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Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector
autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure
of time-directed information transfer between jointly dependent processes. We exploit such equivalence and
calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to
the target process at each discrete time point; in this frame, GC is the average of its local version. We show
that the variability of the local GC around its mean relates to the interplay between driver and innovation
(autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable
from its average values. Our approach offers a robust and computationally fast method to follow the information
transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in
the Gaussian approximation.
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Granger causality (GC) [1] and its nonparametric counter-
part, namely transfer entropy (TE) [2], are widely used tools
to detect and quantify causal relationships between stochastic
processes mapping the evolution of coupled dynamic systems
over time. For discrete-time stationary multivariate processes
represented by vector autoregressive (VAR) models [3], GC
measures the gain in the linear predictability of the target
process when the knowledge of the candidate driver process is
exploited to make the prediction. For Gaussian systems, GC
and TE are equivalent [4] and are interpreted as measures of
information transfer [5].

The question we address here is as follows: is it possible
to calculate the temporal profile of the information transfer in
complex systems, so that its time-average coincides with the
information-theoretic value of GC?

Concerning TE, the same question has been addressed in
[6] with the introduction of the local transfer entropy. Dif-
ferently from the corresponding averaged quantity, the local
transfer entropy can be both positive and negative: when
it is negative at a given time step, the observation of the
driver is misinformative about the value of the target at that
time. Recently, the local TE has been proposed to study
phase-amplitude coupling in electrophysiological signals [7].
In our opinion, since its inception the local TE has been
used in a quite limited way with respect to its potentiality:
the lack of benchmark systems with an exact solution, as
well as critical choices (parameters, embedding schemes) that
influence the estimation of local TE, have certainly limited
the popularity of this notion. In this work, we show that
it is possible to calculate exactly the local Granger causal-
ity Lgc from the parameters of the underlying VAR model.
Knowledge of the exact value of the local TE in benchmark
systems is helpful to get the correct interpretation of the local

information transfer, with particular regard to of its negative
values.

Given n zero-mean processes x1, . . . , xn, we model them
by a VAR model of order p which, under suitable conditions
[3], is assumed to be stable. This implies that the system
is stationary and ergodic with time-invariant variances and
covariances. The past of the system at time t is described
by the vector xt = [x1,t−1 · · · xn,t−1x1,t−2 · · · xn,t−2 · · · xn,t−p]T ,
whose distribution is a multivariate Gaussian in the stationary
regime. Calling β and α the indices of the driving and target
variables, respectively, we denote yt = xα,t the present state of
the target, wt = [xβ,t−1 · · · xβ,t−p]T the vector of the driver’s
past variables, and ut = xt \ wt the remaining past variables.
After calculation of the conditional probabilities p(yt |ut , wt )
and p(yt |ut ), we evaluate the local Granger causality and
obtain the following structure:

Lgc(ut , wt , yt ) = GC + L(ut, wt, yt ), (1)

where GC is a constant coinciding with the standard defini-
tion of Granger causality, while L is a function of ut , wt , yt .
Specifically, the two terms in (1) can be expressed from the
second-order statistics of the processes as

GC = ln
|�uw||�yu|
|�yuw||�u| , (2)

where | · | stands for the determinant of a matrix, and

L(ut , wt , yt ) = ZT
uw,t�

−1
uwZuw,t + ZT

yu,t�
−1
yu Zyu,t

− ZT
yuw,t�

−1
yuwZyuw,t − uT

t �−1
u ut , (3)

where Zuw,t = [uT
t wT

t ]T , Zyu,t = [yt uT
t ]T , and Zyuw,t =

[yt uT
t wT

t ]T are the observations of the present and past
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FIG. 1. Distribution density of the pairs [εt yt−1, Lgc(t )] sampled
from the time evolution of model (4) depicted as a contour plot.
Values displayed on the level curves are the logarithm of the cor-
responding value of the distribution density.

states of the processes, and �uw = E[Zuw,t ZT
uw,t ], �yu =

E[Zyu,t ZT
yu,t ], �yuw = E[Zyuw,t ZT

yuw,t ], and �u = E[ut uT
t ] are

the relevant covariance matrices. Importantly, L has a vanish-
ing expected value, therefore 〈Lgc(t )〉 = GC. The derivation
of the local GC in (1) from the parameters of the VAR model

fitting the observed processes is reported in the Supplemental
Material [8].

To characterize negative values and temporal profiles of the
local Granger causality, we consider the following simple toy
model:

yt = ε̃t ,

xt = 0.2xt−1 + 0.4yt−1 + εt , (4)

where ε̃ and ε are white noise terms with standard devia-
tion σε̃ = 1 and σε = 0.8. The GC y → x is GC = 0.18 in
this case, corresponding to the mean of the local quantity
Lgc(t ). In Fig. 1, we depict the distribution of sample points
in the plane (εt yt−1)-Lgc(t ), obtained from a run of (4) with
length 30 × 106 time steps. The plot shows that the local
GC oscillates between positive and negative values, attaining
large negative values when εt yt−1 is large and negative. The
latter situation occurs when the noise pulls the system in the
opposite direction with respect to the action of the cause yt−1:
in this case, the knowledge of yt−1 is misinformative about xt ,
meaning that a reduced model implemented without using the
driver performs better than the full model in (4). Conversely,
large positive values are attained at times t when the noise
term εt pulls the system in the same direction as the cause
yt−1. It is worth stressing, therefore, that fluctuations of Lgc do
not merely reproduce modulations of the noise of the system,
but rather they represent the interplay between noise and the
driving variable. These fluctuations constitute, in addition to
their mean value, a hallmark of information transfer, as it
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FIG. 2. Time course of the local GC computed for the toy model (4) along the direction y → x under different values of the stan-
dard deviation of the driving variable y, i.e., σ 2

ε̃ = 2 (top), σ 2
ε̃ = 0.2 (middle), and σ 2

ε̃ alternating between 0.2 and 2 at the time points
t ∈ {120, 200, 320, 400, 520, 600, 720, 800, 920} (bottom). The mean and standard deviation of the Lgc computed within each time window
where σ 2

ε̃ = 2 (gray shaded epochs), or where σ 2
ε̃ = 0.2 (white epochs), are reported, respectively, at the top and at the bottom (in brackets) of

the window.
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FIG. 3. Time series of respiration [R(tn)] and heart rate [H (tn)] measured for a subject exhibiting several instances of sleep apneas (gray
shades in the plots), and corresponding time courses of the local GC computed from R to H [LgcR→H (tn)] and from H to R [LgcH→R(tn)]. The
discrete time points are tn = n�T , with �T = 0.5 s. The local GC courses are plotted together with the corresponding significance bounds
(horizontal colored shades) obtained from IAAFT surrogates [11]. The symbols # and ∗ mark statistically significant values of the mean and
standard deviation of the local GC computed within each apneic or nonapneic time window (gray and white areas).

can be seen in Fig. 2, where the local GC y → x is reported
for different runs of the simulation performed changing the
variance of the driving variable y: we find that not only the
mean, but also the amplitude of the oscillations of the local GC
is modulated by the strength σy = σε̃ of the driving variable.
For small σy, in this toy model we find GC = 〈Lgc〉 ∼ σ 2

y and
〈L2

gc〉 − 〈Lgc〉2 ∼ σ 2
y .

As a first application example, we take the bivariate time
series of respiration (R) and heart rate (H) amplitudes mea-
sured with a sampling rate of 2 Hz from a subject suffering
from sleep apneas and previously analyzed with local TE
[2] and nonlinear GC [9]. Figure 3 shows that consecutive
apneas are characterized by the absence of respiratory os-
cillations and progressively increasing heart rate. Adopting
the Gaussian approximation, these time series are fitted with
a bivariate autoregressive model of order 4, identified with
the Akaike Information criterion [10]. Then, we compute
both the global and local GC along the two directions of
interaction, as well as their significance thresholds based on
iterative amplitude-adjusted Fourier transform (IAAFT) sur-
rogates [11]. The GC is statistically significant along the
direction from respiration to heart rate (GCR→H = 0.0341,
IAAFT 95th percentile = 0.0096), while it is low and non-
significant along the opposite direction (GCH→R = 0.0015,
IAAFT 95th percentile = 0.0079); physiologically, this result

supports the mainly unidirectional nature of respiratory sinus
arrhythmia [12]. Computation of the local GC supports the
lack of interactions from heart rate to respiration, and reveals
the local nature of the information transfer from respiration
to heart rate: the Lgc R → H exhibits clear marked oscilla-
tions with statistically significant mean and standard deviation
only while the patient is breathing, while it is very small
and nonsignificant during the apneas. It is worth mentioning
that the absence of significant GC during the apneas and
the unidirectional GC R → H in the nonapneic state were
observed also fitting the VAR model over the time windows
corresponding to the two states. Nevertheless, we remark that
our approach, sharing the philosophy of local information
dynamics [6,13], differs fundamentally from time-varying GC
methods [14]; these methods fit a different VAR model on the
data from each predefined temporal window, requiring station-
arity within each window and being subject to the tradeoff
between estimation accuracy and temporal resolution. On the
contrary, local methods like ours fit the model on the whole
time series globally assumed as stationary, and then provide a
pointwise measure without the need of identifying and sizing
the analysis windows.

As another real example, we consider the analysis of
signals from an epileptic brain. Although significant infor-
mation can be extracted from electroencephalogram (EEG)
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FIG. 4. Time course of the local GC computed from the deep electrode to the cortical electrodes (average over 64 target electrodes)
computed in the pre-ictal stage (black, upper panel) and in the ictal stage (blue, lower panel).

recordings made from the scalp surface of patients, in some
cases of pharmaco-resistant epilepsy (when medications fail
to prevent seizures), invasive electrocorticogram (ECoG)
recordings are performed, with recordings of voltage directly
from the brain’s surface or deep brain regions. Here we con-
sider ECoG recordings from a drug-resistant epilepsy patient
from 64 cortical electrodes (placed with 8 × 8 geometry) and
two depth electrodes with six contacts each [15], available
at [16]. Many studies of transfer entropy in the epileptic
brain are published; see, e.g., [17]. Here we analyze these
signals in the Gaussian approximation. Data are sampled at
400 Hz, and we apply the proposed method on the fourth
seizure, considering two 10-s windows in the pre-ictal stage
(before the epileptic seizure) and in the ictal stage (during the
seizure). A previous paper [18] showed that one of the depth
electrodes is close to the seizure onset zone, i.e., the site of
the beginning of the epileptic seizures and of their primary
organization. Therefore, we evaluate in a pairwise fashion the
local Granger causality from that depth electrode to all 64
cortical electrodes. Data are fitted with a VAR with order
p chosen according to Akaike’s criterion [10]: our results,
averaged over the cortical targets, are displayed in Fig. 4.
In the pre-ictal stage, averaging over the targets leads to a
homogeneous pattern, with GC = 0.32; on the other hand, in
the ictal stage after averaging, the mean GC is lower (GC =
0.23) but the temporal profile is more intermittent and shows
peaks of Lgc in correspondence with time instants in which the
source coherently transmits information to a large portion of
the cortical electrodes. These results show, on the one hand,
that as expected the pattern of the information flow in the
epileptic brain is different before and during the seizure. On
the other hand, it clearly suggests that the classical measure
of Granger causality (the mean of Lgc) is not sufficient to
properly describe the temporal properties of the information
transfer in this system; for example, contrary to the mean
Lgc, the standard deviation of Lgc increases from 0.36 in

the pre-ictal stage to 0.89 during the seizure. Therefore, the
standard deviation of Lgc conveys in this case a description
of the pattern of information transfer complementary to that
provided by the standard GC.

Both the simulation example and the two applications have
revealed the important role of the variability displayed by
the proposed local GC measure around its mean. In fact, our
results indicate that the local GC may exhibit fluctuations
of varying magnitude in correspondence with local modifi-
cations of the process dynamics: we have reported instances
of locally increased variance of the Lgc profiles which can or
cannot be associated with increased mean values represen-
tative of higher GC (as happens, e.g., in the two reported
applications). The modulation of Lgc fluctuations may thus
reveal the transient instances of information transfer in the
system.

Summarizing, local Granger causality implements the no-
tion of local transfer entropy for linear systems, and it can be
used to extract the temporal profile of information transfer;
we have derived its expression for a generic VAR model.
As fitting a VAR model to data only requires the choice of
the order p, our formalism can be easily used to extract the
temporal profile of information transfer for linear systems.
We remark that in many applications, nonlinearities can be
neglected and the Gaussian approximation fully captures the
underlying phenomena; if this is not the case, the results
obtained in the Gaussian approximation still constitute the
reference to which one should refer for assessing the role of
nonlinearities. Moreover, we have illustrated the usefulness
of the local GC also in the presence of transient alterations
of the process dynamics inducing departure from Gaussianity.
We have shown that fluctuations of Lgc are connected to the
interplay between the innovation (noise) and driver processes,
in such a way that large negative (positive) values correspond
to the noise pulling the system in the opposite (same) direction
as the driver. Given that innovations model the environment
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acting on the system under consideration, and in agreement
with the discussion in [5], we conclude that negative (misin-
formative) values of Lgc are important as they are the signature
of extra features in the dynamics that have not been accounted
for in the past of the measured variables alone. Since GC has
gained increasing popularity in many fields of science, we

expect that the proposed approach will have a large impact as
it allows us to estimate easily the information transfer during
the time evolution of a complex system.

This research was supported by MIUR project PRIN
2017WZFTZP “Stochastic forecasting in complex systems.”
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