold to determine whether,
upon receiving a new job, a probe for a less loaded neighbor is to
be started. The threshold © is applied to the system load, that
represents the number of jobs queued in the fog node (or being
executed). This metric is used as an estimation of the waiting time
for the incoming job. If a probe is to be started, the fog node issues
query messages to a randomly selected set of FO neighbors. The
parameter FO is the fan-out of the probe and ranges from FO = 1,
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Figure 1: Probe-based load balancing algorithm

meaning that only one random neighbor is selected, to N — 1 (N be-
ing the number of considered fog nodes), meaning that the probing
involves every node in the infrastructure.

Algorithm 1 Probe-based Algorithm

Require: O, FO, Job
if Job.IsForwarded() or System.Load() < © then
ProcessLocally(Job)
else
Neighs[] « Random(System.Neighbors(), FO)
Responses[] < ProbeNeighbors(Neighs[])
BestNeigh « SelectWithLowestLoad(Responses[])
if System.Load() > BestNeigh.Load() then
Forward(Job, BestNeigh)
else
ProcessLocally(Job)
end if
end if

Algorithm 1 presents the formalization of the proposed algo-
rithm. When a job from a sensor is received, the fog node uses the
threshold © and the local load to decide if a probe for the neighbors’
load should be issued (jobs forwarded from other fog nodes are
processed locally without additional evaluation). If the probing is
required, the fog node issues a set of query messages to the neigh-
bors and waits for the response of every neighbor (this means that
the higher is FO the longer is likely this probing phase to take).
Each neighbor provides within the response its load status, so the
fog node can decide if the job should be forwarded to the neighbor
with the lowest load or if the job is to be processed locally (if every
neighbor has a higher load). It is worth to note that, in the case of
high network delay (due slow network or due to network conges-
tion), the load returned by a neighbor may be a stale information
far different from the load the forwarded job will encounter. This
may result in inaccurate forwarding decisions and can cause the
so-called herding effect, known in literature [6]. A more detailed
discussion on the effect of stale load information is provided in
Sec. 4.

Algorithm 2 details the case where a node is processed locally
(for example, due to the call to the ProcessLocally() procedure in
Alg. 1). In this case, the Job should be enqueued in the ready queue
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Algorithm 2 Local processing: ProcessLocally()

Require: Job
if System.Queue() < System.MaxQueue() then
Enqueue(Job)
else
Drop(Job)
end if

of the server. However, since this queue is finite in size, if the queue
is already full, the job is dropped, resulting in a loss.

3.2 Sequential forwarding algorithm

The Sequential Forwarding algorithm uses a threshold © to decide
if an incoming job must be forwarded to a neighbor or not, just like
the previous probe-based algorithm. Furthermore, the algorithm
relies on an additional parameter M (that is the a maximum number
of steps), in order to guarantee a bound on the delay experienced
by each job during the load balancing phase. A detailed description
of the sequential forwarding algorithm is provided in [3]. In this
paper we use this algorithm as a comparison for our proposal and
we set the parameter M = 5 that is a value proved in preliminary
experiments to provide low response time and low drop rate.

Algorithm 3 Sequential Forwarding Algorithm

Require: M, ©, Job
if Job.Steps() > M then
ProcessLocally(Job)
else
if System.Load() < © then
ProcessLocally(Job)
else
Neigh < Random(System.Neighbors(), 1)
Job.IncrementSteps()
Forward(Job, Neigh)
end if
end if

The sequential forwarding process is detailed in Alg. 3. We as-
sume that the data structure describing the job is enriched with
meta-data to keep track of the number of times a job is forwarded.

