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Abstract. We show the existence of globally stable quasistatic evolutions for a rate-
independent material model with elastoplasticity and incomplete damage, in small
strain assumptions. The main feature of our model is that the scalar internal variable
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current state influences the future evolution of damage.
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1. Introduction

In this paper we study the problem of quasistatic evolution for a material model with
elastoplasticity and incomplete damage, in small strain assumptions. The damage is described
by a scalar internal variable, which affects both the elastic tensor and the plastic yield surface.

Models for elastic materials where the bulk energy depends on a scalar damage variable were
considered for instance in [18, 30, 28, 4, 38, 16, 37, 21, 22] (without plasticity). In contrast,
in the elastoplastic setting of e.g. [8, 9, 10, 11], and of the Perzyna model for viscoplasticity
with damage in [33, Section 1.4 and Chapter 9], the plastic dissipation is function of a scalar
internal variable, but the elastic tensor is constant.

The present formulation accounts for both these dependences and takes inspiration from
[1], where a variational model for complete damage was proposed and certain closed-form
solutions were given in dimension one. (See also [2] for a numerical analysis in dimension two.)
In particular, the material exhibits a softening behavior: as damage increases, the stiffness
decreases and the plastic yield surface shrinks.

We prove the existence of globally stable quasistatic evolutions following the so-called ener-
getic approach for rate-independent processes (cf. e.g. [25] and references therein), as common
in the study of plasticity, damage, as well as fracture (see for instance [7, 8], [4, 38, 37], and
[13, 14, 12], respectively).
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1



2 VITO CRISMALE

We now briefly describe the problem, formulated in a reference configuration Ω ⊂ Rn. The
evolution is driven by a time-dependent loading, limited for simplicity to a hard device, namely
by a (sufficiently smooth) displacement w(t) acting on the whole boundary ∂Ω of the domain
during a time interval [0, T ]. To introduce the model, we start from the classical formulation
of perfect plasticity (cf. [7]), and introduce the dependence of the elastic tensor C and of the
constraint set K on the damage variable α. Assuming isotropic damage, the values of α range
in the interval [0, 1]; here α(t, x) = 1 stands for no damage and α(t, x) = 0 for maximal damage
in a neighbourhood of a point x ∈ Ω at time t.

The linearized strain Eu, defined as the symmetric part of the spatial gradient of the
displacement u, is decomposed as the sum of the elastic strain e and the plastic strain p. The
plastic strain p belongs to Mn×n

D , the space of trace free n × n symmetric matrices, as usual
for materials which are insensitive to pressure. The effective Cauchy stress σ is determined by
the relation C(α)e, and its deviatoric part σD lies in the constraint set K(α); when σD reaches
the boundary of K(α) plasticity can evolve, according to the classical Prandtl-Reuss flow rule.

In a strong formulation we then have for every t ∈ [0, T ] and x ∈ Ω the following:

(sf1) additive decomposition: Eu(t, x) = e(t, x) + p(t, x),
(sf2) constitutive equation: σ(t, x) = C(α(t, x))e(t, x),
(sf3) equilibrium: div σ(t, x) = 0,
(sf4) stress constraint: σD(t, x) ∈ K(α(t, x)),
(sf5) associative flow rule: ṗ(t, x) ∈ NK(α(t,x))(σD(t, x)),

where NK(α(t,x))(ξ) is the normal cone to K(α(t, x)) ⊂ Mn×n
D at ξ ∈ Mn×n

D , and for t ∈ [0, T ]
and x ∈ ∂Ω

(sf6) prescribed boundary displacement: u(t, x) = w(t, x) for x ∈ ∂Ω.

As a result of damage, the material has a softening behavior: the function e 7→ C(α)e : e is
nondecreasing in α for every e and equicoercive (indeed only incomplete damage is considered
here), and

Br(0) ⊂ K(0) ⊂ K(α1) ⊂ K(α2) ⊂ K(1) ⊂ BR(0) ,

for every α1 ≤ α2, with 0 < r < R. Moreover we assume that α 7→ supσ∈K(α) σ : ξ is continuous

for every ξ ∈Mn×n
D .

To present the equations governing the damage evolution, we introduce the mechanical
energy E . As in [29], this includes a continuous functional D and a regularizing gradient term,
both depending only on α, and a quadratic form Q = 1

2

∫
Ω
C(α)e : edx of the elastic strain

corresponding to the stored elastic energy. For a technical reason (see Lemma 2.3), it is not
sufficient to take a regularizing term of the type ‖∇α‖2L2 as done in [1] (where the setting is
one dimensional). Thus, we choose ‖∇α‖γLγ with γ > n, a regularization present also in [28]
and more recently in [22], for example. Hence,

E(α, e) := Q(α, e) +D(α) + ‖∇α‖γLγ .

We consider the damage as a unidirectional process whose evolution is governed by a threshold
criterion of Kuhn Tucker-type (see e.g. [29], [30], [1], [2] and [33, Problem 9.2]). This gives in
a strong formulation that for every t

(sf7) irreversibility: α̇(t) ≤ 0 in Ω,
(sf8) Kuhn Tucker condition: 〈∂αE(α(t), e(t)), β − α̇(t)〉 ≥ 0 for every β ∈W 1,γ(Ω), β ≤ 0,

where ∂αE is the Gâteaux derivative of E with respect to α.
Let us now introduce the plastic dissipation. The properties of α 7→ K(α) imply that the

function H : R×Mn×n
D → R+ ∪ {0} defined by

H(α, ξ) := sup
σ∈K(α)

σ : ξ

(i.e., ξ 7→ H(α, ξ) is the support function of K(α)), is convex and positively one-homogeneous
in ξ, and continuous. In some cases, we require also that ξ 7→ H(α2, ξ) −H(α1, ξ) is convex
for every α1 ≤ α2. As a particular case, we can choose a multiplicative definition for K(α)
(see Remark 2.1).



QUASISTATIC EVOLUTION FOR A COUPLED ELASTOPLASTIC–DAMAGE MODEL 3

In the energetic formulation of problems in linearized elastoplasticity without hardening it
is natural to assume that p belongs to Mb(Ω;Mn×n

D ), the space of Mn×n
D -valued Borel measures

on Ω, since the plastic dissipation is considered one-homogeneous in p. Then, in accordance to
the theory of convex functions of measures developed in [19], we define the plastic potential as

H(α, p) :=

∫
Ω

H

(
α(x),

dp

dµ
(x)

)
dµ(x) ,

where µ ∈ Mb(Ω)+ is any measure such that p � µ. In particular it is convex, positively
one-homogeneous, and weakly∗ lower semicontinuous with respect to p ∈Mb(Ω;Mn×n

D ), since

α ∈W 1,γ(Ω) ⊂ C(Ω).
Given two evolutions of damage and plastic strain t 7→ α(t) and t 7→ p(t), the plastic

dissipation is then defined as

VH(α, p; s, t) := sup
P
VPH(α, p; s, t), VPH(α, p; s, t) :=

N∑
j=1

H(α(tj), p(tj)− p(tj−1)) ,

where P = {tj}Nj=0 is a partition of [s, t], and the supremum is taken over the partitions. Notice
that for each subinterval [ti−1, ti] one considers α(ti) as a “weight” for this sort of variation.
When p is sufficiently smooth in time and t 7→ α(x, t) is nonincreasing, we can say (see the
abstract result Lemma A.1 in the Appendix) that

VH(α, p; s, t) =

∫ t

s

H(α(τ), ṗ(τ)) dτ . (1.1)

To ease the reading, when α(t) = α ∈ C(Ω; [0, 1]) for every t we use the symbol V̂H instead of
VH , so that

V̂H(α, p; s, t) := VH(α, p; s, t)|α(t)=α .

If we consider the particular case when K(α) = V (α)B(1), with B(1) the unit ball of Mn×n
D ,

under regularity assumptions on p we get

V̂H(α, p; 0, t) =

∫
Ω

V (α(x))
(∫ t

0

|ṗ(s, x)|ds
)

dx . (1.2)

This term, which depends on the cumulated plastic strain x 7→
∫ t

0
|ṗ(s, x)|ds, appears in the

total mechanical energy in [1]. Therefore we define a more general total energy

Eλ(α, e; p, t) := E(α, e) + λV̂H(α, p; 0, t) ,

with λ ∈ [0, 1] a parameter of the model. The Kuhn-Tucker condition for the damage becomes

(sf8)’ 〈∂αEλ(α(t), e(t); p, t), β − α̇(t)〉 ≥ 0 for every β ∈W 1,γ(Ω), β ≤ 0.

Notice that when λ is zero this reduces to (sf8). The presence of the term λV̂H in the energy
is related to a fatigue phenomenon, see below in this introduction for a short discussion.

According to the general theory for energetic solutions, a quasistatic evolution corresponding
to our choice of energy and dissipation is a function t 7→ (α(t), u(t), e(t), p(t)) characterized by
the following conditions:

(qs0) irreversibility : for every x ∈ Ω

t ∈ [0, T ] 7→ α(t, x) is nonincreasing ;

(qs1) global stability : the function t 7→ p(t) from [0, T ] into Mb(Ω;Mn×n
D ) has bounded

variation, (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ], and

E(α(t), e(t)) + λV̂H(α(t), p; 0, t) ≤ E(β, η) + λV̂H(β, p; 0, t) +H(β, q − p(t))

for every β ≤ α(t) and (v, η, q) ∈ A(w(t)), where

A(w(t)) := {(u, e, p)|Eu = e+ p in Ω, p = (w(t)− u)� νHn−1 on ∂Ω}

is the set of admissible displacements with respect to the boundary datum w(t);
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(qs2) energy balance: for every t ∈ [0, T ]

E(α(t), e(t)) + λV̂H(α(t), p; 0, t) + (1− λ)VH(α, p; 0, t) = E(α(0), e(0)) +

∫ t

0

〈σ(s), Eẇ(s)〉ds ,

where σ(s) := C(α(s))e(s).

The last term in (qs2) is the work of the external loading due to the prescribed boundary
condition. Notice that if the damage variable is constant in time we obtain for every λ an
evolution for nonhomogeneous plastic materials, with yield surface continuous with respect to
x (see [34]).

We point out here that the case of positive λ accounts for a fatigue phenomenon. Indeed,
when one minimizes the energy with respect to β at a given time t, it is easier to damage
portions of the material where the cumulated plastic strain is larger (recall (1.2) and the
fact that V is nondecreasing), i.e. parts more affected by plastic evolution until t. Since the
condition (qs1) requires that the current configuration is a minimum for the total energy plus
the plastic dissipation among all the admissible states at the time t, we see that the damage
process is affected by the history of the plastic strain up to t, and this is reflected also in (sf8’).
Tuning between zero and one the parameter λ one can choose, possibly led by phenomenological
considerations, how strong the interplay between damage growth and cumulated plastic strain
is.

In Theorem 4.3 we prove an existence result for quasistatic evolutions. The proof is based
on time discretization and on approximation by means of solutions to incremental minimum
problems, following a method common in the study of quasistatic evolutions. As a technical
note, we remark just that the monotonicity in time of α and the softening property of H
allow us to prove that VPH(α, p; 0, t) is indeed nondecreasing with respect to refinements of the
partition P of [0, t] (Lemma A.1). This is crucial in order to pass to the limit in the energy
balance, see (4.19), and to recover (1.1) when p is more regular in time.

The global stability implies conditions (sf1)–(sf4) for every t and a.e. x, while the boundary
datum is attained in a weak sense since a plastic slip can develop at the boundary. Assuming
more regularity on the constitutive coefficients and on the evolution (which is strongly contin-
uous except at most for countable many instants, see Proposition 5.1), one can derive (sf5),
(sf7), (sf8’), cf. Propositions 5.4 and 5.6.

Let us conclude this presentation by some comments about the energetic formulation. It
is known that the request of global stability may lead to unphysical jumps in time of the
evolution, which may overtake energy barriers (see, for instance, [24, Ex. 6.1]); however, the
description of the process is meaningful at least up to the first jump time. In order to over-
come such a drawback, one may adopt the so-called vanishing viscosity technique (we refer
the reader to e.g. [26, 27] for an abstract treatment and to [9], [10], [21], [22] for some appli-
cations): rate-independent evolutions are seen as limits of solutions to some rate-dependent
systems containing a viscous dissipation that tends to zero. This viscous evolutions are reg-
ular in time, see in our context the Perzyna’s law for viscoplasticity with damage considered
in [33, Section 1.4 and Chapter 9], for instance. The forthcoming paper [6] adopts for the
present problem a vanishing viscosity approach in the spirit of [21]. We remark that in [6]
a different damage regularization and stronger regularity assumptions on the initial data and
the constitutive coefficients are employed.

The structure of the paper is the following: in Section 2 we set the notation, describe the
assumptions of the model, and introduce the energy and the dissipation terms with their main
properties; Section 3 includes the results needed in order to solve the incremental problems
and to assure convergence of the stability properties in the continuous time limit; Section
4 is devoted to prove the existence result; in Section 5 we show qualitative properties of
the evolution. Finally, in the Appendix we analyse the particular variation used to define
the plastic dissipation and show a property of increasing functions with values in Lp spaces,
employed to prove more regularity for the evolution.
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2. Preliminaries

Mathematical preliminaries. The Lebesgue measure on Rn is denoted by Ln and the
(n − 1)-dimensional Hausdorff measure by Hn−1. The space of bounded X-valued Radon
measures on B is denoted by Mb(B;X), for a locally compact subset B of Rn and a finite
dimensional Hilbert space X. The indication of the space X is omitted when X = R. The space
Mb(B;X) is endowed with the norm ‖µ‖1 := |µ|(B), where |µ| ∈Mb(B) is the variation of the
measure µ, and it is identified with the dual of C0(B;X), the space of continuous functions
ϕ : B → X such that {|ϕ| ≥ ε} is compact for every ε > 0, by the Riesz Representation
Theorem (see, e.g., [32, Theorem 6.19]). The weak∗ topology of Mb(B;X) is defined by the
duality.

The space L1(B;X) of X-valued Ln-integrable functions is regarded as a subspace of
Mb(B;X), with the induced norm. The Lp norm, 1 ≤ p ≤ ∞ is denoted by ‖ · ‖p, while
the brackets 〈·, ·〉 denote the duality product between conjugate Lp spaces.

The space of symmetric n×n matrices is denoted by Mn×n
sym ; it is endowed with the Euclidean

scalar product ξ : η :=
∑
ij ξijηij and with the corresponding Euclidean norm |ξ| := (ξ : ξ)1/2.

The symbol for the space of trace free matrices in Mn×n
sym is Mn×n

D . For every ξ ∈ Mn×n
sym the

orthogonal projection of ξ on RI is 1
n tr (ξ)I. Therefore the orthogonal projection on Mn×n

D ,
called the deviator of ξ, is

ξD := ξ − 1

n
(tr ξ)I .

The symmetrized tensor product a � b of two vectors a, b ∈ Rn is the symmetric matrix
with entries (aibj + ajbi)/2. If X1, X2 are Banach spaces, Lin(X1;X2) is the space of linear
operators from X1 into X2, endowed with the usual operator norm.

For every u ∈ L1(U ;Rn), with U open in Rn, let Eu be the Mn×n
sym -valued distribution on

U whose components are defined by Eiju = 1
2 (Djui + Diuj). The space BD(U) of functions

with bounded deformation is the space of all u ∈ L1(U ;Rn) such that Eu ∈ Mb(U ;Mn×n
sym ).

It is easy to see that BD(U) is a Banach space with the norm ‖u‖1 + ‖Eu‖1. It is possible
to prove that BD(U) is the dual of a normed space (see [36] and [23]), and this defines the
weak∗ topology of BD(U). A sequence uk converges to u weakly∗ in BD(U) if and only if
uk → u strongly in L1(U ;Rn) and Euk ⇀ Eu weakly∗ in Mb(U ;Mn×n

sym ). If U is a bounded
open set with Lipschitz boundary, for every function u ∈ BD(U) the trace of u on ∂U belongs
to L1(∂U ;Rn). It will always be denoted by the same symbol u. If uk, u ∈ BD(U), uk → u
strongly in L1(U ;Rn), and ‖Euk‖1 → ‖Eu‖1, then uk → u strongly in L1(∂U ;Rn) (see [35,
Chapter II, Theorem 3.1]). Moreover (see [35, Proposition 2.4 and Remark 2.5]), there exists
a constant C > 0, depending on U , such that

‖u‖1,U ≤ C ‖u‖1,∂U + C ‖Eu‖1,U , (2.1)

‖ · ‖p,B being the Lp norm of a function with domain a Borel set B. For the general properties
of BD(U) we refer to [35].

The reference configuration. Throughout the paper the reference configuration Ω is a
bounded connected open set in Rn, n ≥ 2, with Lipschitz boundary. On ∂Ω we shall prescribe
only Dirichlet boundary conditions, to simplify the presentation. This will be done by assigning
a function w ∈ H1(Rn;Rn), whose trace on ∂Ω (again denoted by w) is the prescribed boundary
value. This choice is motivated by the fact that we do not want to impose “discontinuous”
boundary data, so that, if the displacement develops sharp discontinuities, this is a result of
energy minimization.

In our problem u ∈ BD(Ω) represents the displacement of an elasto-plastic body and Eu
is the corresponding linearized strain. We now introduce the coupled elastoplastic damage
model. As for modeling plasticity, we follow [7] and use the corrisponding notations.

The elastic and plastic strains. Given a displacement u ∈ BD(Ω) and a boundary datum
w ∈ H1(Rn;Rn), the elastic and plastic strains e ∈ L2(Ω;Mn×n

sym ) and p ∈Mb(Ω;Mn×n
D ) satisfy
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the equations (weak kinematic compatibility conditions)

Eu = e+ p in Ω , (2.2a)

p = (w − u)� νHn−1 on ∂Ω . (2.2b)

Given w ∈ H1(Rn;Rn), the set of admissible displacements and strains for the boundary
datum w on ∂Ω is defined, with the same meaning and notation of [7], as

A(w) := {(u, e, p) ∈ BD(Ω)× L2(Ω;Mn×n
sym )×Mb(Ω;Mn×n

D )| (2.2) hold } .

We shall also use the space of admissible plastic strains

Π(Ω) := {p ∈Mb(Ω;Mn×n
D )| ∃ (u,w, e) ∈ BD(Ω)×H1(Rn;Rn)× L2(Ω;Mn×n

sym )

s.t. (u, e, p) ∈ A(w)} .

The damage variable and the associated dissipation. In addition to u, e, and p, we
consider an internal variable α : Ω → R, which represents the damage state of the body.
Actually this variable will take values in [0, 1] during the evolution. At a given point x ∈ Ω, as
α(x) decreases from 1 to 0, the material point x passes from a sound state to a fully damaged
one.

For technical reasons we will introduce in the total energy a regularizing term ‖∇α‖γγ , with
γ > n, on the damage variable, cf. (2.7). In particular, whenever the enegy is finite the damage
variable will be in W 1,γ(Ω) ⊂ C(Ω). (Recall that this embedding is compact.) Therefore, in the
following we define the other energy terms for α ∈ C(Ω). Notice that the quantities depending
on the damage variable are defined also for negative α, in order to consider variations with
respect to α in the proof of Proposition 5.4.

We shall denote the admissible damage states from a given α0 by

D(α0) := {α ∈ C(Ω)|α ≤ α0 in Ω} .

We assume that the damage process is irreversible, i.e., if α0 is the current damage state, then
the future damage states are in D(α0). Let us remark that

D(α2) ⊂ D(α1) for everyα2 ∈ D(α1) . (2.3)

As in [29], in the total energy we consider a term which accounts for the energy dissipated
by the body during the damage process. Then we define for every α ∈ C(Ω)

D(α) :=

∫
Ω

d(α(x)) dx, with d ∈ C(R;R+ ∪ {0}), d(s) > d(0) for s < 0 . (2.4)

The stored elastic energy. For every (α, e) ∈ C(Ω)×L2(Ω,Mn×n
sym ), the stored elastic energy

is given by

Q(α, e) :=
1

2

∫
Ω

C(α(x))e(x) : e(x)dx =
1

2
〈C(α)e, e〉L2(Ω;Mn×n

sym ) .

We assume the following properties for the dependence of C on the damage variable:

C : R→ Lin(Mn×n
sym ;Mn×n

sym ) is Lipschitz and C(R−) = {C(0)} , (2.5a)

α 7→ C(α)ξ : ξ is nondecreasing for every ξ ∈Mn×n
sym , (2.5b)

C(α)ξ := CD(α)ξD + κ(α)(tr ξ)I with CD ∈ L∞(R;Sym(Mn×n
D ;Mn×n

D )), κ ∈ L∞(R), (2.5c)

γ1|ξ|2 ≤ C(α)ξ : ξ ≤ γ2|ξ|2 for everyα ∈ R, ξ ∈Mn×n
sym , (2.5d)

where γ1, γ2 are positive constants independent of α and Sym(Mn×n
D ;Mn×n

D ) is the set of

symmetric endomorphisms on Mn×n
D . In particular, this implies

|C(α)ξ| ≤ 2γ2|ξ| . (2.6)

Assumption (2.5b) is reasonable since in applications the stiffness decreases as the material
passes from the sound to the fully damaged state.

It is well known that for a given α ∈ C(Ω) the function e 7→ Q(α, e) is weakly lower
semicontinuous on L2(Ω;Mn×n

sym ).
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The total energy. We are now in a position to define the total energy of the body corre-
sponding to a damage state α and an elastic strain e.

We set
E(α, e) := Q(α, e) +D(α) + ‖∇α‖γγ . (2.7)

It is easy to see that E is lower semicontinuous with respect to the uniform convergence of αk
and the weak∗-L2(Ω;Mn×n

sym ) convergence of ek, i.e.,

E(α, e) ≤ lim inf
k→∞

E(αk, ek) (2.8)

for every sequences αk and ek converging to α uniformly in Ω and to e weakly in L2(Ω;Mn×n
sym ),

respectively.

The constraint sets and their support functions. Let (K(α))α∈R be a family of subsets
of Mn×n

D such that:

K(α) is closed and convex, for every α ∈ R , (2.9a)

U ⊂Mn×n
D open =⇒ {α ∈ R |K(α) ∩ U 6= ∅} and {α ∈ R |K(α) ⊂ U} open (2.9b)

Br(0) ⊂ K(0) ⊂ K(α1) ⊂ K(α2) ⊂ K(1) ⊂ BR(0), for every α1 ≤ α2 , (2.9c)

with 0 < r < R. In particular we have that K(α) = K(0) for α ≤ 0 and K(α) = K(1) for
α ≥ 1. When (2.9b) holds we say that the multifunction α 7→ K(α) is continuous.

The sets above are called the constraint sets because we will see (see Corollary 5.3) that,
during the evolution, σD(t, x) ∈ K(α(t, x)) for every t ∈ [0, T ] and a.e. x ∈ Ω, σ := C(α)e
being the elastic stress.

Let us consider the function H : R×Mn×n
D → R+ ∪ {0} defined by

H(α, ξ) := sup
σ∈K(α)

σ : ξ for every α ∈ R ,

namely ξ 7→ H(α, ξ) is the support function of K(α). Arguing as in [34, Proposition 2.4], we
can show that (2.9b) implies that

α 7→ H(α, ξ) is continuous for every ξ ∈Mn×n
D . (2.10)

Then we get, from (2.9), that the four conditions below are simultaneously satisfied:

H is continuous , (2.11a)

α 7→ H(α, ξ) is nondecreasing for every ξ ∈Mn×n
D , (2.11b)

ξ 7→ H(α, ξ) is convex and positively one-homogeneous for every α ∈ R , (2.11c)

r|ξ| ≤ H(α, ξ) ≤ R|ξ| for every α ∈ R and every ξ ∈Mn×n
D . (2.11d)

Indeed, by [20, Theorem 5], we have that (2.9a) and (2.9c) are equivalent to (2.11b), (2.11c),
and (2.11d). Since the functions ξ 7→ H(α, ξ) are convex with respect to ξ for every α and
locally equi-bounded with respect to α by (2.11d), condition (2.10) is equivalent to (2.11a).

In some of the results we will make the additional assumption that

ξ 7→ H(α2, ξ)−H(α1, ξ) is convex, for every α1 ≤ α2 . (2.12)

Remark 2.1. Let us consider a multiplicative setting for the constraint sets, i.e., let us define

K(α) := V (α)K(1) ,

where Br(0) ⊂ K(1) ⊂ BR(0), K(1) is closed and convex, and

V : R→ [m,M ] is Lipschitz, nondecreasing, and constant in (−∞, 0] and [1,+∞)

with r,R,m,M positive constants.
Then (2.9) and (2.12) hold.

The plastic potential. Basing on the theory of convex functions of measures developed in
[19], we define the plastic potential H : C(Ω)×Mb(Ω;Mn×n

D )→ R by

H(α, p) :=

∫
Ω

H

(
α(x),

dp

dµ
(x)

)
dµ(x) , (2.13)
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where µ ∈ Mb(Ω)+ is any measure such that p � µ and dp
dµ denotes the Radon-Nikodym

derivative of p with respect to µ; note that the homogeneity of H with respect to ξ implies
that the integral does not depend on µ. When ṗ is the rate of plastic strain and α the
internal variable, H(α, ṗ) represents the rate of plastic dissipation. Moreover, applying [3,
Proposition 2.37], we get that

p 7→ H(α, p) is convex and positively one-homogeneous for every α ∈ C(Ω) ,

which implies

H(α, p1 + p2) ≤ H(α, p1) +H(α, p2) (2.14)

for every α ∈ C(Ω) and p1, p2 ∈Mb(Ω;Mn×n
D ).

Remark 2.2. Since ∣∣∣∣ dp

d|p|
(x)

∣∣∣∣ = 1 for |p|-a.e.x ∈ Ω , (2.15)

from (2.11d) it follows immediately that for every α ∈ C(Ω)

r‖p‖1 ≤ H(α, p) ≤ R‖p‖1 . (2.16)

Moreover, by continuity of H there exists a modulus of continuity ω, namely an increasing
function defined on R+ ∪ {0} which vanishes at 0, such that

|H(α1(x), ξ)−H(α2(x), ξ)| ≤ ω(|α1(x)− α2(x)|) , (2.17)

for every α1, α2 ∈ C(Ω), x ∈ Ω, and ξ ∈Mn×n
D with |ξ| = 1. Then, from (2.15) we obtain

|H(α2, p)−H(α1, p)| ≤ ω(‖α1 − α2‖∞)‖p‖1 (2.18)

for every α1, α2 ∈ C(Ω).

Lemma 2.3. Let αk and pk be sequences in C(Ω) and Mb(Ω;Mn×n
D ) such that αk → α

uniformly and pk ⇀ p weakly∗ in Mb(Ω;Mn×n
D ). Then

H(α, p) ≤ lim inf
k→∞

H(αk, pk) . (2.19)

Proof. From (2.18) we obtain

H(αk, pk) ≥ H(α, pk)− ω(‖αk − α‖∞)‖pk‖1 .

The lower semicontinuity result follows now from the weak∗ convergence of pk and Reshetnyak’s
Lower Semicontinuity Theorem (see [31, Theorem 2]). �

Stress-strain duality. Let

Σ(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) |div σ ∈ Ln(Ω;Rn), σD ∈ L∞(Ω;Mn×n

D )} .

If σ ∈ Σ(Ω), then σ ∈ Lr(Ω;Mn×n
sym ) for every 1 ≤ r < ∞ by [17, Proposition 6.1]. For

σ ∈ Σ(Ω) and p ∈ Π(Ω) such that (u, e, p) ∈ A(w), we define, as in [17, Section 6], the
distribution [σD : p] on Rn by

〈[σD : p], ϕ〉 := −
∫

Ω

ϕσ ·(e−Ew) dx−
∫

Ω

σ ·[(u−w)�∇ϕ] dx−
∫

Ω

ϕ(div σ)·(u−w) dx , (2.20)

for every ϕ ∈ C∞c (Rn). Notice that this is indeed a well defined distribution since u ∈
L

n
n−1 (Ω;Rn), being in BD(Ω). Moreover, in [17, Theorem 6.2 and Remark 6.3] it is proved

that [σD : p] is a bounded Radon measure such that

‖[σD : p]‖1 ≤ ‖σD‖∞‖p‖1 in Rn .

In particular, we can consider its restriction, as a measure, to Ω, that we denote in the same
way. We also define

〈σD | p〉 := [σD : p](Ω) .

By (2.20), for ϕ ∈ C∞c (Rn), ϕ ≡ 1 on Ω, we obtain the integration by parts formula

〈σD | p〉 = −〈σ, e− Ew〉 − 〈div σ, u− w〉 . (2.21)
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For a given α ∈ C(Ω) let

Kα(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) |div σ ∈ Ln(Ω;Rn), σD(x) ∈ K(α(x)) for a.e. x ∈ Ω} .

Since the multifunction α ∈ [0, 1] 7→ K(α) is continuous, that is (2.9b) holds, [17, Proposi-
tion 3.9] (which holds also if div σ is not identically 0) implies that for every σ ∈ Kα(Ω):

H

(
α,

dp

d|p|

)
|p| ≥ [σD : p] as measures on Ω, (2.22)

and, arguing as in [34, Theorem 3.6 and Corollary 3.8], we deduce that for every p ∈ Π(Ω):

H(α, p) = sup
σ∈Kα(Ω)

〈σD | p〉 . (2.23)

The plastic dissipation. We introduce now a term which represents the plastic dissipation
in a given time interval.

A function p : [0, T ] → Mb(Ω;Mn×n
D ) will be regarded as a function defined on the time

interval [0, T ] with values in the dual of the separable Banach space C(Ω;Mn×n
D ), Ω ⊂ Rn

being compact. For every s, t ∈ [0, T ] with s ≤ t the total variation of p on [s, t] is defined by

V(p; s, t) = sup

{ N∑
j=1

‖p(tj)− p(tj−1)‖1
∣∣∣ s = t0 < t1 < · · · < tN = t, N ∈ N

}
.

Let α : [0, T ] → C(Ω). For every partition P of [s, t], namely P := {ti}0≤i≤N with s = t0 <
t1 < · · · < tN = t, we define

VPH(α, p; s, t) :=

N∑
i=1

H(α(ti), p(ti)− p(ti−1)) .

TheH-variation of p with respect to α on [s, t], which will play the role of the plastic dissipation
in the time interval [s, t], is denoted by VH(α, p; s, t) and is defined through

VH(α, p; s, t) := sup

{ N∑
j=1

H(α(tj), p(tj)− p(tj−1))
∣∣∣ s = t0 < t1 < · · · < tN = t, N ∈ N

}
= sup

{
VPH(α, p; s, t)| P partition of [s, t]

}
.

(2.24)

Lemma A.1 in the Appendix states some properties of VH when the functions t 7→ α(t, x) are
nonincreasing for every x ∈ Ω.

When α(t) = α ∈ C(Ω; [0, 1]) for every t we use the symbols V̂H and V̂PH instead of VH and
VPH, so that

V̂H(α, p; s, t) := VH(α, p; s, t)|α(t)=α , V̂PH(α, p; s, t) := VPH(α, p; s, t)|α(t)=α . (2.25)

Remark 2.4. In the case of α constant in time we fit in the notion of H-variation of p on
[s, t] introduced in [7, Appendix]. There the G-variation of p on [s, t] is defined, when p takes
values in Mb(Ω;Mn×n

D ), as

VG(p; s, t) := sup

{ N∑
i=1

G(p(ti)− p(ti−1))
∣∣∣ s = t0 < t1 < · · · < tN = t, N ∈ N

}
= sup{VPG (p; s, t)| P partition of [s, t]} ,

where G(p) = supϕ∈K〈p, ϕ〉 is the support function of a bounded closed convex set K ⊂
C(Ω;Mn×n

D ) and VPG (p; s, t) is defined similarly to V̂PH(α, p; s, t). By (2.23), it suffices to take
K = Kα(Ω) in order to obtain G = H(α, ·) and

V̂H(α, p; s, t) = VG(p; s, t) .
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The prescribed boundary displacement. In this paper the external loading will consist
only in Dirichlet boundary conditions, for the sake of simplicity. However, similar results
to those showed here hold also in the presence of external forces, under suitable regularity
assumptions on ∂Ω and uniform safe load conditions, like the ones in [10, Section 2].

We assume that the prescribed boundary displacement w depends on time and satisfies the
regularity assumption

w ∈ AC([0, T ];H1(Rn;Rn)) , (2.26)

so that the time derivative t 7→ ẇ(t) belongs to L1(0, T ;H1(Rn;Rn)) and its strain t 7→ Eẇ(t)
belongs to L1(0, T ;L2(Rn;Mn×n

sym )). For the main properties of absolutely continuous functions
with values in reflexive Banach spaces we refer to [5, Appendix].

3. The minimization problem

In this section we study the minimization problem employed in the incremental formulation
of the quasistatic evolution corresponding to a given parameter λ ∈ [0, 1]. Therefore we deal
with a problem of the type

argmin {Eλ(α, e; q, t) +H(α, p− p) | (α, (u, e, p)) ∈ D(α)×A(w)} , (3.1)

where
Eλ(α, e; q, t) := E(α, e) + λV̂H(α, q; 0, t) . (3.2)

The data are the current values α ∈ W 1,γ(Ω) and p ∈ Π(Ω) of the damage variable and
the plastic strain, and the updated value w ∈ H1(Rn;Rn) of the boundary displacement; if
λ > 0 we consider as an additional datum a function q : [0, t] → Mb(Ω;Mn×n

D ) with bounded
variation, which represents the evolution of the plastic strain up to the current time t. Solving
this problem, we get the updated values α, u, e, and p of damage, displacement, elastic and
plastic strain.

First we show the existence and the main properties of the solutions to (3.1). The second
part of the section is devoted to prove a stability property with respect to variations of the
data. Throughout this section, we suppose that (2.4), (2.5), (2.9), and (2.26) hold when λ = 0;
when λ > 0 we will assume also (2.12).

Let us prove the existence of a solution to (3.1).

Theorem 3.1 (Existence of solutions to the incremental problem). Let w ∈ H1(Rn;Rn),
α ∈W 1,γ(Ω), p ∈ Π(Ω), and q : [0, t]→Mb(Ω;Mn×n

D ) with bounded variation. Then (3.1) has
a solution. Moreover, if α ∈ W 1,γ(Ω; [0, 1]), then for every (α, (u, e, p)) solution of (3.1) we
have that α ∈W 1,γ(Ω; [0, 1]).

Proof. Let (αk, (uk, ek, pk)) ∈ D(α)×A(w) be a minimizing sequence for problem (3.1).
By (2.5d) and (2.16) the sequences αk, ek, and pk are bounded in W 1,γ(Ω), L2(Ω;Mn×n

sym ),

and Mb(Ω;Mn×n
D ), respectively. Since Euk = ek + pk in Ω, it follows that Euk is bounded in

Mb(Ω;Mn×n
sym ). Since (w − uk)� νHn−1 = pk is bounded in Mb(∂Ω;Mn×n

D ), the traces of uk
are bounded in L1(∂Ω;Rn). Therefore uk is bounded in BD(Ω) by (2.1).

Up to extracting a subsequence, we may assume that uk ⇀ u weakly∗ in BD(Ω), ek ⇀ e
weakly in L2(Ω;Mn×n

sym ), and pk ⇀ p weakly∗ in Mb(Ω;Mn×n
D ). By [7, Lemma 2.1], we have

(u, e, p) ∈ A(w).
The existence of solutions to (3.1) now follows from the lower semicontinuity of E (see (2.8))

and H (see (2.19)). Notice that if α 6= α+ := α ∨ 0 then

Eλ(α+, e; q, t) = E(α+, e) + λV̂H(α+, q; 0, t) < Eλ(α, e; q, t) = E(α, e) + λV̂H(α, q; 0, t) ,

and this is enough to conclude that α takes values in [0, 1] if α ∈W 1,γ(Ω; [0, 1]). �

The following lemma is not only useful in Lemma 3.3 below, but also in the proof of the
stability for the approximate solutions in Theorem 4.3, when λ = 0.

Lemma 3.2. If (α, (u, e, p)) solves (3.1) then

Eλ(α, e; q, t) ≤ Eλ(α̃, ẽ; q, t) +H(α̃, p̃− p) , (3.3)

for every (α̃, (ũ, ẽ, p̃)) ∈ D(α)×A(w).
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Proof. Let (α̃, (ũ, ẽ, p̃)) ∈ D(α)×A(w). Then, by (2.3), this quadruple belongs to D(α)×A(w)
too. From our hypotesis, Eλ(α, e; q, t) ≤ Eλ(α̃, ẽ; q, t) +H(α̃, p̃−p)−H(α, p−p), and by (2.14)
and (2.11b), H(α̃, p̃ − p) ≤ H(α̃, p̃ − p) +H(α̃, p − p) ≤ H(α̃, p̃ − p) +H(α, p − p). Thus we
conclude. �

We now derive some differential conditions for a triple (u, e, p) such that (α, (u, e, p)) solves
(3.1), from a characterization of the solutions to (3.3).

Lemma 3.3. Let w ∈ H1(Rn;Rn), q : [0, t] → Mb(Ω;Mn×n
D ), α ∈ W 1,γ(Ω), (u, e, p) ∈ A(w)

satisfy (3.3), q having bounded variation. Then

−H(α, q) ≤ 〈C(α)e, η〉 ≤ H(α,−q)

for every (v, η, q) ∈ A(0), and

C(α)e ∈ Kα(Ω), div (C(α)e) = 0 in Ω .

Proof. Let us assume fix (v, η, q) ∈ A(0). Since for every ε ∈ R

(α, (u+ εv, e+ εη, p+ εq)) ∈ D(α)×A(w) ,

we have

Q(α, e+ εη) +H(α, εq) ≥ Q(α, e) for every ε ∈ R .
The positive homogeneity of H implies

Q(α, e± εη) + εH(α,±q) ≥ Q(α, e) for every ε > 0 .

Dividing by ε and passing to the limit as ε→ 0, we recover the former condition.
In order to get the latter one we can argue as in the first part of [7, Proposition 3.5], using

the integration by parts formula (2.21). �

The following lemma shows, for pairs (α, (u, e, p)) that satisfy (3.3), the Hölder dependence
of u and e on α, p, and w.

Lemma 3.4. For i = 1, 2 let wi ∈ H1(Rn,Rn). Suppose that (αi, (ui, ei, pi)) satisfies (3.3)
with boundary datum w = wi, and let

ω12 := ‖α2 − α1‖∞ + ‖p2 − p1‖1/21 + ‖Ew2 − Ew1‖2 .

Then

‖e2 − e1‖2 ≤ C ω12 , (3.4)

where C is a positive constant depending on ‖e1‖2, R, γ1, γ2, and Ω.

Proof. We modify the proof of [7, Theorem 3.8], considering that here C depends on α. Let

v := (u2 − w2)− (u1 − w1),

η := (e2 − Ew2)− (e1 − Ew1),

q := p2 − p1 .

Since (v, η, q) ∈ A(0), by Lemma 3.3 it follows that

−H(α1, p2 − p1) ≤〈C(α1)e1, η〉,
〈C(α2)e2, η〉 ≤ H(α2, p1 − p2) .

Adding term by term and using (2.11d), we obtain

〈C(α2)(e2 − e1), η)〉 ≤ 〈[C(α1)− C(α2)]e1, η〉+ 2R‖p2 − p1‖1 .

Observe that above we have put an extra term −〈C(α2)e1, η〉 on both sides. From the definition
of η,

〈C(α2)(e2 − e1), e2 − e1)〉 ≤〈C(α2)(e2 − e1), Ew2 − Ew1〉+ 〈[C(α1)− C(α2)]e1, e2 − e1〉
+ 〈[C(α1)− C(α2)]e1, Ew1 − Ew2〉+ 2R‖p2 − p1‖1 .
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By (2.5), this implies

2γ1‖e2 − e1‖22 ≤ 2γ2‖e2 − e1‖2‖Ew2 − Ew1‖2
+ ‖e1‖2‖α2 − α1‖∞(‖e2 − e1‖2 + ‖Ew2 − Ew1‖2) + 2R‖p2 − p1‖1 ,

which yields (3.4) by the Cauchy inequality. �

Remark 3.5. We can also deduce the continuous dependence on α, p, and w of u, expressed
(with the same notation as above) by

‖Eu2 − Eu1‖1 ≤ C (ω12 + ‖p2 − p1‖1) ,

‖u2 − u1‖1 ≤ C (ω12 + ‖p2 − p1‖1 + ‖w2 − w1‖2) ,

arguing as in the final part of [7, Theorem 3.8].

We now show some stability results for the solutions of problems of the type (3.1) with
respect to the weak convergence of the data. To ease the reading we first consider, in Theo-
rem 3.6, the case λ = 0, and then we study, in Lemma 3.7, the additional term that appears
when λ > 0. The result for the case λ > 0 (Theorem 3.8) follows from this lemma, arguing as
in Theorem 3.6.

Theorem 3.6 (Stability, case λ = 0). Let wk ∈ H1(Rn;Rn), αk ∈W 1,γ(Ω), and
(uk, ek, pk) ∈ A(wk) for every k. Assume that αk ⇀ α∞ weakly in W 1,γ(Ω), uk ⇀ u∞ weakly∗

in BD(Ω), ek ⇀ e∞ weakly in L2(Ω;Mn×n
sym ), pk ⇀ p∞ weakly∗ in Mb(Ω;Mn×n

D ), wk ⇀ w∞
weakly in H1(Rn;Rn). Then (u∞, e∞, p∞) ∈ A(w∞). If, in addition,

E(αk, ek) ≤ E(α̃k, ẽk) +H(α̃k, p̃k − pk) (3.6)

for every k and every (α̃k, (ũk, ẽk, p̃k)) ∈ D(αk)×A(wk), then

E(α∞, e∞) ≤ E(α, e) +H(α, p− p∞) (3.7)

for every (α, (u, e, p)) ∈ D(α∞)×A(w∞).

Proof. The fact that (u∞, e∞, p∞) ∈ A(w∞) follows by [7, Lemma 2.1].
We fix α ∈ D(α∞) and (u, e, p) ∈ A(w∞), and test (3.6) by

α̃k := α ∧ αk ,
ũk := u− u∞ + uk ,

ẽk := e− e∞ + ek ,

p̃k := p− p∞ + pk .

Then α̃k ⇀ α and α ∨ αk ⇀ α∞ weakly in W 1,γ(Ω), ũk ⇀ u weakly∗ in BD(Ω), ẽk ⇀ e
weakly in L2(Ω;Mn×n

sym ), p̃k ⇀ p weakly∗ in Mb(Ω;Mn×n
D ).

Since for every α ∈W 1,γ(Ω) and every e1, e2 ∈ L2(Ω;Mn×n
sym ) we have

Q(α, e1)−Q(α, e2) =
1

2
〈C(α)(e1 + e2), e1 − e2〉 (3.8)

and for every α, β ∈W 1,γ(Ω)

‖∇(α ∨ β)‖γγ + ‖∇(α ∧ β)‖γγ = ‖∇α‖γγ + ‖∇β‖γγ ,

(3.6) can be rewritten, adding to both sides the term −Q(α̃k, ek), as

γk :=Q(αk, ek)−Q(α̃k, ek) +D(αk) + ‖∇(α ∨ αk)‖γγ − ‖∇α‖γγ

≤ 1

2
〈C(α̃k)(e− e∞ + 2ek), e− e∞〉+D(α̃k) +H(α̃k, p− p∞) =: ηk .

From (2.5a), for every α1, α2 ∈ C(Ω) and e ∈ L2(Ω;Mn×n
sym )

|Q(α1, e)−Q(α2, e)| ≤ Lip(C)‖α1 − α2‖∞‖e‖22 .
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Therefore,

lim inf
k→∞

Q(αk, ek)−Q(α̃k, ek) = lim inf
k→∞

Q(α∞, ek)−Q(α, ek)

= lim inf
k→∞

1

2
〈[C(α∞)− C(α)]ek, ek〉 .

Since α ∈ D(α∞), by (2.5b) we have that e ∈ L2(Ω;Mn×n
sym ) 7→ [C(α∞)−C(α)]e : e is a positive

semidefinite quadratic form. Hence, by lower semicontinuity,

lim inf
k⇀∞

γk ≥ Q(α∞, e∞)−Q(α, e∞) +D(α∞) + ‖∇(α∞)‖γγ − ‖∇α‖γγ .

On the other hand,

lim
k⇀∞

ηk =
1

2
〈C(α)(e+ e∞), e− e∞〉+D(α) +H(α, p− p∞)

= Q(α, e)−Q(α, e∞) +D(α) +H(α, p− p∞) .

This concludes the proof. �

From now on we treat the case λ > 0.

Lemma 3.7. In addition to (2.4), (2.5), (2.9), and (2.26), let us assume also (2.12). Let

βk and β̃k be two sequences in C(Ω) such that βk → β∞ and β̃k → β uniformly in Ω, and

β̃k ∈ D(βk) for every k. Moreover let qk, q be functions from [0, t] into Mb(Ω;Mn×n
D ) such

that qk(s) ⇀ q(s) weakly∗ in Mb(Ω;Mn×n
D ) for every s ∈ [0, t]. Then

V̂H(β∞, q; 0, t)− V̂H(β, q; 0, t) ≤ lim inf
k→∞

[V̂H(βk, qk; 0, t)− V̂H(β̃k, qk; 0, t)] . (3.9)

Proof. Let us consider the functionals H̃k and H̃ from Mb(Ω;Mn×n
D ) into R+ ∪ {0} defined,

for every p ∈Mb(Ω;Mn×n
D ), by

H̃(p) := H(β∞, p)−H(β, p) ,

H̃k(p) := H(βk, p)−H(β̃k, p) .

By (2.12), H̃ and H̃k are convex, positively one-homogeneous (and consequently subadditive),
and weakly∗ lower semicontinuous, thanks to Reshetnyak’s Lower Semicontinuity Theorem.
We now show that

V̂H(β∞, q; 0, t)− V̂H(β, q; 0, t) = VH̃(q; 0, t) , (3.10)

V̂H(βk, q; 0, t)− V̂H(β̃k, q; 0, t) = VH̃k(q; 0, t) , (3.11)

for every k. Indeed, let us fix ε > 0 and let P1, P2, P3 be three partitions of [0, t] such that

V̂P1

H (β∞, q; 0, t) > V̂H(β∞, q; 0, t)− ε ,

V̂P2

H (β, q; 0, t) > V̂H(β, q; 0, t)− ε

2
,

VP3

H̃
(q; 0, t) > VH̃(q; 0, t)− ε

2
.

It follows that

VH̃(q; 0, t) ≥ VP1

H̃
(q; 0, t) = V̂P1

H (β∞, q; 0, t)−V̂P1

H (β, q; 0, t) > V̂H(β∞, q; 0, t)−ε−V̂H(β, q; 0, t) .

On the other hand, we get

V̂H(β∞, q; 0, t)− V̂H(β, q; 0, t) > V̂P2∪P3

H (β∞, q; 0, t)− V̂P2

H (β, q; 0, t)− ε

2

≥ V̂P2∪P3

H (β∞, q; 0, t)− V̂P2∪P3

H (β, q; 0, t)− ε

2

= VP2∪P3

H̃
(q; 0, t)− ε

2
> VH̃(q; 0, t)− ε ,

where the second inequality follows from Lemma A.1(1) and the last one comes from the

subadditivity of H̃. This concludes the verification of (3.10). The proof of (3.11) is analogous.
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Arguing as in Lemma 2.3 we have that

H̃(p) ≤ lim inf
k→∞

H̃k(pk) ,

for every pk ⇀ p weakly∗ in Mb(Ω;Mn×n
D ). Hence

VH̃(q; 0, t) ≤ lim inf
k→∞

VH̃k(qk; 0, t) ,

and we conclude by (3.10) and (3.11). �

Theorem 3.8 (Stability, case λ > 0). Besides (2.4), (2.5), (2.9), and (2.26), assume also
(2.12). Let wk ∈ H1(Rn;Rn), αk ∈ W 1,γ(Ω), (uk, ek, pk) ∈ A(wk), and qk be functions from
[0, t] into Mb(Ω;Mn×n

D ) of bounded variation, for every k. Suppose that αk ⇀ α∞ weakly in
W 1,γ(Ω), uk ⇀ u∞ weakly∗ in BD(Ω), ek ⇀ e∞ weakly in L2(Ω;Mn×n

sym ), pk ⇀ p∞ weakly∗ in

Mb(Ω;Mn×n
D ), wk ⇀ w∞ weakly in H1(Rn;Rn), and qk(s) ⇀ q(s) weakly∗ in Mb(Ω;Mn×n

D )
for every s ∈ [0, t]. Then (u∞, e∞, p∞) ∈ A(w∞). If, in addition,

E(αk, ek) + λV̂H(αk, qk; 0, t) ≤ E(α̃k, ẽk) + λV̂H(α̃k, qk; 0, t) +H(α̃k, p̃k − pk)

for every k and every (α̃k, (ũk, ẽk, p̃k)) ∈ D(αk)×A(wk), then

E(α∞, e∞) + λV̂H(α∞, q; 0, t) ≤ E(α, e) + λV̂H(α, q; 0, t) +H(α, p− p∞) ,

for every (α, (u, e, p)) ∈ D(α∞)×A(w∞).

Proof. We can argue as in the proof of Theorem 3.6, choosing the same test functions, and

adding to γk the term λ(V̂H(αk, qk; 0, t) − V̂H(α̃k, qk; 0, t)). The sequence of these terms is
lower semicontinuous by Lemma 3.7 and this is enough to conclude. �

4. Quasistatic evolution

Fixed λ ∈ [0, 1], we now consider the problem of existence of globally stable quasistatic
evolutions, where the time-dependent data are (only) Dirichlet boundary conditions w ∈
AC([0, T ];H1(Rn;Rn)). The functions α, u, e, p will be then functions from [0, T ] into the
functional spaces W 1,γ(Ω; [0, 1]), BD(Ω), L2(Ω;Mn×n

sym ), Mb(Ω;Mn×n
D ), respectively.

The parameter λ accounts for the interplay between damage growth and cumulation of
plastic strain. When λ = 1 it is more convenient to damage material parts more affected by
plastic evolution up to the current time. The physical meaning of λ will be explained in detail
in Section 5, where we will study the properties of the evolutions. The case λ = 1 corresponds
to the model of [1] and [2], with a different gradient damage regularization.

The existence of quasistatic evolutions is shown in Theorem 4.3, the main result of the
paper.

Definition 4.1. Let λ ∈ [0, 1]. A quasistatic evolution (corresponding to λ) is a function t 7→
(α(t), u(t), e(t), p(t)) from [0, T ] intoW 1,γ(Ω; [0, 1])×BD(Ω)×L2(Ω;Mn×n

sym )×Mb(Ω;Mn×n
D ) that

satisfies the following conditions:

(qs0) irreversibility : for every x ∈ Ω

t ∈ [0, T ] 7→ α(t, x) is nonincreasing; (4.1)

(qs1) global stability : the function t 7→ p(t) from [0, T ] into Mb(Ω;Mn×n
D ) has bounded

variation, (u(t), e(t), p(t)) ∈ A(w(t)) for every t ∈ [0, T ], and

E(α(t), e(t)) + λV̂H(α(t), p; 0, t) ≤ E(β, η) + λV̂H(β, p; 0, t) +H(β, q − p(t)) (4.2)

for every (β, (v, η, q)) ∈ D(α(t))×A(w(t));
(qs2) energy balance: for every t ∈ [0, T ]

E(α(t), e(t)) + λV̂H(α(t), p; 0, t) + (1− λ)VH(α, p; 0, t)

= E(α(0), e(0)) +

∫ t

0

〈σ(s), Eẇ(s)〉ds ,
(4.3)

where σ(s) := C(α(s))e(s) and VH, V̂H are defined in (2.24) and (2.25), respectively.
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Remark 4.2. The integral in (4.3) is well defined.
Indeed, from (4.2) it follows that t 7→ (α(t), u(t), e(t), p(t)) is a solution to the problem

argmin {Eλ(β, η; p, t) +H(β, q − p(t)) | (β, (v, η, q)) ∈ D(α(t))×A(w(t))} ,

for every t ∈ [0, T ], where Eλ is defined in (3.2). In view of Lemma 3.4, choosing e2 = e(t) for
every t ∈ [0, T ] and e1 = e(0), we can observe that

sup
t∈[0,T ]

‖e(t)‖2 ≤ C , (4.4)

where C is independent of time.
Let us now verify the measurability of t 7→ e(t). This follows from Lemma 3.4 if we show

that t 7→ α(t) is continuous for a.e. t with respect to the uniform convergence in Ω, since
t 7→ p(t) is strongly continuous into Mb(Ω;Mn×n

D ) for a.e. t, having bounded variation. Now,
by the irreversibility condition and the fact that for every t ∈ [0, T ] the function α(t) takes
values in [0, 1] we have, using Lemma A.2, that there exists a countable set E ⊂ [0, T ] such
that α is continuous in every t ∈ [0, T ] \ E with respect to the Lp norm, with 1 ≤ p < ∞. In
other words, for every t ∈ [0, T ] \ E

α(s)→ α(t) in Lp(Ω) as s→ t .

From the stability condition, choosing β ≡ 0 and (v, η, q) = (u(t), e(t), p(t)), and using (4.4),
it follows that

sup
t∈[0,T ]

‖∇α(t)‖γγ < C

with C independent of t ∈ [0, T ]. Then, by the Urysohn Property, α is continuous in every
t ∈ [0, T ] \ E with respect to the weak convergence in W 1,γ , i.e., for every t ∈ [0, T ] \ E

α(s) ⇀ α(t) weakly in W 1,γ(Ω) as s→ t .

The above convergence is uniform in Ω by the compact Sobolev embedding.
Then e and σ belong to L∞(0, T ;L2(Ω;Mn×n

sym )). Finally, by (2.26), it follows that ẇ ∈
L1(0, T ;H1(Rn;Rn)), and we conclude.

Theorem 4.3 (Existence of quasistatic evolutions). Let λ ∈ [0, 1] and assume (2.4), (2.5),
(2.9), and (2.26). If λ > 0 assume also (2.12). Let (α0, (u0, e0, p0)) ∈W 1,γ(Ω; [0, 1])×A(w(0))
satisfy the stability condition

E(α0, e0) ≤ E(β, η) +H(β, q − p0) (4.5)

for every (β, (v, η, q)) ∈ D(α0) × A(w(0)). Then there exists a quasistatic evolution t 7→
(α(t), u(t), e(t), p(t)) corresponding to λ such that α(0) = α0, u(0) = u0, e(0) = e0, p(0) = p0.

Proof. The proof is based on discrete time approximation and is split into several steps.

Approximate solutions. Let us fix a sequence of subdivisions (tik)0≤i≤k of the interval [0, T ],
with

0 = t0k < t1k < · · · < tk−1
k < tkk = T ,

lim
k→∞

max
1≤i≤k

(tik − ti−1
k ) = 0 .

For every k we define the approximate solutions αk, uk, ek, and pk by induction as follows.
We set (α0

k, (u
0
k, e

0
k, p

0
k)) := (α0, (u0, e0, p0)) ∈W 1,γ(Ω; [0, 1])×A(w(0)) and for i = 1, . . . , k we

define (αik, (u
i
k, e

i
k, p

i
k)) as a solution to the incremental problem

argmin {Eλ(β, η; pk, t
i−1
k ) +H(β, q − pi−1

k ) | (β, (v, η, q)) ∈ D(αi−1
k )×A(wik)} , (4.6)

where wik := w(tik) and, according to (3.2) and using Lemma A.1(2),

Eλ(β, η; pk, t
i−1
k ) = E(β, η) + λ

i−1∑
j=1

H(β, pjk − p
j−1
k ) ,
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with pk(t) := phk , h being the largest integer such that thk ≤ t. The existence of a solution to
this problem and the fact that αik ∈W 1,γ(Ω; [0, 1]) for every k ∈ N and 0 ≤ i ≤ k follow from
Theorem 3.1.

For every t ∈ [0, T ] we define the piecewise constant interpolations

αk(t) := αik, uk(t) := uik, ek(t) := eik, σk(t) := C(αik)eik, wk(t) := wik , (4.7)

where i is the largest integer such that tik ≤ t. By definition t 7→ αk(t) is nonincreasing, αk(t) ∈
W 1,γ(Ω; [0, 1]) and (uk(t), ek(t), pk(t)) ∈ A(wk(t)) for every t ∈ [0, T ]. By Lemma A.1(2) it
follows that

Eλ(αik, e
i
k; pk, t

i
k) = Eλ(αik, e

i
k; pk, t

i−1
k ) + λH(αik, p

i
k − pi−1

k ) . (4.8)

Then (4.6) implies that

Eλ(αik, e
i
k; pk, t

i
k) + (1− λ)H(αik, p

i
k − pi−1

k ) = Eλ(αik, e
i
k; pk, t

i−1
k ) +H(αik, p

i
k − pi−1

k )

≤Eλ(β, η; pk, t
i−1
k ) +H(β, q − pi−1

k )
(4.9)

for every k, 1 ≤ i ≤ k, and (β, (v, η, q)) ∈ D(αik)×A(wik). Since

H(β, q − pi−1
k ) ≤ H(β, pik − pi−1

k ) +H(β, q − pik)

≤ λH(β, pik − pi−1
k ) + (1− λ)H(αik, p

i
k − pi−1

k ) +H(β, q − pik) ,

from (4.9) we get the discrete formulation of global stability

Eλ(αk(t), ek(t); pk, t) ≤ Eλ(β, η; pk, t) +H(β, q − pk(t)) (4.10)

for every k, t ∈ [0, T ], and (β, (v, η, q)) ∈ D(αk(t)) × A(wk(t)). Notice that if λ = 0 the
equation (4.10) follows directly from Lemma 3.2.

The discrete energy inequality. We now derive an energy estimate for the solutions of the
incremental problems. Let us fix i ∈ {1, . . . , k} and for a given integer h with 1 ≤ h ≤ i let

v := uh−1
k − wh−1

k + whk and η := eh−1
k − Ewh−1

k + Ewhk .

Since (αh−1
k , (v, η, ph−1

k )) ∈ D(αh−1
k )×A(whk ), by the minimality condition (4.6) we obtain

Eλ(αhk , e
h
k ; pk, t

h−1
k ) +H(αhk , p

h
k − ph−1

k ) ≤ Eλ(αh−1
k , eh−1

k ; pk, t
h−1
k )

+Q(αh−1
k , Ewhk − Ewh−1

k ) + 〈C(αh−1
k )eh−1

k , Ewhk − Ewh−1
k 〉 ,

(4.11)

where we have used the identity

Q(α, e1 + e2) = Q(α, e1) +Q(α, e2) + 〈C(α)e1, e2〉

for every α ∈ W 1,γ(Ω) and e1, e2 ∈ L2(Ω;Mn×n
sym ). From the absolute continuity of w with

respect to t we obtain

whk − wh−1
k =

∫ thk

th−1
k

ẇ(t) dt ,

where we use a Bochner integral of a function with values in H1(Rn;Rn). This implies that

Ewhk − Ewh−1
k =

∫ thk

th−1
k

Eẇ(t) dt , (4.12)

where the integral is again in the sense of Bochner and the target space is L2(Rn;Mn×n
sym ). By

(2.5d) and (4.12) we get

Q(αh−1
k , Ewhk − Ewh−1

k ) ≤ γ2

(∫ thk

th−1
k

‖Eẇ(t)‖2 dt
)2

.

From (4.8), (4.11), and (4.12) it follows that

Eλ(αhk , e
h
k ; pk, t

h
k) + (1− λ)H(αhk , p

h
k − ph−1

k ) ≤ Eλ(αh−1
k , eh−1

k ; pk, t
h−1
k )

+

∫ thk

th−1
k

〈C(αh−1
k )eh−1

k , Eẇ(t)〉dt+ ωk

∫ thk

th−1
k

‖Eẇ(t)‖2 dt ,
(4.13)
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where

ωk := γ2 max
1≤h≤k

∫ thk

th−1
k

‖Eẇ(t)‖2 dt → 0

by the absolute continuity of the integral. Iterating now inequality (4.13) for 1 ≤ h ≤ i, we
have

Eλ(αik, e
i
k; pk, t

i
k)+(1−λ)

i∑
h=1

H(αhk , p
h
k−ph−1

k ) ≤ E(α0, e0)+

∫ tik

0

〈σk(s), Eẇ(s)〉ds+δk , (4.14)

with δk := ωk
∫ T

0
‖Eẇ(t)‖2 dt→ 0.

A priori estimates. Using the hypoteses (2.5d) and (2.11d) in the left-hand side, as well as
(2.6) and the fact that the function t 7→ ‖Eẇ(t)‖2 is integrable on [0, T ] in the right-hand side,
we find

γ1‖ek(t)‖22 +D(αk(t)) + ‖∇αk(t)‖γγ + r(1− λ)

i∑
h=1

‖phk − ph−1
k ‖1

≤ E(α0, e0) + 2γ2 sup
t∈[0,T ]

‖ek(t)‖2
∫ T

0

‖Eẇ(s)‖2 ds+ δk

for every k and t ∈ [t1k, T ], where i is the largest integer such that tik ≤ t.
Thus, by the Cauchy inequality,

sup
t∈[0,T ]

‖ek(t)‖2 ≤ C . (4.15)

Henceforth, C denotes a suitable constant depending only on γ1, γ2, r, and on the functions
α0, e0, and w. We immediately deduce that

sup
t∈[0,T ]

‖∇αk(t)‖γγ ≤ C , (4.16)

and, from the fact that t 7→ pk(t) is constant on the intervals [th−1
k , thk [, that

V(pk; 0, T ) =

k∑
i=1

‖pik − pi−1
k ‖1 ≤ C . (4.17)

Passage to the limit. Since the functions αk are nonincreasing in time and take values in
[0, 1], by virtue of (4.16) we can apply the generalized version of the classical Helly Theorem
given in [15, Helly Theorem] to conclude that there exist a subsequence, still denoted αk, and
a function α : [0, T ] → W 1,γ(Ω; [0, 1]) nonincreasing in time such that αk(t) → α(t) strongly
in L1(Ω) for every t ∈ [0, T ]. By (4.16) and the Urysohn Property we have weak convergence
in W 1,γ(Ω) and thus uniform convergence in Ω. In particular (qs0) holds.

In the same way, using now (4.17) and [7, Lemma 7.2], we can assume that there exists
p : [0, T ] → Mb(Ω;Mn×n

D ) with bounded variation on [0, T ] such that pk(t) ⇀ p(t) weakly∗ in

Mb(Ω;Mn×n
D ), for every t ∈ [0, T ].

Following the same argument used in the proof of Theorem 3.1, by (4.15) and (4.17) we can
deduce that

sup
t∈[0,T ]

‖uk(t)‖BD(Ω) ≤ C . (4.18)

Let us fix t ∈ [0, T ]. From (4.15) and (4.18) it follows that there exist an increasing sequence
kj (possibly depending on t) and two functions ũ ∈ BD(Ω) and ẽ ∈ L2(Ω;Mn×n

sym ) such that

ukj (t) ⇀ ũ weakly∗ in BD(Ω) and ekj (t) ⇀ ẽ weakly in L2(Ω;Mn×n
sym ). By (4.10) we can apply

Theorem 3.8 (or Theorem 3.6 if λ = 0) and find that (α(t), (ũ, ẽ, p(t))) is a solution to the
problem

argmin {Eλ(β, η; p, t) +H(β, q − p(t)) | (β, (v, η, q)) ∈ D(α(t))×A(w(t))} .
In particular (ũ, ẽ) minimizes the functional (v, η) 7→ Q(α(t), η), which is strictly convex in η,
on the convex set K := {(v, η) : (v, η, p(t)) ∈ A(w(t))}. Then (ũ, ẽ) is uniquely determined,



18 VITO CRISMALE

using also Korn’s inequality; defining (u(t), e(t)) := (ũ, ẽ), we have that uk(t) ⇀ u(t) in BD(Ω)
and ek(t) ⇀ e(t) in L2(Ω;Mn×n

sym ). Therefore (qs1) holds.
To prove that t 7→ (α(t), u(t), e(t), p(t)) is a quasistatic evolution it remains to show the

energy balance (qs2).

Energy balance. We consider now the asymptotics of the discrete energy inequality (4.14).
Later we will show that also the equality holds in the limit.

Since pk is piecewise constant and continuous from the right, αk is nonincreasing, and
(2.11b) holds, by Lemma A.1(2) we have

VH(αk, pk; 0, t) =

i∑
h=1

H(αhk , p
h
k − ph−1

k ) , (4.19)

where i is the largest integer such that tik ≤ t. From the lower semicontinuity ofH (Lemma 2.3)
and the definition of plastic dissipation (2.24) it follows that

VH(α, p; 0, t) ≤ lim inf
k→∞

VH(αk, pk; 0, t), and V̂H(α(t), p; 0, t) ≤ lim inf
k→∞

V̂H(αk(t), pk; 0, t) .

(4.20)
Moreover, since αk(t) → α(t) uniformly in Ω and ek(t) ⇀ e(t) weakly in L2(Ω;Mn×n

sym ) for
every t ∈ [0, T ], by (2.5), (2.26), (4.15), and the Dominated Convergence Theorem we get∫ t

0

〈σ(s), Eẇ(s)〉ds = lim
k→∞

∫ tik

0

〈σk(s), Eẇ(s)〉ds , (4.21)

where σ(s) := C(α(s))e(s) for every s ∈ [0, T ].
Collecting (4.19)–(4.21), from (4.14) and the lower semicontinuity of the remaining terms

the inequality

Eλ(α(t), e(t); p, t) + (1− λ)VH(α, p; 0, t) ≤ E(α(0), e(0)) +

∫ t

0

〈σ(s), Eẇ(s)〉ds

follows, for every t ∈ [0, T ].
Conversely, let us fix t ∈ [0, T ] and let (sik)0≤i≤k be a sequence of subdivisions of the interval

[0, t] satisfying

0 = s0
k < s1

k < · · · < sk−1
k < skk = t ,

lim
k→∞

max
1≤i≤k

(sik − si−1
k ) = 0 .

For every i = 1, . . . , k let v := u(sik)− w(sik) + w(si−1
k ) and η := e(sik)− Ew(sik) + Ew(si−1

k ).

Since (α(sik), (v, η, p(sik))) ∈ D(α(si−1
k ))×A(w(si−1

k )), by the global stability (4.2) we have

Eλ(α(si−1
k ), e(si−1

k ); p, si−1
k ) ≤ Eλ(α(sik), e(sik); p, si−1

k ) +Q(α(sik), Ew(si−1
k )− Ew(sik))

− 〈σ(sik), Ew(sik)− Ew(si−1
k )〉+H(α(sik), p(sik)− p(si−1

k )) .

(4.22)

By definition of V̂H it follows that

V̂H(α(sik), p; 0, si−1
k ) +H(α(sik), p(sik)− p(si−1

k )) ≤ V̂H(α(sik), p; 0, sik) ,

and then, recalling the definition of Eλ, (4.22) implies that

Eλ(α(si−1
k ), e(si−1

k ); p, si−1
k ) ≤ Eλ(α(sik), e(sik); p, sik) +Q(α(sik), Ew(si−1

k )− Ew(sik))

− 〈σ(sik), Ew(sik)− Ew(si−1
k )〉+ (1− λ)H(α(sik), p(sik)− p(si−1

k )) .

Now, following the same argument used in (4.13), we find that there exists a sequence ωk → 0+

such that

Eλ(α(si−1
k ), e(si−1

k ); p, si−1
k ) ≤ Eλ(α(sik), e(sik); p, sik) + (1− λ)H(α(sik), p(sik)− p(si−1

k ))

−
∫ sik

si−1
k

〈σ(sik), Eẇ(t)〉dt+ ωk

∫ sik

si−1
k

‖Eẇ(t)‖2 dt .
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On [0, t] we define the piecewise constant function σk(s) := σ(sik), where i is the smallest index
such that s ≤ sik.

Since
∑
iH(α(sik), p(sik)−p(si−1

k )) ≤ VH(α, p; 0, t), iterating the last inequality for 1 ≤ i ≤ k
we obtain

E(α(0), e(0)) ≤ Eλ(α(t), e(t); p, t) + (1− λ)VH(α, p; 0, t)−
∫ t

0

〈σk(s), Eẇ(s)〉ds+ δk ,

where δk := ωk
∫ T

0
‖Eẇ(s)‖2 ds. By Remark 4.2 the set of discontinuity points of s 7→ α(s) and

s 7→ e(s) is at most countable, and ‖α(s)‖∞, ‖e(s)‖2 are uniformly bounded in s. Therefore
σk(s)→ σ(s) in L2(Ω;Mn×n

sym ) for a.e. s, so that∫ t

0

〈σ(s), Eẇ(s)〉ds = lim
k→∞

∫ t

0

〈σk(s), Eẇ(s)〉ds ,

by Dominated Convergence Theorem. This concludes the proof. �

5. Qualitative properties of quasistatic evolutions

In this section we show some qualitative properties of quasistatic evolutions, whose existence
is proved in Theorem 4.3.

First, in Proposition 5.1, we deduce that t 7→ u(t), t 7→ e(t), and t 7→ p(t) are continuous,
with respect to the norms of their spaces, at the continuity points for t 7→ α(t) with respect
to the uniform convergence in Ω. Then the time discontinuities of the quasistatic evolutions
are at most countable, by Remark 4.2. This regularity in time of α also permits to say that
H(α(t), ṗ(t)) represents the rate of plastic dissipation at t, and then to understand the physical
meaning of the term in λ in (qs1) (cf. Remark 5.2).

In Corollary 5.3 we derive from (qs1) Euler conditions with respect to the variation of u,
e, and p, corresponding to equilibrium and stress constraint properties. In the last part of
the section we assume suitable regularity properties on C, D and H, and absolute continuity
of the evolutions. In Proposition 5.4 is shown an Euler condition for α and the differential
counterpart of the energy balance (qs2): together with the irreversibility, these are Kuhn
Tucker conditions (see e.g. [30] for this terminology) governing the evolution of the damage
variable α. Moreover, it is deduced the Hill’s maximum plastic work principle that, if p is
regular enough, implies the Prandtl-Reuss flow rule with damage.

Throughout this section, we suppose that (2.4), (2.5), (2.9), and (2.26) hold when λ = 0;
when λ > 0 we will assume also (2.12).

Except for countable many instants, every quasistatic evolution is continuous in time, as
shown in the following result.

Proposition 5.1. Every quasistatic evolution t 7→ (α(t), u(t), e(t), p(t)) is strongly continuous
from [0, T ] into C(Ω; [0, 1])×BD(Ω)×L2(Ω;Mn×n

sym )×Mb(Ω;Mn×n
D ) except for a countable sub-

set of [0, T ], which is the set of discontinuity points of α with respect to the uniform convergence
in Ω.

Proof. From the energy balance condition (qs2), written for a time interval [s, t], we deduce

Q(α(t), e(t))−Q(α(s), e(s)) +H(α(t), p(t)− p(s))

≤
∫ t

s

〈σ(τ), Eẇ(τ)〉dτ +D(α(s))−D(α(t)) + ‖∇(α(s))‖γγ − ‖∇(α(t))‖γγ ,

using also (1) of Lemma A.1 both for (1− λ)VH(α, p; s, t) and for λV̂H(α(t), p; s, t).
Notice now that

D(α(s))−D(α(t)) + ‖∇(α(s))‖γγ − ‖∇(α(t))‖γγ ≤ 0 .

Indeed, if the term above were strictly positive, from (2.11b) and (2.5b) we would have

E(α(t), e(s)) + λV̂H(α(t), p; 0, t) < E(α(s), e(s)) + λV̂H(α(s), p; 0, t) ,

which contradicts (qs1) since (α(t), (u(s), e(s), p(s))) ∈ D(α(s))×A(w(s)).
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Then

Q(α(t), e(t))−Q(α(s), e(s)) +H(α(t), p(t)− p(s)) ≤
∫ t

s

〈σ(τ), Eẇ(τ)〉dτ (5.1)

Now, by Lemma 3.3 it follows that

−〈σ(s), e(t)− e(s)− (Ew(t)− Ew(s))〉 ≤ H(α(s), p(t)− p(s)) , (5.2)

because (u(t)−u(s)−(w(t)−w(s)), e(t)−e(s)−(Ew(t)−Ew(s)), p(t)−p(s)) ∈ A(0). Summing
(5.1) and (5.2) we get

Q(α(s), e(t)− e(s)) ≤ 1

2
〈
[
C(α(s))− C(α(t))

]
e(t), e(t)〉 − 〈σ(s), Ew(t)− Ew(s)〉

+

∫ t

s

〈σ(τ), Eẇ(τ)〉dτ +H(α(s), p(t)− p(s))−H(α(t), p(t)− p(s))

which implies

‖e(t)− e(s)‖22 ≤ C
(
‖α(t)− α(s)‖∞ + ω(‖α(t)− α(s)‖∞) + ‖Ew(t)− Ew(s)‖2

)
, (5.3)

where ω was introduced in (2.17) and C depends on Lip(C), γ1, γ2, and supt ‖e(t)‖2 (recall
that, from (qs2), the variation of p is bounded by such a C).

By (5.1), (2.16), and (5.3), we obtain

‖p(t)− p(s)‖22 ≤ C̃
(
‖α(t)− α(s)‖∞ + ω(‖α(t)− α(s)‖∞) + ‖Ew(t)− Ew(s)‖2

)
,

C̃ depending on C, r, and supt ‖Ew(t)‖2. An analogous estimate holds for u, arguing as in
[7, Theorem 3.8]. Then we conclude by Remark 4.2, where it is stated that the discontinuity
points of t 7→ α(t) with respect to the uniform convergence in Ω are countable many. �

In order to establish the differential formulation of the energy balance the following remark
turns to be useful. Moreover it allows us to explain the role of λ in the model.

Remark 5.2. If in addition p ∈ AC([0, T ];Mb(Ω;Mn×n
D )) then

VH(α, p; 0, t) =

∫ t

0

H(α(s), ṗ(s)) ds (5.4)

for every t ∈ [0, T ].
Indeed this follows from Lemma A.1(4) in the Appendix, since α : [0, T ] → C(Ω; [0, 1]) has

at most countable many discontinuity points.

In the light of (5.4), we point out that the term in λV̂H in (qs1) makes it easier to damage,
at a given instant t, a part of the material more affected by plastic evolution until t: indeed,
if p ∈ AC([0, T ];L2(Ω;Mn×n

D )) and β ∈ C(Ω; [0, 1]), we get that

V̂H(β, p; 0, t) =

∫
Ω

∫ t

0

H(β(x), ṗ(s, x)) dsdx .

To fix the ideas, let us consider the simplest case of a multiplicative setting (see Remark 2.1)
where K(1) = B(1), the unit ball of Mn×n

D . Here the above formula reads as

V̂H(β, p; 0, t) =

∫
Ω

V (β(x))
(∫ t

0

|ṗ(s, x)|ds
)

dx .

By the monotonicity property of V , in order to minimize V̂H(β, p; 0, t) in (qs1) it is convenient

to take β smaller when the cumulated plastic strain
∫ t

0
|ṗ(s, ·)|ds is greater. Therefore the

parameter λ is related to a fatigue phenomenon; when λ increases the cumulated plastic strain
affects more seriously the damage growth.

The stability condition (qs1) and Lemma 3.3 imply the following result, which states Euler
conditions with respect to variations of u, e, and p: (5.5a) is the equilibrium condition, while
(5.5b) gives a constraint for the elastic stress.
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Corollary 5.3. Let t ∈ [0, T ] 7→ (α(t), u(t), e(t), p(t)) be a quasistatic evolution corresponding
to λ ∈ [0, 1]. Then we have that for every t ∈ [0, T ]:

div (σ(t)) = 0 in Ω , (5.5a)

σ(t) ∈ Kα(t)(Ω) . (5.5b)

Let us now assume the multiplicative setting of Remark 2.1, C1 regularity for C, D, V , and
absolute continuity for the quasistatic evolution. Then we can obtain a differential condition
also for the damage variable α and a differential formulation of the energy balance.

Proposition 5.4. Besides the assumptions (2.4), (2.5), and (2.9), let us assume that

d ∈ C1(R) , (5.6a)

C ∈ C1(R;Lin(Mn×n
sym ;Mn×n

sym )) , (5.6b)

K(α) = V (α)K(1),with K(1) closed and convex, Br(0) ⊂ K(1) ⊂ BR(0), V ∈ C1(R) .
(5.6c)

Let t ∈ [0, T ] 7→ (α(t), u(t), e(t), p(t)) be a quasistatic evolution corresponding to λ ∈ [0, 1] abso-
lutely continuous into W 1,γ(Ω; [0, 1])×BD(Ω)×L2(Ω;Mn×n

sym )×Mb(Ω;Mn×n
D ). Then for every

t the functional β 7→ V̂H(β, p; 0, t) belongs to C1(C(Ω)) and W 1,γ(Ω) 3 β 7→ Eλ(β, e(t); p, t) is
differentiable at α(t) with Gâteaux derivative in the direction β ∈W 1,γ(Ω)

〈∂αEλ(α(t), e(t); p, t), β〉 =
1

2
〈C′(α(t))βe(t), e(t)〉+ 〈D′(α(t)), β〉

+ γ

∫
Ω

|∇α(t)|γ−2∇α(t) · ∇β dx+ λ
〈
∂αV̂H(α(t), p; 0, t), β

〉
.

(5.7)

Moreover the following hold:

〈∂αEλ(α(t), e(t); p, t), β〉 ≥ 0 (5.8)

for every t ∈ [0, T ] and β ∈W 1,γ(Ω), β ≤ 0 in Ω,

〈∂αEλ(α(t), e(t); p, t), α̇(t)〉 = 0 , (5.9)

and

H(α(t), ṗ(t)) = 〈(σ(t))D | ṗ(t)〉 , (5.10)

for a.e. t ∈ (0, T ), with σ(t) := C(α(t))e(t).

Proof. By Dominated Convergence Theorem and (5.6) it follows that β 7→ V̂H(β, p; 0, t) ∈
C1(C(Ω)) and that W 1,γ(Ω) 3 β 7→ Eλ(β, e(t); p, t) is differentiable at α(t) with Gâteaux
derivative given by (5.7).

Let t ∈ [0, T ] and β ∈ W 1,γ(Ω), with β ≤ 0 in Ω. Using (α(t) + hβ, (u(t), e(t), p(t))) as a
test pair in (qs1) for every h > 0, we get

Eλ(α(t) + hβ, e(t); p, t)− Eλ(α(t), e(t); p, t)

h
≥ 0 ,

and taking the limit as h→ 0 we deduce (5.8).
By [7, Lemma 5.5] we have that for a.e. t ∈ (0, T )

(u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) . (5.11)

Thus, by (5.5a), (5.11), and the integration by parts formula (2.21) we get

〈(σ(t))D | ṗ(t)〉 = 〈σ(t), Eẇ(t)− ė(t)〉 (5.12)

and by (qs2), recalling (5.4), it follows that for a.e. t ∈ (0, T )

〈σ(t), ė(t)〉+H(α(t), ṗ(t)) + 〈∂αEλ(α(t), e(t); p, t), α̇(t)〉 = 〈σ(t), Eẇ(t)〉 . (5.13)

From (5.12) and (5.13) we obtain that

H(α(t), ṗ(t))− 〈(σ(t))D | ṗ(t)〉+ 〈∂αEλ(α(t), e(t); p, t), α̇(t)〉 = 0 (5.14)
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for a.e. t ∈ (0, T ). Since by (5.5b) and (2.22) it follows that

H(α(t), ṗ(t))− 〈(σ(t))D | ṗ(t)〉 ≥ 0 ,

we conclude (5.9) and (5.10) by (5.14) and (5.8). �

We can now use the maximal dissipation property (5.10) (also called Hill’s maximum plas-
tic work principle) to show the validity of the elastoplastic flow rule Ln–a.e. on the support
{|ṗ(t)| > 0} of the measure ṗ(t). The following remark is useful to prove Proposition 5.6.

Remark 5.5. From (5.5b), (2.22), and (5.10) we deduce that for a.e. t ∈ (0, T )

H

(
α(t),

dṗ(t)

d|ṗ(t)|

)
|ṗ(t)| = [σD(t) : ṗ(t)] as measures on Ω, (5.15)

where the measure denoted by square brackets is defined in (2.20).

Proposition 5.6 (Flow rule). In the hypoteses of Proposition 5.4, for a.e. t ