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7 Demand and supply phenomena 
This chapter addresses the modelling of various demand and supply phenomena emerging on public 
transport networks: passenger information, congestion at stops and on board, service regularity. These 
phenomena affect route choice, either directly (information), or indirectly through travel costs (congestion); 
therefore they are to be made an integral part of transit assignment models, which shall then evolve from the 
basic frameworks presented in the previous Chapter 6. 
The aim is then that of providing travel times and, in case of strategy models, also the hyperarc diversion 
probabilities, for a given arc flow pattern. 
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7.1 Strategies and information 
Authors: Klaus Noekel, Guido Gentile, Michael Florian 
 
This section is devoted to the modelling of the following phenomena in the context of transit assignment: 

 strategic behaviour with respect to line vehicle arrivals at stops, 
 information provision to passengers. 

 
In the basic framework for frequency-based assignment (Section 6.2) passengers choose between complete 
alternative paths before starting their journey. Although shortest-path search seems to be a rational basis for 
this decision, a significant part of the generalized cost of each alternative is not known in advance and enters 
only as an expected value, i.e. the waiting times. Indeed, they derive from the random departure of lines from 
stops wrt to the passenger arrival. Then, actual waiting times encountered by the passenger as his journey 
unfolds may differ substantially from the expected values. Can the passenger reduce expected waiting times 
by postponing part of the route decision with the possibility of reacting strategically to random headways? 
This section explores route choice models in which passengers take decisions based on information they 
acquire during the trip, while on board or waiting at stops. 
The convenience of passengers in adopting a strategic behaviour stems from the fact that it could be better 
to board a slower line that is arriving earlier than to wait for a faster line that will arrive later; here “slow” and 
“fast” do not refer to the commercial speed of the line but to the expected travel time to reach the destination 
once boarded the line, which may include further sub-strategies and other lines. 
In the classical model of optimal strategies, passengers acquire information about the line served by the next 
arriving carrier at the stop, by simply looking at its signboard. That information is available only when the 
carrier is actually approaching the stop and becomes thus visible by the passenger. This is clearly not the 
situation of modern travel information systems, where passengers can know as soon as they reach the stop 
(or earlier when entering a station with several stops) a list of arrival times from an electronic panel, typically 
the next one for each line among all runs that already departed from the terminal. The internet revolution 
allows for an even higher degree of freedom, since passengers can access the same information above from 
home/work (computers), or also en-route through mobile device (smartphones).  
In general, it turns out that the extent to which it is possible to reduce the expected generalized cost of the 
journey, by adapting during the trip the taken route to incoming information about line arrival times at stops, 
depends on additional assumptions about: 

 the regularity of service, 
 the passenger’s ability to observe service operation en-route, and 
 the structure of the strategies considered by the passenger. 

 
Each combination of assumptions about these aspects induces a different route choice model. In this 
section, some alternative sets of assumptions are reviewed, linked to the corresponding assignment model, 
and the results are compared in terms of the line shares and in terms of sensitivity against perturbations of 
input data. 
 
7.1.1 Optimal strategies with exponential headways 
Consider the transit network topology that was introduced in Section 6.2.2 for frequency-based models and 
the arc performances presented in Section 6.2.3. The cost associated with each pedestrian arc and each line 
segment is assumed constant. At each stop along the itinerary of every transit line the inter-arrival times of 
the vehicles (headway) are instead not constant, but their distribution is known; this induces random wait 
times. 
Because several lines may serve the same stop, the passenger directed towards a given destination may 
choose to board the first arriving vehicle of a given line set, instead of waiting for one single line. Then, 
depending on which line arrives first, the journey will follow along different routes. This strategic approach 
implies a trade-off between lower wait time and higher expected costs to reach the destination once boarded 
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the line (which includes the in-vehicle time and possibly other transfers). The objective of the passenger is to 
minimize the expected total generalized cost, taking into account that the different time components of a 
transit journey (waiting, riding, walking) typically have different weights (comfort coefficients); in particular, 
waiting at stop is usually perceived as more onerous than riding on-board a vehicle, although this may 
change due to on-board overcrowding. 
This model requires to compute the combined expected time for the arrival of the first vehicle for any subset 
of lines serving the same stop (with given headway distributions), as well as the probability that each line 
arrives first. 
Using the terminology of Section 6.1.3, the stops are the diversion nodes, each distinct set of serving lines 
identifies a (waiting) hyperarc, the diversion probability of using each branch of the hyperarc is equal to the 
corresponding line probability, the conditional travel time of each branch is equal to the combined expected 
wait time. 
 
7.1.1.1 Network topology 
When formulating the optimal strategy model it is common practice to head the alighting arcs directly at the 
base node, and not at the stop node; while the return of the stop arc is eliminated. This modification of the 
network topology presented in Section 6.2.2 is depicted in Fugure 7.1 and is useful to have only one type of 
diversion arcs, i.e. the waiting arcs, exiting from the stop diversion node. Then, for each combination of 
waiting arcs s+Await exiting from each stop sS an hyperarc ă is introduced:  

 the waiting hyperarcs Hwait = {ăs+: sS} . 
 

 
Figure 7.1. Topology of the transit network with boarding hyperarcs exiting from the stop diversion node. 
 
The following exposition is based on the seminal work of Spiess and Florian (1989). 
The arc performances presented in Section 6.2.3 provides a cost cag for each arc aA and class gG. 
However, the cost of waiting arcs is given here by the non-temporal component only, because the wait cost 
is handled in a separate term, which depends also on the passenger destination. Moreover, each arc aA is 
here characterized by a second attribute, i.e. the frequency fa , which is (nearly) infinite with the exception of 
the waiting arcs, where it is equal to the frequency of the associated line (which may also be referred to as 
line a for short). 
The solution of the (deterministic) route choice model for passengers of class gG directed to each single 
destination dD can be described as an acyclic subgraph (N, ĀdgA), which is referred to as a hypertree by 
Nguyen and Pallottino (1988). This defines the topology of the optimal strategy from each origin, that is the 
most extended hyperpath on the hypertree having that origin and that destination. Because these solutions 
are independent, in the following the indices dg are omitted. 
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Recall that a-N and a+N denote, respectively, the initial and final node of arc aA, while i+A and i-A 
denote respectively, the forward and backward star of node iN . 
For each node iN define as Āi+ = i+Ā the arcs exiting from i and belonging to the solution hypertree. If i is 
not a stop, then Āi+ is the (one) successor arc of the node towards the destination. If i is a stop diversion 
node, then Āi+ is the set of waiting arcs associated with those lines which the passenger will possibly board 
to reach the destination, i.e., the (one) successor hyperarc of stop i. These lines are conveniently referred to 
as the attractive set. Among those lines the passenger boards the vehicle that arrives first, and waits on 
average for their combined expected time of arrival. 
 
7.1.1.2 Combined wait time and line shares 
Consider the successor hyperarc Āi+ = ă  i+ of stop iS. Let tă be the expected wait time for the arrival of the 
first vehicle serving any of the waiting arc branches aă, which is referred to as the combined wait time. Let 
pa|ă be the probability that arc aă corresponds to the first line served among the attractive set identified by 
ă. If line headways at stop i are independent and have an exponential distribution it is: 

1
a

b
b ă

t f


   (7.1) 

and 
a

a|ă
b

b ă

fp , a ăf


   . (7.2) 

The above formula can be obtained from the more general results of next Section 7.1.2.1 applied to the case 
of exponential headways. 
The sum of the frequencies of all attractive lines is referred to as the combined frequency of the stop. 
Interestingly, the above formula are also valid for the successor arc ai+ of any other node iS, where it is:  
ta = 0, given that fa  , and pa|a = 1. 
Equations (7.1) and (7.2) provide for each branch aă of hyperarc ă the conditional travel time ta|ă (that are 
all equal to tă) and the diversion probability pa|ă , respectively, which are the main variables of the strategy 
model based on hyperpaths presented in Section 6.1.3. 
 
7.1.1.3 The greedy approach to compute the attractive lines 
Consider the sub-problem of a class g user choosing among the lines i+ available at stop iS the attractive 
set Āi+ = ă as part of a his/her trip towards destination d. The most difficult question in the computation of 
shortest hypertrees stems indeed from the search of the hyperarc ă over the set i+ which yields the minimum 
expected cost; after all, finding an optimal sub-set is a combinatorial problem. 
Rearranging the Equations (6.30) based on (6.26), under the assumption that diversion arcs have only non-
temporal costs, the following version of the Bellman equation provides the expected cost of diversion node 
iNdiv: 

  : i iw Min w ă ă i    , (7.3) 
 i i ă a a|ă

a ă
w ă t w p


     . (7.4) 

The expected cost wi(ă) to reach the destination from stop i as a function of the attractive set ă is given by 
the sum of: 

 the combined wait time tă , multiplied by the value of time i (which is equal to the value of time ag in 
Equation (6.67.f)), 

 the remaining cost wa to reach the destination once boarded each attractive line aă, multiplied by the 
corresponding line share pa|ă . 

 
Assume that the remaining cost wa to reach the destination once boarded each line ai+ available at the stop 
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has been already determined; but recall that this is given by the cost of the waiting arc a plus the expected 
cost of its final node a+ : wa = ca + wa+ . This sub-problem is in fact part of a more general recursive problem 
where the unknowns are the expected costs of all nodes (see Section 6.1.7). 
Based on Equations (7.1) and (7.2), in the case of exponential headways the main function (7.4) of the 
optimal strategies Problem (7.3) becomes: 

  i a a
a ăi

a
a ă

w f
w ă f





  
 

 . (7.5) 

Consider the case where another line, associated with arc bă, is added to the attractive set; based on (7.5) 
the new expected cost can be expressed through the following recursive formula: 

   i a b bi b b a a a ăa ă
i

b a b aa ă a ă

w ă f w fw f w f
w ă b f f f f



 

                 


  . (7.6) 

Because (7.6) is a weighted average with positive coefficients (the frequency of arc b and the cumulative 
frequency of stop i), then the expected cost at stop i can be improved if and only if a line whose remaining 
cost once boarded is lower than the current expected cost is added to the attractive set: 

     b i i iw w ă w ă b w ă    . (7.7) 
By exploiting the order of lines in terms of remaining costs, the complexity of finding the attractive set of lines 
can be dramatically reduced through the following greedy algorithm: 

 starting from an empty set,  
 add the lines in increasing order of remaining cost to reach the destination once boarded,  
 stop when the remaining cost of the next line is higher than the current value of the expected cost. 

 
The correctness of the greedy algorithm can be proved by contradiction. Assume the existence of a better 
attractive set which is not formed by the first best n lines whose remaining cost is lower that the resulting 
expected cost. This yields a value of expected cost through (7.5). Based on Equation (7.6), adding any line 
with a better remaining cost or subtracting any line with a lower remaining cost from this attractive set would 
improve the solution in terms of expected cost.  
 
7.1.1.4 Model formulation as an optimization problem 
Since the solution hypertree Ā is the unknown of the route choice problem (the optimal strategies), the model 
for a single destination and user class is formulated by using the following binary variables for each arc aA: 

0 if
1 ifa
, a Ax , a A

    . (7.8) 
The assignment model (for each destination and class) may now be stated as the following optimization 
problem to minimize the total cost suffered by passengers (i.e. both travel costs on arcs and wait costs at 
stops), subject to consistency constraints (i.e. to assign the demand along the solution hypertree):  

i i
a a

a A i S a a
a i

qMin c q f x


 


       
   (7.9.a) 

subject to: 
a aa i

b b
b i

f xq q , i a , a Af x






     , (7.9.b) 
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i i a
a i

q d q , i N


    , (7.9.c) 
0iq , i N   , (7.9.d) 
 0 1ax , , a A   , (7.9.e) 

where qa is the flow on arc a, qi is the total flow at node i, di is the travel demand departing from node i, if any 
(these are flows of class g users directed toward destination d);. At first sight, Equations (7.9) constitute a 
mixed integer nonlinear optimization problem with unknowns qi (real-valued) and xa (integer-valued). 
Fortunately, however, this problem may be reduced to a simpler one by substituting the following flow 
conservation constraint for each node i and considering as unknown the arc flows qa ≥ 0 : 

a i
a i

q q


 . (7.10) 
Indeed, by introducing new variables i , which represent the total wait time at stop is, defined as: 

i ii
a a

a i

q
f x



     (7.11) 

one obtains the equivalent problem: 
a a i

a A i S
Min c q

 
        (7.12.a) 

subject to: 
a a a iq x f , a i , i S        , (7.12.b) 

a a i
a i a i

q q d , i N
  

     , (7.12.c) 
0aq , a A  , (7.12.d) 
 0 1ax , , a A   . (7.12.e) 

The objective function in Equation (7.12.a) is now linear and the 0-1 variables are only used in Equation 
(7.12.b) which are the only nonlinear constraints. These may be relaxed, yielding a linear program with real-
valued unknowns qa and i : 

a a i
a A i S

Min c q
 

        (7.13.a) 
subject to: 

a a iq f , a i , i S       , (7.13.b) 
a a i

a i a i
q q d , i N

  
     , (7.13.c) 

0aq , a A  . (7.13.d) 
It may be shown by using the extreme point properties of the solutions for a linear program, that Problem 
(7.13) is equivalent to Problem (7.12). The dual problem of this last linear program is: 

i i
i N

Max w d


     (7.14.a) 
subject to: 

 a a j ic w w , a i , j A       , (7.14.b) 
a a i

a i
f , i N


      , (7.14.c) 
0a , a A   , (7.14.d) 

where wi and a are the dual variables corresponding, respectively, to Equations (7.13.c) and Equation 
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(7.13.b). 
Let (q*, ω*) and (w*, µ*) denote, respectively, the optimal solutions of the primal and dual linear programs. 
The weak complementary slackness conditions are:   0* * *

a a i aq f , i a , a A        (7.15) 
and    0* * * *

a a j i ac w w q , a i , j A         . (7.16) 
In both the primal and dual formulations, this transit assignment model has a close resemblance to the 
shortest path problem, and perfect correspondence is obtained when none of the arcs involves waiting; thus 
fa =  and i = 0. 
 
7.1.1.5 Solution algorithm 
The solution algorithm is composed of two parts. In a first pass, from the destination to all nodes (including 
origins), the successors (arc or hyperarc) and the expected cost (label) from each node to the destination are 
computed. In a second pass, from all nodes (including origins) to the destination, the demand is assigned to 
the arcs aĀ of the hypertree. The algorithm is stated below. 
 
Table 7.1. Assignment algorithm on optimal strategies with exponential headways. 
 
Part 1: Compute the optimal strategy 
 
 Step 1.1 (initialization): 
 wi   iN; wd  0 
 fi  0 iS 
 B  A; Ā   
  
 Step 1.2 (get the next arc to examine): 
 find aB such that ca + wa+  cb + wb+ for each bB ; B  B-{a} 
  
 Step 1.3 (do the Bellman check for arc a = (i,j) and update the node labels): 
 if wi > ca + wj then: 

 if fa <  then  i i a j a
i

i a

w f c w fw f f
      ; fi  fi + fa otherwise wi  ca + wj (7.17) 

 Ā  Ā+{a} 
  
 Step 1.4 (loop until B is empty): 
 if B =  then stop otherwise go to Step 1.2 
 
Part 2: Assign the demand on the hypertree 
 
 Step 2.1 (preload the demand on the origins): 
 qi  di iN 
 qa  0 aA 
  
 Step 2.2 (propagate the node flow to the successor arcs): 
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 for each a = (i,j)Ā in decreasing order of (ca + wj) do: 
 if fa <  then aa i

i

fq q f   otherwise qa  qi (7.18) 
qj  qj + qa 

 
Special treatment is reserved to waiting arcs with finite frequency (fa < ), otherwise the proposed algorithm 
is identical to a shortest tree method adopting the label setting approach by Dijkstra. 
The auxiliary variables fi contain the combined frequencies of all waiting arcs that exit from stop iS and 
belong to the solution hypertree Ā. 
The convention 0   = i is used in the first update of expected cost for stop iS when fi = 0 and wi = . 
Note that in Step 1.3 a line a whose remaining cost once boarded wa = ca + wa+ is higher than the current 
expected cost wi of stop i will not be included in the attractive set, while the lines are processed in order of 
remaining cost to reach the destination. Moreover, the label update of Step 1.3 is consistent with Equation 
(7.6). This is consistent with the greedy approach and thus ensures the success of the proposed algorithm to 
compute the shortest hypertree. 
Finally, in Step 2.2 the flow propagation from stop i is consistent with the line shares of Equation (7.2). 
Also, by using the primal and the dual formulations of the proposed transit assignment model one can prove 
that the proposed algorithm indeed finds the solution of Problem (7.9). 
The algorithm is applied for each destination and class in turn. 
 
7.1.1.6 Numerical example 
In the following, the optimal strategy model with exponential line headways is calculated for the example 
network of Section 5.1.3. The assignment graph is the same of Section 6.2.5 and is also depicted in Figure 
7.2 along with the arc costs and the demand flows. 
 

 
Figure 7.2. Input data and results of AoN assignment to optimal strategies applied to the example network. 
 
The numerical computation presented in Table 7.2 results from a slight modification of the first pass of the 
algorithm described in Section 7.1.1.5: the next arc to visit is taken from the backward star of visited nodes 
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that are extracted in order of expected cost to destination, as in the shortest path algorithm of Section 6.2.5. 
The figures in brackets denote the Bellman updates of node costs and successors which are not convenient 
and/or are later replaced by a better solution. 
 
Table 7.2. Shortest hypertree computation for destination node 4 following the optimal strategy algorithm. 
node expected 

cost 
cumulative 
frequency 

successor(s) insertion 
order 

extraction 
order 

1 (49.07 = 30 + 19.07) 
(30.5 = 6 + 24.5) 
27.75 = (30.5/6 + 25/6) / (1/6 + 1/6) 

 
(1/6) 
1/3 

(2) 
(21) 
21,11 

14 14 

2 (23 = 15 + 8) 
19.07 = (23/15 + 17.5/6) / (1/15 + 1/6) 
(57.75 = 30 + 27.75) 

(1/15) 
7/30 

(32) 
32,22 
(1) 

10 11 

3 (19 = 15 + 4) 
11.5 = (19/15 + 10/3) / (1/15 + 1/3) 

(1/15) 
2/5 

(33) 
33,43 

8 8 
4 0   1 1 
11 25 = 25 + 0  14 5 12 
14 0 = 0 + 0  4 2 2 
21 24.5 = 7 + 17.5  22 13 13 
22 17.5 = 6 + 11.5 

(19.07 = 0 + 19.07) 
 23 

(2) 
12 10 

23 11.5 = 0 + 11.5  3 11 9 
32 8 = 4 + 4  33 9 6 
33 4 = 4 + 0 

(11.5 = 0 + 11.5) 
 34 

(3) 
6 5 

34 0 = 0 + 0  4 3 3 
43 10 = 10 + 0  44 7 7 
44 0 = 0 + 0  4 4 4 
 
Table 7.3. Attractive line shares for destination node 4. 
stop attractive set of lines line  share 
1 1, 2 1 1/2 = (1/6) / (1/6 + 1/6)  
1 1, 2 2 1/2 = (1/6) / (1/6 + 1/6)  
2 2, 3 2 5/7 = (1/6) / (1/6 + 1/15) 
2 2, 3 3 2/7 = (1/15) / (1/6 + 1/15)  
3 3, 4 3 1/6 = (1/15) / (1/15 + 1/3)  
3 3, 4 4 5/6 = (1/3) / (1/15 + 1/3)  
 
The shortest hypertree is identified recursively by the successor nodes. In particular, the shortest hyperpath 
from 1 to 4 is to board at stop 1 the first arriving between the red line and the green line; the former takes the 
passenger directly to the destination, while the latter requires to alight at stop 3; there, the passenger boards 
the first arriving between the maroon and the black line, both taking him/her to the destination. The dashed 
arcs of Figure 7.2 are not included in the solution hypertree. The arc flows can be easily determined by 
propagating the demand flows (depicted below the stops) along the solution hypertree, by applying the 
second pass of the algorithm and taking into account the line shares calculated in Table 7.3 (also depicted in 
green above the stops), thus obtaining the results depicted in yellow in Figure 6.8 for running arcs. 
 
7.1.2 Regular headways and sequential observation 
As explained in Section 6.2.1, exponentially distributed headways are just one extreme case in a spectrum. 
Indeed, exponential headways behave completely memory-less: if a passenger has already waited without 
success at the stop for a given period of time, s/he will have still to wait on average for the same time that 
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s/he expected to when s/he just reached the stop. 
Other headway distributions correspond to higher service regularity. For example, the Erlang distribution offers a flexible representation for different degrees of regularity through its second parameter n, which is 
linked to the headway variation coefficient : n = 1 / 2. Its expected wait time provided by Equation (6.66) 
spans from the exponential case 1/f (for n = 0) to the case of constant headways 0.5/f (for n  ). 
In the following we refer to a given stop iS and to the set Ls of lines serving it, each one associated with a 
waiting arc ai+. Recall that the probability density function of the wait time for line ai+ is related to the 
distribution of its headway (at that stop) through Equation (6.43). In the case of constant (deterministic) 
headways, the probability density function aw(t) of waiting line a exactly for t and the probability  w

a t  of 
waiting it for more than t are given, respectively, by (6.54) and (6.55); in the case of Erlang headways, these 
are given, respectively, by (6.52) (6.53). 
The following exposition is based on the work of Gentile et al. (2002-2005). 
 