4 A MODEL FOR STALE INFORMATION

The probe-based algorithm relies on state information gathered
from the other nodes. If the duration of the scheduled work is
comparable with the latency required to get this information, the
reported state maybe out-of-date. We want to study how taking
scheduling decisions on information that does not reflect the actual
state of the selected node may affect the effectiveness of the load
balancing protocol. This problem has been studied in seminal paper
[11], but in a different interaction model. To put the problem in
a broader context, we assume that the time interval from when a
node reports a state until a job arrives to that node is a constant
value 7. Although the propagation delay of the backhaul can be
small, this time can be dominated by the packet processing time.
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Figure 2: Time diagram concerning the probe message

Figure 2 reports a typical interaction pattern of our query-based
protocol. At time #;, node A receives a job and sends the probe
message; at time £y B receives the probe message, reads its state
and sends the reply to A; A receives the reply message at time t3,
compares its state with the one reported by B and takes its forward-
ing decision based on the reported state; at time t4 B receives the
job. In this example, 7 = t4 — t2 and if 7 is long enough the state
of B is in general j # i. A similar update pattern can arise when
probes are pipelined, i.e., node A uses the first probe reply available
even if triggered by a previously received job. Other strategies (not
investigated in this work), may be based on proactive periodic state
information broadcast to random groups.

4.1 Loss model

We consider N — oo number of nodes, with capacity queue K
receiving each a Poisson flow of job requests with rate A and service
timel = 1. The model assumes that the dynamic of these nodes
are independent from each other. Let X(¢) be the queue length
of a generic node in the system. From the Chapman-Kolmogorov,
[10] equations, the probability transition functions of X (t) can be
expressed in a matrix form as:

P(t) = e

where:
P;j(t) = PriX(t + 1) = j|X(0) = i}

and Q is the (K + 1) X (K + 1) generation matrix of the process.

-Ao Ao 0 0

1 -1-A M 0
Q=|(0 1 -1-2A 0
0 0 0 -1

The entry A; is the transition rate from j to j + 1.

4.1.1  Flow rates. Let’s suppose that the process reaches the steady
state, and let as usual 7; = P;j(o0); also define 7; = Z{ij 7. At the
steady state, the flow of jobs seen by node B when its state is j is:

i A+Af ifj<®©
7 Aftj +A§ otherwise

1

where:
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K

1 ~/

A = —@Z it Pij (1) @)
U=

and:

K
M= ), m 3)
I=max{i,0+1}

When the state is j < ©, see Equ. (1), the node in fact serves

all the jobs coming from its users without any probe (this rate is
1), otherwise it serves jobs from its users if the probed has at least
state j. The probed node replies with a state worst than j with
probability 7;. In all states, it receives jobs from other nodes at rate
AE.
EJquation (2) reflects the probabilities of the following events: (i) B
sends a reply message to the probe message reporting state i, (ii) the
state of A was at least i+ 1 - unless i < ©, in this case the state of A
was at least © + 1 since no probe messages are sent when the state
is lower or equal to the threshold ©; (iii) during 7 time units the
state of B changed from i to j. These probabilities are conditioned
to the event of B being in state j.

4.1.2  Numerical solution. A solution of the model is a matrix Q*
whose elements are tied by Equ. (1) and Equ. (2). Q* is computed
numerically using a Fixed Point algorithm: initially, a matrix Qg
is defined with A; = A. Using the Equations (1) and (2) (where
 is solution of 79Qp = 0 and P;; are the elements of its matrix
exponential), a new generation matrix Qy is then computed. From
here, another matrix Q is derived in a similar way, and so on, until
the maximum difference among any two elements of the successive
matrix is less than an error e = 10713,

4.1.3 Completely correlated states. This condition occurs when
communication is instantaneous , 7 = 0. In this case P(0) = I, i.e.:

P;j(0) = 6;;
The state of the probed node cannot change wrt to the reported
value, i.e., no state transition occurs. By substituting this value in
Equ. (2) we get:

1 LS 1
F__§~. i = A = AR
Aj —A”j 24 Ti+17i0ij Anjnjﬂjﬂ AJIJH

so that:
1+ 7 ifj<®
).j -1 ?+1 J . 4)
7j+ Tj+1  otherwise
For © = 0 the above equations describe the dynamic of the power
of two random choices algorithm on a loss queue model [17]. In fact,
the generic balance equation of the MC associated to Q becomes
(recall g = 1):
).(7?]' + ﬁ'j+1)71’j = TTj+1
Since (7~Tj +ﬁ'j+1)(ﬁ'j - ﬁj+1) = (7~TJ2 - 7~TJZ+1) and Tj+1 = ﬁj+1 - 7~Ij+2
the equations can be rewritten in the so-called supermarket fluid
model form (where conventionally g, = 0) [14]:

~2 ~2 N N
/l(ﬂj_1 - ﬂ'j) =7Tj — Tjr1
These equations have the following fluid flow interpretation. In a
population of N — oo nodes, any node sends its jobs to a central



Randomized load balancing under loosely correlated state information in fog computing

scheduler. The scheduler then sends the jobs to the least loaded
among two random nodes. Here 7; is interpreted as the fraction of
nodes with at least j jobs en-queued.

4.1.4  Completely uncorrelated states. This case ideally corresponds
to 7 — oo because this ensures to observe the node in two random
steady states.

P;j(00) = 7
hence:
| & K 2) K
= —A D dagmin =AY Fami=A ) Fenmtd ) Auwam
J =0 i=0 i=0 i=0+1
so that:
A+ ifj<eo
/1j = - J F . (5)
Aftj+ A ; otherwise

The above equation can also be interpreted as following. When the
state is above the threshold, a node serves the job with probability
7j otherwise it forwards the job to a random node. As 7; is same
for all nodes, the decision to forward can be taken by looking at
the workload history of the node itself (for example, the node can
estimate its occupancy probability distribution over time). A node
at state j then forwards a job with the same probability that the
remote node is less loaded than itself, i.e., 1 — 7j. When even this
info is not used, the algorithm makes blind decisions.

4.1.5 Blind forwarding. In sequential forwarding nodes send job
without any probe. For M = 1 we call this protocol blind (as no
state info are used to decide). A node never serves the job when
it is above © (contrary from the previous completely uncorrelated
case where it serves locally with probability 7;). The rates are:

1+ 7 if j <O
/1j -l Te+1 1] . ©6)
TO+1 otherwise

which reflects the fact that the job arrivals at the selected node are
uncorrelated from its state. The formula is easily extended to any

M.

4.2 Performance Metrics
4.2.1 Dropping probability. The probability to drop a job for the
query-based algorithm is:

K-1

p =Tk + ) FinmiPi(r) ™

i=0
because a job is dropped if: (i) the receiving node is full but the job
cannot be forwarded since the receiving node reports it is full as
well (first term), or (ii) the job is forwarded, but during the time 7
the target node becomes full (the job finds the node in state K) and
drops the job. For the blind one:

PB = O+17K ®
which reflects the fact that a job is forwarded towards a congested

node, i.e. whose state is K.

4.2.2  Control overhead. The control overhead is given by the probe
message rate:

K
Cooh =A )| i = Ao ©
i=0+1

MSWiM °20, November 16-20, 2020, Alicante, Spain

4.3 Numerical results

We now provide some numerical results obtained for K = 10, for
different loads and delays. The service time is y = 1.

4.4 Load balancing under perfect knowledge

This case represents the best-case scenario, where updated state
information are immediately available to all nodes. The state of the
probed node is always the same of the reported one, 7 = 0 complete
correlation. To limit the control information overhead nodes set
O to some proper value (Fig. 3). Figure 4 shows the drop rate as a
function of the load A (i = 1) and different T. The threshold is, in
this case, an effective way to reduce the control overhead. With
© = 4 the load balancing reaches almost the same drop rate of
© = 0 but with much less overhead (about 1/3 for A < 0.9).

1 : : : : :
=0 —— 0=5 =7
09 [ ©=4 —<— 6=6 O=! ><,,>§
08F X 4
0.7 X 4
3 e
2 o6 X 1
2 x>
o 051 ><><>< b
s XX
€ 04r (X |
8 sex K =<
0.3 [ sexX 1
02 F )
01 f o oo0000606000099 g
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
09 091 092 093 094 095 096 097 098 099 1
A
Figure 3: Control overhead vs loads.
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Figure 4: Drop rate performance vs loads 7 = 0.

