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Abstract. We investigate computational issues in the distributed model Amoebots of programmable
matter. In this model, the computational entities, called particles, are anonymous finite-state machines
that operate and move on a hexagonal tessellation of the plane.
In this paper we show how a constant number of such weak particles can simulate a powerful Turing-
complete entity that is able to move on the plane while computing.
We then show an application of our tool to the classical Shape-Formation problem, providing a new
and much more general distributed solution protocol. Indeed, the existing algorithms would allow to
form only shapes made of arrangements of segments and triangles. Our algorithm allows the particles
to form more abstract and general connected shapes, including circles and spirals, as well as fractal
objects of non-integer dimension, such as the Sierpinski triangle or the Koch snowflake.
In lieu of the existing impossibility results based on the symmetry of the initial configuration of the
particles, our result provides a complete characterization of the connected shapes that can be formed
by an initially simply connected set of particles. Furthermore, in the case of non-connected shapes, we
give almost-matching necessary and sufficient conditions for their formability.

1 Introduction

Several parallel and distributed computing models have been devoted to formalizing computations within the
interdisciplinary field of Programmable Matter (PM): see [14,16,18,20,22,24]. The PM field envisions a myriad
of very small (micro/nano-sized) entities that are nevertheless able to move and coordinate themselves with
the final purpose of solving a specific task [23]. Practical research is designing, engineering, and developing
prototypes that will lead to future hardware platforms for PM. Examples are the M-blocks: cubes that are
able to rearrange themselves by rotations [19], and the Kilobots: small robots that move by vibrations [21].
At the same time, the algorithmic community is formalizing abstract and general models that capture the
peculiarities behind these hardware platforms, enabling the development of provably correct algorithms and
the feasibility analysis of problems.

In this paper, we consider the popular geometric Amoebot model, introduced in [10]. In the Amoebot
model, a set of computationally limited identical entities, called particles, operate and move on a hexagonal
tessellation of the plane (i.e., a triangular grid). Each particle has constant-size memory (i.e., constant with
respect to the total number of particles), is anonymous (i.e., it has no ID), is able to communicate only
with its direct neighbors in the grid, and it moves by repeating an expansion action (in which the particle
expands to occupy two neighboring nodes of the grid) and a contraction action (in which an expanded particle
contracts to a single node of the grid). Research using this model is being carried out within the parallel,
distributed, and molecular computing fields (e.g., see [1,2,3,4,6,7,8,10,12,13]; for a recent survey, see [5]). The
main goal of these research efforts is to gain an understanding of the nature and limits of this distributed
computational universe.

In this paper, we move one step forward in this quest by providing a construction that simulates a moving
Random-Access Machine (mRAM) using four particles. Such a construction transforms a set of these weak
particles into a powerful Turing-complete entity that is able to move on the grid while computing. We prove
the usefulness of our construction by applying it to the well-studied Shape-Formation (or Pattern-Formation)
problem.
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In the Shape-Formation problem, the particles, initially arranged in an arbitrary connected shape, have
to form a given target shape. More precisely, each particle starts with a representation of the target shape
in its memory, and coordinates with the other particles to form a suitably scaled-up copy of the shape that
includes all particles in the system (this could mean that some particles have to be in the expanded state in
the final shape). Usually, the total number of particles n is unknown: as a matter of fact, n cannot be stored
in the constant-size memory of a single particle.

In a series of works [6,7,9,12], increasingly refined and complex techniques and algorithms have been de-
signed, each enlarging the class of shapes that can be formed starting from a simply connected configuration.
To date, however, this class includes only target shapes defined as an arrangement of segments and triangles.

Thanks to our mRAM simulation, we are able to provide a universal shape-formation algorithm where
the target shape is any subset of the grid whose scaled-up versions can be generated by an algorithm. In
other words, we do not enforce a geometric relationship between scaled-up versions of the same shape: the
final shape could be a curve, such as a circle or a spiral, or a more complex fractal object of non-integer
dimension, such as the Sierpinski triangle or the Koch snowflake (see Fig. 1).
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Fig. 1: A Sierpinski triangle at various scales, approximated by a system of particles

Therefore, our second contribution is a general and universal solution for the Shape-Formation problem:
starting from a simply connected shape (i.e., a shape without holes), our algorithm allows the particles to form
any feasible connected shape for which a “drawing algorithm” exists (i.e., the shape is Turing-computable).
Such a drawing algorithm is a RAM algorithm that takes as input the number of particles n, and outputs
(a representation of) the shape that has to be formed by the n particles. Note that, since the number of
instructions of such a drawing algorithm is obviously constant with respect to n,6 the algorithm itself can
fit in the constant-size memory of a single particle, regardless of the number of particles in the system. (By
comparison, previous works assumed that each particle has in memory a representation of the target shape
expressed as a constant number of segments and triangles [6,7,9,12].)