7.1.2.1 Line shares and combined wait time 
Consider the successor hyperarc Āi+ = ă  i+ of stop iS. Assume that headways at stop i are independent 
and have a known distribution which may differ for each line serving the stop. 
The probability pa|ă(t) that line a is boarded at time t is given by: 

      
w w

a|ă a b
b ă a

p t t t , a ă
 

      , (7.19) 
since the right hand side yields the probability that line a arrives at time t and all other attractive lines b have 
not yet arrived. Then, the line share is: 

 
0

a|ă a|ăp p t dt , a ă
    . (7.20) 

In the case of constant headways, this reduces to: 
  0
1

maxăt
a|ă a b

b ă a
p f f t dt , a ă

 
       , (7.21) 

where the maximum waiting time tămax is the minimum headway among the attractive lines: 
1 :max

ă
a

t Min a ăf
      . (7.22) 

The expected wait time tă is given by: 
 

0
ă a|ă

a ă
t t p t dt , a ă




     . (7.23) 

where the integrand yields the wait time t multiplied by the probability that any line is boarded at t. Based on 
Equation (7.19) it is then: 

    0

w
aw

ă a wa ăa ă a

tt t t dt , a ăt



                . (7.24) 

The expected cost can be then retrieved from Equation (7.4). 
As an alternative, the expected wait time can be obtained as: 

 
0

w
ă a

a ă
t t dt




   , (7.25) 

where the integrand yields the probability that the wait time is higher than a given time t for all attractive lines 
a ; the proof of (7.25) is then similar to that of (6.48). In the case of constant headways, this reduces to: 

 
0

1
maxăt

ă b
b ă

t f t dt


    . (7.26) 
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The expected wait time ta|ă conditional on boarding line a is given by: 
 

0
a|ă

a|ă
a|ă

t p t dt
t , a ăp

  
   . (7.27) 

In the case of unbounded waiting time distributions, the computation can be addressed by cutting all tails at 
a suitable maximum headway hmax and scaling the original density of probability as follows: 

   1
w
a
w max
a

t
h


 , for t  hmax, and 0 otherwise. (7.28) 

By observing Equation (6.65), which has general validity, some authors substitute the frequency of the line fℓs with 2fℓs /(1-ℓs2) in the expression of the combined wait time and the line share (7.1) and (7.2), which are 
valid only for the case of exponential headways. As noted already in Section 6.2.1, this is an optimistic 
approximation that implies some coordination among different lines, which is unlikely to happen in practice. 
 
7.1.2.2 Construction of the attractive set 
Consider the sub-problem of a class g user choosing among the lines i+ available at stop iS the attractive 
set Āi+ = ă as part of a his/her trip towards destination d.  
Assume that the remaining cost to reach the destination once boarded each line available at the stop has 
been already determined. 
Equation (7.4) yielding the expected cost to reach the destination is still valid; but the greedy algorithm is not. 
In general, it can be shown that if a line belongs to the solution attractive set, then also all lines with smaller 
remaining cost belong to it. This is also intuitive: why should the passenger let go a line which is better than 
another line s/he is willing to board? 
Thus, the order of lines ai+ in terms of remaining cost wa still plays a role in the construction of the attractive 
set, which is formed by the first x lines. This is a general result. 
However, it may happen that, different from the classical optimal strategies with exponential headways, the 
sequence of wi(ăx), where ăx is the attractive set formed by the first x lines for x = 1, … , |i+| in terms of wa , shows more than one local minimum. In other words, it can happen that adding a line whose remaining cost 
is higher than the current expected cost may improve the solution. This also implies that in principle the 
solution attractive set could contain a line whose remaining cost is higher than the resulting expected cost. 
Therefore, the algorithm should scan all such sets and evaluate for each of them the expected cost through 
Equation (7.4) to find the optimal solution: 

  , : 1i x* i xA ă x* ArgMin w ă x , i       . (7.29) 
 
7.1.2.3 Solution algorithm 
The fact that best attractive set may contain a line whose remaining cost is higher than the resulting 
expected cost introduces possible cycles in the solution: the unlucky passenger that takes the bad line may 
alight as soon as possible (even at the same stop if the network topology allows it), go back to the stop and 
start waiting again. 
There are many reasons why this should be avoided: 

 in reality the situation that the passenger will find when getting back to the stop is strongly correlated 
with the unlucky one that s/e just left (instead for the model is a totally independent cast of dices); 

 in theory a hyperpath does not contain cycles and thus our modelling framework cannot support them. 
 
As mentioned in Section 6.1.7 the problem of cycles affects several models based on hyperpaths. 
Fortunately, for the case at hand there is some evidence that the greedy approach is still valid if lines are 
ordered in terms of remaining cost to the destination including (instead of excluding) the waiting cost (for that 
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line only); this conjecture has not yet been proved nor rejected. 
The original Optimal Strategies algorithm (Table 7.1) needs then to be adapted. 
The filter wi > ca + wj of Step 1.3 on the remaining cost should not be applied at stops, where instead any 
new line a will be tested for inclusion and added to the attractive set if it improves the expected cost wi . The 
tentative update is done using (7.21) and (7.25) in (7.4) instead of (7.17). 
Moreover, we can opt to process arcs in order of: 

 remaining cost to the destination including the waiting cost; 
 remaining cost to the destination excluded the waiting cost, 
 a predefined cost attribute (e.g. the distance on the graph from the stop to the destination). 

 
Finally, in Equation (7.18) the ratio between line frequency and combined frequency, which yields the lane 
share in the case of exponential headways, is to be replaced with the probability obtained through (7.21). 
The result is a heuristic which provides typically a good solution, but not necessarily an optimal strategy. 
Indeed, by reprocessing some arcs one may obtain a better hypertree. 
Another approach which was found to work well in practice in Visum (2003), relaxes the requirement that all 
successor nodes of waiting arcs must have been processed before processing the stop, and substitutes 
estimation from upper and lower bounds where expected costs for successor nodes are not yet known. 
 
7.1.3 Sequential observation and elapsed time 
In Sections 7.1.1 and 7.1.2 it was assumed that passengers can only observe the next arriving vehicle at the 
current stop. This limited information constrains the possible decisions. 
The simplest additional piece of information which can be obtained without any external support is the 
elapsed wait time. Whereas in the case of exponentially distributed headways this information is worthless, 
with growing regularity the passenger is able to revise his/her estimate of remaining wait times, and hence 
expected costs, while s/he is waiting. The effect becomes strongest with constant headways: if a line is 
served every 20 minutes, the estimated wait time at the beginning of waiting is 10 minutes; but after t 
minutes of waiting, the remaining wait time drops to (20-t)/2 minutes, until after at most 20 minutes the line 
must arrive with certainty. 
Billi et al. (2003-2004) and PTV (2003) independently analyse the situation and generalize the notion of 
attractive line set, which is no longer constant, but varies as time is spent waiting at a stop. 
Recall that any attractive set is formed by the first x lines in terms of remaining cost to reach the destination. 
Let then: 

 ăx()  i+ be the attractive set of stop iS that will be considered by the passenger at time   t of the 
wait after the elapsed wait time t  0 and 

 wi(t) be the expected cost after the elapsed wait time t  0 resulting from the future application of the 
dynamic attractive set ăx(t) . 

 
Note that wi(t) is different from the expected cost wi(ăx(t)) calculated through Equation (7.4) for a constant 
attractive set ăx(t). 
The key property of a “good” dynamic set ăx() is: 

    0a i x tw w t a ă , t , a i        ; (7.30) 
if after the elapsed wait time t arrives at stop i a line ai+ whose remaining cost wa to reach the destination is 
higher than the current expected cost wi(t), then the passenger has no convenience in boarding at and the 
line should not be included in the attractive set ăx(t) ; on the contrary, if its remaining cost wa is lower than the 
current expected cost wi(t), then for the passenger it is convenient to board line a, which should then be 
included in the in the attractive set ăx(t) . 
Based on the above property of the dynamic attractive set derives an important property of the function wi(t), which can be proved to be monotone decreasing: 

    0i iw w t , t , t      . (7.31) 
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The continuity of wi(t) is instead ensured by the continuity of the headway distribution functions. 
As for (7.30), in the following we provide just an intuitive proof based on logical deduction. Our conjecture is 
that wi(t+dt)  wi(t) at any t  0 for a small dt > 0. Without loss of generality, assume that the attractive set is 
constant during this small amount of time. The expected cost is composed by an expected waiting cost and 
an average (weighted by the line shares) of the remaining costs. The expected waiting cost decreases 
during dt because each line is more likely to arrive (the remaining wait time of a single line is a decreasing 
function of the elapsed time under mild assumptions). But the average remaining cost can increase if the line 
share of a costly line increases. Take this to the extreme case where the worst line is going to arrive at t+dt. 
Also in this case the expected cost decreases, because the remaining cost of that line is lower than the 
expected cost at t. 
Based on (7.30) and (7.31), starting from t = 0, the expected cost wi(t) decreases with the elapsed time t and 
reaches progressively the remaining cost wa of the initially attractive lines aăx(0) , which from that point shall 
exit the dynamic attractive set. Thus, each line ai+ is attractive in a time interval [0, a] for some a  0 or 
never attractive at all (i.e. a = 0). In other words, while wait elapses, the lines drop out of the attractive set in 
decreasing order of their remaining cost. 
Moreover, if the headway distribution of a line ai+ is bounded, then the line will exit the dynamic attractive 
set at time a not later than its maximum wait time hamax : a  hamax. 
The dynamic attractive set can be then defined as: 

      : : a i ax tă a i w w t a i t        . (7.32) 
 
7.1.3.1 Construction of the attractive set 
The definition of the dynamic attractive set ăx(t) reduces to finding the times a at which each line ai+ drops 
out of the attractive set. Let a1, a2, … , an , with n = |i+|, be the lines in decreasing order of remaining cost, 
from the best to the worst; it is: wa1  wa2  …  wan ; a1  a2  …  an . In the following the index a is 
dropped for the sake of simplicity. The expected cost wi(t) can then be denoted as wi(t, {1 , 2 , … , n}), thus 
showing explicitly its dependence on the dynamic set ăx() . 
The construction is done working backwards from the time 1 = h1max when a vehicle of the best line has 
arrived with certainty so that the expected cost is w1 . 
To find the time 2 when the second best line drops out of the attractive set, one needs to solve: 

  2 1 20 0iw , , ,..., w   . (7.33) 
For example, if the best line has constant headway this yields: 

 2 1
2 1 2max

i

w wh      . (7.34) 
The procedure follows recursively finding k by solving: 

  1 1 0 0i k k kw , ,..., , ,..., w    . (7.35) 
There however two circumstances to take into account when constructing the attractive set in this way. 
First, it can happen that the increasing expected cost (by proceeding backwards) does not reach wk before 
time 0: 

  1 10 0 0i k kw , ,..., , ,..., w   . (7.36) 
In this case, the procedure stops; the attractive set is constituted by the first k-1 lines: h = 0 h  k . This 
index is recorded as r* = k-1. 
Second, it can happen that k > hkmax , meaning that line k arrives with certainty before it drops out of the 
attractive set. In this case the procedure must be restarted from the time hkmax and the expected cost wk , considering that the wait ends at this time with a dynamic set constituted by the first k lines: h = hkmax h  k. 
This index is recorded as q* = k. 
Thus, the attractive set spans only the relevant intervals of instant [k-1 , k] with k from q* to r*. 
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Figure 7.3. Expected cost as a function of the elapsed time for a dynamic attractive set. Note that the instant 
obtained as intersection of wi(t, {h1max , 0 , … , 0}) with w2 , denoted 2 is higher than h2max, and the 
procedure is then restarted from h2max. 
 
7.1.3.2 Expected cost and line shares 
The probability density function of the remaining wait time   t for line ai+ after the elapsed time t  0 is: 

    
w
aw

a w
a

| t t
     , (7.37) 

while the probability of waiting for more than   t after the elapsed time t  0 is: is: 
    

w
aw

a w
a

| t t
     . (7.38) 

Assume that the passenger has waited without success until time t[k+1 , k] when the first k lines are 
attractive. The probability that a line h with h  k is boarded at time  is: 

           1 1

ww k jhw w
h h j w wj h k jh j

p | t | t | t t   
                   , (7.39) 

which yields the probability that line h arrives at time t and all other attractive lines j have not yet arrived; the 
latter product of the above equation yields the probability that the passenger will not board any of the 
attractive lines from time t to . 
The expected cost at time t then given by: 

              1
1 1 1

0 0 k w w wk kk j j j k
i k i j kw w wj j jj j jt

w t, ,..., , ,..., t w d wt t


  
                                            . (7.40) 

The first term is the expected cost at time t if boarding occurs before time k (on any attractive line at any 
instant [t, k]), while the second term is the remaining cost of line k if boarding occurs later. The second 
term can be written in this compact form because the value of the expected cost at time k is by construction 
equal to wk , while the passenger will wait until k only if no attractive line arrives in the meanwhile, which is 
yielded by the final product of the equation. 
This formula is used as in (7.35) to obtain numerically the time k+1 during the backward computation of the 
integral from t = k until wi(t) reaches wk+1 or t = 0. At the end of the recursive computation all k with k from q* 
to r* are determined, the attractive set is Āi+ = ă = {q*, …, r*} and the expected cost is wi = wi(0). 
Line probabilities can be computed afterwards, as follows: 

h1max 3  h3max 

w1 

w2 
wi(t) 

elapsed time 

expected cost 
w4 

4 = 0 

w3 

2 = 1 = h2max 

q* = 2 , r* = 3 

2 

wi 
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        11 1

k

k

wr* kr* h w
h|ă j j jwk Max h,q* j k jh

p d




   

                      . (7.41) 
Here the sum is taken over all intervals [k+1,k] in which line h may be boarded. The first product represents 
the probability that none of the lines k+1,…, r* has arrived before being dropped, so that the passenger is still 
waiting at k+1. The integral represents the probability of boarding line h during the interval [k+1,k], which is 
obtained like in (7.20). 
For completeness, the combined wait time of the attractive set can be obtained from Equation (7.3): 

i a a|ă
a ă

ă
i

w w p
t 

 
 

 . (7.42) 
The expected wait time ta|ă conditional on boarding line a can be obtained like in (7.27), once pa|ă(t) is defined 
based on (7.20) and (7.41). 
 
7.1.3.3 Solution algorithm 
Let us sum up the results again: a passenger can gain using a dynamic strategy. To this end, s/he defines a 
sequence of instant 1  2  …  n at which the lines available at the stop are dropped from the attractive 
set in order of remaining cost to reach the destination. During each interval [k+1,k] the attractive set is 
constant and made-up by the first best k lines. So, if after an elapsed wait time t[k+1,k] one line h  k 
arrives at the stop, the passenger boards it; other lines are ignored. 
The assignment algorithm is the same described in 7.1, except that the formulas for the tentative label 
update and the line shares are replaced, respectively, by (7.40) and (7.41). The computational advantage wrt 
the case of fixed dynamic set is that, by construction, the expected cost is higher than all the remaining costs 
of the attractive lines: this implies the absence of cycles and thus the optimality of the algorithm. 
 
7.1.4 Parallel observation 
In the previous sections it is still assumed that passengers can only observe the next line to be served at a 
stop. With real-time passenger information this assumption becomes invalid and passengers can often see 
the next departure times for all lines serving a stop. Equivalently, for the case of fixed schedules, printed 
timetables may exist at transfer stops, and the passenger may inspect them when s/he reaches the transfer 
stop, although they were not considered when s/he planned the journey. In both cases, the actual remaining 
wait times for all lines serving the current stop become available at the beginning of the wait. 
Gentile et al. (2002-2005) and VISUM (2003) independently propose a label-setting algorithm for computing 
expected costs from each stop to a given destination and assign flows consistently with the line shares 
resulting from a route choice based on optimal strategy. 
Unlike the other cases, the passenger does not choose an attractive set Āi+ = ă at stop i and then boards the 
first arriving vehicle of a line in ă. Stochasticity here plays a different role. A given passenger arriving at a 
stop observes all wait times ta for each ai+ simultaneously, and makes a deterministic choice based upon 
this information: he will simply choose the line a which minimizes the expected cost i  ta +wa . However, ta represents here a random draw from the distribution of all possible departure times, whose distribution is 
linked to that of headways as shown in Section 6.2.1. Different draws may lead to different decisions and 
multiple paths, which form hyperpath. 
 
7.1.4.1 Line shares and expected cost 
As stated before, the shares are equal to the probability of the respective lines being optimal. More precisely, 
the following condition shall hold for line aă to be chosen: 

 i a a i b bt w t w , b ă a          . (7.43) 
The probability pă|a(t) that line a is taken at time t is given by: 
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w w a ba|ă a b

b ă a i

w wp t t t , a ă
 

          , (7.44) 
since the right hand side yields the probability that line a arrives at time ta = t and all other attractive lines b 
have a worst expected cost, i.e. tb  ta + (wa - wb ) / i . Then, the line share is given by (7.20). 
Equation (7.44) resembles (7.19). The difference lies in the condition imposed on the lines b  a when a 
service of line a arrives at time t; it is not sufficient that line b will not arrive before t, but b must be worse than 
a in terms of waiting cost plus remaining cost. 
As headways are constant, the general formula reduces to: 

 
1

0
0 1 1af

a ba|ă a b
b ă a i

w wp f Mid , f t , dt , a ă
 

               . (7.45) 
The expected wait time tă is given by: 

 
0

ă a|ă
a ă

t t p t dt , a ă



     . (7.46) 

As headways are constant, the general formula reduces to: 

 
1

0
0 1 1af

a bă a b
a ă b ă a i

w wt f t Mid , f t , dt , a ă
  

                 . (7.47) 
The expected cost can be then retrieved from Equation (7.3). As an alternative, the expected cost can be 
obtained directly as: 

 
0

w bi i b
b ă i

ww ă t dt


         , (7.48) 

where the integrand yields the probability that the total cost to destination is higher than a given value it for 
all attractive lines b.  
The expected wait time ta|ă conditional on boarding line a is given by (7.27). 
 
7.1.4.2 Construction of the attractive set 
To determine the attractive set we simply have to evaluate the above Equations for ă = i+ an then find out 
which line have a positive diversion probability:  : 0a|iă a i p 

   . (7.49) 
In case of unbounded headways, any line serving the stop has a positive probability to be attractive: there is 
always a small chance that the good lines are late and one has to board on a bad line. This applies also to 
lines that apparently take the passenger far away from the destinations. 
From a computation point of view, this raises some issue in the shortest hypertree algorithm of Table 7.1. As 
explained in Section 7.1.2.3 the fact that the expected cost wi may be smaller than the remaining cost wa of 
some attractive line aă would produce cycles in the solution, which is to be avoided. 
 
7.1.5 Comparison among different waiting models 
We briefly compare here the different models in terms of the numerical results they yield for the example 
network of Section 5.1.3. To simplify the presentation we only use the demand from Stop 1 to Stop 4 (300 
pax/h); in this case, for each line, only one volume is relevant because all passenger board and alight the 
service at the same stop. 
 
Table 7.4. Line volumes (pax/h) and travel times for different waiting models. 

headway distribution exponential constant constant constant 
information acquired arriving line arriving line elapsed wait time parallel observation 
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volume Line 1 - Red 150 150 188 216 
volume Line 2 - Green 150 150 113 84 
volume Line 3 - Maroon 0 0 0 0 
volume Line 4 - Black 150 150 113 84 
expected travel time 14 30min30sec 27min45sec 27min41sec 27min35sec 
 
The base case is the classical Optimal Strategies with exponential headways and information only about the 
next line arriving at the stop. 
Without additional information, regular operation (constant headways) does not provide enough additional 
cues to change route choice. Both attractive paths are executed with 50% probability each. The reduction of 
expected travel time from 30min30sec to 27min45sec is only due to the shorter expected wait time with 
constant headways. 
The more information is available, the higher the share of the faster line, as passengers know when it is 
advantageous to pass up the slower line, although it departs first from Stop 1. 
Interestingly, the effect on total expected travel time is minimal in this particular example, but the shift of 
volumes between lines is significant: the difference compared to the case without additional information is up 
to 50%. 
Finally, note that the fastest route in terms of running time is to transfer at Stop 2 to Line 3. This option is 
never optimal due to the low frequency of the Maroon line. 
A further effect of information provision arises, if passengers can walk to nearby stops. In that case it makes 
a difference whether dynamic information about waiting times at the distant stop are already available before 
walking there. 
To illustrate this effect, consider a small extension of the example network. An additional Stop 5 can be 
reached by walking from Stop 2 (walking time = 2 min). From Stop 5 an additional service, Line 5 - Purple, 
runs to Stop 4, with the characteristics shown in Table 7.5. 
 
Table 7.5. Characteristics of additional Line 5 - Purple. 

line 
segment 

length 
[km] 

frequency 
[veh/h] 

expected 
headway [min] 

commercial 
speed [km/h] 

vehicle 
capacity [pax] 

running 
time [min] 

(4,5) 10 15 4=60/15 40 80 15 
 
In the extended network we compare the cases where passengers observe current waiting times only for 
their local stop, or also for the distant stops which are walkable from their current stop. 
 
Table 7.6. Effect of information provision for distant stops. 
headway distribution constant constant 
information parallel observation 

only for local stop 
parallel observation 
also for distant stops 

volume Line 1 - Red 196 118 
volume Line 2 - Green 104 182 
volume Line 3 - Maroon 0 85 
volume Line 4 - Black 0 0 
volume Line 5 - Purple 104 97 
expected travel time 14 27min25sec 26min37sec 
 
If no information is provided for the distant stop, passengers at Stop 2 need to take a deterministic decision 
based on expected remaining travel times whether to transfer at Stop 3 or at Stop 5. Table 7.6 shows that in 
this case passengers walk to Stop 5 and board Line 5, instead of transferring later to Line 4, as they do in 
the original example. The reason is that Line 5 is slow but frequent; this results in a gain of 10 sec. 
If waiting time information for both options is already available at stop 2, passengers can decide depending 
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on the current situation. This results in a large time saving, more than in the previous cases, and diverts 78 
passengers from the red Line to the options via Stop 2. Moreover, the possibility of adopting a strategic 
behavior at Stop 2 finally activates Line 3, which is fast but not frequent. 
 
7.1.6 When to alight? Where to continue? 
All models described above answer one question: which lines are boarded by passengers waiting at a stop? 
As explained in the previous sections, the answer depends on what a passenger can observe while waiting 
at a single stop. 
But what if a passenger has a broader scope of options without currently being in person at a stop? This is 
the case when there are several origin stops for a trip or several stops from which to continue after a 
transfer. More elementary, the choice between remaining on board a line and making a transfer depends on 
what information becomes available to the passenger at which particular moment. 
In the following, the question when to alight and where to continue is addressed, thinking of a passenger on 
board a line who is able to acquire some information on waiting times at next stops. Actually, current 
technology (passenger navigators for mobile devices) allows to acquire these information anywhere, which 
makes the route choice model further complicate. 
 