4.5 Load balancing under partial knowledge

While threshold is a simple way to reduce the control overhead, the
amount of control information can still remain a source of latency
so that state pulled by the probe messages may arrive after some
not negligible delay. Figure 5 shows how 7 affects the drop rate.
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Simulation results for N = 3000 nodes obtained via a custom python
simulator are also shown. The simulated model is very simple as
it makes available state information older of 7 time units wrt the
current simulated time, while job transmission is instantaneous.
For A = 0.95 and 7 = 0 no losses were observed.These results
provide evidence that the model captures the key behaviour of
the algorithm. A more detailed and realistic simulation study is
reported later in the paper.

1e-02 T —=u - —
1e-03 = T e
1e-04 T ]
Q
s 1e-05 1
I /
S 1e-06 F / ]
e / 1=0.99,0=4 —+—
/ ) 2=0.99,0=0 —<—
1607 F | <y 1=0.95,0=4 |
21=0.95,0=0
g Simulation A=0.99,0=4
1e-08 Simulation A=0.99,0=0 -~
Simulation A=0.95,0=4 -----
/ Simulation A=0.95,0=0 --=---
1e-09 L . .
0 2 3 4

Figure 5: Effect of 7 on the performance.

For a load as high as A = 0.99, the drop rate increases consid-
erably as soon as 7 > 0. For example for 7 = 0.5, i.e., a half of the
service time, the drop rate increases from 1.17x 10 to 5.48 x 10706
and for 7 = 1 it reaches 1.4 X 107%, i.e, about 5 order of magnitude
higher than when correct state information are immediately avail-
able. As 7 increases, the drop rate for © = 4, is lower than for ® = 0
because the algorithm makes a lower number of wrong decisions,
e.g., a node forwarding the job to another node that becomes full
after 7 time units from when it had some free place in the queue.
Overall, we then expect that in a real setting even small delays in
getting information will weaken the power-of-random choice effect
of a real system remarkably.

4.6 Blind Load balancing

In blind forwarding, nodes send a job without any info about the
state of the remote node. This extreme case avoids the need of
any control information. Figure 6 shows the drop rate for different
thresholds. The horizontal line corresponds to 7 = 30 and no load
balancing. The drop rate for the uncorrelated case is lower than the
blind meaning that the state information received from the probe
indirectly reveals the average (expected) state of the other node.

5 SIMULATION RESULTS

To evaluate the performance of the proposed load balancing algo-
rithm, we rely on a discrete event simulator based on the Omnet++
framework!, with additional modules developed ad-hoc to support
the algorithms considered in our experimental evaluation.

In our analysis we take advantage from the insight provided by
the model described in Sec. 4 and we aim to capture the impact of

https://omnetpp.org/
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Figure 6: Drop probability blind algorithm

the impact of the network delay on the load balancing effective-
ness. To this aim we model the network taking into account the
network bandwidth available between each couple of fog nodes and
we consider the possibility of network congestion, when multiple
probe messages and jobs being forwarded must queue to access
the network link. In our experiments, the time spent on average
during the probing and forwarding (we anticipate that we will refer
to this time as balancer time) plays the role of the parameter 7 in
the model.

5.1 Experimental setup

In our experiments we consider both the proposed probe-based
algorithm and the sequential forwarding algorithm from litera-
ture [3], as a comparison. Furthermore, we consider two different
scenarios, namely uniform mesh scenario and geographic scenario.

In the uniform mesh scenario we consider a simplified setup
where all nodes are identical and can be described as M/M/1/K
queues, with a maximum length of K = 10 elements, with the
same incoming load A = 0.9 jobs/sec, the same processing rate
p = 1 job/sec (that result in an overall utilization p = 0.9 of the
infrastructure). Furthermore, the bandwidth is the same for all the
connections among the fog nodes. In particular, the bandwidth BW
is 8Mbit/s and we assume the job size S to be 1Mbyte so that the
delay to forward one job from one fog node to another is 1 sec
(these values are compatible with the use of long-range, low-power
wireless links for fog-to-fog communication [9]). The considered
setup ensures that the communication time (67 = S/BW) is compa-
rable to the processing time (1/p), that is a qualifying point in the
fog scenario, as pointed out in Sec. 1. Furthermore, we model also
the bandwidth requirements of probe messages, defining dp as the
time required to send and receive a probe message (not considering
the queuing time at the network level due to congestion in the
underlying links). We recall that our simulation can capture the
arising on congestion on the network when multiple probes and
jobs forwarded must compete for the available bandwidth.

In the geographic scenario, instead, we focus on a more complex
setup derived from a realistic topology based on an ongoing project
of traffic sensing in Modena, a city in northern Italy of roughly
180’000 inhabitants. The sensors are located in the main city streets
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and collect information about the traffic (taking pictures of the street
when movement is sensed to count how many cars are passing).
These data are integrated with data on the air quality. Fog nodes are
placed in facilities belonging to the municipality and exchange data
using long-range wireless links (such as IEEE 802.11ah/802.11af [9])
to interact both with the sensors and among themselves. the sce-
nario description is generated using the PAFFI framework [4]. As
in these links the available bandwidth decreases withe distance, we
assume the bandwidth to be inversely proportional to the distance
between the two communication endpoints. Each sensor communi-
cate with the closest fog node as in [7] so that the incoming load on
each fog node is highly heterogeneous, ranging from cases where
the incoming load is more than 2x the processing capacity to cases
where a fog node is highly underutilized.

Throughout our experiments we consider the following main
performance metrics:

e Drop rate, that is the probability of a job being discarded
because the queue of the selected fog node is completely full.

o Response time, that is the time occurring between the moment
the Job is received from the first fog node, to the moment
the processing ends on the final fog node.

We consider also useful, when considering the response time, to
provide its breakdown in the following components:

o Service time that is the time spent being processed,

o Balancer time that is the time spent being forwarded among
the fog nodes (as previously pointed out this contribution
can play the role of the 7 parameter in the model of Sec. 4),

o Queuing time that is the time spent in the fog node ready
queue waiting to be processed.

Furthermore, in our simulation evaluation, we consider the fol-
lowing parameters to describe each simulation scenario:

o O is the threshold used to decide if the cooperation is to be
triggered. In our experiments © € [1, 10], where 10 is the
maximum queue length.

e FO is the fan-out of a probe, that is the number of neighbors
to which the load query message is sent. In our experiments
we consider FO € [1, N — 1], where N = 20 is the number
of fog nodes in our simulation.

e 1o = 6p/dy is the impact of the cooperation delay (that is the
time for sending a query and receiving the answer) compared
to the job forwarding delay. We can think of 5¢ as the ratio
between the size of a message used for cooperation and a
message containing a job. In our experiments we consider
no € [1%, 100%]

As pointed out in the theoretical model of Sec. 4, we anticipate the
critical impact of network delays on the effectiveness of the probe-
based algorithm. Furthermore, we point out that the FO parameter
may play a complex role in the algorithm performance. Indeed, as
FO grows, we have a three-fold effect. On one hand, we increase
the ability of a probe to identify the lowest loaded neighbor. On
the other hand, we increase the delay to complete the probe, as the
higher network results in longer network delays and we have to
wait for the slowest node to respond; this higher network delay in
turn increases the probability of having a stale load information
from a probe that no longer represent the load on the remote nodes.
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Finally, as more nodes may receive multiple queries in a short
amount of time, we may have a herding effect [6], that is the case
where many fog nodes forward their job (due to stale load data) to
the same less-loaded neighbor, causing its overload.

5.2 Uniform mesh scenario

We start our analysis focusing on the Uniform mesh scenario.
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Figure 7: Response time vs. Threshold © (FO = 3, g = 10%)

Figure 7 shows the response time of the proposed probe-based
algorithm compared to the sequential forwarding alternative for
several values of the threshold ©. Furthermore, a breakdown of the
response time is provided. Our results are related to the scenario
where FO = 3, g = 10%, but our main findings have general valid-
ity. Comparing the two algorithms we observe that the probe-based
algorithm provides a (small) performance gain in terms of response
time against the sequential forwarding alternative. Furthermore,
from the breakdown of the response time we observe that, while
the service time remains constant with respect to the threshold,
the time spent looking for a suitable neighbor (that is the balancer
time) decreases with ©, for the two-fold reason that (1) the balanc-
ing function is activated with a lower frequency and (2) the lower
network utilization (due to the lower number of probes) results in
faster query-response during the probe phase. On the other hand,
as we activate less often the balancer, we accept to process the jobs
on local node with a potentially higher load, as testified by the
increase of the queuing time.

