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This paper investigates the response of structures including in their constitutive relationship memory effects. 

The analysis is carried on both by using modal analysis and a wave approach. Memory effects appears by a 

convolution integral added to conventional differential terms. The dispersion relation for an infinite waveguide 

is obtained together with the frequency response function for its finite counterpart, with given boundary con-

ditions. The analysis shows large modifications of the wave propagation characteristics in the low frequency 

range, both for phase and group velocity, and an associated displacement of the structure natural frequencies.  
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1. Introduction 

Memory effect is a topic that enjoys a widespread attention due to the variety of applications they are 

involved in, as wave propagation [1, 2], viscoelastic applications [3] and optics [4]. 

In this paper, a theoretical background is presented in terms of wave propagation and modal analysis. 

The simpler case of a one-dimensional system is considered, under a time-dependent load. The memory 

effect appears as a convolution term involving a characteristic kernel, characterized by a persistency time 

and an amplitude that modulate its effect in the structural response. The obtained analytical results show 

this retarded action is the driver of wave attenuation strongly dependent upon the frequency. These ef-

fects appear to be important especially in the low frequency region. The analysis is carried on by using 

both a wave approach and modal analysis. A systematic investigation of the dependence of the structural 

response in terms of the amplitude and the persistency time of the memory effect is presented. 

The analysis represents a first investigation in a more general context related to the presence of 

memory effects due to the fluid-structure interaction [5]. In several aerodynamic and hydrodynamic prob-

lems an elastic structure is in contact with a fluid [5-8]. Typically, two representative cases are of interest: 

the aerofoil that generates a lift effect due to the release of vortexes and the effect of turbulent boundary 

layer on an elastic wall [9, 10]. In both cases the vortex is a travelling structure that is conveyed by the 
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flow with two important effects. One is related to the wake presence, along which the vortexes are step-

ping away from the trailing edge. The vortex is a structure that generates a velocity field in the fluid and 

an associated pressure field that invests the surrounding region. This pressure field is generated by the 

foil motion at the time t, but this effect is perceived by the foil even at later time as a downwash. This 

produces in the elastic response of the foil a retarded memory effect. A second element is related to the 

presence of the vortex pressure field as travelling structure along the elastic wall, that produces travelling 

pressure loads. In this case this random vortex structure couples time and space because of its convection 

in the flow, leading to typical effects of the moving loads along an elastic system. The coincidence effect 

of the vortex convection and the elastic response of the wall generate very interesting phenomena ap-

pearing in the turbulent boundary layer noise, when coupled to an elastic wall. More precisely, the coin-

cidence phenomena become critical when the speed of the flow equals the speed of the vibrating modes 

of the elastic system. This condition, named coincidence, is a recurring topic of many works that tackle 

the problem of the turbulent boundary layer (TBL). In this regard, TBL has been analysed in many works 

and several models have been proposed [11-14]. 

The inclusion of the memory effects due to the vortex convection, modifies the wave propagation in 

the structure, and a deep modification of the vibration field produced by the travelling pressure field over 

the structure is expected. We expect the present analysis could be applied in future works in this context.  

 

2. Theory and Formulation  

Navier-Cauchy differential equation of motion can be completed with integral terms when including 

the effects of memory effects and long-range interactions, as in the prototype equation: 

𝜌𝑢̈(𝑥, 𝑡) −
𝐸

2(1 + 𝜈)
[∇2𝑢(𝑥, 𝑡) +

1

1 − 2𝜈
∇(∇ ⋅ 𝑢(𝑥, 𝑡))] + 𝜇 ∫ 𝑃(𝑡 − 𝜏) 𝑢(𝑥, 𝑡)

𝑡

−∞

𝑑𝜏 + ∫ 𝑓(|𝑟|)𝑟𝑑𝜉

+∞

−∞

= 0 

where 𝑢 is the structural axial displacement, 𝜌, 𝐸 and 𝜇 are the mass density, Young’s modulus and 

the memory gain, respectively. The first integral term introduces memory effects, the second one the 

long-range interactions in space. In this context, the authors intend to focus only on the memory effects. 