7.1.6.1 No information 
First consider the case where a passenger is on board a vehicle and has no information about wait times for 
onward connections. The decision whether or not to alight is deterministic because the passenger can 
estimate the cost of transferring at the next stop only on the basis of expected costs. Two questions arise: 

 Is this decision really deterministic? 
 If onward connections are available from several stops, should the choice set contain one option for 

each possible next boarding stop or just one for the transfer in general? 
 
Based on the objective information available to the passenger the answer to question 1 must be “yes”. This 
implies that passengers on board a given service and travelling to the same destination will all alight at 
precisely the same (transfer) stop. While this rule is theoretically sound, it would limit severely the set of 
paths chosen for a given O-D pair. 
In practice, passengers may use more paths due to a variety of reasons, including random taste variations 
and imperfect estimates of remaining travel time. This may cause difficulties calibrating a deterministic 
choice model to observed flows. One possible way to account for more realistic behaviour is to apply a 
discrete choice model (see Section 4.5) to the choice set containing two alternatives: remain-on-board and 
alight; the utility of alighting should include the expected cost of each possible next boarding stop, i.e. the 
satisfaction of all these alternatives. A stochastic route model based on sequential arc choices provides a 
suitable foundation for such an approach. 
 
7.1.6.2 Information about local onward options while still on board 
Assume now that full wait time information is available at the current stop, but it is displayed in a way (e.g., 
through count-down panels) that the passenger can access them while still on board. Even in the absence of 
an information system, passengers on board a line may observe other vehicles arriving and departing at the 
same stop. Such an observation does not require any technical device, but still improves the passenger 
estimate of wait times for the transfer options. In that situation, remaining on board and each alternative 
transfer to other lines from the current stop become simultaneous options within a single choice set (not 
sequential choices). The appropriate boarding model (one of 7.1.1-7.1.4) should then be applied to the entire 
choice set. 
If the trip could alternatively continue from a different stop, for which no wait time information is locally 
available, then there is a prior choice (deterministic or stochastic) between transferring to such a distant stop 
and the local options. 
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7.1.6.3 Information about all onward options while still on board 
Finally, suppose that even more information is available to the passenger on board: actual wait times are 
displayed not only for the current stop, but also for the next stops of the line including more distant stops 
reachable by a short walk. Assume that a smartphone application enables the passenger to simultaneously 
observe all lines with which s/he can continue the journey – regardless of his/her current position. Based on 
real-time data and short-term forecast about arrival times, the mobile device can suggest the best transfer 
stop and the best line to board there. 
In such a situation the passenger will take a sequence of decisions (the real-time forecast may change 
during the trip) on a choice set which includes a wide set of lines serving stops reachable by a short walk. 
The choice model from Section 7.1.4 would be appropriate for this kind of situation. 
A clear distinction shall be done between the alternatives among which the choice is made at each diversion 
node (basically all nodes are diversion here), that are all reachable lines, and the local alternatives physically 
connected with the node, that are all arcs of its forward star. In essence, the choice is modelled wrt the first 
set of alternatives (the lines) and then the results are aggregated wrt the second set of alternatives (the arcs) 
to apply the sequential route choice paradigm of Section 6.1.5. 
 
7.1.7 Optimal strategies on diachronic graphs 
Consider the space-time network introduced in Section 6.3. How is it possible to simulate optimal strategies 
in the framework of a schedule-based model? 
To this aim we shall concentrate on the essence of the model presented in Section 7.1.2: when a vehicle of a 
line (in this case a run) departs from the stop, a passenger will board if, depending on his/her destination, it 
is convenient (i.e. less costly) to do so than keep waiting for other services. In that case, we say that the line 
is attractive for the passenger. 
We are here assuming that the passenger is not informed of the exact timetable when making his/her route 
choice (at the origin) and becomes aware of the run departure times by observing the vehicles at the stop. 
The assignment on the diachronic graph will then reflect what happens in practice for a given schedule, 
which can be fixed, but unknown to the passenger, or a realization for a particular day. 
Interestingly, no hyperpath representation is required by the proposed model (no diversion nor hyperarcs). 
Hence, there is no need to modify the stop topology with respect to that of Figure 6.11. The only thing we 
need in addition to the classical schedule-based model is the expected cost to reach the destination from the 
stop as it is perceived by uniformed passengers (which is different than the cost resulting in practice), 
because this allows to represent the binary en-route decision between boarding and keep waiting.  
For this purpose we shall apply Equations (7.4) and (7.25). This requires to calculate the attractive set (which 
here is not represented as a hyperarc) and the determinants of the headway distribution for each line. The 
latter can be obtained through Equations (5.12) and (5.13) as in Section 6.3.3.  
The attractive set (for a given class of users) can instead be built-up at stops in reverse chronological order 
and transmitted backward in time through waiting arcs of the diachronic graph, within the computation of the 
optimal strategies towards a given destination. The procedure differs from the computation of a shortest tree 
on the diachronic graph (see Section 6.3.6) in only one point: the remaining cost of the waiting arc is not 
given as usual by the sum of the arc cost plus the expected cost to destination of its final node, as in 
Equation (6.15), but it is provided by the combined cost of the attractive set for the arc. 
More specifically, to each stop is associated a set of lines and for each line of the set the cost to reach the 
destination once boarded. Each time a stop node is visited to apply the Bellman relation during the optimal 
strategy procedure, the attractive set is updated in a different way depending on which type or arc provided 
the best local alternative: 

 if the boarding arc prevails and the corresponding line is already present in the attractive set, than its 
cost to reach the destination once boarded is updated with the meaning cost of the arc; 

 if the boarding arc prevails and the corresponding line is not present in the attractive set, then it is 
added with the remaining cost of the arc; 

 if the combined cost of the attractive set resulting after the above updates is higher than the remaining 
cost of the boarding arc plus the cost of waiting for that line only, the attractive set is reinitialized with it 
consistently; 
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 if the waiting arc prevails, then no update occurs; 
 if the stop arc prevails, heading to the pedestrian network, then the attractive set is reinitialized with an 

empty set. 
 
The solution of this routing algorithm is a tree which can be used to propagate on the network the demand 
loads from the origins to the current destination. 
 
7.1.8 Reference notes and concluding remarks 
Early works on transit systems were mostly devoted to the analysis of service regularity and to the process of 
waiting at single stops served by several lines. They are mainly aimed at developing realistic bus headway 
distributions and consequent passenger wait time distributions, such as Power and Erlang, in the case of 
common lines, i.e. lines overlapping along part of their itinerary (e.g., Hasseltroem, 1981; Marguier, 1981; 
Gendreau, 1984; Marguier and Ceder, 1984; Jansson and Ridderstolpe, 1992; Bouzaıene-Ayari et al., 2001). 
With reference to the case of independent exponential headways, Spiess and Florian (1989) introduced the 
notion of optimal strategies to describe the adaptive en-route behaviour of passengers at the stop who board 
the arriving carrier if it belongs to a given set of attractive lines, not necessarily common. Nguyen and 
Pallottino (1988) showed how strategies can be formalized through hyperpaths. These two seminal works 
provided the theoretical and algorithmic base for the development of assignment models on large transit 
networks ever since. The expected wait time at a stop is assumed equal to the inverse of combined 
frequencies for all attractive lines and the line shares are determined by multiplying the frequency and the 
expected wait time. This model can also be extended to the case of stochastic (logit) route choice (Nguyen 
et al., 1998).  
As was pointed out also by these original contributions, the assumptions underlying this frequency-based 
model are inconsistent with statistical analysis of real-world data (e.g., Bellei and Gkoumas, 2010), since 
independent exponential headways are obtained only under highly irregular service conditions, which is a 
clearly undesirable for planning. 
The more recently developed models and methods, not only have added rigor to the analysis and efficiency 
to the algorithms, but also have provided the possibility of reproducing several relevant transit phenomena: 
queuing of passengers at stops, discomfort on-board due to overcrowding, partially regular and correlated 
distributions of headways at stops, provision of information at stops, etc. Congestion and irregularity are 
treated in later sections. Here we concentrated on the role of information and its consequences on the 
behaviour of passengers at stops. 
A sound formulation of the stop model which allows for more realistic headway distributions, ranging from 
deterministic to exponential, for example based on the distance from the first stop, as well as for different 
assumptions on the available information, including the provision of real-time estimation of vehicle arrivals 
using Variable Message Signals or Apps, is supported by the more recent work of Gentile et al. (2005); these 
aspects are essential for a good planning of transit systems (Shimamoto et al., 2005; Ren et al., 2009). If no 
real-time information is available, passengers may change their attractive set to minimize the expected cost, 
simply based on the time already spent waiting at the stop (Billi et al., 2004, Noekel and Wekeck, 2009). 
The provision of information (Dziekan and Kottenhoff, 2007) has been analysed, not only in the framework of 
frequency-based models, but also in the framework of schedule-based models (Hickman and Wilson, 1995; 
Crisalli and Rosati, 2005). The interaction of many individuals receiving and transmitting real-time 
personalized information (crowd sourcing), for each Origin-Destination pair and desired departure or arrival 
time, is a new stream of research (Arentze, 2013; Nuzzolo et al., 2013).) 
The algorithm presented in Section 7.1.7 for the computation of optimal strategies on diachronic graphs 
without hyperpaths is an original contribution of this book. The proposed approach inherits some similarity 
with the stochastic model of Cortés et al. (2013) for static transit networks, where the probability of boarding 
a line is a decreasing function of the difference between the remaining cost and expected cost to destination 
of keep waiting. 
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7.2 Discomfort: seating and crowding 
Authors: Jan-Dirk Schmöcker, Guido Gentile 
 
The previous section explained how route choice strategies depend on the information on vehicle arrivals 
available to passengers during their wait at stops as well as on the service regularity (headway distributions). 
However, route costs and hence assignment results can be further influenced by vehicle capacities in terms 
of discomfort and queuing, as described in this section and the following one. 
In particular, this section presents equilibrium models with no strict capacity constraints where the congestion 
derives from discomfort. The aim is indeed to reproduce the following phenomena in the context of transit 
assignment: 

 in-vehicle crowding; 
 at stop crowding; 
 seat capacity. 

 
As explained in Section 5.1.2, discomfort is not only perceived as on-board crowding, but also as on-platform 
densities, as well as in specific pedestrian elements for circulation inside stations (e.g., stairs connecting to 
the platform).  
The value of being able to sit while travelling is well documented in the behavioural literature. At higher 
densities, the more standing passengers are packed, the more likely they perceive this as uncomfortable and 
stressful. Hence, passengers will be willing to re-route on longer but less-congested routes. 
Thus, discomfort for passengers on-board increases with in-vehicle loading, which can be measured by the 
saturation rate, i.e., number of passengers on board divided by the vehicle capacity. This is directly related to 
the seat availability and the density of standing passengers: 

 for low/medium saturation rates, crowding discomfort is due to the lower probability of getting a seat 
(seat unavailability); 

 for medium/high saturation rates, crowding discomfort is due to the closer physical distance with other 
passengers (privacy violation);  

 for higher saturation rates, crowding discomfort is due to physical contact and pressure of other 
passengers (squeezing). 

 
This section is structured into 4 main parts. In Section 7.2.1, we limit our attention to privacy violation and 
squeezing, which require just the specification of the functional form for the crowding coefficient. In Section 
7.2.2, we address the essence of the seat availability modelling, that is how to describe the allocation 
mechanism taking into account the priority rules among different passenger flows, such as the chronological 
order of operations at stops, by amending the topology of the network model presented in sections 6.2.2 and 
6.3.1. In Section 7.2.3, we describe the formulation of the equilibrium problem. Finally, in Section 7.2.1.1, we 
provide some numerical examples. 
 
7.2.1 Overcrowding congestion 
For the sake of simplicity, we refer here to the case of frequency-based assignment on static networks 
presented in Section 6.2, although the proposed formulation can be immediately extended to the case of 
schedule-based models on diachronic graphs presented in Section 6.3. 
The task at hand is to specify the functional expression of the crowding discomfort coefficient ℓsgcrowd of 
segment sSℓ-Sℓ+ of line ℓL for user class gG introduced in Section 6.2.3. Possibly the most simple 
method to describe the discomfort caused by overcrowding is by introducing a multiplication factor to the 
running travel time for all passengers on-board, as in Equation (6.67.d). This can be done with a BPR-type 
function, similar to the cost functions considering the impact of road congestion to travel times: 

   1
crowd

crowd crowd dep arr runasg a g sveh ss

qq , a N ,N A , g Gf 

             


  
 

 . (7.50) 
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where: 
 qa is the volume of passenger on the running arc a; 
 fℓs is the frequency of line ℓ at stop s, i.e., the flow of vehicles serving the line; 
 ℓveh  fℓs is the capacity of line ℓ at stop s (the flow of vehicles multiplied by their individual capacity); 
 qa / (ℓveh  fℓs) is the saturation rate (or occupancy) of vehicles on the line segment s; 
 gcrowd and ℓcrowd are the BPR coefficient and exponent for overcrowding congestion perceived by 

passengers of class g travelling on-board line ℓ (typical values are gcrowd = 1 and ℓcrowd = 2). 
 
The example in Section 4.5.4 provides more insights on the practical relevance of vehicle occupancy level in 
revealed passenger behavioural and willingness-to-pay. 
The saturation rate can also be interpreted as the number of passengers qa / fℓs on board a single vehicle 
serving the line (the flow of passengers divided by the flow of vehicles) divided by its capacity ℓveh. 
Also the discomfort caused by overcrowding at the stop can be modelled by introducing a multiplication 
factor to the wait time, as in Equation (6.67.f). This can be done again with a BPR-type function which 
specifies the expression of the crowding discomfort coefficient sgcrowd of stop sS for user class gG 
introduced in Section 6.2.3: 

  1
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q  , (7.51) 

where: 
 the crowding discomfort depends on several arc flows, and thus in principle on the flow vector qA , 
 the sum of the passenger flow qb for each waiting arc b exiting from the stop s multiplied by the its 

expected time tb yields the expected number of passengers waiting at the stop; 
 sstop is the capacity stop of stop s; 
 the ratio of the above two numbers yields the saturation rate of stop s; 
 gcrowd and scrowd are the BPR coefficient and exponent for overcrowding congestion perceived by 

passengers of class g waiting at stop s (typical values are gcrowd = 1 and scrowd = 2). 
 
The formulas just introduced can be immediately extended to the case of schedule-based models based on 
diachronic graphs under the consideration that the arc loads represent in this case a number of passengers, 
which can directly be compared with the vehicle and stop capacity, respectively: 
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7.2.1.1 Applications to the example network 
The arc performance model of Equation (7.50) to reproduce crowding congestion is here applied jointly to 
the classical route choice model of Optimal Strategies presented in Section 7.1.1. The resulting equilibrium 
problem has been solved for the example network of Section 5.13 through the MSA, although better 
performing algorithms are available. 
Given the dimension of the vehicles serving the lines (80 pax), the line capacities are way higher than the 
flows on the running arcs assigned to the shortest hyperpaths, as shown in Table 7.7. However, some 
congestion emerges and the discomfort on-board is slightly higher than the mere cost of travel time. Does 
the equilibrium mechanism actually change the flow pattern? Not necessarily. 
Indeed, only if the cost on the uncongested shortest route (hyperpath, in this case) of a given O-D pair 
increases so much as to be higher than that of an alternative route we then observe some shift of flows. 
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Moreover, in the case of strategic behaviour, more paths are actually used by the same O-D pair 
(passengers board on the first arriving attractive lines), but their shares does not depend on cost which suffer 
congestion, but rather on frequencies which do not suffer congestion (at least in this basic model). As a 
consequence, the arc flows of Table 7.7 are exactly the same of those resulting in the numerical example of 
Section 7.1.1.6. 
 
Table 7.7. Line volumes (pax/h) due to crowding congestion. 
    Segment   
    1→2 2→3 3→4 1→4 2→1 production 
line [pax/h] 3.5 km 3 km 3 km 10 km 3.5 km [pax*km/h] 
1- Red 800       150   1500 
2 - Green 800 150 407       1746 
3 - Maroon 320   103 211     941 
4 - Black 1600     539     1618 
walk INF 0       0 0 

 
Let’s now assume that the vehicles serving Line 2 and 3 are substituted by small vehicles with a limited on-
board capacity of 8 pax. In this case the two lines get very congested and some passenger must divert to 
alternatives routes to ensure equilibrium. In particular, all users from Stop 1 will consider only Line 1. The 
results of the assignment are reported in Table 7.8 
Due to the line share mechanism based on frequencies, the proportion of passengers boarding Line 2 and 3 
at Stop 2 is unchanged wrt the previous case, although the costs for the two lines are different as the volume 
on-board (on Line 2 there are not anymore the 150 passengers that boarded at Stop 1). 
We can then conclude that the transit assignment equilibrium based on Optimal Strategies is somehow more 
stable than that without strategic behaviour. 
Note that, as expected, the capacity constraint is not satisfied by the equilibrium formulation with crowding 
congestion. Despite the presence of alternative routes (e.g. walking to Stop 1) based on the BPR model of 
Equation (7.50) the passengers departing from Stop 2 prefer to suffer a very high discomfort (there are 
around three times as much passengers on-board than the vehicle capacity). This is also due to the fact that 
there is no advantage in boarding Line 2 form Stop 1 instead that from Stop 2, since the discomfort on-board 
is suffered by all passengers; the seating capacity model presented in Section 7.2.2 would instead ensure 
priority for passengers already on-board). 
 
Table 7.8. Line volumes (pax/h) due to crowding congestion with small vehicles for Lines 2 and 3. 
    Segment   
    1→2 2→3 3→4 1→4 2→1 production 
line [pax/h] 3.5 km 3 km 3 km 10 km 3.5 km [pax*km/h] 
1- Red 800       300   2999 
2 - Green 80 0 257       772 
3 - Maroon 32   103 57     479 
4 - Black 1600     543     1630 
walk INF 0       0 0 

 
7.2.2 Seat availability 
The main disadvantage of the approach proposed in the previous section to reproduce on-board discomfort 
is that the resulting model equally penalises all passengers on-board, independently of when they boarded 
the line vehicle. Therefore, it is not reflected that passengers who boarded earlier have a higher chance of 
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obtaining a seat and of not experiencing the (whole) disutility caused by over-crowding.  
The differentiation of the discomfort experienced by sitting versus standing passengers is accomplished in 
this section by explicitly modelling the limited seat availability and the random process of passengers finding 
a seat. A main difficulty for this is though the representation of initially standing passengers who might be 
able to find a seat during their journey thanks to seated passengers that alight at stops, considering that the 
former have a priority over the newly boarding passengers. In general, this leads to a network model (with 
more nodes and arcs) and to an equilibrium model (with asymmetric cost functions) that is more complex 
than that introduced to represent standard overcrowding congestion. 
In particular, it is here assumed that passengers who are already on board have priority over the newly 
boarding passengers in two ways: 

 passengers arriving at a stop sitting are guaranteed a seat for the next line segment, so that they 
either alight or remain seated; 

 passengers arriving at a stop standing who do not alight have priority over the passengers newly 
boarding, i.e., these passengers have a prior chance to occupy any seat that might become vacant 
thanks to alighting passengers. 

 
This leads to a new network description based on hyperarcs (see Section 6.1.3) and to the introduction of 
“fail-to-sit” probabilities, as described in the following. 
A different specialization of line nodes (see Figure 7.4) with respect to that proposed in Figure 6.6 is 
required, where each line layer is duplicated to represent the service for seating passengers and for standing 
passengers. Moreover, for each line, two additional nodes are introduced to represent placing: 

 a board placing node to consolidate at each stop the waiting phase for both types of boarding 
passengers; who succeeds in getting a seat takes the seat placing arc, and who will have to stand 
takes the stand placing arc. 

 a stand placing node that splits the dwelling arc to consolidate the flows of standing passengers who 
decide to remain on-board; who succeeds in getting a seat at the stop takes the switch seating arc, 
and who will have to stand takes the keep standing arc. 

 
Therefore, in total, six nodes for each stop of line ℓL are introduced:  

 the seating arrival node Nℓsa-seatNℓ , sSℓ-Sℓ– ; 
 the seating departure node Nℓsd-seatNℓ , sSℓ-Sℓ+ . 
 the standing arrival node Nℓsa-standNℓ , sSℓ-Sℓ– ; 
 the standing departure node Nℓsd-standNℓ , sSℓ-Sℓ+ ; 
 the board placing node Nℓsp-boardNℓ , sSℓ-Sℓ+ . 
 the stand placing node Nℓsp-standNℓ , sSℓ-Sℓ+ . 

 
The network is then built up by introducing the following types of arcs and hyperarcs: 

 the pedestrian arcs Awalk = Ewalk ;  
 the stop arcs Astop = {(Bsstop, s): sS}  {(s, Bsstop): sS};  
 the seat running arcs Ar-seat = {(Nℓsd-seat, Nℓs[+ℓ]a-seat): sSℓ-Sℓ+,ℓL} ; 
 the seat placing arcs Ap-seat = {(Nℓsp-board, Nℓsd-seat): sSℓ-Sℓ+ ,ℓL} ; 
 the seat dwelling arcs Ad-seat = {(Nℓsa-seat, Nℓsd-seat): sSℓ-Sℓ–-Sℓ+,ℓL} ;  
 the seat alighting arcs Aa-seat = {(Nℓsa-seat, s): sSℓ-Sℓ– ,ℓL} . 
 the stand running arcs Ar-stand = {(Nℓsd-stand, Nℓs[+ℓ]a-stand): sSℓ-Sℓ+,ℓL} ; 
 the stand dwelling arcs Ad-stand = {(Nℓsa-stand, Nℓsp-stand): sSℓ-Sℓ–-Sℓ+,ℓL} ; 
 the stand placing arcs Ap-stand = {(Nℓsp-board, Nℓsd-stand): sSℓ-Sℓ+ ,ℓL} ; 
 the stand alighting arcs Aa-stand = {(Nℓsa-stand, s): sSℓ-Sℓ– ,ℓL} ; 
 the waiting arcs Await = {(s, Nℓsp-board): sSℓ-Sℓ+ ,ℓL} ; 
 the switch seating arcs Ap-switch = {(Nℓsp-stand, Nℓsd-seat): sSℓ-Sℓ+ ,ℓL} ; 
 the keep standing arcs Ap-keep = {(Nℓsp-stand, Nℓsd-stand): sSℓ-Sℓ+ ,ℓL} ; 
 the boarding hyperarcs Hboard = {{(Nℓsp-board, Nℓsd-seat), (Nℓsp-board, Nℓsd-stand)}: sSℓ-Sℓ+ ,ℓL} ; 
 the dwelling hyperarcs Hdwell = {{(Nℓsp-stand, Nℓsd-seat), (Nℓsp-stand, Nℓsd-stand)}: sSℓ-Sℓ+ ,ℓL} . 
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Figure 7.4. Network topology to represent seat availability and priority. 
 