Figure 8 provides a further proof of the impact of the delay
associated with the load balancing on the drop rate of the algorithm.
In particular we focus on the range where © < 5, that is the the
range where the load balancing is activated more often and where
this effect is more evident. We observe how an higher delay results
in an higher drop rate as suggested by the theoretical model.

Having described the basic behavior of our load balancing algo-
rithm we now focus on the impact of the main parameters that may
affect its performance. We start discussing the impact of the query
fan-out FO. Specifically, Fig. 9 shows the drop rate (Fig. 9a) and
the response time (Fig. 9b) as a function of FO for the case where
1o = 10%. Again results for other values of g are omitted for space
reasons and because they do not provide additional insight.
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Figure 9: Sensitivity to Fan-out FO (7o = 10%)

Focusing on Fig. 9a we observe that, as FO grows, the curve
of the drop rape shifts from a monotone growing shape (when
FO = 1) to a concave cup-shaped curve. This latter shape, already
observed in [3] when studying the sequential forwarding algorithm,
occurs when a job is sent to a randomly selected neighbor. This
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means that when FO is high, the load returned by the probing phase
is uncorrelated with the load found on the node when the job is
forwarded. This effect, described in the theoretical model for high
values of 7 and pointed out also in Fig. 8, has a twofold explanation.
First, as FO grows, the probe takes longer to complete (because
we have to wait for the slowest neighbor and because the query
and answer messages can be queued and delayed in the network).
As a consequence the load on the neighbor node have more time
to evolve drifting away from the value provided when answering
the query. Second, the herding effect [6] may occur so that, when a
node reports a load lower than the average, lots of neighbor will
select this node as the target for job forwarding, causing a rapid
increase in the load of that node.

Focusing on Fig. 9b we observe that the response time of the
probe-based algorithm is generally lower compared with the se-
quential forwarding algorithm with the same threshold value. In
particular we observe that, especially for high values of the thresh-
old ©, higher values of fan-out provide a benefit in terms of response
time. Indeed as ® grows we have less queries and this reduces the
impact of the herding effect and makes the probing mechanism
more effective. A further confirmation of the interaction of the
number of queries with the insurgence of herding effect that hinder
the cooperation effectiveness is provided by the observation that,
as FO increases, the threshold value that provides the best response
time increases from © = 2 to © = 3, that is towards a case where
the number of queries issued is lower.

4.6 T T T

nQ=1—&—
45L mMmQ=3 —m— 7
"8 =10
' nQ=30 |
44| Q=30
43 |
. 42r |
2,
e arf |
= al |
39 |
38 |
3.7 r ;—;577777&;;! |
—h—a— %//!
36 : ‘ ‘ L L L L
2 4 6 8 10 12 14 16 18 2
Fanout

Figure 10: Minimum Response time vs. Threshold ©

Figure 10 summarizes the main findings of the previous analy-
sis on the FO parameter and provides a sensitivity analysis with
respect to 7, that models the impact of the probe message propa-
gation time with respect to the job forwarding time. To this aim we
show the lowest response time over the range of threshold values
as a function of the FO and 5o parameters. We observe that, for
every value of 170, as FO grows from 1 to 2 we have a reduction in
the response time because we are more able to find a less loaded
neighbor. When FO grows beyond 2 the minimum response time
is increased because the ability to find a less loaded neighbor is
counterbalanced by the longer time taken by the probing phase
and by the higher risk of experiencing herding effects.
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Switching to the analysis of the impact of the 5o parameter, we
observe that, as the probing time grows the overall response time
increases due to a higher time required to exchange data across
the network. Furthermore, the higher probing time (e.g., when
1o = 100%) increases also the sensitivity of the fan-out value.

5.3 Geographic scenario

We now focus on the simulation results for the geographic scenario
previously described.
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Figure 11: Response time vs. Threshold © (FO = 3, ng = 10%)

Similarly to Fig. 7 for the uniform mesh scenario, Fig. 11 provides
a comparison of the response time achieved by the probe-based
and sequential forwarding algorithms when FO = 3 and g = 10%.
Furthermore, a breakdown of the contribution of the response time
of the probe-based algorithm is provided. The results confirms the
main findings of Fig. 7. The main difference is the better perfor-
mance of the probe-based solution over the sequential forwarding
algorithm, especially for higher values of ©. Indeed, as this scenario
is characterized by an inherent high heterogeneity in the node in-
coming load, a probe-based approach that can identify nearly idle
neighbors provides a major benefit over a purely random neighbor
selection.

Figure 12 provides the sensitivity analysis with respect to the
query fan-out FO. As a general note we must consider that just a
relatively low fraction of the nodes experience overloaded. Hence,
only these node will start queries very often. If we consider the
theoretical model in Sec. 4, the nodes with a low load experience
an effect similar to a reduction of the interval 7. The final result of
this behavior is a reduced impact of the herding effect. Observing
Fig. 12a we have a clear evidence of this effect because the drop rate
curve is quite different from the concave shape observed in Fig. 9a.
In particular when © is low the drop rate is much lower compared
to the case when O is close to the maximum. Furthermore, the
shape of the drop rate is not highly dependent from the fan-out,
unlike what we observed in Fig. 9a. This is an interesting finding
that proves how the level of heterogeneity in the infrastructure
plays a major role in the benefit achievable through probe-based
cooperation. Indeed, probing can take advantage from the presence
of an heterogeneous scenario. In our analysis we present also the
impact of the fan-out on the response time, but in this case there
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Figure 12: Sensitivity to Fan-out FO (g = 10%)

are no unexpected behaviors and the results confirms the main
considerations for Fig. 9b. As a further confirmation of the lower
impact of the herding effect, we observe also that the minimum
response time show a less marked tendency to shift to higher values
of ® as FO grows.
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Figure 13: Response time vs. Threshold ©
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We conclude our analysis with the impact of the o parameter
on the response time shown in Fig. 13. The general shape of the
curves confirms the main findings for Fig. 10. However, in this case
there is another interesting effect that should be pointed out. Some
nodes are issuing a significant amount of queries to cope with the
high incoming load. The amount of data exchanged for probing
purposes grows with the query message transmission time 7o and
with the fan-out FO. In some cases (e.g., 79 = 100%, FO > 7) the
data volume can exceed the network capacity, thus resulting in
network congestion and in an explosion of the response time.

6 CONCLUSIONS AND FUTURE WORK

In this paper we focus on the load balancing issue of distributing
incoming jobs over the nodes of a fog computing infrastructure.
Our proposal is designed to be fully decentralized, without relying
on centralized workload balancer or reservation mechanisms, with
the aim to represent a viable solution for a realistic fog deployment
in a smart city scenario possibly characterized by heterogeneous
workload distribution. Specifically, we analyze the impact of net-
work latency on the effectiveness of the selection of fog nodes to
allocate the incoming jobs, proposing a probe-based algorithm for
load balancing. We evaluate the performance of our proposal using
both a mathematical model and a simulator. Our analysis revealed
that taking schedule decisions based on state information received
even with a small delay compared to the service time reduces the
load balancing effectiveness considerably. To take this expect into
account, we studied a threshold probe-based algorithm with small
fan-out which is a preferable choice with respective to the existing
alternative especially in a geographic realistic scenario character-
ized by a higher level of heterogeneity in terms of incoming load.

The study presented in this paper is part of a broader research
line. In future work we plan to investigate different load balancing
algorithms based on asynchronous exchange of information about
nodes status, and to integrate in the load balancer a predictive
mechanism to foresee the nodes status based on machine learning
techniques.
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