The response when including long-range interactions has been widely discussed in [15-18]. 

2.1 Plane waves  

An infinite waveguide with a memory effect is considered here. In such systems, the structural re-

sponse is not only dependent on the instant displacement, velocity and acceleration, but also upon the 

changes of the structural response along its time-history. We assume, as a reference, the governing equa-

tion for longitudinal vibration and for a linear homogeneous rod can be expressed as  

 𝜌𝑢̈ − 𝐸𝑢′′ + 𝜇 ∫ 𝑃(𝑡 − 𝜏) 𝑢(𝑥, 𝑡)
𝑡

−∞
𝑑𝜏 = 0    (1) 

where prime denotes space derivation. The additional term ∫ 𝑃(𝑡 − 𝜏) 𝑢(𝑥, 𝑡)
𝑡

−∞
𝑑𝜏 brings into the 

equation the memory effect through the kernel 𝑃(𝑡). For 𝑃(𝑡) = 𝑒−𝛼𝑡 𝐻(𝑡), 𝐻(𝑡) being the Heaviside 

step, and 1/𝛼 the memory persistency time, applying spatiotemporal Fourier transform, the dispersion 

relation is obtained as:  

𝜌𝜔2 = 𝐸𝑘2 +
𝜇

𝛼+𝑗𝜔
       (2) 

where the memory delay 𝛼 is a positive real number and 𝑗 is the imaginary unit. This is a complex 

equation with complex roots, which proclaims the fact that the low frequency propagation of waves in 

such systems is distorted with respect to the standard D’Alembert equation. At higher frequency the 
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memory distortion term 
𝜇

𝛼+𝑗𝜔
 tends to vanish. To obtain a generic nondimensional form of the dispersion 

relation, the following nondimensional parameters are conveniently considered  

       Ω = ω/𝛼              

𝐾 = 𝑘 √𝐸/𝜌𝛼3                (3)

Γ = 𝜇/𝜌𝛼3                       

In view of these parameter, Eq. (2) changes as follow  

      Ω2 = 𝐾2 +
Γ

1+Ω2 − 𝑗
ΓΩ

1+Ω2        (4) 

Here, Γ is a nondimensional parameter, which distinctly characterizes the system’s response with re-

spect to the classical one. The roots of this equation are found as  

𝐾(Ω) = ±
√−(1+𝑗Ω)(Γ−Ω2−𝑗Ω3) 

1+𝑗Ω
       (5) 

And the associated waveform is  

     𝑢 = 𝐴 𝑒∓𝐾𝑖𝑥 𝑒𝑖(±𝐾𝑟𝑥−𝜔𝑡)       (6) 

where 𝐾𝑟(Ω) and 𝐾𝑖(Ω) are the real and imaginary components of the wavenumber 𝐾(Ω). This im-

plies the response corresponding to an infinite waveguide with memory shows an exponentially decaying 

trend governed by 𝑒∓𝐾𝑖𝑥 of the travelling disturbance 𝑒𝑖(±𝐾𝑟𝑥−𝜔𝑡).  

2.2 Frequency response analysis  

The problem under investigation is the forced vibration of a finite waveguide of length 𝑙. The origin 

load is at the center of the rod and both ends (𝑥 = ±𝑙/2) are clamped. The system equation is  

𝜌𝑢̈ − 𝐸𝑢′′ + 𝜇𝑃 ∗ 𝑢 = 𝑞(𝑡)       (7) 

where 𝑞(𝑡) is a time-varying load. Provided the initial conditions are set to zero, Eq. (7), in the La-

place domain, takes the form 

 𝜌𝑠2𝑢̅(𝑥, 𝑠) − 𝐸
𝑑2𝑢(𝑥,𝑠)

𝑑𝑥2 +
𝜇𝑢(𝑥,𝑠)

𝑠+𝛼
= 𝑞(𝑠)      (8) 

Considering the assumed boundary conditions, one obtains  

𝑢̅(𝑥, 𝑠) = 𝐴 𝑞(𝑠) −
𝐴 𝑞(𝑠)

 (𝑒𝐵𝑙+1) 
𝑒𝐵(

𝑙

2
−𝑥) +

𝐴 𝑞(𝑠)

(𝑒𝐵𝑙+1)
𝑒𝐵(

𝑙

2
+𝑥)

     (9) 

with  

𝐴 =
𝑠+𝛼

𝜇+𝑠2𝜌(𝑠+𝛼)  
              

    𝐵 =
 1 

 √𝐸 √𝐴
              (10) 

Hence, the transfer function is  

          𝐻(𝑗𝜔) =
𝑢(𝑥,𝑠)

 𝑞(𝑠) 
= 𝐴−

 𝐴[𝑒
𝐵(

𝑙
2−𝑥)

+𝑒
𝐵(

𝑙
2+𝑥)

]

 (𝑒𝐵𝑙+1) 
|

𝑠=𝑗𝜔   ,   𝑥=𝑥0

           (11) 

2.3 Modal analysis  

Let us consider a similar system described by Eq. (7) with arbitrary boundary conditions. Expressing 

the longitudinal displacement in terms of normal modes 𝜙𝑖, we have  

𝑢(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)∞
𝑖              (12) 

Substitution of Eq. (12) into Eq. (7) results in  

𝜌 ∑ 𝜙𝑖𝑞̈𝑖𝑖 − 𝐸 ∑ 𝑞𝑖𝜙
′′

𝑖𝑖 + 𝜇 ∫ 𝑃(𝑡 − 𝜏) [∑ 𝜙𝑖𝑞𝑖𝑖 ]
𝑡

−∞
𝑑𝜏 = 𝑞           (13) 

Multiplying the Eq. (13) by 𝜙𝑗 and integrating over the length 𝑙, in the view of orthogonality relation-

ships, the preceding reduces to  

    𝑞̈𝑖 + 𝜔𝑖
2𝑞𝑖 + 𝜇(𝑞𝑖 ∗ 𝑃) = 𝑞̃(𝑡) ∫ 𝜙𝑖

𝑙

0
𝑑𝑥            (14) 
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where 𝜇 = 𝜇/𝜌 and 𝑞̃ = 𝑞/𝜌. Applying Fourier transform yields  

        𝑄𝑖(𝜔) =
𝑄̃(𝜔) ∫ 𝜙𝑖

𝑙
0 𝑑𝑥

𝜔𝑖
2−𝜔2+

𝜇̃

𝛼+𝑗𝜔

              (15) 

Thus, the signal may be reconstructed easily in the frequency domain as  

  𝑢(𝑥, 𝜔) = 𝑄̃(𝜔) ∑
𝜙𝑖(𝑥) ∫ 𝜙𝑖

𝑙
0

𝑑𝑥

𝜔𝑖
2−𝜔2+

𝜇̃

𝛼+𝑗𝜔

∞
𝑖                       (16) 

3. Results and discussion  

This section is devoted to investigating the propagation properties of an infinite waveguide in the 

presence of memory effects governed by the nondimensional parameter Γ. On the other hand, a frequency 

response analysis on the finite counterpart of the investigated system is performed.  

3.1 Wave propagation  

Following the approach presented in Section 2.1, the propagation characteristics of infinite waveguide 

with non-instant interactions can be investigated. The imaginary component of the nondimensional wave-

number i.e. wave attenuation, with respect to the nondimensional frequency is plotted in Fig. 1, for dif-

ferent values of Γ. Based on the figure, such a waveguide may be employed as a potential medium for 

high-frequency energy transfer since the medium is significantly less attenuating at higher frequencies.  

 
Figure 1: The wave attenuation curves for the waveguide with non-instant interactions for various the nondi-

mensional parameters Γ. 

 

Fig. 2 shows the phase velocity 𝐶𝜙 = Ω/𝐾𝑟(Ω)  against the nondimensional frequency for various 

values of Γ. Being the most obvious remarks, the system acts similarly to a conventional waveguide at 

higher frequencies. One may note that the amplitude of 𝐶𝜙 at the starting point of curve decreases for 

higher values of Γ. Furthermore, the phase velocity initially grows in a parabolic fashion with frequency 

and after reaching a maximum point, it decreases asymptotically to one.  

Fig. 3 shows that the group velocity, at first, decreases rapidly to substantially rise straight afterwards. 

Finally, the value of 𝐶𝑔 manifests a monotonic drop immediately after reaching a certain frequency and 

approaches the response of the conventional waveguide. Note that, the fluctuations corresponding to the 

group velocity shows rather large variations (the distortion belong to a range 0.5-2 with respect to the 

conventional speed) that can be purposely used to affect the propagation regimes, for example including 



ICSV26, Montreal, 7-11 July 2019 
 

 

ICSV26, Montreal, 7-11 July 2019  5 

control systems based on memory effects [19]. The propagation regimes associated to both time and 

space memory effect can in fact permit a surprising control of the wave pattern, even inducing wave-

stopping or superluminal propagation which are already reported for systems affected by space and time 

nonlocality [15]. 

 
Figure 2: The phase velocity curves for the waveguide with non-instant interactions for various the nondi-

mensional parameters Γ. 

 
Figure 3: The group velocity curves for the waveguide with non-instant interactions for various the nondi-

mensional parameters Γ. 

 

3.2 Frequency response analysis  

Based on the mathematical framework developed in Section 2.2, the following graphical results for a 

finite waveguide of unit length with Young’s modulus 𝐸 = 1 and mass density 𝜌 = 1, are provided. Note 

that the frequency response function is evaluated at the origin. Fig. 4 represents the amplitude of the 

complex frequency response for different values of 𝛼 and 𝜇. From the figure, it is clear the value of 
|𝐻(𝑗𝜔)| decreases as the memory effect grows stronger. This, indeed, reflects the influence of induced 

damping due to the integral term ∫ 𝑃(𝑡 − 𝜏) 𝑢(𝑥, 𝑡)
𝑡

−∞
𝑑𝜏 when included into the conventional wave 
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equation. The phase response of a waveguide with memory to an input signal with frequency content of 

sub-50 𝑟𝑎𝑑/𝑠 is depicted in Fig. 5. The abruptness of the phase shift may be attributed to high damping 

at the corresponding frequency. Drastic changes in phase response of system is due to an increase in the 

memory gain 𝜇. Thus, temporal memory can cause a considerable delay of the input signal.  

 

 
Figure 4: The variation in the amplitude of the transfer function for the central point of a waveguide with 

non-instant interactions with respect to frequency for various values of 𝛼 and 𝜇. 

 
Figure 5: The phase response for the central point of a waveguide with non-instant interactions with respect 

to frequency for various values of 𝛼 and 𝜇. 

4. Concluding remarks  

The frequency response and wave propagation analysis for a waveguide with temporal memory is 

investigated in this study. The standard one-dimensional wave equation is modified by considering a 

supplementary term which describes the dependence of the system’s response on the whole time-history. 

The spatiotemporal Fourier transform is applied to study the characteristics of waves in such a system 

with unbounded length and the dispersion relations is expressed in terms of nondimensional parameters. 
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Results indicate the attenuation is significantly dependent upon the frequency. In the low frequency re-

gion, i.e. for Ω = ω/𝛼 about less than 5, i.e. for ω < 5𝛼, the wave phase and group speeds are highly 

affected by the memory effects and can be reduced or increased of a factor up to 2.   Furthermore, the 

imposed forcing term which introduces the memory effects, causes significant variations in phase re-

sponse as the influence of memory grows stronger.  
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