The diversion nodes are here the placing nodes: Ndiv = Np-board  Np-stand. Two different hyperarcs are 
introduced for each line stop to represent the probabilistic event of seating or standing: 

 a boarding hyperarc, for newly boarding passengers; 
 a dwelling hyperarc, for standing passengers who have priority over the newly boarding passengers in 

getting the seats left by alighting passengers. 
 
With respect to the performance model presented in 6.2.3, the following changes: 

 placing arcs (Ap-stand  Ap-seat  Ap switch  Ap-keep) and hyperarcs (Hboard  Hdwell) are dummy (null cost); 
 equations (6.67.c) apply to all dwelling arcs and branches; 
 the crowding discomfort coefficient (7.50) applies only to the stand running arcs where the vehicle 

capacity ℓveh is replaced with the standing capacity ℓstand, while for seat running arcs it assumes a 
constant (lower) value ℓgseat . 

 
Instead, a new model must be specified to provide the hyperarc diversion probabilities. Under the main 
assumption that all competing passengers, possibly belonging to different classes, have (on average) the 
same motivation in chasing any free seats, the sit probability is simply given by the ratio between supply and 
demand of seats; the probability is anyhow bounded between 0 and 1. 
For the dwelling hyperarc, the supply is given by the seating capacity of the vehicle serving the line multiplied 
by the frequency at the stop (i.e., the flow of vehicles) reduced by the dwelling passengers that are already 
seated; the demand is given by the passengers that arrive at the stop standing on-board, reduced of the 
share of those who alight: 
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For the placing hyperarc, the supply is given by the seating capacity of the vehicle serving the line multiplied 
by the frequency at the stop reduced by the dwelling passengers that are already seated and further reduced 
by the switching passengers; the demand is given by the boarding passengers: 
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As mentioned already, for both types of hyperarcs it is assumed: tă = 0. These equations allow to apply the 
sequential model presented in Section 6.1.5. 
The presence of fail-to-sit probabilities provided by Equations (7.54) and (7.55) ensures that the seating 
capacity of the vehicle is never exceeded. 
For what concerns route choice, equation (6.28) ensures that the expected cost for reaching the destination 
when boarding a given line results from the average of seating and standing weighted with the sit and fail to 
sit probability, respectively. In turn, the cost of standing includes the possibility of seating at next stops. 
Noteworthy, this model implies that the alighting decision is not predetermined anymore: passengers who 
have obtained a seat might prefer to transfer later, whereas standing passengers are more likely to transfer 
earlier. The fact that the diversion probability of the seat alighting arc is different than that of the stand 
alighting arc can be indeed well reflected by the proposed network structure, as the expected costs to reach 
a destination of the seat line nodes are typically lower than those of the corresponding stand line nodes. 
However, in the proposed model it is not possible to check if a seat becomes available for certain after 
alighting of other passengers, and then decide whether to alight at the current stop, as this may be not 
possible or too stressful for a passenger. If this feature is instead desirable, it requires some modification of 
the network. 
There are two major differences between the hyperarcs just introduced for modelling seating and those for 
modelling attractive line sets (introduced in Section 7.1): 

 for seating, there is no choice to be made – the probabilities are determined by a physical random 
event, in fact there is just one exiting hyperarc; 

 the resulting diversion probabilities (no choice probabilities) depend (asymmetrically) on passenger 
flows – while the attractive line set depends solely on given headways and remaining costs (which 
may depend indirectly on flows), here the assignment model is necessarily congested, leading to an 
equilibrium problem. 

 
The scheme of Figure 6.3 can be applied considering the sequential model based on hyperarcs of Section 
6.1.5. In particular, the fail-to-sit probabilities are computed by the performance model as an additional cost 
function, as they depend on the arc flows. Consistency is found only at equilibrium. 
The extension to schedule-based models of the proposed approach is straightforward and requires just to 
apply the duplication of the line sub-network as in Figure 7.4 to each single run of the diachronic graph 
introduced in Section 6.3.1. 
The example in Section 4.5.4 provides more insights on the practical relevance of seat availability in 
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revealed passenger behavioural and willingness-to-pay. 
Although, crowding and seating have been presented separately, the two concepts can easily be considered 
simultaneously in the same model. This is as simple as including the BPR-type discomfort coefficient of 
Equation (7.50) in the expanded seat-availability network of Figure 7.4. However, travellers that are seated 
perceive crowding very differently to those standing; for the sake of simplicity, we can assume that for the 
two kinds of running arcs (seating and standing) there are two different line discomfort coefficient ℓgline, 
denoted ℓgseat and ℓgstand, respectively, and that the crowding discomfort coefficient ℓsgcrowd affected by 
congestion applies only to the latter. 
 
7.2.3 Static equilibrium models with discomfort cost functions 
Discomfort congestion due to on-board overcrowding yielded by equation (7.50) is separable, because the 
cost of the running arc depends on the flows of the same arc only. The resulting equilibrium problem is then 
a rather simple extension of classical traffic assignment models on road networks. This will hence lead to 
iterative methods that relocate passengers away from crowded line (or run) segments until an equilibrium 
solution is reached, such as the fixed-point algorithm presented in Section 6.1.8.  
In the case of deterministic behaviour where passenger choose a route with minimum cost, if only one class 
of users is considered, the transit assignment problem can be formulated as an equivalent minimization 
program with unknown flows qad of users traveling on arc aA to destination dD, whose objective function 
is the well-known sum of arc cost integrals (Beckmann, 1956):  
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       , (7.56.a) 

subject to the consistency (node flow conservation) and non-negativity constraints: 
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This leads to a convex optimisation problem in terms of arc flows that may be efficiently solved with several 
iterative methods, ranging from Frank Wolfe to Gradient Projection (Bertsekas, 1999). Most of such 
equilibrium algorithms involve the following cyclic sequence of steps: 

0. start from a feasible flow pattern which satisfies non-negativity and consistency constraints; 
1. calculate the new performance pattern through the arc cost functions at the current flow iterate; 
2. determine the search direction, which implies to apply the route choice model based on the new costs 

and to carry out the consequent flow propagation of travel demand; 
3. find a step in the search direction such that the new iterate of flows possibly leads to an improvement 

of the objective function; 
4. check the distance to equilibrium (for example through the relative gap); if it does not meet the stop 

criteria then go back to step 1. 
 
In gradient projection algorithms (including bush-based methods, such as LUCE (Gentile, 2014) and 
Algorithm B (Dial, 2006) the route choice probabilities (path-based or arc-based) obtained in step 2 are not a 
direct blind application of the route choice model but rather try to incorporate the consequences on the 
equilibrium of such choices. 
As further well known from the road assignment case, multiple equilibria may though be possible in terms of 
route flows (and arc flows, if multiple classes are considered), while the uniqueness of equilibrium is ensured 
only in terms of arc volumes. However, uniqueness requires (as a sufficient condition) the strict monotonicity 
of the arc cost function, while here the only cost actually depending on flows is that of running arcs through 
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the crowding discomfort coefficient. Therefore, uniqueness does not hold true for pedestrian arcs that are not 
affected by congestion. 
Another possible approach (directly derived from road traffic assignment) to the formulation of equilibrium 
problems with overcrowding discomfort on transit networks is the interpretation of the Lagrangian multipliers 
of a mathematical program with explicit capacity constraints as the additional cost on running arcs due to 
congestion (ℓsgcrowd – 1). If the arc flow is below the line capacity, then the crowding discomfort coefficient is 
one; if the flow equals the capacity constraint, then the additional cost of discomfort can be positive and the 
crowding coefficient can be higher than one: 

 1 if  
1 if 

crowd veh
sg a s dep arr run

s scrowd veh
sg a s

, q f , a N ,N A , g G, q f 
              

  
 

  

 . (7.57) 

Lam et al. (1999) address the transit assignment problem with strict capacity constraints for stochastic (logit) 
route choice. The resulting model is basically an extension of Bell (1995) so solve equilibrium problems on 
road networks. 
Other methods to incorporate capacity constraints will be presented in the next Section 7.3. 
To address the combination of overcrowding congestion with the route choice model based on optimal 
strategies discussed in Section 7.1.1, Problem (7.13) is suitably extended (Spiess and Florian, 1989). The 
objective function (7.56) of the equivalent minimization program is changed to:  
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where the additional unknowns id represent the total wait time at stop iS of passengers traveling towards 
destination dD; moreover, the following constraints involving the frequency fa of each line associated with a 
waiting arc ai+ are to be considered: 

ad a idq f , a i , i S, d D          . (7.58.a) 
In this case, the above step 2 requires to integrate the hyperpath-based algorithm presented in Table 7.1 for 
the uncongested case, leading to efficient methods (Wu et al. 1994). 
Discomfort congestion due to overcrowding at stops yielded by equation (7.51) is non-separable, because 
the cost of each waiting arc depends on the flows of all waiting arcs at the stop; moreover, the Jacobian of 
the arc performance function is not symmetric. The resulting equilibrium problem cannot then be formulated 
as a non-linear optimization program like those presented in this section; to this end we can use a variational 
inequality problem or a fixed-point problem, as in Bellei et al. (2000). The same is true for the seat availability 
model based on hyperpaths presented in Section 7.2.2, where the fail to sit probabilities (7.54) and (7.55) 
depend on several arc flows at the stop. 
Specifying flow-dependent arc costs and diversion probabilities is not just applied within static frequency-
based models, but also within schedule-based models on space-time networks. The extension of both 
discomfort congestion models for overcrowding and seat availability to the latter framework is rather 
straightforward and does not merit particular considerations. The same is true for the equilibrium models 
presented in this section: there is no substantial difference from a mathematical point of view between a 
static frequency-based assignment and a schedule-based assignment on space-time networks. 
 
7.2.4 Reference notes and concluding remarks 
 
7.2.4.1 Crowding congestion 
Congestion functions for the representation of discomfort due to overcrowding on-board and at stops were 
proposed by several authors. References to the resulting equilibrium models have been provided already in 
Section 7.2.3. 
Practitioners in Tokyo (Morichi et al., 2001; Kato et al., 2010), where crowding discomfort is a severe 
problem, rely on a disaggregate assignment model based on discrete choice theory where choice sets of 
paths are created a priori and passengers are then split between routes based on probit or logit probabilities 
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in the context of a stochastic user equilibrium. In their application, a congestion model analogous to (7.50) is 
used with a fixed exponent ℓgcrowd = 2. They found that the parameter ℓgcrowd associated with crowding 
congestion is significant in all choice models and that its evaluation depends mainly on the trip purpose. 
 
7.2.4.2 Seating congestion 
Tian et al. (2007) describe a schedule-based model that considers passenger congestion effects including 
seat availability. They formulate an equilibrium model for a many-to-one network applicable for the morning 
commute into the city centre of large metropolitan areas. Reducing the model to a many-to-one network has 
the advantage that it avoids the problem of standing passengers being able to find a seat during the journey 
due to alighting passengers. Using a schedule-based model allows to represent explicitly the optimal 
departure time. The paper illustrates that at equilibrium some long distance commuters will travel before and 
some will travel after the peak, while the spread in optimal departure times increases the longer the travel 
distance, as the travel costs of standing gain in importance compared to the early or late arrival penalties. 
Sumalee et al. (2009) have developed a stochastic assignment model on transit networks that explicitly 
considers the effect of seat availability on route choice as well as departure time choice. They consider 
priorities of on-board passengers over newly boarding passengers and further assume that passengers who 
are travelling for a longer distance and passengers who have stood for a longer time have a higher 
motivation in chasing any free seats. This assumption introduces a further complexity in the model as ‘the 
past’ has to be considered in modelling travellers’ behaviour at each decision point, while the probability of 
getting a seat is not simply given by the ratio of supply and demand. Indeed, this kind of seat allocation is 
solved by a simulation approach.  
Leurent (2012) and Schmöcker et al. (2011) have suggested two frequency-based approaches to consider 
seating capacity and standing discomfort. Compared to Sumalee et al. (2009) both models are simpler in 
that they do not consider individual passengers’ desire to sit depending on their journey length and standing 
time, which avoids the introduction of a simulation approach. The representation of priorities among 
passenger flows and the reflection that seated passengers do not suffer from crowding effects is the main 
focus for both models. The main idea is the introduction of “fail-to-sit” probabilities. 
In Schmöcker et al. (2011) this is achieved through the introduction of second layer of nodes and arcs for 
each line representing the seated service. The seat availability model presented in Section 7.2.2 founds its 
roots in this work. 
In Leurent (2012) this is achieved through the introduction of line legs that represent each combination of 
boarding and alighting nodes for standing and seating, which are used in route choice and flow propagation. 
Leurent and Liu (2009) applied the latter approach to the Paris network and provided further evidence that 
considering seat availability can indeed have a significant effect on line loadings (with changes by up to 
30%) and on the overall passenger cost.  
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7.3 Passenger queuing 
Authors: Guido Gentile, Valentina Trozzi 
 
The major limitation of the models that represent vehicle capacity as a discomfort due to overcrowding (in 
contrast to that caused by seat unavailability) lays in the fact that it is not possible to reproduce the priority of 
on-board passengers with respect to those waiting at the stop. Thus, all passengers suffer the same cost, as 
if everybody alighted the vehicle at each stop and attempted re-boarding it. In reality, when overcrowding is 
very heavy and the crush capacity is reached on-board, no further passenger is able to get on the vehicle. 
Then, an oversaturation queue of passengers waiting at the stop is formed. But clearly this phenomenon 
does not affect the passengers that are already on-board. 
This type of severe transit congestion due to vehicle capacity affects many transport systems, like busways 
and railways both in developing and developed countries, mostly in metropolitan contexts, and is lately 
receiving increasing attention by modellers and operators. 
This chapter presents equilibrium models with capacity constraints and is devoted to the modelling of the 
following phenomena in the context of transit assignment: 

 oversaturation queues of passengers waiting at stops, 
 mingling and fail-to-board probabilities vs. FIFO and service bottlenecks. 

 
7.3.1 Queuing congestion 
Passenger queuing occurs when a vehicle departing from a stop sSℓ-Sℓ+ has not enough remaining 
capacity to accommodate on-board all travellers that are waiting for that line ℓL (possibly among other lines 
of the attractive set). More specifically, a residual queue remains unserved at the stop when the flow of 
passengers wishing to board (arc b) is higher than the capacity of the line (given by the capacity of the 
vehicle ℓveh multiplied by the frequency of the line at that stop fℓs) reduced by the flow of dwelling passengers 
(arc d) that are already on-board:     veh arr dep dwell dep wait

b s d s s sq f q d N ,N A , b s,N A           . (7.59) 
If the above condition occurs, some passengers are not able to board the arriving carrier serving the line and 
will have to wait for a next departure. The additional wait time due to the lack of space on-board increases, 
on average, not only with the number of passengers wishing to board, but also with the number of dwelling 
passengers that are already on-board. The latter clearly have a priority on the former with respect to the 
occupation of the available vehicle space and are not affected by passengers attempting to board (unless 
discomfort is considered). Queuing congestion is thus patently non-separable. 
It is important to distinguish two different queuing phenomena that occur at stops: 

 the queue formed by passengers that are waiting for the next arrival of a line and will be actually able 
to step on-board (under-saturation queue), which is an unavoidable phenomenon that depends on the 
nature of the service and its discontinuous availability in time; 

 the queue where some waiting passengers will not be able to board the next arriving carrier (over-
saturation queue), which characterizes a critical functioning state of the system; in this case some 
passengers may have to wait for several carrier arrivals before being able to board. 

 
In this section the focus is on over-saturation queues, as the under-saturation queues have been analysed 
indirectly in Section 6.2.1 through the modelling of wait times. 
In general, the mechanism of passenger queuing is determined by the stop layout and behavioural attitudes. 
There are two main possible assumptions for passenger (over-saturation) queuing: 

 mingling, and 
 FIFO. 

 
For stations with long platforms, it is generally assumed that travellers mingle, which implies that no priority 
rule is satisfied. Thus, in cases of oversaturation, a passenger who reaches the stop just before the carrier 
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arrives may be lucky and board the approaching vehicle, while those who arrived earlier may be unlucky and 
forced to continue waiting. A common modelling assumption is that all passengers waiting along the platform 
have the same chance of boarding the next approaching vehicle. A similar situation occurs at bus stops if the 
social culture of passengers is such that no priority is recognized to travellers arrived earlier at the stop. 
On the other hand, in some countries for some transit systems (including buses) it happens that First In First 
Out (FIFO) queues arise at stops, with boarding priority for passengers arrived earlier. Polite queuing is 
experimented more and more around the world when congestion at stops becomes a recurrent fact, as this 
passenger behaviour ensures a reduction of waiting time variance (but the same expected value). 
Moreover, for stations or stops with very crowded platforms, the mingling mechanism is not anymore valid, if 
extremely severe congestion occurs. In this case, a large queue of passengers forms and may even 
spillback on the access ways to the platform including stairs. Therefore, the queueing should be divided into 
two parts, first FIFO and then mingling.  
Furthermore, we can distinguish two queuing mechanism depending on the stop layout: 

 the stop is designed (with barriers) to have physically separate queues for each line; 
 passengers arriving at the stop join a single mixed queue regardless of their attractive line(s). 

 
The first instance is very common in coach and train terminals. In this case, should congestion occur and no 
real-time information be available, passengers cannot behave strategically because they must join one 
specific queue as soon as they reach the stop. It may then be difficult to change queue in order to take 
advantage of events occurring while they are waiting (e.g., if another attractive line arrives first). 
Consequently, the stop shall be modelled as a group of separate stops, each of which is served by one line 
only. 
The second type of stop layout is more common in urban public transport networks. In this case, if 
congestion occurs, users arriving at the stop join the unique queue (regardless of their choice set) and (try 
to) board the first line of their attractive set that becomes (actually) available. In the case of mingling, each 
passenger waiting at the stop has the same probability to succeed in boarding an arriving vehicle that is 
attractive to him/her. In the case of FIFO queue, passengers who do not board the arriving vehicle at the 
stop because it is not attractive to them can be overtaken by other passengers, and the priority rule is valid 
only among the passengers actually interested in the departing line. So, if a passenger in the queue does not 
board, then the next one will if the service is in his/her attractive set; this process starts with the first 
passengers and is repeated until there is available capacity on-board.  
In general, two main modelling approaches are possible to represent crush capacity: 

 soft capacity constraints, and 
 strict capacity constraints. 

 
In the first case, the vehicle capacity can be exceeded by the number of on-board passengers. Congestion 
affects the cost pattern inducing additional impedance on waiting arcs through a suitable arc cost function. 
Then, the route choice model will indirectly tend to lower the on-board flow exceeding the line capacity. 
However, relevant capacity violations can result at equilibrium when no alternative route is available.  
In the second case, the vehicle capacity will never be exceeded by the number of on-board passengers. 
Strict capacity constraints can be satisfied in several ways: 

 introducing a discontinuity in the arc cost function of waiting arcs with a vertical asymptote (or simply, 
a very steep impendence) when on-board flows approach the line capacity, which can be done also in 
the context of a static assignment model but requires (to ensure the existence of a solution) the 
presence of an alternative (possibly uncongested) path (e.g., on the pedestrian network); 

 removing the flow in excess from the boarding arc (if the model is static) and may be injecting it in the 
following temporal layer of a quasi-dynamic assignment model, or in the waiting arc for next runs in a 
schedule-based assignment model; 

 explicitly reproducing the queuing phenomenon in the context of a within-day dynamic assignment 
model. 

 
In the following, two methods are proposed to represent mingling queues, which can be developed in the 
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framework of frequency-based models on static networks or schedule-based models on space-time networks 
(effective frequency, by De Cea and Fernandez, 1993; and fail-to-board probability, by Kurauchi et al., 2003). 
One last method is proposed to represent FIFO queues, which requires the within-day dynamic simulation of 
macroscopic flows (bottleneck model with variable exit capacity, by Meschini et al., 2007). 
 
7.3.2 Effective frequency 
The fundamental idea behind the method of effective frequency is that, for a passenger who is waiting a 
given line at a stop, the probability to succeed in boarding its next approaching vehicle (which is the same for 
all mingling travellers without considering any boarding priority) decreases on average with the level of on-
board congestion. The latter is expressed by the saturation rate of the next line segment (running arc a), 
where the waiting flow (arc b) and the dwelling flow (arc d) merge. 
Therefore, rather than the nominal frequency fℓs , it is assumed that passengers will consider at stop sSℓ-Sℓ+ 
an effective frequency fℓseff that is lower than the nominal one, and reduced by the following BPR term:  
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where: 
 qa / (ℓveh  fℓs) is the saturation rate of the vehicle in the next line segment; 
 ℓqueue and ℓqueue are the BPR coefficient and exponent for the queuing congestion (typical values are ℓqueue = 1 and ℓqueue = 4). 

 
The expected wait time at the stop (and also the split of passenger among attractive lines in the strategy 
models presented in Section 7.1) is, hence, calculated by applying the same equations that are valid in the 
uncongested case, whereas the nominal frequency is substituted with the effective frequency. When waiting 
for a single line, based on Equation (6.65), the wait time at stop sSℓ-Sℓ+ is then given by: 
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  . (7.61) 
The effective frequency method has been the first (computationally tractable) way to incorporate capacity 
constraints in a transit assignment model. However, it leads to the overloading of some services. 
After all, representing this congestion phenomena in a static framework is somewhat disappointing, since 
queuing is intrinsically dynamic. In order to partly overcome this fault, an alternative formulation of the 
method can be considered by incorporating the following congestion function obtained from queuing models: 
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where: 
 ℓqueue is the exponent for the ratio between (demand) the waiting flow and (supply) the remaining 

capacity (typical values is ℓqueue = 4); the ratio is bounded to one and the possible 0/0 reads 1. 
 
In this case, the congestion level is expressed as the ratio between the flow of passengers willing to board 
(arc b) and the remaining on-board capacity, given by the line capacity minus the dwelling flow (arc d). When 
the saturation rate approaches one, the effective frequency becomes null and the wait time infinite. 
Consequently, a strict capacity constraint can be enforced, with line loads never exceeding the available on-
board space. 
Nevertheless, using such formulation introduces a discontinuity in the arc cost function, and affects the 
mathematical properties that ensure the existence of equilibrium, as well as the convergence of solution 
algorithms; especially so, if the overall capacity of the transit network is insufficient to transport the whole 
demand. This issue can be partly tackled by introducing a suitable pedestrian network composed of arcs with 
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infinite capacity and finite (but relatively high) cost, so that a walking path is always available between every 
O-D pair. 
In general, the method of effective frequency may result in travel times that are unrealistically high. Indeed, 
as in any static assignment model, we are not able to reproduce the accumulation capacity of the network: in 
reality, exceeding flows are temporarily stored into queues that build-up and vanish during the peak, while 
passengers can progress towards their destination after a finite delay. 
A practical way of representing queues in the context of static assignment is obtained by coupling optimal 
strategies (see Section 7.1) and effective frequencies into a user equilibrium model (see Section 6.1.8). As 
congestion increases, more (and hence slower) lines are included in the attractive set. Moreover, if all lines 
are congested, some passengers would rather walk than continue to wait. This leads to a stability condition: 
passengers waiting at a stop would consider an attractive set that is never completely saturated and 
therefore each of them would be able to board the first arriving vehicle for at least one of the attractive lines. 
 
7.3.2.1 Applications to the example network 
Here we ideally continue the numerical tests of Section 7.2.1.1, by substituting the crowding congestion with 
the queueing congestion. 
The arc performance model of Equation (7.60) is here applied jointly to the classical route choice model of 
Optimal Strategies presented in Section 7.1.1. The equilibrium problem has been solved for the example 
network through the MSA, and the resulting flows are reported in Table 7.9, assuming small vehicles for Line 
2 and 3. 
Differently from the results of Table 7.8 where the crowding congestion is reproduced, in the case of (non-
separable) queueing congestion a relevant number of passengers departing from Stop 2 prefer to walk to 
Stop 1 and then to board Line 2, even if the same Line 2 is available directly at Stop 2. This is because here 
the passenger already on-board have priority over those boarding at the stop; the former who boarded Line 2 
at Stop 1 do not suffer any congestion at Stop 2 unlike the latter. 
Despite the effective frequency model is intended to reproduce vehicle capacities, as we can see from Table 
7.9 these are represented as soft constrains, in the sense that they can be (and are in our case) not (at all) 
satisfied. 
 
Table 7.9. Line volumes (pax/h) for queuing congestion with effective frequency. 
    Segment   
    1→2 2→3 3→4 1→4 2→1 production 
line [pax/h] 3.5 km 3 km 3 km 10 km 3.5 km [pax*km/h] 
1- Red 800       308   3080 
2 - Green 80 102 266       1155 
3 - Maroon 32   86 96     544 
4 - Black 1600     496     1489 
walk INF 0       110 384 

 
To overcome this drawback, we finally present the results of a similar equilibrium model with queue 
congestion where Equation (7.60) is substituted with Equation (7.62). The latter has a strict capacity 
constraint, but to ensure the existence of a solution requires the presence of some alternative non-congested 
route, e.g. a pedestrian network. The results reported in Table 7.10 show how the capacity constraints are 
now actually satisfied.  
 
Table 7.10. Line volumes (pax/h) for queuing congestion with strict capacity constraint. 
    Segment   
    1→2 2→3 3→4 1→4 2→1 production 
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line [pax/h] 3.5 km 3 km 3 km 10 km 3.5 km [pax*km/h] 
1- Red 800       549   5479 
2 - Green 80 80 80       514 
3 - Maroon 32   32 32     191 
4 - Black 1600     319     960 
walk INF 0       329 1140 

 
Yet, this is achieved through very high costs for boarding passengers, which may be unrealistic, and also 
requires many MSA iteration to reach equilibrium. For example, from the results of Table 7.11, we can see 
that the expected cost to reach the destination for the passengers departing from Stop 2 is three times that 
of the uncongested case. Thus, a fully satisfactory representation of capacities can only be achieved in a 
dynamic context, where passenger queues are explicitly simulated, as will be shown in the following 
sections. 
 
Table 7.11. Expected costs of different congestion models. 

cost [min] from optimal crowding crowding queuing strict capacity 
origin [stop] strategies large vehicles small vehicles small vehicles small vehicles 

1 27.75 29.71 34.51 29.82 31.87 
2 19.07 21.68 53.35 59.80 61.87 
3 11.50 12.74 14.15 12.85 13.00 

 
7.3.3 Fail-to-board probability 
The method presented in this section is meant to reproduce strict capacity constraints by developing one 
step further the same idea underlying the alternative formulation of effective frequencies, given by Equation 
(7.62). When mingles queues occur at the stop, the probability to succeed in boarding the next approaching 
vehicle for a passenger who waits a given line is assumed equal to the ratio between supply and demand or, 
more specifically, the remaining capacity available on-board, given by the line capacity minus the dwelling 
flow (arc d), and the flow of waiting passengers who wish to board (arc b). 
This implies that, in case of oversaturation, at stop sSℓ-Sℓ+ some travellers will fail to board line ℓL. Here, 
the aim is to represent this phenomenon explicitly (on flows) and not implicitly (on costs) through its effects 
on the perceived frequency. Like for the fail-to-sit probability (see Section 7.2.2), the result is conveniently 
achieved by means of a network model based on hyperarcs through the specification of diversion 
probabilities. 
Few changes to the schemes of Figure 6.6 are required in the stop topology to reproduce the fail-to-board 
probability (see Figure 7.5). In order to represent this event in topological form, a service node Nℓsserv is 
introduced to split the waiting arc in two (like in the seat availability model); its second part is then called 
boarding arc. Furthermore a failure arc is added to transfer back to the stop node the passengers who do not 
succeed in boarding the next vehicle serving the line and shall start waiting again. The following types of 
arcs and hyperarcs are then introduced or modified: 

 the waiting arcs Await = {(s, Nℓsserv): sSℓ-Sℓ+, ℓL} ; 
 the boarding arcs Aboard = {(Nℓsserv, Nℓsdep): sSℓ-Sℓ+, ℓL} ; 
 the failure arcs Afail = {(Nℓsserv, s): sSℓ-Sℓ+, ℓL} ; 
 the service hyperarcs Hserv = {{(Nℓsserv, Nℓsdep), (Nℓsserv, s)}: sSℓ-Sℓ+ ,ℓL} . 
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Figure 7.5. The stop topology to reproduce the fail-to-board probability. 
 
Note that different names have been adopted for the splitting node and the resulting arc in the fail-to-board 
probability model with respect to the seat availability model, so that the two models can be combined without 
confusion. The possible transfer arcs are connected to the service node. 
The diversion nodes are here only the service nodes: Ndiv = Nℓsserv. Service hyperarcs are introduced for each 
line stop to represent the probabilistic event of succeeding and getting on-board vs. failing and keep waiting. 
Under the main assumption that all competing passengers, possibly belonging to different classes, have (on 
average) the same motivation in getting on-board, the boarding probability is simply given by the ratio 
between supply and demand of on-board places; the probability is anyhow bounded between 0 and 1: 
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 . (7.63) 

Like for seat availability, or this type of hyperarcs it is assumed: tă = 0.  
The fail-to-board probability pbfail is clearly the complement to 1 of the boarding probability. This schema 
allows for different models, from static or quasi-dynamic, to dynamic macroscopic or microscopic models. 
In static models, the failing arc is not actually coded in the network, because it is not possible to cast 
passengers back to the stop at a later time and its presence would create absorbing cycles, which are 
difficult to handle, while the capacity constraint would be violated. Thus, the flow exiting from the waiting arc 
and entering the boarding arc (that in this case is the only branch of the boarding hyperarc) is scaled by the 
boarding probability, while the rest is eliminated from the network. 
In dynamic models, including schedule-based models with space-time network, passengers who fail to board 
are transferred back to the stop node. 
Two approaches are available to represent the cost of failure: 

 if the failure arc is not coded, then a non-temporal cost component is to be introduced on the waiting 
arc to represent the risk of fail-to-board; the passengers who failed to board are eliminated from the 
model (or swapped to the next temporal layer); 

 if the failure arc is explicitly coded, then the risk of failure is represented by the hyperarc diversion, 
which will possibly take the passengers back to the stop where a new wait begins. The expected cost 
to reach the destination from the service node will, then, be given as the weighted average between 
the cost of the departure node plus the boarding arc and the cost of the stop node plus zero (the 
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failure arc is dummy). By construction, the cost of the service node is lower than the cost of the stop 
node (because the wait for one vehicle arrival has already been paid, although fail-to-board can occur) 
and the resulting increment due to the weighted average represents the cost of failure. No passenger 
is eliminated from the network. 

 
In the first case, with respect to the performance model presented in 6.2.3 few things change: 

 on the boarding arc, the travel time is null and the boarding fee is paid; 
 on the waiting arc, the travel time and comfort are expressed by Equation (6.67.f), where the non-

temporal cost is given by the risk of failure: 
  0 vot nt bfee mfee serv dep board

a ag g ag s g s st , , c c , a N ,N A             , (7.63.a) 

      
serv wait
swait vot wait stop crowd nt fail fail

a s A ag g g sg sg A ag a ag arr serv trans
' s s

a s,N At t , , c p c , a N ,N A
                q q 


 

 . (7.63.b) 

All waiting passengers suffer from a cost due to the risk of fail-to-board, which is additional to the temporal 
cost of waiting for the arrival of the boarded service. This expected cost of failing is obtained multiplying the 
fail-to-board probability pafail by the additional cost in the case of failure cagfail. The latter is given by the risk-
averseness coefficient grisk of class gG users towards (abnormal) delays (since failing to board is perceived 
as a malfunctioning of the system), multiplied by the value of time ag of the waiting arc, multiplied by the 
average additional wait time conditional on failing. In turn, this additional wait time is given by the expected 
headway (the inverse of the frequency), multiplied by the number of arriving carriers a waiting passenger will 
fail to board on average before boarding, which is equal to one over the probability of not failing. Then, we 
have: 

 1 1
1

fail risk
ag g ag fails a

c f p      

 . (7.64) 

The term at the denominator fℓs  (1-pafail) can also be seen as a sort of effective frequency and its inverse as 
a sort of effective expected headway; this coincides with the average additional time that the passenger has 
to wait if s/he fails to board the first arriving vehicle. 
The above failing cost tends to infinity as the fail to board probability goes to one. The amount of passengers 
who will accept the risk of failing is a result of the equilibrium mechanism.  
This schema is also suitable for quasi-dynamic models. When propagating flows, temporal layers are 
processed in chronological order, and passengers who fail to board are transferred back to the stop node, in 
the next temporal layer, when they will have to wait again (note than the route choice is calculated based on 
the arc costs of the current layer). 
The cost expression (7.64) might be too severe as nobody will accept risking if the fail-to-board probability is 
close to one. However, queuing is a dynamic phenomenon that is related to a temporary lack of capacity. In 
reality, passengers might know from experience that congestion at stops will eventually decrease after the 
peak. Instead, equation (7.64) evaluates the failure costs as if congestion lasts forever. 
The second case completely overcomes this fault, but requires dynamic assignment models. In the case of 
fully dynamic models, the cost expression Equation (7.64) is not necessary, since the failure arc takes with a 
given probability the passenger back to the stop node at a later time. At this time the cost of the stop node 
intrinsically includes the additional delays due to queuing and is higher than the cost of the departure node. 
Like in the case of seat availability, the diversion probabilities (and not ‘choice’ probabilities) are determined 
by a physical random event and depend (asymmetrically) on passenger flows. Differently from the case of 
multiple attractive lines here the assignment model is necessarily congested, leading to an equilibrium 
problem. The scheme of Figure 6.3 can be applied considering the sequential model based on hyperarcs of 
Section 6.1.5.  
The example in Section 4.5.4 provides more insights on the practical relevance of fail-to-board probability in 
revealed passenger behavioural and willingness-to-pay. 
The idea of fail-to-board probability can be applied also in the case of schedule-based services modelled 
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through a space time network. In this case the service node Nrsserv may be introduced to split the boarding 
arc just to isolate the diversion node; indeed, there whould be no need of such a node, because the waiting 
phase and the boarding phase have already dedicated separate arcs; the failure arc is headed at the next 
node in time of the same stop. With respect to the network model presented in Section 6.3.1 the following 
arc and hyperarcs are introduced or modified: 

 the service arcs Aserv = {((s, t –(rs - tℓboard)), Nrsserv): sSℓ-Sℓ+, rRℓ, ℓL} ; 
 the failure arcs Afail = {(Nrsserv, (s, t –(rs - tℓboard) +1)): sSℓ-Sℓ+, rRℓ, ℓL} ; 
 the boarding arcs Aboard = {(Nrsserv, Nrsdep): sSℓ-Sℓ+, rRℓ, ℓL} ; 
 the service hyperarcs Hserv = {{(Nrsserv, Nrsdep), (Nrsserv, (s, t –(rs - tℓboard) +1))}: sSℓ-Sℓ+, rRℓ, ℓL } . 

 
Equation (7.63) can be immediately extended to the case of schedule-based models based on diachronic 
graphs under the consideration that the arc loads represent in this case a number of passengers, which can 
directly be compared with the vehicle capacity: 

   
 1 0 1

board serv servveh rs rsfail d
a arr dep dwella rs rs

a s,t t ,N Aqp Mid , , ,q d N ,N A
           

  , (7.65) 

 
7.3.4 Bottleneck model with variable exit capacity 
We address here the case where the stop layout and the travellers’ behaviour are such that passengers 
have to join a FIFO queue and respect the boarding priority of those who arrived before them.  
The FIFO queuing process at a stop can be seen as a gate system, and it works similarly to the access of a 
cableway. 
think what happens to access a cableway. As soon as passengers reach the stop, they join the queue before 
the gate and start waiting. But only passengers after the gate will be actually able to board the next arriving 
carrier. Thus, in general, an ideal gate separates the two phases: passengers before the gate are queuing 
(over-saturation delay due to congestion), while passengers after the gate are waiting for the next arrival 
(under-saturation delay due to the discontinuity of the service). 
However, this scheme does not apply when passengers waiting at the stop go to the different destinations 
and thus may have different attractive sets partially overlapping. In this case, if a line that arrives at the stop 
is not attractive for a passenger in the queue s/he can be overtaken by the next one, if the service is in 
his/her attractive set, until there is available capacity on-board. The result is a sort of mixed queue for all 
lines serving the stop. 
For modelling convenience, we imagine the presence of separate queues for each line, and those queues 
are joined with certain probabilities by passengers that include the corresponding lines in their attractive sets. 
The under-saturation delay due to the discontinuity of the service is spent before (and not after) joining the 
queue on hyperarcs whose line shares spit passengers among the above queues.  
Few changes to the schemes of Figure 6.6 or Figure 7.1 are then required in the stop topology to reproduce 
FIFO queuing (see Figure 7.6). To separate the over-saturation queue form the under-saturation queue, a 
queue node Nℓsque is introduced to split the waiting arc in two; its second part is then called queueing arc. The 
following types of arcs are then introduced or modified: 

 the waiting arcs Await = {(s, Nℓsque): sSℓ-Sℓ+, ℓL} ; 
 the queuing arcs Aque = {(Nℓsque, Nℓsdep): sSℓ-Sℓ+, ℓL} . 
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Figure 7.6. The stop topology to reproduce FIFO queuing. 
 
Static assignment is not a proper modelling framework to reproduce queuing phenomena. In the following, a 
dynamic macroscopic model for frequency-based assignment is then introduced adopting the framework 
presented in Section 6.4. It is then assumed that all variables are (in general) continuous functions of the day 
time (also called temporal profiles), and transit services are conceived as a continuous flow of supply with 
‘instantaneous capacity’ (which is expressed in terms of passengers per hour instead of passengers per 
vehicle). This allows to reproduce the effect of time-discrete services through the temporal profile of the 
average wait times. 
Let’s consider then the supply side of the equilibrium problem, where the aim is to provide for given arc flows 
the exit times and the comfort coefficients of each arc, as well as the diversion probabilities of each hyperarc, 
which are all used in the route choice model. 
When it is assumed that passengers follow a FIFO protocol, the exit time (profile) from the queuing arc of a 
specific line for a given entry flow (profile) can be calculated by means of the bottleneck model proposed in 
Meschini et al. (2007) that explicitly reproduces the formation and dispersion of passenger queues. The main 
assumption is that the capacity of the bottleneck, given by flow of line vehicles (the frequency) multiplied by 
the vehicle capacity and reduced by the flow of dwelling passengers (the remaining capacity), is continuous 
in time but not constant. Indeed, the flow of passengers using the line is not constant in time due to demand 
modulation; moreover, the presence of time-varying dwelling delays due to boarding and alighting passenger 
flows induces frequency modulation in time, as already in Section 6.4.5. 
The mathematical formulation of the model works on cumulative flows and considers the cumulative number 
of passengers joining the queue of a line and the cumulative remaining on-board capacity as an input, and 
the cumulative number of passengers leaving the queue and boarding the line as an output. If the remaining 
on-board capacity does not suffice to accommodate the flow of passengers who are ready to board after the 
under-saturation wait at the stop, a queue builds up which will dissipate only if/when the remaining on-board 
capacity is greater than the inflow of arriving passengers from the waiting arc. Let: 

 a() be the instantaneous remaining capacity  at time , which is available at the end of the queueing 
arc a for passengers wishing to board line ℓL at stop sSℓ-Sℓ+. 

 
This is equal to the capacity of one vehicle ℓveh multiplied by the flow of vehicles departing from the stop, i.e., 
the departure line frequency fℓsdep(), reduced by the flow of passengers exiting from the dwelling arc d, the 
latter being equal to the entry flow at the earlier time -tℓsdwell under the assumption of constant dwell time:  

       veh dep out que dep que
a s d s sf q , a N ,N A            . (7.66) 

Let’s recall that the cumulative inflow qacin() and outflow qacout() of the queuing arc a at time  are given by 
the integral of the instantaneous inflow and outflow, respectively; analogously, let’s define acum() as the 
cumulative remaining capacity: 
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                    (7.67) 

 

 
Figure 7.7. Bottleneck with time-varying capacity. The cumulative outflow is the lower envelop of the profiles 
family for each  , with    , obtained from the vertical translation of the cumulative remaining capacity that 
goes through point (, qacin()). No queue is present when qacin() prevails. Here, the queue arises at time ' 
and vanishes at time ''. 
 
Based on the Newell-Luck minimum principle (stating that among all possible flow state the more restrictive 
one holds), the cumulative outflow qacout() of the queuing arc a at time  is the lower envelope of all possible 
temporal profiles that would result if the queue would start at any previous time ; in this case the outflow 
would be given by the inflow until the queue begins at time  and by the time varying capacity a() from  
until  (see Figure 7.7): 

        cout cin cum cum
a a a aq Min q ,            . (7.68) 

The exit time a() of the queuing arc a for a passenger who enters it at time  can be obtained as in (6.77) 
on the basis of the cumulative inflows and outflows assuming that the FIFO rule (no overtaking) holds: 

    cout cin
a a aq q    . (7.69) 

In the context of commuting trips, passengers know by previous experience: 
 the (average) number of carriers na() they must let go (because other passengers who arrived earlier 

at the stop have priority) before being able to board each line ℓ = La , if queuing starts at a given time .  
 
This is equal to the number of vehicle passing from  to a(): 

      a
dep que dep que

a s s sn f d , a N ,N A
 


         . (7.70) 

If there is no over-saturated queuing then na() = 0. 
Correspondingly, the average frequency fa() perceived by passengers while queuing is given by the ratio 
between the number of vehicles na() passing from  to a() and the duration of this time interval: 

    a
a

a

nf       . (7.71) 
Let’s now calculate the exit time of the waiting arc bAwait, which shall take into account for the service being 
not continuous in time.  
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In presence of over-saturation queues, waiting is related not to the arrival of just one line vehicle with a 
known headway distribution, but to the consecutive arrivals of na()+1 vehicles. Indeed, because the service 
is discontinuous, one vehicle is waited anyhow by all passengers, even if no oversaturation queue occurs. 
Under the assumption that the headway of line La , which is experienced by a passenger who started 
queuing at time  , is exponentially distributed with a constant frequency equal to fa() during the whole time 
spent waiting, then the wait time before na()+1 carrier arrival occur is a stochastic variable having a Gamma 
probability density function (which is the continuous version of the Erlang distribution introduced in Section 
6.2.1): 
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,

             
. (7.72) 

This corresponds to the worst situation in terms of headway irregularity. The other extreme case is constant 
(deterministic) headways, that corresponds to the best possible regularity: 

        1, if 0
0, otherwise

a aw ab
f t f,t
             

 . (7.73) 

In case of a singleton attractive set with one line only, the expected wait time E(bw(,t)) for the first na()+1 
arrivals can be approximated as in (6.65) by a convex linear combination of the two extreme cases 
(exponential headways and deterministic headways) through the square of the variation coefficient a2, which 
is an input of the model.  
To the waiting arc it is associated only the additional wait time (due to discontinuous service) for a passenger 
who starts queueing in , while a (possibly significant) part of the waiting time is already accounted for in the 
queuing time a()- with a = (b+)+. The entry time of the waiting arc b is then equal to: 

      1 w
b a bE ,t        . (7.74) 

From the exit time by inversion of the temporal profile it is possible to obtain the entry time. 
When a set of attractive lines is considered by the passenger who will board the first available vehicle, using 
distributions like (7.72) and (7.73) in the equations of Section 7.1, the combined wait times tb|b̌() conditional 
to take line bb̌ and the line shares (diversion probabilities) pb|b̌() can be obtained for each hyperarc b̌s+ of 
stop sS. Again, in the conditional exit times the queuing times have to be deducted: 

     1
ab|b b|bt        . (7.75) 

Note that the parameters of the distributions (as well as the remaining costs needed by some strategy 
models) for the entire wait time are evaluated at time  when possible queuing stars (waiting starts earlier) 
and refer only to the period of time while the passenger is queuing. Clearly, this assumption is made for 
modelling convenience. In the case of strategies this introduces a further approximation, which is minor if the 
change in time of headway distribution parameters due to congestion is slow with respect to waiting times: 

 the diversion probabilities applied to the passengers entering the waiting branch bb̌ at time  are 
calculated wrt the headway distributions perceived by passengers who at time  are exiting this branch 
and start queuing; 

 the conditional exit times of passengers entering each waiting branch bb̌ at time  refer to (slightly) 
different headway distributions. 