With our technique, we can form almost all “feasible” non-connected target shapes, and are excluded
from our result only very sparse pathological shapes. With regards to the feasibility (or not) of a shape,

6 By contrast, the running time of the drawing algorithm may be any function of n.
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it is known that, depending on the symmetry of the initial configuration, some shapes are not formable
regardless of the amount of memory [12]. The negative result of [12] and the positive result of our paper
give an almost complete characterization of shapes that are formable starting from a simply connected
configuration. Interestingly, in the case of connected shapes, the characterization is complete.

Our distributed algorithm is deterministic, and it works even if the schedule of activations is fair but
adversarial. More precisely, in each stage, upon activation, a particle exchanges messages with its neighbors,
executes some computation, and possibly moves; there is however no restriction on the number of particles
that can be concurrently active in the same stage. Moreover, our algorithm works also when the particles do
not have chirality (i.e., there is no common notion of a clockwise direction on the plane among the particles).

Paper outline. In Section 2 we present the formal model and the Shape-Formation problem. In Section 3 we
discuss how to simulate a mobile RAM using four particles. In Section 4 we summarize the initial phases of
the shape-formation algorithm used in [12]; our algorithm leverages the same initial phases that are used to
arrange particles in a specific configuration. Finally, in Section 5, we present our shape-formation algorithm.

Related work. The Shape-Formation problem, in the context of PM, has been first defined in [6], where
the goal was to form simple shapes such as a hexagon or a triangle. A subsequent work [7] has shown how
to form target shapes defined as arrangements of triangles. However, both works where assuming chirality
and a sequential activation scheduler (at most one particle active at each time). Finally, [12] completely
characterized the target shapes, defined as arrangement of triangles and segments, that can be formed from
a simply connected initial configuration. This last result holds in a system with no chirality and under an
adversarial scheduler.

A key tool of the algorithm in [12] is the simulation of a Turing machine. Such a tool is similar in spirit
to our mRAM simulation; however, it has a shortcoming: it simulates a Turing machine using a line of
connected particles (on this line, a special leader particle acts as the Turing machine’s head), and therefore
the size of this Turing machine’s tape is limited by the number of particles on the line. Our new construction
does not have this shortcoming, because it needs only a constant number of particles to simulate any Turing
machine.

In other models, some works [11,17] have investigated the possibility of using weak entities to simulate a
more powerful one by implementing a Turing machine, but their models differ substantially from ours, and
their methods cannot be carried over.

2 The Amoebot model and the Shape-Formation problem

2.1 Particles

The Amoebot model we use in this paper is the one described in [12], which we summarize here. In this
model, a particle is a computational entity that lives in an infinite regular triangular grid G embedded in
the Euclidean plane R2 (observe that a regular triangular grid corresponds to a hexagonal tessellation of the
plane). A particle may occupy either one vertex of G or two adjacent vertices: in the first case, the particle is
said to be contracted ; otherwise, it is expanded. When it is expanded, one of the vertices it occupies is called
its head, and the other vertex is its tail. A particle may move through G by repeatedly expanding toward
a neighboring vertex of G and contracting into its head. (The traditional Amoebot model also includes a
special type of coordinated move called “handover”, but we will not need it in this paper.

No vertex of G can ever be occupied by more than one particle at a time. So, a contracted particle cannot
expand into a vertex that is already occupied by another particle. Also, if two or more particles attempt to
expand toward the same (unoccupied) vertex at the same time, only one of them succeeds, chosen arbitrarily
by an adversary.

At each stage, some particles in the system are active, and they perform a look-compute-move cycle,
and the other particles are inactive. An adversarial scheduler arbitrarily and unpredictably decides which
particles are active at each stage. The only restriction on the scheduler is that it cannot keep a particle
inactive forever, but it must activate every particle infinitely often.
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When a particle is activated for a certain stage, it “looks” at the vertices of G adjacent to its head,
discovering if they are currently unoccupied, or if they are head or tail vertices of some particle. All particles
are anonymous (i.e., they are indistinguishable). Each active particle may then decide to expand, contract,
or stay still for that stage. When the next stage starts, a new set of active particles is selected, which observe
their surroundings and move, and so on.

Each particle has an internal state that it can modify every time it is activated. The internal state of
any particle must be picked from a finite set: particles have an amount of “memory” that is constant with
respect to the size of the system, n.

Two particles can also communicate by sending messages to one another. Each message is taken from
a finite set of predefined messages. An active particle can send a message to another particle provided that
their heads are adjacent vertices of G. A particle reads the incoming messages from all its neighbors as soon
as it is activated.

Each particle labels its six incident edges with port numbers, going from 0 to 5. Each particle uses a
consistent numbering that is invariant under translation on G. However, different particles may disagree on
which of the edges has port number 0 and whether the numbering should follow the clockwise or counter-
clockwise order: this is called the particles’ handedness. So, the handedness of a particle does not change as
the particle moves, but different particles may have different handedness.

At each stage, each active particle looks at its surroundings to see which neighboring vertices are occu-
pied, and it reads the incoming messages. Based on these and on its internal state, the particle executes a
deterministic algorithm that computes a new internal state, the messages to be sent to the neighbors, and
whether the particle should expand to some adjacent vertex, contract, or stay still.

2.2 General definition of shape

A set S of nodes of G is formable by n particles if there exists a configuration of exactly n particles (contracted
or expanded) that collectively occupy exactly the nodes in S.

A shape is a function mapping a positive integer n to a set Sn of nodes of G that is formable by n
particles: this set Sn is called the nth level of the shape. If such a function is Turing-computable, then the
shape is said to be computable. If every level of a shape is a connected set, the shape is said to be connected.

A shape is formable (under condition C) if there exists a distributed algorithm that, for every n, makes
any system of n particles (whose initial configuration satisfies condition C) eventually form a copy of the
nth level of the shape, possibly translated, rotated by a multiple of 60◦, and reflected. The algorithm should
succeed regardless of the port numbers of each particle and the choices of the adversarial scheduler, and it
should guarantee that the system remains still after forming the shape.

2.3 Unbreakable symmetries

We borrow from [12] the concept of “unbreakable symmetry”. A configuration of particles is said to be
unbreakably k-symmetric, for some integer k > 1, if it has a center of k-fold rotational symmetry that does
not coincide with any node of G. Observe that there exist unbreakably k-symmetric configurations only for
k = 2 and k = 3.

We can extend this notion to a level of a shape in a natural way: the nth level of a shape is unbreakably
symmetric if it is formable by an unbreakably k-symmetric configuration of n particles. As noted in [12], if
the system initially is in an unbreakably k-symmetric configuration, the port labels of symmetric particles
happen to be symmetric, and the scheduler always decides to activate symmetric particles simultaneously,
then the system never ceases to be in an unbreakably k-symmetric configuration. Intuitively, the absence of
a central node (and therefore of a central particle) and the fact that the configuration is initially symmetric
makes it impossible to break the symmetry. Hence, we have a necessary condition C for the formability of a
shape:

Proposition 1. A shape is formable only under the condition that, if its nth level is not unbreakably k-
symmetric, then the initial configuration of a system of n particles seeking to form the shape should not be
unbreakably k-symmetric, either.
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In Section 5 we will give a strong sufficient condition for the formability of a shape, which, together with
Proposition 1, almost characterizes the set of computable shapes that can be formed from a simply connected
initial configuration of particles (in the case of connected computable shapes, it yields a full characterization).

3 Simulating Random-Access Machines

3.1 Random-Access Machines: definition

A Random-Access Machine (RAM) is a model of computation consisting of a finite set of registers, each of
which can store a non-negative integer, and a program consisting of a finite ordered sequence of instructions.
Each instruction is of one of two types:

– Inc(r): increment by 1 the value stored in the register r. Then, proceed to the next instruction of the
program.

– TestDec(r, i): if the register r is holding the value 0, jump to the ith instruction of the program. Otherwise,
decrement r by 1 and proceed to the next instruction.

The registers initially contain the input of the RAM, and then the program is executed starting from the
first instruction. We can reserve a register rt to represent a “termination flag”, whose value is initially 0.
When rt is incremented, the value of the other registers is taken as the RAM’s output. Hence, a RAM is a
device that can compute integer functions.

3.2 Simulating Turing Machines by RAMs

In [15, Chapter 11], Minsky shows how RAMs can simulate Turing Machines. Specifically, there is a (small)
constant c such that, given any Turing Machine T that computes a function fT , there exists a RAM QT

with exactly c registers that computes fT .
Then, in [15, Chapter 14], he shows that any RAM R can be simulated by a RAM Q′R having only

two registers. This is done by encoding the set of values stored in R’s registers as a single integer, which
is stored in the first register of Q′R (the second register of Q′R is only used for intermediate computations).
The code is based on Gödel numbers: for instance, the sequence (a1, a2, a3, a4, a5) is encoded as the single
integer 2a1 · 3a2 · 5a3 · 7a4 · 11a5 . In general, the ith integer in the sequence becomes the exponent of the
ith prime factor of the code. By the unique-factorization theorem, this encoding is injective and therefore
non-ambiguous.

The program of Q′R can be constructed by locally replacing each instruction of R with a small program
that simulates it. For instance, it is possible to increment the ith register of R by multiplying the first register
of Q′R by the ith prime number, which in turn can be done in Q′R by using the two standard instructions and
the auxiliary register. Testing if the ith register of R is non-0 amounts to testing if the first register of Q′R
holds a multiple of the ith prime number, etc. In this paradigm, we can stipulate that Q′R terminates when
its second register holds a 0 and the value of its first register is a multiple of the prime number corresponding
to the termination flag of R.

As an immediate consequence of the above, we have that the RAMs with only two registers can simulate
all Turing Machines, and can therefore compute any computable function.

3.3 Simulating RAMs by particles

Our goal in this section is to simulate a RAM with two registers by a set of four particles. The layout of
our simulator is shown in Fig. 2: the four particles always remain collinear throughout the simulation, and
they always maintain their order along the line: first the pivot P , then the marker of the second register M2,
then the leader L, and finally the marker or the first register M1. The number of empty locations between
P and M2 (i.e., their distance minus 1) represents the value stored in the second register of the RAM, and
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Fig. 2: A RAM simulator with the first register holding the value 7 and the second register holding the value
3.

the number of empty locations between M2 and M1 (i.e., their distance minus 2) represents the value stored
in the first register of the RAM.

At all times during the simulation of the RAM’s program, L will remember the index of the instruction
that is currently being simulated: since the program of a RAM is finite, L only needs a finite amount of
memory to do so. Now we have to show that such a system can simulate every possible instruction of the
RAM. This is done by letting L move between M2 and M1: we assume that L knows in which direction
it has to move to find each of these two particles, and for convenience we call these directions “left” and
“right”, respectively, to match Fig. 2. When L reaches the relevant particle, it communicates with it and
causes it to move according to the current instruction of the program. P , on the other hand, always remains
still. Specifically, here is how each instruction is simulated:

– Inc(Register 1): L moves toward M1 until it finds it. Then it gives M1 the order to move one step to the
right, and waits until M1 has moved.

– TestDec(Register 1, i): if L neighbors both M2 and M1, it does nothing (and updates the index of the
current instruction to i). Otherwise, it reaches M1 and orders it to move one step to the left. Then L
itself moves one step to the left and waits until M1 has moved.

– Inc(Register 2): L reaches M1 and orders it to move one step to the right. When M1 has moved, L
reaches M2 and orders it to move one step to the right. Then L itself moves one step to the right and
waits for M2.

– TestDec(Register 2, i): L reaches M2 and asks it if it has a neighbor on the opposite side (i.e., P ). If M2

answers affirmatively, L does nothing (and updates the index of the current instruction to i). Otherwise,
it orders M2 to move one step to the left and waits until it has moved; then it reaches M1 and orders it
to move one step to the left; finally, L itself moves one step to the left and waits until M1 has moved.

3.4 Adding control registers for mobility

In our Shape-Formation algorithm, we will need the RAM simulator outlined above to be able to program-
matically move and occasionally perform actions depending on the shape to be formed. In this section we
outline the mechanism that our RAM we will use to move, and the specific actions needed for the Shape-
Formation algorithm that will be explained in next sections.

Recall that, in order to simulate a generic Turing Machine T , the RAM QT needs only a constant number
c of registers. We can augment QT by adding a fixed number c′ of “flag registers”, which are set to 1 when
the system has to perform certain special operations.

Specifically, assume that T is an algorithmic description of a shape, whose output is a sequence of plotting
operations of the form “move forward”, “move right”, “draw a point”, etc. Our mobile RAM (mRAM) UT

simulates T exactly like QT , with one exception: whenever T outputs a plotting operation, UT sets and
then immediately resets the flag register corresponding to that type of operation (the reason for this will be
explained shortly).

Now, we let the mRAM Q′UT
simulate UT using only two registers. In Q′UT

, the state of each of the c′

flag registers of UT can be checked by verifying, at the end of a simulated instruction, if the value stored in
the first register is a multiple of the prime number associated with the flag register.

As our four-particle system simulates Q′UT
, it can also test the c′ flag registers of UT at the end of every

simulated instruction. Indeed, the leader particle L can test if the value stored in the first register is a
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multiple of a given prime p. It can do so by first moving next to M1, and then counting modulo p the number
of steps it takes to move all the way to M2 (counting modulo p requires only p states). Since c+ c′ is a finite
constant, L only ever needs to test a constant set of primes to determine the states of all the flag registers,
which in turn takes a finite amount of memory and time.

When L determines that one of the c′ flags is set, it executes the corresponding plotting operation of T .
This translates into a “movement operation”, which moves the whole system in some direction or orders a
specific particle to remain still forever, marking a point of the shape. The exact nature of these movement
operations and the details of their implementation will be described in next sections.

4 Basic shape-formation algorithm

The first part of our shape-formation algorithm is taken from [12], while the second part is entirely different,
and will be described in Section 5. Next we will outline the relevant parts of the “basic algorithm” of [12].

One assumption of the basic algorithm, which is also an assumption of our new algorithm, is that the
initial configuration of the particles is simply connected, i.e., it is connected and it has no “empty holes”.
Another assumption is that, if the initial configuration is unbreakably k-symmetric, then also the shape to
be formed is unbreakably k-symmetric. The latter assumption is necessary, due to Proposition 1.

As we pointed out in Section 2, the basic algorithm only deals with shapes that are made of full triangles
and segments, but this assumption is not used in the parts of the basic algorithm that we are going to borrow
here. The relevant “phases” of the basic algorithm are as follows:

– Handedness agreement : all the particles assume the same handedness (by simply setting an internal flag
whose meaning is either “my original handedness is correct” or “my original handedness is incorrect”).

– Leader election: the particles attempt to elect a single leader. If the initial configuration is unbreakably
k-symmetric, they may fail to do so, and elect exactly k leaders instead.

– Straightening : the particles arrange themselves in k straight line segments, each with a leader located at
an endpoint. If k > 1, all the leaders are pairwise adjacent (recall that the only possibilities are k = 2
and k = 3), and the configuration is unbreakably k-symmetric (hence the k line segments have the same
length and form angles of 2π/k).

In the next section we are going to show how to proceed from here: we have a configuration consisting
of k straight lines and k leaders, where all particles have the same handedness, and we want to reach an
arbitrary configuration (i.e., a level of a computable shape) that is unbreakably k-symmetric if k > 1.

5 Forming Turing-computable shapes

5.1 Starting configuration

Recall from Section 4 that, starting from a simply connected configuration, all the particles in the system can
agree on a common handedness and rearrange themselves to form a configuration C0 consisting of k equal
line segments (with k ∈ {1, 2, 3}) each containing a leader particle. Moreover, if k > 1, then C0 is unbreakably
k-symmetric, and we may assume that also the shape’s level to be formed is unbreakably k-symmetric. In
this case, each leader is assigned an equal portion of the shape, corresponding to a sector of plane spanned
by an angle of 2π/k. These k sectors are called principal sectors of the plane, and the k rays separating them
are the principal rays: Fig. 3 shows an example for k = 3.

As a preliminary move, each leader will reach the far end of the line segment on which it is located.
This is done by repeatedly “transferring the leadership” to a neighboring particle. In turn, this amounts to
sending a special message to that neighbor, whose meaning is “you are now the leader, and I am a regular
particle”. So, no particle will actually move in this phase.

When a leader has reached the far end of the segment, it starts the next phase, which consists in building
and initializing a mRAM simulator that will eventually form the portion of shape that falls into that principal
sector. From this time on, the k leaders will act independently of each other, never meeting again and never
interacting.
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Fig. 3: The final configuration of the basic algorithm, which is the starting point C0 of our new algorithm.
Each leader is assigned a trail of followers, and will guide them in the formation of the part of shape that
falls into its principal sector.

5.2 From a shape-generation algorithm to a tracing mRAM

As stated in Section 2, we assume that the shape to be formed is computable, i.e., there exists an algorithm A
that generates its nth level Sn given the number n as input. By this we mean that A outputs the coordinates
of all the points of Sn, in an arbitrary order and in some arbitrary coordinate system, and then terminates.

Recall that, by definition of shape, there exists a configuration Cf of n particles, expanded or contracted,
which collectively form Sn. Additionally, due to Proposition 1, if k > 1, then Sn must be unbreakably k-
symmetric, and therefore we may take Cf to be an unbreakably k-symmetric configuration of particles. As
such, Cf can be translated and rearranged so that its center coincides with the center of C0. Also, Cf can be
decomposed into k equal subsets, called principal subsets, each of which entirely lies in a principal sector of
C0, with one exception: some expanded particles of Cf may be crossing a principal ray, and therefore have
the head in a principal sector and the tail in another. These will be called trespassing particles. Now, from
A we can easily produce a modified algorithm A′ that only outputs the points that are occupied by one of
the principal subsets of Cf , say, C ′f .

Furthermore, given A′, we can construct another algorithm A′′ that “traces” C ′f . That is, A′′ output the
points of C ′f in a specific order: it starts generating the points of C ′f that lie next to a principal ray, from
the closest to the principal ray’s endpoint to the farthest, and then proceeds to the next ray parallel to the
principal ray, and so on (each of these rays is called a scanline). This is done by taking every point p on
every scanline, in order, and executing A′. If A′ generates p, then p is generated by A′′. If A′ generates points
that appear on the same scanline but after p, then A′′ proceeds along the scanline by one step and executes
A′ again, etc. Otherwise, A′′ moves to the first point of the next scanline, etc. As soon as A′ generates only
points that lie on already-visited scanlines, A′′ terminates. Hence, A′′ is a procedure that terminates in a
finite amount of time.

As A′′ executes A′, it can also detect if each location p it generates should be occupied by a single
particle or by an expanded particle (indeed, this information is part of the description of C ′f ). If it is an
expanded particle, and the other location p′ occupied by the same particle is on the next scanline, A′′ does
not generate p: it will generate only p′ as soon as it scans it. Along with p′, A′′ will also generate a “direction
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Fig. 4: A configuration forming the nth level of a shape, subdivided into its three principal subsets, each
having two trespassing particles. The dashed lines represent the order in which the principal subsets are
traced by the algorithm A′′. The dark particles represent the last dots of their respective principal subsets.

of expansion”, which goes from p′ to p. This is called the delayed-deployment rule, and its purpose will be
explained later.

Another simple improvement we can make on A′′ is that it not only generates the locations of the particles
of C ′f , but it also generates the “movements” it makes through the plane to generate them: recall that we
introduced these movement operations at the end of Section 3. Specifically, the possible movement operations
are: (1) advance by one step along the current scanline; (2) move to the next scanline; (3) go back by one
step along the current scanline; (4) deploy a contracted particle; (5) deploy a particle that will expand in
direction d; (6) terminate.

The third type of operation is repeatedly used right after moving to the next scanline, in order to reach
its endpoint e and then resume scanning. The only caveat is that, if e should be occupied by a trespassing
particle belonging to Cf \ C ′f , it is skipped by A′′, and the scan will not be resumed from e but from the
location right before it. This type of behavior is called trespasser-avoidance rule, and is illustrated in Fig. 4.

Since we have an algorithm A′′, there exists a Turing Machine T that computes the same function: it
takes an integer n as input, and it outputs a sequence of movement operations that trace (a sector of) Sn.
From Section 3 we know that there is a RAM QT with c registers that produces the same output when the
number n is initially stored in its first register. We can then construct the mobile mRAM UT , with c′ = 6 flag
registers, each of which corresponds to one of the movement operations above, and is set and reset whenever
the corresponding operation has to be performed.

Finally, we can construct the mRAM Q′UT
, which simulates UT using only two registers, provided that

the value 2n is initially stored in its first register. This mRAM will be simulated by each leader in the system
and its trail of particles. In the rest of this section we will show how the RAM simulator of Section 3 can be
expanded to implement the movement operations above and therefore yield a shape-formation algorithm.

5.3 Initializing the machine

Let us focus on a single leader particle L and its trail of n/k particles. Recall that the leader L is now located
at the endpoint of its trail of particles that is farthest from the center of C0. We want the last four particles
on the trail, including L, to start executing the simulator of Q′UT

as described in Section 3. First, however, it
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is necessary to initialize the simulator by storing the value 2n in its first register, which amounts to placing
particle M1 at a distance of 2n + 2 steps away from particle M2 (refer to Fig. 2).

At first L switches states with its only neighbor, which now becomes the new leader L. The two neighbors
of L become M1 and M2, and then M2 sends a message to its other neighbor, which becomes the pivot P .

Then, L has to “push” M1 exactly 2n times in order to create the input to the simulator. By “push” we
mean that L reaches M1, orders it to move forward by one step, and waits until M1 has expanded and then
contracted again.

In order to repeat this action the right number of times, the entire trail counts in binary from 0 to 2n−1:
this is done by letting each particle hold k binary digits, initially all set to 0. After each push, M1 adds 1 to
the binary number formed by its k digits. L reaches M1 and takes the carry bit of the addition from M1. If
the carry bit is 1, L adds 1 to its own k digits. If the carry bit of this addition is 1, L moves all the way to
M2 and orders it to increment its k bits by 1, etc. As soon as a carry bit is 0, a message is sent back to L and
forwarded by the trail’s particles. When the message reaches L, it proceeds with the next push operation,
etc.

When the last particle in the trail gets a carry bit of 1, it knows that M1 has been pushed exactly 2n

times, and it forwards this information to L, which therefore stops pushing and proceeds with the simulation.

5.4 Tracing the shape

Let the last particle in the trail be called the rear particle. The leader will coordinate the simulation of the
mRAM that traces the shape pretending that the “pen” is held by the rear particle. That is, the simulator
will go on with the computation until a movement operation is reached. If such operation is of type 4 or 5
(i.e., the deployment of a particle), then the rear particle is “dropped”, which corresponds to drawing a point
of the shape.

As explained in Section 3, L knows if a movement operation has to be performed by checking, at the end
of every simulated instruction of the mRAM, if the value of the first register is a multiple of some prime
number and the value of the second register is 0. This implies, in particular, that when a movement operation
is executed, the particles P and M2 are next to each other.

In the following we will explain in greater detail how the system behaves to implement the six possible
movement operations.

1. Advancing by one step means that the four-particle mRAM simulator, as well as the whole trail of
particles up to the rear particle, has to move by one step along the current scanline. First, L moves next
to M1 and orders it to advance by one step, waiting until it has moved. Then it goes next to M2 and
gives it the same order. L then moves away from M2 by one step and waits for it. In the meantime, M2

gives the same order to P and then advances toward L. P does the same as M2, and so on. When the
rear particle is reached by the message, it advances and sends an “all done” message to its predecessor,
which forwards it to L. Then, L knows that it may proceed with the simulation.

2. Moving to the next scanline means that the entire trail and four-particle mRAM simulator must move
“sideways” by one step, in order to relocate themselves on the next scanline s. The structure of this
operation is similar to the previous one. L moves to M1 and orders it to move sideways onto s. There
can be no misunderstanding on the direction of movement, since we are assuming that all particles have
already reached an agreement on a common handedness. L moves waits until M1 has moved, and then
goes to M2 and gives it the same order. M2 forwards the order to P , which forwards it to the next
particles, etc. When the message reaches the rear particle, it forwards an “all done” message to L, and
then moves onto s. When any particle receives the “all done” message, it waits until its predecessor has
moved onto s, then it forwards it to its successor and moves onto s. When L has finally moved onto s,
the procedure is over.

3. To go back along the current scanline, the operations of item 1 are executed in reverse order. That is,
L moves to M2 and forwards a message to the rear particle, which then moves backwards, and all other
particles up to L follow one by one. Then L goes to M1 and orders it to move backwards.
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4. Deploying a contracted particle means that the rear particle has to stop where it is and remain there
forever. This is simple to accomplish: L goes to M2 and forwards a message to the rear particle. When
the rear particle gets the message, it orders its predecessor to become the new rear particle and forward
an “all done” message to L. From this point on, the old rear particle will stop following the trail, and
no other particle will ever communicate with it again.

5. The deployment of a particle that will expand in direction d is similar to the previous item. The only
difference is that, after the rear particle has transferred its role to its predecessor, it also expands in
direction d. The direction is encoded by taking the forward direction of the trail as 0 and numbering all
other directions from 1 to 5 in clockwise order. There can be no misunderstanding, since we are assuming
that all particles have already reached an agreement on a common handedness.

6. When the termination operation is reached, the simulation is over, and a dismantling procedure has to
be executed, which will be described next.

5.5 Dismantling the machine

There is one last problem to solve: when the pivot P has been deployed, only three particles are left to
deploy: L, M1, and M2. Since three particles are too few to simulate a tracing RAM, they have no way to
reach their final locations without “losing the way”. It is impossible to adapt our algorithm without making
an extra assumption on the shape to be formed.

First we give two definitions. Recall that the algorithm A′′ generates all the movement operations that
are necessary to draw the principal subset C ′f of the configuration Cf , by tracing it one scanline at a time.
The last point plotted by A′′ on the last scanline visited is said to be the last dot of C ′f (see Fig. 4). A subset
of the grid graph G is called a neighborhood of point p with radius r if it contains precisely all the vertices
of G that have distance at most r from p.

Assumption 1 For each level Sn of the shape, there exists a configuration Cf of n particles that forms Sn

(such that Cf is unbreakably k-symmetric if Sn has to be formed from an unbreakably k-symmetric initial
configuration, cf. Proposition 1) and, for each principal subset C ′f , there exists a neighborhood of the last
dot, with radius independent of n, that contains at least four particles of C ′f .

If we make Assumption 1 on the shape to be formed, we can complete our algorithm with a dismantling
procedure, which makes L, M1, M2, and P reach their final positions without getting lost in the attempt.

To this end, we must first modify the tracing algorithm A′′ that we previously designed, and produce
a new tracing algorithm A′′′. Let p1 be the particle occupying the last dot of C ′f , and let p2, p3, p4 be the
three particles of C ′f closest to p1 (other than p1 itself). Ties are broken arbitrarily. The new algorithm A′′′

proceeds exactly like A′′, except that it skips the deployment operations (i.e., the operations of type 4 or 5)
for p1, p2, p3, p4, and terminates when the “pen” reaches p1.

Then we construct another algorithm F that, with input n, generates the paths that three particles have
to take from p1 to reach the locations of p2, p3, p4, making sure to avoid the locations of the other particles
of Cf (this is possible because we chose p2, p3, p4 to be closest to p1). Additionally, if some of the pis are
expanded, F outputs this information, as well as the direction of expansion. It is clear that F is computable
and terminates in a finite amount of time.

As before, we observe that there is a Turing machine T that executes A′′′, and a RAM QT that simulates
T . However, this time we add an extra register to QT , which will store the input value n and will never erase
it: this value will be passed as input to F . Again, the mobile mRAM UT is constructed, which is simulated
by a 2-register RAM Q′UT

, which in turn is simulated by particles L, M1, M2, and P .
When these four particles are done executing A′′′, they erase all registers except the one containing n,

and execute a simulation of F (again, by simulating a 2-register RAM that executes F ). Whenever F outputs
a step in a path from p1 to p2, p3, or p4, this step is memorized by the leader L. At the end of the simulation,
L has the three complete paths stored in its memory. Note that this is possible even if the memory of L
is of constant size: by Assumption 1, the three paths are contained in a neighborhood of p1 with radius
independent of n, and therefore their length is bounded by a constant.
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When the simulation of F is terminated, L starts moving toward P , and orders M1 and M2 to do the
same. When M1, L, M2, and P are in four consecutive locations, L communicates the three paths to the
others. At this point, each of the four particles knows what to do to reach its final position, and they all do
so in an orderly fashion.

5.6 Conclusion

Our shape-formation algorithm demonstrates the following:

Theorem 2. Under Assumption 1, any computable shape is formable from any simply connected initial
configuration.

The proof of correctness is straightforward, and it relies on two basic facts:

– A four-particle simulator and its trail of particles will never get in the way of other four-particle simula-
tors. This is because each of them stays in its own principal sector; the only exceptions are the trespassers,
which are actually not an obstacle due to the trespasser-avoidance rule.

– The particles that have already been deployed will not get in the way of the four-particle simulator
that deployed them. This is because the movement operations always make the simulator travel through
locations where no particle has been deployed, yet. In particular, the delayed-deployment rule serves this
purpose: a deployed particle will always expand toward a location that will never be traversed by the
simulator again.

Note that Assumption 1 only excludes shapes whose levels are very sparse around the last dots of their
principal subsets. In particular, connected shapes abundantly satisfy the assumption, which in this case
reduces to the necessary condition of Proposition 1. Therefore, we have the following characterization of
formable connected computable shapes:

Corollary 1. A necessary and sufficient condition for a connected computable shape to be formable from
a simply connected initial configuration is that, if the initial configuration is unbreakably k-symmetric, then
also the corresponding level of the shape is unbreakably k-symmetric.

There are many possible ways to weaken Assumption 1. For instance, we may require that the last four
particles be in a constant-radius neighborhood of any point, not necessarily the last dot. Reaching such a
point and computing the paths of the last four particles may be tricky, because other deployed particles may
get in the way, but in principle it is possible. Actually, such extraneous particles may temporarily join the
simulator, and allow it to compute final locations that are not necessarily contained in a neighborhood of
constant radius.

Another way to remove Assumtpion 1 is to modify the requirements of the Shape-Formation problem,
allowing a few particles to leave the system (or self-distruct) when the shape has been formed. This would
neatly resolve the issue of how to dismantle the mRAM simulator upon termination, and it would only “waste”
at most nine particles (three particles for each principal subset). Exploring these and other improvements to
Theorem 2 is left as a direction for future research.

6 Concluding remarks

We have shown that four particles can simulate a mobile RAM, and we have applied such a construction to
build a truly universal shape-formation algorithm. Our algorithm allows the formation of complex and general
shapes that were not possible with previous approaches. Our investigations open several questions that are
related to the specific Shape-Formation problem, as well as the general applicability of our mobile RAM.
Concerning the Shape-Formation problem, it remains open to determine what happens when the starting
configuration is not simply connected, and if our technical assumption for non-connected final shapes can
be relaxed. As for our proposed mobile RAM, it would be interesting to understand what other applications
can be found and what other problems can be effectively tackled with our tool.
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