 
Note that the calculation of conditional exit times is necessary to implement the dynamic hyperarc model 
proposed in Section 6.4.4. A possible approximation which may simplify the model is: tb|b̌() = tb̌(). 
 
7.3.5 Impulse flows and run capacity constraint 
An alternative approach to the representation of schedule-based supply can be achieved through a standard 
graph, like the static transit network of Figure 6.6, by adapting the macroscopic model for dynamic transit 
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assignment of Sections 6.4 to the presence of runs and their capacity constraints. 
In essence, a time-discrete flow model is considered when referring to running and dwelling arcs, where all 
the passengers on board of a run are assumed to cross any section along the line at the same instant, thus 
forming a dense point-packet or impulse flow. On the contrary, a time-continuous flow model is considered 
when referring to the pedestrian and stop arcs. Waiting and alighting arcs concentrate continuous flows into 
discrete flows and spread discrete flows into continuous flows, respectively. Thus, we will have run loads for 
running arcs and dwell arcs, as well as for waiting arcs (the boarding impulse outflow) and alighting arcs (the 
impulse inflow), but also a temporal profile for waiting arc inflows and alighting arc outflows. 
This requires the definition of proper temporal profiles of the exit time for waiting arcs and alighting arcs, to 
compress and decompress the passenger flows. 
Consider first the waiting arc bAwait. 
For each run rRℓ of line ℓ = Lb the following capacity constraint is to be satisfied:    veh arr dep dwell dep wait

br dr rs rs rsq q d N ,N A , b s,N A        , (7.76) 
where qbr and qdr are the loads of passengers boarding run r at stop s and of those dwelling that are already 
on-board. By definition the exit time of all passengers that board run r from stop s coincides with the 
departure time rs . To take into account the effects of this capacity constraint, we shall determine the: 

 time br  rs -tℓboard when the last passenger that achieves boarding run r (or would achieve to do so, in 
case of null inflows) arrives at the stop and enters the waiting arc (tℓboard is a safe departure margin). 

 
Then we have: 

  1 : rs b r br
b

b R

r


            

. (7.77) 
The instants br can be determined recursively following the run order from r = 1 to r = Rℓ+ (for the sake of 
simplicity, runs are referred here through their integer order in the sequence and Rℓ). 
To this end let’s initialize b0 = -. The passengers willing to take line ℓ that arrive at the stop later than b r-1 shall board the successive run r until their number overcomes the residual capacity ℓveh-qdr, which happens 
at a specific instant denoted br :    1

veh cin cin
dr b b r b brq q q       , (7.78) 

or their arrival at the stop is too late to board run r, which happens at time rs -tℓboard. Then we have:  board
br br rsMin , t       . (7.79) 
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Figure 7.8. Saw-tooted waiting time for given residual capacities and inflows; here tℓboard = 0. 
 
The proposed waiting model reproduces the priority of passengers arrived earlier at the stop. It is then 
consistent with FIFO queuing, unlike the fail-to-board model for schedule-based systems presented in 
Section 7.3.3, which is instead consistent mingling queuing. The main difference is that in the latter model 
new passengers arriving at the stop will influence the waiting time of those who arrived earlier. 
Note that the model yields discontinuities in the travel time pattern, although this is coherent with the real 
phenomenon. Indeed, the waiting time profile has the saw-tooth shape depicted in Figure 7.8, where each 
run r will be taken by the passengers that entered the waiting arc during the time interval (b r-1, br]. Then, 
the boarding load can be calculated as the integral of the waiting inflow in this interval:    1

cin cin
br b br b b rq q q      . (7.80) 

Consider now the alighting arc aAalight. 
Strictly speaking, the exit time of a associated with run r depends on the position of the passenger in the 
alighting load qar . Therefore, from the first to the last user in this load the exit time (after the arrival time rs of 
the run and the additional alighting time tℓalight) varies linearly from 0 to the ratio qar / ℓalight between the 
number of alighting passengers and the alighting capacity of vehicle doors. 
For what concerns route choice, we can assume a risk adverse behaviour, such that all the alighting 
passengers will perceive the same travel time: 

alightarar rs alight
q t     


. (7.81) 
On the other hand, when propagating the alighting passengers on the pedestrian network, we will spread 
them uniformly: 

  0out alight alight ara rs alight
qq t          


 . (7.82) 
The model proposed in this section for schedule-based services can also be used to extend the dynamic 
macroscopic model for frequency-based services presented in Section 7.3.4 to networks with mixed 
services. Indeed, the former can be seen as a particular instance of the latter under the assumption that no 
waiting is considered but only queuing, while the departure frequencies at stops are given by an impulse flow 
of vehicles representing each single run rather than by smooth temporal profiles. In this framework it is also 
possible to represent the propagation of such a discontinuous frequency from the first stop based on the 
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model of Section 6.4.5, with the possibility of representing also its modulation from stop to stop due dynamic 
phenomena, including dwelling congestion (see Section 7.4). The drawback of this approach is the dense 
temporal discretization that is needed to clearly distinguish the individual runs in the resulting temporal 
profiles. 
 
7.3.6 Reference notes and concluding remarks 
 
7.3.6.1 Mingling queuing 
As shown in this section, the representation of mingling passengers queues at stops can be developed in the 
framework of frequency-based models on static networks and schedule-based models on space-time 
networks using two different approaches: effective frequency (De Cea and Fernandez, 1993) and fail-to-
board probability (Kurauchi et al., 2003). 
In the context of frequency-based models, static assignment with optimal strategies can be improved by 
considering effective frequency with strict capacity constraints (Wu et al., 1994; Cominetti and Correa, 2001; 
Cepeda et al., 2006). 
Bell and Schmocker (2004) apply instad the approach of fail-to-board probabilities to quasi-dynamic model; 
Schmöcker et al. (2008) extend this approach to strategy-based route choice. 
Schedule-based models with mingling queues have been developed by several authors. 
Carraresi et al. (1996) consider a multicommodity flow model with strict capacity constraints. 
Tian et al. (2007) introduced in-vehicle congestion through a bulk-queue model and analyzed the theoretical 
properties of the equilibrium flows. 
Hamdouch and Lawphongpanich (2008) have explored the possibility of considering hyperpaths on space-
time networks where the strategic behaviour of waiting passengers derives from the uncertainty of boarding 
the arriving vehicle due to capacity constraints. The extension of fail-to-board probabilities to schedule-based 
models presented in Section 7.3.3 founds its roots in this work. 
Nuzzolo et al. (2012) applied the effective frequency approach to stochastic assignment models on the 
diacronich graph. 
 
7.3.6.2 FIFO queuing 
An early attempt to model FIFO queues was made by Bouzaïene-Ayari (1998) by using a bulk queue model, 
but the complexity of the formulations practically prevents the analysis of network equilibrium on large 
networks. 
Poon et al. (2004) use a time-increment simulation to load passenger demand onto the network and the 
available capacity of each vehicle is updated dynamically. After each simulation run, the passenger arrival 
and departure profiles at all stations are recorded and these are used to predict dynamic queuing delays. 
From such delays, minimum paths are updated and used for the next simulation run. The user equilibrium 
assignment problem is solved iteratively by the method of successive averages. A similar approach is 
adopted in Teklu (2008), within a day-to-day assignment model, and in Leurent et al. (2012) within a genral 
framework for meso-simulation of transit networks. 
Indeed, space-time networks are not suitable for FIFO modelling because passenger flows on arcs are 
mingled by construction. The more complex dynamic models based on macroscopic flows can instead serve 
for the purpose. In particular, the model presented in Section 7.3.5 has been proposed in Papola et al. 
(2007). 
By contrast, in the frequency-based realm, the definition of a supply model for dynamic assignment is not 
equally simple because different runs of the same service are not distinguished and thus it is not immediately 
possible to evaluate the capacity available on a certain line/stop at a certain time of the analysis period. 
Indeed, the majority of available models with capacity constraints, are developed in a static setting only. 
Meschini et al. (2007), whose bottleneck model has been presented in Section 7.3.4, is among the very few 
dynamic models for frequency-based transit assignment with FIFO queues. It makes use of a macroscopic 
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representation of vehicle and passenger flows as (upper semi) continuous functions of time (temporal 
profiles). Transit services are then considered as a continuous flow of vehicles with an instantaneous 
capacity. The model allows however to represent the average effect of time-discrete services on wait times. 
It should be noticed that this continuous availability of the transit vehicles, though questionable from a 
phenomenal point of view, is consistent with the basic assumption of the frequency-based modelling 
framework, where passengers conceive all the runs of the same line as a unitary supply facility. Trozzi et al. 
(2013a, 2013b) extended this approach to strategies and information. 
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7.4 Service perturbations 
Authors: Ektoras Chandakas, Moshen Babaei, Oded Cats, Pieter Vansteenwegen, Guido Gentile 
 
This section addresses the problem of reproducing service perturbations due to non-recurring, unpredictable 
events as well as to systematic, predictable events that affect the regular operation of public transport. The 
lack of service regularity (irregularity) is intended here as any deviation of the actual run arrivals at the stops 
from the planned schedule. The focus is then on the average effects of minor service perturbations on route 
choices and network performances occurring on a daily basis, rather than on the real-time management of 
major service disruptions. In particular, this section is devoted to the modelling of the following phenomena in 
the context of transit assignment: 

 service irregularity due to supply and demand uncertainties; 
 propagation of perturbations along the line; 
 pairing and bunching of vehicles; 
 correlation of headway distributions among lines at various stops; 
 dwell time dependence on boarding and alighting flows; 
 impact of dwell times on the service frequency; 
 time varying frequency along the line; 
 lines operated with a fixed number of vehicles; 
 stop berthing capacities as a constraint to frequencies; 
 reliability and robustness of transit networks also wrt coincidences. 

 
The desired output of these assignment models is an expected flow and cost pattern, that shall take into 
account, not only the service perturbations caused by random passenger loads and events on the transit 
network, but also the possible countermeasures in terms of behavioural strategies by users and control 
strategies by operators. 
The management of public transport operations is a demanding task due to a multitude and variety of factors 
that impact service performances. 
On the one hand, exceptional events (such as extreme weather conditions, infrastructure malfunctions and 
demand peaks) can occasionally lead to service perturbations of great intensity; these events should be 
simulated through specific scenarios with local modifications of the demand and supply model. On the other 
hand, smaller events (such as accidents, run cancellations and demand fluctuations) occur more frequently 
(usually on a daily basis) and may lead to minor perturbations. But these operation dis-functionalities imply 
widespread reductions in service capacity and speed, causing a systematic increase in the travel time of 
individual passengers. In general, both types of events influence the appeal of public transportation and 
attract the attention of city authorities.  
The characteristics of the transit network make it an open system sensible to the external environment. Thus, 
service perturbations that affect public transport are both endogenous and exogenous. 
Service perturbations may have a relevant impact on passenger flows, which are the ultimate output of 
transit assignment models, and vice versa, through two different mechanisms. On one (demand) side, route 
choice is influenced by the service regularity. On the other (supply) side, variations of vehicle and passenger 
arrival flows at stops induce variations in boarding and alighting loads, with recursion on dwell times. The 
relevance of both aspects is confirmed by theoretical and empirical studies. 
In the following, first, the causes of the supply and demand randomness affecting the transit system are 
identified along with their impact on the service operation. Then, the models that allow coping with these 
phenomena are described. 
 
7.4.1 Supply and demand uncertainties 
A broad range of factors, both internal and external to public transport operation, can introduce unreliability in 
a transit system. The external factors are mainly related to uncertainties on the actual state of the road 
network required for the realization of transit supply. Public transport operators are faced with problems such 
as: work zones, road incidents, adverse weather conditions; but they also have to cope with the unavoidable 
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effects caused by the mixed use of roads, such as: congestion on shared transit lanes and presence of traffic 
signals. The internal factors are mainly related to uncertainties on the actual provision of the physical 
resources required to deliver transit services, either influenced by economical aspects such as, lack of crew 
and vehicles, or by poor production technologies such as deficient monitoring and information. Both produce 
the malfunctioning of system operations and hence can be revealed in indicators, such as irregular (not on-
time) dispatching. These exogenous factors can implicitly or explicitly lead to stochastic values for the supply 
side characteristics of public transport, such as vehicle running time, vehicle departure time and headways.  
However, additional uncertainties can be due to endogenous variations in boarding and alighting flows and 
dwell times. These phenomena, in addition to the passenger demand fluctuations, are also sensitive to 
vehicle characteristics and the type of technologies used in the system operation. For example, the method 
of fare collection can affect boarding times and their variability, while the application of a holding police can 
reduce the variance of headways. 
The impact of a specific source of uncertainty on the reliability of different public transport modes may be 
significantly different. For example, in a rail transit line running on a fixed guideway, since the effect of 
congestion due to mixed traffic is limited, running times between stations can be treated as deterministic 
(non-random) parameters. On the other hand, such an assumption will not hold true in non-exclusive road 
lanes with day-to-day travel time and flow fluctuations. 
Whatever the source of uncertainty, the service unreliability can be characterized in terms either of the 
deviation of vehicle arrivals from the schedule arrival times (for schedule based models), or of the variations 
of the vehicle headways (for frequency-based models). Figure 7.9 shows how the supply-side uncertainty 
and the demand-side uncertainty can both lead to service irregularity in a line-based analysis. 
Poor on-time dispatching (i.e., departure from the terminal) caused by a malfunctioning in system operations 
associated with human errors or technical failures may result in running and dwell time uncertainty, due to 
the within-day dynamic nature of travel times, especially so if the transit routes share road space with other 
traffic. The variability in running times and dwell times may in turn cause an uncertainty on the number of 
vehicles actually available at the terminal to perform the next service runs, thus further affecting on-time 
dispatching. 
Poor on-time dispatching by extent has an impact on vehicle headways for a given fleet size, thus causing 
uncertainty in arrival times at stops. The vehicle arrival times are also stochastic in nature, since running 
times and the dwell times are time-dependent and inherently random (e.g., delayed vehicle’s door shutting 
and departure from the stop, road congestion and traffic lights). 
 

 
Figure 7.9. The flow diagram of the interactions between service irregularity and the uncertainties on both 
demand and supply-sides.  
 
This interplay would increase in complexity by considering the demand-side uncertainties, as described in 
the following. 
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In addition to the supply-side uncertainty, the demand variability also can lead to service perturbations. The 
deviations of the vehicle arrival times may lead to the variability on the stock of passengers that have arrived 
at the stop and wish to board. Hence, the dwell time at a stop, as a function of both the boarding and 
alighting (and, in highly congested systems, on-board) flows of passengers, will inherit some variance. The 
alighting passengers have necessarily boarded the vehicle at preceding stops; which means that the dwell 
time at a given stop can be expressed as a function of the number of passengers boarding at that stop and 
at preceding stops. 
For high frequency lines, since an excess in dwell time at a given stop (or in the next running time) generally 
leads to an increase in the number of passenger waiting at the following stop, then there is a relation 
between the dwell time at downstream stops, leading to the “bus bunching” phenomenon, as discussed later 
in detail. These relations can increase in complexity if the other intervening parameters, such as the vehicle 
capacity constraint, are included. Instead, in case of low frequency lines (e.g., headway of 15 minutes or 
more) passengers will arrive at the stop only a few minutes before the scheduled time and not continuously 
(like in the former case); thus the number of waiting passengers will not increase in case of a delay. 
Any variability in the variables is thus to be considered here in the context of the service operation, rather 
than from the point of view of the passenger. For example, suppose a situation where traffic congestion is 
the only source of running time uncertainty; if congestion varies only on a day-to-day basis, then it can be 
assumed fixed within the analysis of a specific day. Thus, for a single day the running time variability cannot 
be accounted for as a cause of headway variation (or service irregularity) and the headway should be 
considered as constant. On the contrary, if the running times (traffic congestion) are assumed to vary within 
the analysis period (e.g., one or two-hour period), this will certainly lead to service irregularity (albeit without 
using control strategies or flexible fleet size). 
Irrespective of the uncertainty sources, it is convenient to reflect the service irregularity on the basis of a 
probability distribution function h(h) for the inter-arrival times of successive vehicles at a particular transit 
stop, say headway h, or only on the basis of its statistical determinants, i.e., the frequency f = 1/E(h) and the 
variation coefficient (square) 2 = Var(h) / E(h)2, that are related to the mean and the standard deviation of 
the headway. 
 
7.4.2 Distribution of boarding passengers and dwell times 
This section investigates the interaction between demand uncertainty and service perturbations and more 
precisely how the headway irregularity can cause additional variation in the number of boarding passengers. 
We can generally assume, if the headway is not too large, that the passenger arrival rate at a particular stop 
follows a Poisson distribution (typical of rare events) independent of the vehicle departure process. This 
clearly implies that passengers do not synchronize their arrival at the boarding stop to the line time-table, i.e., 
we are considering a frequency-based setting rather than a schedule-based setting, as the former is more 
appropriate in the case of irregular services. 
Let q = qℓs be the average rate of passenger arrivals (events) at stop sSℓ-Sℓ+ of line ℓL (this is also equal to 
the flow on the corresponding waiting arc) and h = hℓs be the constant (fully regular, for the moment) 
headway. The number n of boarding passengers accumulated during the headway will be a Poisson random 
variable with equal mean and variance (by definition, for Poisson variables): 
E(n) = Var(n) = qh .  (7.83) 
Let  = ℓboard be the vehicle boarding capacity introduced in Section 5.1.2.5. It is assumed that the vehicle 
capacity constraint does not influence boarding, that t0 = tℓdo is the door operation time, and that the dwell 
time t = tℓsdwell at the stop is linearly dependent on the number of boarding passengers (for example, the 
alighting passengers can use other large doors): 

0
nt t   . (7.84) 

Subscripts and superscripts are here removed for the sake of simplicity. 
Then, the expected value and the variance of the dwell time are, respectively: 
   

0 0
E n q hE t t t      , (7.85) 
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      0
2 2

Var n E t tq hVar t      . (7.86) 
The above variance measures only the effect of demand uncertainty on the dwell time distribution (and 
hence on service perturbations) for the case of constant headway. The relationships becomes more complex 
if the other intervening parameters are taken into account. 
For example, suppose headway is also a random variable denoted by h, with a mean of E(h) and a variance 
of Var(h). The mean and the variance of the number of boarding passengers n can be calculated by 
conditioning on the headway (law of total variance), respectively, as follows: 
E(n) = Eh(E(n|h)) = E(qh) = q E(h) , (7.87) 
Var(n) = Eh(Var(n|h)) + Varh(E(n|h)) = E(qh) + Var(q h) = q  E(h) + q2  Var(h). (7.88) 
Compared to the case of constant (non-random) headway of Equation (7.83), the above variance of the 
number of boarding passengers has increased by q2  Var(h). One may refer to this as the effect of service 
perturbations on endogenous demand uncertainty. In fact, there is no change in the expected number of 
boarding passengers between Equations (7.83) and (7.87), while the variance increased as noted above. In 
a similar vein the statistical determinants of the dwell time can be calculated using (7.87) and (7.88) in the 
first Equations of (7.85) and (7.86): 
   

0
q E hE t t    , (7.89) 

     2
2

q E h q Var hVar t     . (7.90) 
Based on (6.64), we can also rewrite the dwelling variance (7.90) in terms of the service variation coefficient  and, alternatively, of the line frequency f = 1/E(h) or the expected dwell time E(t): 

      2 202 2
02

E t tq qVar t E t tff
               . (7.91) 

Compared to the case of constant (non-random) headway of Equation (7.86), the above variance of the 
number of boarding passengers has increased by the second term on the right hand side of (7.91). 
Clearly, the rate of passengers q attracted to a transit stop (called ‘demand’ here and assumed as a constant 
input) can itself be dependent on the inherent variability of the system characteristics in the context of an 
assignment model. 
 
7.4.3 Emergence of headway irregularity and vehicle bunching 
The previous sections outlined several inherent sources of uncertainty that affect transit operations. These 
sources include: dispatching time from the origin terminal, traffic congestion, delays at intersections, driver 
behaviour, travel demand and dwell time at stops. These stochastic factors are connected through the 
relation between the headway of successive vehicles, the number of waiting passengers and the dwell times, 
as well as the propagation of delays through the stop chain of the line itinerary. These interrelations result 
with a positive feedback loop that may cause the amplification of random variations.  
This section illustrates the phenomenon where a vehicle running late picks up more passengers and hence 
is further delayed, while the succeeding vehicle progressively catches up; this process is called pairing, or 
bunching. In the following, we will formalise the mechanism underlying the formation of vehicle bunching. 
Let us consider the case of a service, line ℓL, that has a relatively short planned headway of hℓ = 1/fℓ (e.g., 
hℓ ≤ 15min) and by extent assume a spontaneous (Poissonian) arrival of the passengers at a constant rate  
qs = qℓs at each stop sSℓ . 
For the sake of simplicity, stops and runs are referred here through their integer order in the sequence Sℓ and 
Rℓ , respectively. 
The departure time rs of run rRℓ from stop sSℓ is decomposed into the summation of riding times trirun and 
dwell times tridwell of previous stops i  s as follows.  

1
1

1

s run dwell
rs ri r i

i
t t


   ; (7.92) 
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The (departure) headway hrs = rs - r-1 s at stop s between run r and the preceding run r-1 can be obtained, 
based on (7.92), as a function of the headway at a certain upstream stop j < s as follows: 

1 1
1 1 1 1 1 1 1 1 1

1

s srun dwell run dwell run dwell run dwell
rs rs r s ri r i r i r i rj ri r i r i r i

i i j
h t t t t h t t t t 

         
                (7.93) 

Let’s introduce a new variable representing the relative difference between the actual headway and the fixed 
planned headway, called headway deviation:  

1rs
rs

h
h  



. (7.94) 
As mentioned earlier, both supply and demand are subject to stochastic discrepancies. For example, an 
exogenous factor could lead to irregular dispatching from the first stop and result with an headway at the first 
stop that is different from the planned one. Moreover, traffic conditions, driver behaviour or irregular 
passenger activity at stops may yield running times between stops and/or dwell times at stops that are either 
shorter or longer than usual. These hence result with an actual headway at a some stop j that is longer or 
shorter than the planned headway, i.e., rj ≠ 0. 
The following demonstrates how these initial exogenous discrepancies would then be further reinforced by 
the endogenous interactions between supply and demand. Let us consider the following conditions: 

 expected dwell time of run r at stop s can be approximated, like in (7.84), as a linear function of the 
number of boarding passengers E(nrs), so that trsdwell = t0 + E(nrs) /  ; 

 passengers’ arrival at each stop s follows a Poisson process, so that the expected number of boarding 
passengers that waits at stop s for run r is: E(nrs) = qs  hrs ; 

 the preceding vehicle run followed the planned headway so that r-1 i = 0 , i = j, …, s ; 
 running times between stops are assumed to be independent of headways and constant among runs; 
 the passengers rate qs at stop s is constant in time. 

 
Under these conditions, the deviation of the headway at stop s from the planned headway can be expressed 
as a function of the headway deviation at an upstream stop j : 

1
1

rj
rs s i

i j
q

 

        (7.95) 

We now prove the above expression. 
Applying Equation (7.93) to two consecutive stops i and i+1 under the assumption of constant running time 
among runs we get: 

1 1 1 1
dwell dwell

ri ri r i r ih h t t        (7.96) 
Dividing each side by the planned headway hℓ and using trsdwell = t0+ qs  hrs /  we get: 

1 1 1 11 1r i r i r iri i ih h hh q q
h h h h

            

  (7.97) 
Finally, subtract -1 to both sided and recall that hr-1 i+1 = hℓ ; using (7.94), after rearranging we get: 

1
11

rir i
iq


     
. (7.98) 

Applying the above formula for i = j+1, …, s , by induction we get Equation (7.95): 
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. (7.99) 

Note that the product in Equation (7.95) is smaller than 1 and positive like each one of its elements. Thus, it 
provides an amplification effect which increases with the number of stops and with the demand flow rate at 
each stop. If rj = 0 then also rs = 0 and the system is in equilibrium. In other words, the headway remains at 
the same level of downstream without amplification effects. If however rj > 0 then hrs > hrj , while if rj < 0 
then hrs < hrj . Therefore, along a line an amplification of the variation can be observed which leads to the 
bunching effect. 
Equation (7.95) also implies that the amplification rate is independent of the planned headway, and depends 
rather on the average dwell times. 
Note that in reality the amplification rate is even higher. Indeed, the dwell time depends in practice also on 
the alighting loads, which are a fixed portion of the passenger on-board for each stop; but a late vehicle also 
accumulates more passengers on-board. 
The effects of headway irregularity on transit line performance is twofold. Not only the variance of the dwell 
times is affected by the variability of headways, as shown in this Section, but also (and more important) 
expected wait times increase with it, as shown in Section 6.2.1. Reproducing service irregularity in 
frequency-based models for transit assignment is then primarily attained by properly defining the variation 
coefficients along the stops of each line. 
ITS can greatly help in resolving headway irregularity issues and increase the reliability of services. For 
example, AVL data can be used to identify schedule discrepancies and vehicle bunching, which allows to 
suggest interventions for adjusting the planned time-table. A holding policy can also be implemented to 
control headways in real-time; when a vehicle is catching up the previous run, then the driver is invited to 
slow down along a run segment between stops or waiting a few more seconds before departing from a stop. 
Although these technologies are readily available from the market, there is some resistance in drivers labour 
unions in implementing fleet control. Although the potential benefits are enormous, still a minority of transport 
operators exploit these crucial tools to the full extent. 
 
7.4.4 Dwelling congestion 
As shown in the previous sections, vehicle dwelling at stops is a phenomenon that can have a different 
impact on the service operation and on its quality perceived by passengers, depending on the transport 
system. In particular, metro and busses, that have more stops and frequent service, are more affected than 
trains and coaches. 
By dwell time, we define the period a vehicle is immobilized at a station to allow passenger alighting and 
boarding. Independently to the transport system, vehicle dwelling is composed of a series of processes:  

 doors opening after the vehicle is safely positioned at stop; 
 passenger flow time (alighting and boarding); 
 doors remain open without passenger flow; 
 doors closing, safety control and vehicle departing. 

 
The first and last processes are independent of the vehicle loads; they are linked to the door operation and 
can be regrouped into the door manoeuvre time. However, the intermediate processes are related to the 
passenger loads: boarding and alighting flows, as well as the vehicle on-board load and the stock of 
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travellers on the platform. Therefore, we can define the dwell time as a function of the passenger flow vector, 
which depends on the exchange capacity and the interface between vehicle and platform. Consequently the 
dwell times produce a connection between passenger volumes and service operations.  
In the following we refer to the network model of Figure 6.6, in the context of a frequency-based assignment. 
The dwell time of a vehicle is related to the flows of passenger alighting and boarding it at the stop. The 
capacity of doors gives the service rate of passengers that can get in and out the vehicle. Thus, the dwell 
time at stop sSℓ -Sℓ- -Sℓ+ of line ℓL can be assumed to depend on the ratio between the number of 
passengers alighting (arc a) and boarding (arc b) the vehicle (that are given by the corresponding flows 
divided by the line frequency) and the corresponding door capacity (or flow rates), as follows: 

     dwell do ab arr alight dep boarda bs a b s salight board
s s

q qt q ,q t Max t , ,a N ,s A ,b s,N Af f
                

   

, (7.100) 
where tℓdo is the door operation time (which includes margins for safety control) and tℓab is the minimum dwell 
time for alighting and boarding. 
If doors for boarding and alighting are separate, we can instead assume the following expression:  

 dwell do ab a bs a b alight board
s s

q qt q ,q t Max t , ,f f
          

   

, (7.101) 
where only the time for the most congested operation between boarding and alighting is considered and 
clearly the capacities are reduced accordingly. 
The dwelling congestion is clearly non-separable. 
The Transit Capacity and Quality of Service Manual (TCQSM, TRB, 2003) suggests a range of values for the 
parameters of Equations (7.100)-(7.101), depending on vehicle and service operating characteristics, i.e. on 
the transport system. For busses, the capacities take values in the range of 2.5-4.2 sec/pax for boarding and 
2.1-3.3 sec/pax for alighting; for the rail and metro, values in the range of 1.38-3.97 sec/pass for boarding 
and 1.11-4.21 sec/pax have been observed. 
In the first place, the door capacity has been considered to be fixed. However, this capacity can possibly be 
reduced by the effects of on-board and on platform overcrowding, since the difficulty of moving inside the 
carrier and exchanging loads between the vehicle and the stop increases with the loads of passenger. 
In this case, we can multiply the dwell time (of arc d), or equivalently reduce the door capacities, by the 
following two BPR term: 

 1
dwell

dwell b b
dwell dwell arr dep dwelld b s

s sveh stop
s s

q tq ,d N ,N Af






                    
 



   
 

 (7.102) 

where: 
 qd / (ℓveh  fℓs) is the saturation rate of the dwelling vehicle (separable); 
 the sum of the passenger flow qb for each waiting arc b exiting from the stop s multiplied by the its 

expected time tb yields the expected number of passengers waiting at the stop, sstop is the capacity of 
stop s and the ratio of the above two numbers yields the saturation rate of stop s (non-separable), like 
in Equation (7.51); 

 ℓdwell and ℓdwell  are the BPR coefficient and exponent for dwelling congestion (typical values are   ℓdwell = 1 and ℓdwell = 2). 
 
Finally, consider that not all congestion phenomena can be well represented in a schedule-based model; 
indeed, service delays are inconsistent with the idea of a fixed timetable. In particular, dwelling congestion is 
the main internal effect influencing travel times and can thus not be represented in that framework. 
Instead, simulation-based models for transit assignment, where the movement and interaction among 
individual vehicles and travellers is represented explicitly, allow to track each run of the line taking also into 
account the perturbations to the service timetable (e.g. due to dwelling congestion), given the dispatching 
from the first stop. In that framework it is also possible to simulate rules on how dispatching is modified if a 
vehicle to make the scheduled run is not available due to delays of other runs. This level of representation 
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enables the explicit modelling of passenger flows at stops as well as their impact on dwell times and service 
reliability. The stochastic and dynamic interaction between supply and demand can emulate the evolution of 
the headway variability along the line, which may results with the bunching phenomenon.  
 
7.4.5 Impacts of dwell times on the service frequency 
The mechanisms described in the previous sections capture the impact of the demand and supply variability 
on dwell times. Nevertheless, few approaches exist for handling the effects of passenger traffic and travel 
time variability on operation frequencies. 
Three main frequency adaptation mechanisms are described in the following. In the first case, if the number 
of vehicles operating a line is fixed, an excess of dwell time and running time may condition the rate of 
vehicles passing at stops. In the second case, the maximum service provided is related to the berthing 
capacity of the station. In the third case, frequency in a dynamic setting can actually vary in time and along 
the line due to the within-day variability of running times and  of dwell times (in particular), which are affected 
by time-varying flows; this issue has been already addressed in Section 6.4.5. 
 
7.4.5.1 Fixed number of vehicles for each line 
The service operation links the fleet size and the journey time of a line ℓL to its service frequency. 
Let’s assume for the sake of simplicity that line ℓ is circular, i.e., the run time from the last stop takes the 
vehicle back to the first stop, while the terminal times are represented as dwell times. 
The journey time tℓcycle of the vehicle to make a complete cyclic trip through all line stops Sℓ and get back to 
the first stop, including the possible terminal times, is dependent on the traffic conditions and on the dwell 
time tℓsdwell of each stop sSℓ . Based on Equations (7.100)-(7.101) the dwell time depends on the boarding 
and alighting flows as well as on the line frequency: tℓsdwell(qa, qb, fℓ). Then the (cycle) journey time depends 
on the passenger flow vector q and on the line frequency fℓ : 

   cycle run dwell
s s a b

s S s S
t ,f t t q ,q ,f
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     . (7.103) 
If the number Nℓ of vehicles operating transit line ℓ is constant, the service frequency is equal to this number 
divided by the cycle journey time of the vehicles: 

 cycle
Nf t ,f q




 

. (7.104) 

The line frequency shall then be obtained by solving the above nonlinear equation for fℓ , which can be 
addressed as a fixed-point problem. 
 
7.4.5.2 Limited stationing capacities of platforms 
In the planning horizon, the fleet size is practically adjustable, while the scarce resource pertains to the node 
capacities of the support infrastructure (e.g. the stations of the rail network). Here, the platform berthing 
capacity is addressed as a scarce resource. 
At any stop sS a passing vehicle of line ℓ blocks the platform for a certain period, given by the dwell time 
plus an operating margin tℓom (mainly introduced for safety reasons). As already stated, the dwell time 
tℓsdwell(qa, qb, fℓ) depends on the boarding and alighting flows as well as on the line frequency; this can be 
assumed null if the line does not serve the stop and passes without stopping. Given the set of lines Ls passing from the stop, the perceptual occupation socc of the platform is given by the sum for all such lines of 
the dwell time plus the operating margin multiplied by the line frequency (assuming that times and frequency 
are expressed in consistent units, e.g. h and 1/h): 
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   q f    


. (7.105) 

Clearly, this perceptual occupation cannot be greater than one; therefore, if the platform does not suffice to 
accommodate all lines, then the conflicting frequencies shall be reduced proportionally, starting from a given 
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desired value fℓdes, to satisfy the capacity constraint: 

 11 : des
occ
s

f Min , s S f,
       q f  . (7.106) 

This problem result is an equilibrium among lots of stops and lines. The line frequency shall then be obtained 
by solving the above nonlinear system of equations for f , which can be addressed as a fixed-point problem. 
Note that this model explains only part of the node performance (that connected to platform capacity), as it 
does not considers other relevant aspects of service operation in rail stations, such as the management of 
track conflicts. 
 
7.4.6 Reliability and robustness 
Reliability and robustness are key performance indicators of public transport services. These qualities are 
deemed crucial by travellers and directly affects their mode choice, hence supporting modal shift from car to 
transit. However, disruptions and breakdowns can never be completely avoided in public transportation 
services. Moreover, congestion on road and rail networks is continuously increasing. All these cause in many 
cases relevant delays. 
Planners should try to minimize the negative impact of these unavoidable delays on both the service quality 
for the passengers and the service costs for the operators. Furthermore, transport authorities started now to 
realise that the most important effect of congestion is not that average travel times increase, but that travel 
times become highly unreliable, i.e. robustness and reliability are at least as important as efficiency. That 
insight should now be translated more and more into research and practice in order to redesign transport 
systems and make these more attractive to passengers. 
 
7.4.6.1 Definitions of reliability 
Reliability can be defined as the ability of an item to perform a required function, under given environmental 
and operational conditions and for a stated period of time. In statistical terms, reliability is the probability that 
a system, possibly consisting of many components, will function correctly. 
On this basis, three indicators have been defined to evaluate the reliability of transportation systems:  

 Connectivity reliability considers the probability that a pair of nodes in a network remains connected. A 
special case of this index is the terminal reliability that is concerned with the existence of at least one 
path between each origin-destination (O-D) pair. 

 Capacity reliability refers to the probability that the network capacity can accommodate a certain travel 
demand at a required level of service. 

 Travel time reliability is defined as the probability that a trip between a given O-D pair can be 
completed successfully within a specified time interval. 

 
The first two indicators can be referred to the supply-side while the third can be basically referred to the 
demand-side of transportation. They have been mostly defined to assess road network performance under 
uncertainty. But transit systems have specific attributes that differentiate their assessment from private 
transport systems: 

1. Vehicles depart from stops with scheduled headways, leading to wait times for the passengers. 
2. Capacity of vehicles (or the seat capacity) is limited, and therefore some passengers may fail to 

board the first arriving vehicle (or may fail to get a seat) at the stop.  
3. Passengers may have to transfer to another line(s) to complete a single trip, 
4. Passengers have to walk to transit stops. 

 
Items 1 and 2 have motivated researchers to define a number of reliability indicators that are different from 
the abovementioned three general indicators. The adherence to the scheduled arrival or departure of 
vehicles affects the arrival pattern of passengers at stops and hence affects their wait time probability 
distribution. From passengers’ viewpoint, the following two questions related to wait times may be arisen with 
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respect to the service reliability: 
 How much is the service punctual?  
 Does the service arrive at the stop regularly? 

 
For high frequency services, e.g. with headways shorter than 10-15 min, where passengers tend to arrive at 
stops randomly instead of coordinating with vehicle arrivals even if the timetable is published, the headway 
regularity would be more important, and, therefore, an indicator accounting for headway variability may be 
more appropriate for assessing the service reliability. On the other hand, in case of less frequent services, 
the degree of punctuality may better represent the service reliability. The key difference between these two 
concepts can be illustrated by the following example: if a transit service is systematically two minutes late the 
punctuality is poor while the regularity is perfect.  
Several probability-based indicators can be defined to assess the punctuality or regularity of a service, e.g.: 

 the percentage of services arriving on-time; 
 the percentage of services arriving more than 5 min late; 
 the average of percentage deviations from the mean headway. 

 
Furthermore, besides using data from observations for a post assessment, indicators can be calculated from 
simulation results in order to predict the service reliability in advance. This implies introducing random 
variables, or at least standard deviations, at the level of service operation, with particular reference to 
headways. In such context other indicators of reliability can be defined where the perspective of the 
passenger is also taking into account, such as the probability that:  

 journey travel times are less than a given threshold; 
 line headways at stops are larger than a given threshold; 
 passenger wait times are less than a given threshold; 
 each passenger can board the first arriving vehicle at stops; 
 each passenger can get a seat when boarding at stops. 

 
7.4.6.2 Definitions of robustness 
In general, the robustness of a service is how well it performs in practice, under realistic and thus uncertain 
circumstances. This is more than requiring that the system will work in practice (like reliability). 
However, when designing a public transport service, a more specific definition of robustness is required. 
Actually, many different definitions of robustness exist; the classical one focuses on minimizing the effects of 
disruptions and delays.  
A first definition of robustness is about schedule adherence after disruptions. This is closely related to 
defining robust a service where the propagation of delays is prevented as much as possible. 
A second definition requires that the schedule should remain free of conflicts (a conflict occurs when two 
vehicles request to use the same platform at the same time), even in the worst-case scenario. In order to 
accommodate delays, a lot of buffers will be needed in the timetable. 
A third definition tries to bridge the typical gap between timetabling and dispatching. While scheduling, the 
recovery strategies should be taken into account explicitly since robustness is achieved if the timetable does 
not cause conflicts during the execution. 
A fourth definition concentrates on minimizing missed transfers. The idea is that all connections should be 
guaranteed as long as the delays are limited to a certain amount. 
Unfortunately, all these definitions ignore the efficiency of the system and the first three also ignore the 
passenger perspective. When only the reliability is cared about, then inserting a high number of long buffer 
times in the timetable would make a system robust. Nevertheless, passengers and operators would 
obviously not be satisfied, since travel times and production resources increase. 
Recently, the passenger perspective became more important when robustness is discussed. A simple way to 
achieve that is by using passenger loads as weights, when the delays of vehicles are evaluated. A more 
sophisticated way to consider the passenger’s perspective is to minimize the total travel time of all users ‘in 
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practice’, i.e. considering the missed transfers and not just the planned travel times. 
Focussing on the actual travel times automatically leads to a trade-off between the classical interpretation of 
robustness (reliability) and the efficiency of the system. As a result, the included buffer times will not be too 
short, because then a lot of conflicts will occur and passengers will miss many transfers, but the buffer times 
will also not be too long, since this would directly yield too longer travel times. Therefore, this definition of 
passenger robustness is comprehensive and embraces most of the classical ones. 
 
7.4.6.3 Strategies to obtain robustness 
Here, a number of strategies to obtain robustness are discussed. 
In order to obtain a reliable system and to guarantee an attractive service passenger robustness, as defined 
above, should be put forward in every stage of network design. 
This starts with the design of the infrastructure. For buses, this leads to separate lanes in congested areas 
and getting priority at traffic lights. For rail based transit, this involves providing sufficient capacity and 
alternative tracks when something goes wrong. 
Also during the planning of line itineraries, robustness should be considered. This is certainly not common 
practice yet. Nevertheless, decisions made in this stage can significantly influence the robustness of the 
system. For instance, when the length of the lines is decided: obviously, the service on longer lines has a 
higher chance of being perturbed and these disturbances have a larger influence. Furthermore, the number 
of passengers that will require a transfer is decided in this stage; shorter lines imply more transfers (which is 
bad for efficiency), but may produce less missed transfers (which is good for reliability). 
For the planning of timetables, many different approaches have been developed in order to obtain passenger 
robustness. All these methods intend to optimize the size and the position of buffer times in the schedule. In 
this way, the propagation of delays should be minimized and vehicles should get some time to recover from 
delays. In this context, it is actually better to make an explicit distinction between buffer times and time 
supplements. Time supplements are added to nominal running and dwelling times in the timetable in order to 
give vehicles more possibilities to arrive/depart on time. Therefore, supplements are directly included into the 
(planned) travel times of passengers. Buffer times are instead scheduled between two vehicles using the 
same part of the network (e.g., a track or road, a platform or stop, etc.) and are not included into the travel 
time of passengers, except for transfer and waiting times, but affect the capacity of the infrastructure. Both 
supplements and buffers will also be limited by the objective to minimize the passenger travel times. 
Naturally, also when making (local) dispatching decisions passenger robustness should be strived for. This 
becomes especially for synchronization: when a high number of passengers needs to transfer from vehicle 1 
to vehicle 2, a dispatcher will decide if and how long the departure of vehicle 2 will be delayed when vehicle 
1 is expected to arrive late. Sufficiently delaying vehicle 2 may guarantee that no passenger will miss his 
transfer. At the same time, passengers already in vehicle 2 will be delayed, and vehicle 2 might also delay 
other vehicles later or generate conflicts. 
Obviously, avoiding disruptions by appropriate maintenance strategies is also important when striving for 
robustness. 
 
7.4.7 Reference notes and concluding remarks 
 
7.4.7.1 Boarding passengers and travel times 
The variability of boarding passengers independent of the vehicle departure process has been studied by 
Holroyd and Scraggs (1966), van Oort and van Nes (2009). It is generally assumed that, if the headway is 
not sufficiently large, the passenger arrival rate at a particular stop follows a Poisson distribution. 
Numerous studies have been conducted to investigate the effect of sub-hourly variations in running times on 
the headway variation, e.g. Osuna and Newell (1972) and Adebisi (1986). Similar studies asses the 
importance of dwell times on the transit service, e.g. Vuchic (2006) and Lai et al. (2011). All these analysis 
do not introduce explicitly a direct connection to the passenger flows. 
Lin and Wilson (1992) consider dwell times critical for determining the system performance and the quality of 
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service. They identify three direct effects: the dwell time directly affects the vehicle cycle time; at the stop 
level a dwelling vehicle occupies the platform obstructing the following vehicles; and the dwell time is 
believed to be a major factor for headway variability and vehicle bunching. These effects are also thoroughly 
discussed in the Transit Capacity and Quality of Service Manual (TRB, 2003). 
The bouncing model presented in Section 7.4.3 is an original contribution of this book. 
 
7.4.7.2 The dwelling process 
Whereas Equation (7.100) is used widely by many practitioners, various types of dwell time functions can be 
found in the literature. Each research is focused on the influence of a particular phenomenon on the 
capacities and dwell time. We here list some principal findings. 
Firstly, it is generally agreed that a positive correlation exists between the number of boarding and alighting 
passengers and the dwell time, which gives rise to an equilibrium probelms (Bellei et al., 2000; Babazadeh 
and Aashtiani, 2005). Second, the dwell time determinants are influenced by various sources of variability, 
either positively or negatively. They are negatively affected by congestion factors, such as the platform 
crowding and by the in-vehicle load (Fritz, 1983; Aashtiani, 2002). They are further influenced by physical 
factors, such as the vertical gap between the vehicle and the platform and the door width (Fernandez et al., 
2011). Particularly, the boarding flow rate depends on the operation characteristics, such as front door 
boarding for buses, and the type of fare control mechanism (TRB, 2003; Fernandez et al., 2010). Third, 
according to Harris (2005), the boarding and alighting capacities are not constant throughout the same 
boarding/alighting group, but they vary according to the passenger’s position in that. In fact, the fastest 
alighting rates are detected on the early exiting passengers, while the fastest boarding rates on passengers 
in the middle of the group. Finally, Szplett and Wirashinghe (1984) show that the distribution of passengers 
on a platform is not uniform, but depends on the position of entry and exit points, and the dwell time is 
subject to the flow of the door with the maximum utilization. 
The main approach for calculating vehicle’s dwell times is by making a statistical analysis of an appropriate 
dataset in order to determine a suitable function that fits the records, while establishing a set of significant 
attributes. The data collection methods continuously evolve, but we can distinguish the field observation 
surveys (Lin and Wilson, 1992; TRB, 2003), the automatic passenger counters (Rajbhandari et al., 2003), 
the field experiments (Harris, 2005) and the laboratory experiments (Fernandez et al., 2010).  
An alternative approach for the estimation of the dwell time is the use of pedestrian micro-simulators to 
model alighting and boarding passengers, such as the cellular automata (Zhang et al., 2008). By defining the 
behaviour of passengers against obstacles and attractions at an individual level, the simulation allows to 
reproduce a range of complex phenomena that emerge at a macroscopic level on the platform, during the 
vehicle’s dwelling. This way, the effect of numerous infrastructure set-up and rolling stock compositions can 
be tested.  
 
7.4.7.3 Reliability and robustness indicators 
Ceder (2007) classified different indicators associated with reliability problems from different viewpoints (i.e., 
planning indicators, operational indicators and maintenance indicators). 
Classical reliability indicators have been introduced by Iida and Wakabayashi (1989) and Asakura (1996). 
The distinction between punctuality and regularity and their determinants is discussed in Okrent (1974), 
Bowman and Turnquist (1981), Carey (1999), van Oort and van Nes (2009). 
Several authors have made efforts to link reliability indicators to the result of assignment and simulation 
models with the aim of taking into account the passenger perspective e.g., Yin et al. (2004), Chen et al. 
(2009), Babaei et al. (2013). 
Various definitions of robustness and comparisons between them, as well as some examples of how to 
obtain robustness in practice, are discussed in, among others, Goverde (2005), Kroon et al. (2008), Schobel 
et al. (2009), Cicerone et al. (2009), Van Oort (2011) and Dewilde et al. (2011; 2014). 
The key objective remains how to improve these indicators through correct management of transit services 
(Abkowitz M., Tozzi J., 1987). Monitoring and management can be greatly enhanced today thanks to AVL 
data (El-Geneidy et al., 2011). 
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7.4.7.4 Traffic assignment with supply variability 
A number of transit assignment models have been developed to account for the uncertainty of vehicle 
arrivals. 
Introducing headway variations in frequency-based assignment models is a key element in reproducing 
service irregularity, as it was repeatedly shown so far. One limitation of all models presented in this book lays 
in the fact that service headway distributions at stops are assumed independent among different lines, which 
of course is not often true in reality. Shimamoto et al. (2010) developed an assignment model that takes into 
account the correlation between vehicle arrivals of different lines. Wait times and flows are sampled from a 
normal distribution with a correlation matrix that is a function of the number of boarding and alighting 
passengers. 
Yang and Lam (2006) introduced a reliability-based assignment model to congested transit network to 
simulate unreliable services. Szeto et al. (2011) formulate as a Nonlinear Complementarity Problem a risk-
aversive transit assignment in which in-vehicle travel time, waiting time and capacity are considered as 
stochastic variables; both their means and variances are incorporated into the formulation. 
In schedule-based models for transit assignment the representation of individual trips enables to account for 
the temporal distribution of reliability problems. Initially, schedule-based models were developed based on 
the assumption that vehicles run with perfect punctuality and hence considered arrival and departures times 
to be deterministic. Service irregularity can be modelled either implicitly by adding a random term to the 
perceived utility function (e.g., Nielsen, 2004) or explicitly by simulating vehicle runs and dwell time as 
interdependent random variables. The latter was used in stochastic schedule-based model developed by 
Nuzzolo et al. (2001). Huang and Peng (2002) developed a path choice models for transit systems that 
include various stochastic processes, such as the departure time, the travel time and the probability to make 
a successful transfer. 
The simulation-based approach to transit assignment (Cats, 2011) can support the modelling of various 
sources of service uncertainty – traffic conditions, dispatching regime from the terminals, dwell time at stops 
and their relationship with passengers’ flows. The explicit modelling of these processes within a dynamic 
simulation of transit operations will contribute to a more realistic reproduction of supply uncertainty, 
compared with introducing independent stochastic processes referring to separate system elements. 
Emulating the dynamics of these sources enables to analyse their impacts and potential methods to prevent 
them. In particular, the bunching problem arises from the interaction between supply and demand variability 
and could be therefore captured by simulating individual vehicles and travellers and how they move 
throughout the network. This allows mimicking the way in which system reliability evolves over time and 
escalates along the route. Furthermore, the impact of service perturbations could be embedded into the 
dynamic route choice model. 
 
7.4.7.5 Variable service frequencies 
Few approaches exist for handling the effects of passenger and vehicle traffic on operation frequencies.  
If the vehicle fleet is fixed, the vehicle cycle time determines the frequency of the transit services, which 
become a variable of the equilibrium model. In Bellei et al. (2000) the assumption that the frequency of the 
transit line is fixed is relaxed under the consideration that the number of passengers boarding and alighting 
will influence the dwell time. In this line of research Lam et al. (2002) propose a stochastic model for 
frequency-based assignment. In addition, Meschini et al. (2007) propose a dynamic assignment model with 
dynamic propagation of the line frequency. 
Harris (2005) and Harris and Anderson (2007) consider the dwell time at stations and the occupation of the 
station platform as the critical factor for determining the performance and the capacity of high duty guided 
lines (metro and commuter rail), where signaling take a relevant role (Lai et al., 2011). This effect is treated 
by the restrained frequency model, which is introduced by Leurent et al. (2011).  
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7.5 Fares 
Authors: David Watling, Guido Gentile, Klaus Noeke, Michael Florian 
It is important to first appreciate the sheer complexity of dealing with public transport fares, if aiming to 
represent all important facets. There exist many different ways of paying for public transport, e.g.: 

 walk-on single/return fares, 
 advance fares, perhaps determined by some yield-management approach (such as in airlines), 
 daily or monthly passes, 
 family or group discount tickets, 
 multi-trip tickets, 
 smart-cards with a maximum daily fare,  
 etc. … 

 
In addition, some fares give different levels of flexibility in terms of services that can be used. In a real 
network there will likely be a mix of people paying fares in different ways. As well as different mechanisms for 
paying, there will be different fare levels for different types of traveller, e.g. concessionary fares for elderly or 
disabled people, or for young people and students. In addition, in some cities there may be a mix of kinds of 
service, including different qualities of service, possibly operated by different companies, and these may be 
priced differently (e.g. express/air-conditioned buses versus regular buses). There will also exist different 
abilities/willingness to pay for a given fare, as might be reflected in different values of time. 
7.5.1 The question of whether fares need to be included 
Unlike travel time, waiting time, discomfort, failure-to-board, etc., it is more difficult to associate some of the 
fare structures described above with a particular trip. For example, even if we knew that someone made n 
trips using a certain pass, do they really associate 1/n times the cost of the pass with each trip when making 
choices? 
For modelling the demand for public transport we may wish to explicitly consider how demand varies 
according to these different types of ticket and segmentations of the population, or at the other extreme to 
aggregate all the possibilities into an average fare per passenger journey, as two possible treatments of this 
problem. 
On the other hand, given our focus on modelling route choice, it will be the case in many situations that we 
can justify neglecting fares, since the fare paid will be invariant to the route chosen, especially if we are 
considering networks with a single fare structure for all transport modes, or a network with a single dominant 
public transport mode. Even if in some cases the fare on a particular origin-destination movement may vary 
with the route chosen, if this happens relatively rarely then we might justify neglecting fares as an 
approximation. This pragmatic situation is the one commonly adopted in practice, and is summarised well by 
the guidance from the UK Department for Transport (DfT, 2007): 
‘ Fares need not be included in the assignment, provided that they do not influence route choice; matrices of 
fares can be added to the generalised cost after the assignment and before passing cost matrices to a 
demand model or appraisal package. Where fares can influence route choice then it is essential to include 
them in the assignment. It is accepted that the complexity of some fare systems may prevent them from 
being represented exactly in the assignment model, but the model representation needs to be acceptable. 
Acceptability can be gauged from whether the assignment model validates or not. ‘ 
Therefore, a key first question is whether fares need to be included at all in the assignment stage, since in 
many cases the routes chosen will not be sensitive to the fare levels.  
Particular cases in which fares may need to be included are where there are multiple types of public 
transport modes with different fare levels, or where there are a significant number of cases in which a single 
origin-destination trip may include combinations of different kinds of transport modes. In these cases, it is 
difficult to make the separation between the demand for each type of transport mode and the route choice for 
each mode, since the choice of mode type and route are inter-related. Having said this, there are many other 
complexities in dealing with combined modes which mean that even in such cases an explicit consideration 
of fares is often not a high priority. However, it is not so rare to find real-life examples in which it seems more 
difficult to justify the approximation of neglecting fares. Such a case is in which high and low quality modes 
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may offer competing options on the same corridor, the high quality mode typically being faster, more 
comfortable but also with a higher fare and perhaps less frequent.  
The remarks given above are general ones in that they are not specific to a particular modelling approach; in 
particular, they apply equally to frequency-based and schedule-based approaches. In the next section, then, 
we consider the particular considerations for each type of approach. 
 
7.5.2 Transit route choice including fares 
So far in Part 3 we assumed that route choice models of any kind work on a graph in which arcs are labelled 
with generalised cost. We assumed generalised cost to be given by the monetization of travel times and 
discomfort, plus monetary costs, i.e.: fares. 
This poses a challenge, because according to Section 5.2.1.6 a wide range of fare schemes exist in practice. 
Only some of them are additive in the sense that the total fare for a complete trip can be found by summing a 
line segment attribute over all segments of the trip. If this is the case, then the line segment attribute can be 
incorporated into the arc generalised cost and will take effect in route choice. 
Many fare schemes are not additive, however, including simple schemes like distance-based and zone-
based fares with degressive fare amounts. Here the fare amount is an attribute of the complete path and 
cannot be broken down to arc level. 
For the schedule-based models of Section 6.3 this does not pose a problem, because the evaluation 
proceeds in three distinct steps: 

1. Search paths 
2. Calculate generalised cost for each path 
3. Split demand between paths 

 
The three steps are carried out sequentially, and conceptually we can assume that the calculation is done 
separately for each OD pair. Step 1 returns complete paths from O to D. Therefore, step 2 can apply any 
fare model, however complex. With degressive fare tables, we know exactly how long the complete trip is, or 
how many zones are traversed. At the end of step 2 we have a choice set with complete paths and exact 
generalised costs per path, and we can apply a choice model in step 3. 
Section 6.2 and Section 7.1 described that frequency-based route choice models are evaluated differently, 
because the choice set does not consist of individual paths, but of hyperpaths or strategies. A single pass 
over the network backwards from a destination towards all origins combines all three steps (search, cost 
calculation, split), and for all OD pairs with a given destination. During the pass node labels are computed 
which represent expected cost from an intermediate node to the destination, and this conflicts with fares 
which are only defined at complete path level. 
 
7.5.2.1 Application to the example network 
Consider the example network from Section 5.13 emended by the inclusion of Line 5 – Purple and Stop 5, as 
in Section 7.1.5. We define a degressive, distance-based fare scheme as follows. A single ticket applies to 
the complete trip. Each line segment has a distance of 1. The fare for a total distance of 1 costs 2 units, any 
longer distance costs 3 units.  
Recall the Optimal Strategies algorithm or its generalizations. The calculation proceeds backwards from the 
destination to all origins and sets labels at all intermediate nodes. These labels represent the expected cost 
from the node to the destination, the assumption being that this cost is the same for all passengers waiting 
for a service at this node, regardless of their origin. But is it? 
We focus on the node label updates for Stop 2, while computing route choice towards destination Stop 4. 
These passengers have a choice of travelling via Stop 3 (various possible hyperpaths, distance 2, fare 3) or 
via Stop 5 (distance 1, fare 2). The monetary component favours the path via Stop 5, and will influence route 
shares. Now consider a passenger from Stop 1 who gets off the Line 2 at Stop 2 and evaluates transfer 
options. Any route from 1 to 4 via 2 will have a distance of at least 2, so the fare will always be 3. In this case 
the monetary component is neutral at Stop 2. We should therefore expect route shares to be different 
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between passengers originating or transferring at Stop 2. 
We apply the case with complete information from Section 7.1.5. The second column of Table 7.12 repeats 
the last column of Table 7.6, which ignore fares.  
The third column shows how route choice changes, if travellers from stop 1 consider fare. A value of time of 
20 units/h is assumed. The red line now attracts a much higher proportion of travellers because it costs only 
2 units, compared to 3 units for all other paths. Travellers who choose the green line still get off at Stop 2 
and split between the maroon and purple lines according to the same shares as before. These results were 
produced setting fictitious arc costs so that they sum up to exact fares for origin Stop 1. 
We now run the algorithm with fictitious arc costs set up to sum to exact fares from Stop 2. The fourth 
column shows route choice for travellers originating from Stop 2. They also choose between the maroon and 
purple lines, but the shares reflect the fact that for them the purple line is cheaper. 
 
Table 7.12. Line shares (%) with and without the effect of fares. 
fares ignored exact solution exact solution 
origin of travelers Stop 1 Stop 1 Stop 2 
volume Line 1 - Red 40 81 0 
volume Line 2 - Green 60 19 0 
volume Line 3 - Maroon 28 9 40 
volume Line 4 - Black 0 0 0 
volume Line 5 - Purple 32 10 60 
 
7.5.2.2 The relevance of approximations 
The experiment demonstrates that non-additive fares indeed lead to route shares at intermediate nodes 
which differ by origin stop. Unfortunately this implies that exact route choice for all origins cannot be 
computed in a single application of the algorithm, because the arc costs differ by origin. If an exact solution is 
essential, the algorithm needs to be run separately for each origin. This, of course, increases run time by a 
factor equal to the number of origins and may not be feasible. 
Practical alternatives use approximations. The simplest approximation seeks to assign costs to arcs which 
reflect the effect of fares on average. More complex approximations are possible. Example: if in the real 
systems separate tickets have to be purchased for each leg of the trip, each according to a possibly non-
additive fare scheme, then it may be feasible within practical runtime / memory constraints to duplicate the 
working graph by boarding stop within each leg, labelling the arcs with costs corresponding to each possible 
boarding stop. An exact solution can then be computed in a single application of the algorithm, albeit on an 
expanded working graph, as described in the next section. 
 
7.5.3 Representation of complex fares via journey levels 
It is well known that arc-based models can handle additive fares quite easily, while non-additive fares are 
difficult to simulate. In the latter case, a specific monetary cost should be associated in principle with each 
relevant path of the transit network, which requires their explicit enumeration. For example, the fee paid for a 
trip may depend on the sequence of lines or transport systems taken by the passenger. Limitations on the 
number of allowed transfers and constraints such as must use rules are also nontrivial. 
In particular, integrated fare schemes cannot be easily reproduced through the arc cost model presented in 
Section 6.2.3, where the data structure considers only fees for boarding a line and for running on a section 
between two consecutive stops, without taking into account if the passenger has already paid for other 
transit services during the same journey. 
Instead, even if the metropolitan transit network is operated by several independent transport companies, the 
passenger is often able to surf more freely the available services, without paying for each used line and/or 
section. This is because an integrated fare system with several forms of discount is organized or coordinated 
by a mobility agency. For example passengers may pay full fare at initial boarding but reduced or no fare on 
transfer boarding of the same transport system. 
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However, as shown in the example of Figure 7.10, it is often impossible to reduce a complex fare structure to 
some linear form which could be reproduced by means an arc based model. Therefore, to avoid excessive 
model distortions a greater effort shall be made to explicitly simulate the rules that determine the actual fees 
of trips from origin to destination. 
 

 
Figure 7.10. From station to station matrix of Hong Kong MTR shows non-additive fares, that are non-linear 
wrt to distance nor wrt to the number of station passed (these plots were provided by Michael Florian, INRO). 
 
Sequential route choice models have no memory, since computations are done backward from destination to 
origin(s); it is possible to consider what will happen from the current node to the destination by introducing 
additional node labels (for example to know the number of transfers), but not what happened to reach that 
node. This information can though be kept and utilized, for example to apply proper fares, in route choice 
algorithms by means of journey levels which add memory to arc-based models, as illustrated in the following. 
The concept of journey level is here introduced as an innovative paradigm to model the monetary costs paid 
by users resulting from a variety of transit fare schemes, allowing to simulate rebates on trips which include 
multiple transport systems (e.g. bus plus metro) as well as must use rules and limitations on the number of 
transfers. 
A journey level reflects the information accumulated along a trip in terms of which transport systems, and 
possibly in which order, have been used by the passenger so far. This requires the construction of a more 
complex assignment network. In practice, to represent a relevant state of the journey a portion of the transit 
network is duplicated into a parallel layer. Each journey level includes a subset of lines and all walking arcs, 
possibly with the exceptions of connectors to origins and destinations. The alighting arcs are headed directly 
at the base node corresponding to the stop. Each stop serves only one transport system. Each journey level 
is then connected to other subsequent levels through inter-level stop arcs between the base node of the 
previous level and the stop node of the next level, on which integrated fares and discounts (negative fares) 
can be applied. The assignment network results then a bush (i.e., an acyclic graph) of journey levels, starting 
with origin nodes and ending with destination nodes, so that the route choice model may allow a limited set 
of feasible sequences of levels. In principle, each journey level is characterized by distinct arc attributes, 
including any of the generalized costs associated with walking, waiting, boarding and riding. How the journey 
layers are formed and to which other layers are connected depends on the fare scheme to reproduce; the 
examples that follow will help to clarify how the proposed approach is applied in practice. 
In the first example, different perceived costs are modelled for initial boarding vs. transfers, because transfer 
boarding are penalized more by passengers. 

 Level 0. The pedestrian network including centroids and connectors. 
 Level 1. The whole transit network, excluding origin connectors, but including destination connectors 

and all stop arcs. 
 Level 0  Level 1. All stop arcs, with a discount for initial boarding. 
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In the second example, passengers must use at least one train line on a transit network with bus lines. 
 Level 0. The pedestrian network including origin connectors, but excluding destination connectors; the 

bus lines. 
 Level 1. The whole transit network (with both bus and train lines), excluding origin connectors, but 

including destination connectors and all stop arcs. 
 Level 0  Level 1. All stop arcs heading to train lines. 

 
In the third example, transfers within the same transport system are free of charge. 

 Level 0. The pedestrian network including connectors. 
 Level 1. The bus lines and the pedestrian network, excluding origin connectors, but including 

destination connectors and stop arcs heading to bus lines with free of charge transfer (between 
busses). 

 Level 0  Level 1. All stop arcs heading to bus lines, with the one time bus fare (say 4€). 
 Level 2. The train lines and the pedestrian network, excluding origin connectors, but including 

destination connectors and stop arcs heading to train lines with free of charge transfer (between 
trains). 

 Level 0  Level 2. All stop arcs heading to train lines, with the one time train fare (say 8€). 
 Level 3. The whole transit network (with both bus and train lines), excluding origin connectors, but 

including destination connectors and all stop arcs with free of charge transfer. 
 Level 1  Level 3. All stop arcs heading to train lines, with the one time train fare. 
 Level 2  Level 3. All stop arcs heading to bus lines, with the one time bus fare. 

 
In the fourth example, transfers within the same transport system are free of charge and there is a discount 
for taking both transport system. With respect to the third example, at the interchange between levels 13 
and 23 the discount (say 2€) shall be applied to the one time fare (see Figure 7.11). 
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Figure 7.11. Simulation of fare discount for getting both trains and busses through journey levels. 
 
Note that the journey level approach can be seen as an extension of the multimodal network approach 
presented in Section 5.1.1.2, based on the duplication of transport system subnetworks. In general, however, 
the network augmentation is not for free from a modelling point of view; indeed, any congestion phenomena 
will involve the sum of the flow across the several arc replica, and this makes the arc cost function non-
separable, with negative implications on the possibility of proving the equilibrium uniqueness. 
From an algorithm point of view, the arcs that lead from one level to another need not to be coded explicitly 
as a proper multi-label scheme can be implemented; this shows relevant computational advantages wrt the 
network augmentation. 
Slight changes in the availability of connections among journey levels and centroids can determine relevant 
modifications to the fare system that is reproduced. Thus, this great flexibility requires a highly conscientious 
modeller. 
The journey level approach permits to handle a variety of fare schemes that depend on the sequence of 
transport systems taken during the trip and the fare rules that apply to discounts between them. But, this 
approach requires more computation time and there are other complex fares that cannot be addressed this 
way. 
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7.5.4 Reference notes and concluding remarks 
Different approaches on if and how to model transit fares in assignment models are proposed by several 
authors (e.g., Whelan and Johnson, 2004; Owen and Philips, 1987; Nielsen, 2000; Horn, 2003; Garcia & 
Marin, 2005; Hamdouch et al, 2007). 
The methodology presented here based on network layers for the simulation of more complex fare schemes 
is a quite recent contribution by Constantin and Florian (2015). A similar network construction for nonlinear 
highway tolls is also used in Lo and Chen (2000) and in Morosan and Florian M. (2015). The same approach 
has been applied to multi-modal journeys by Lo et al. (2003, 2004). 
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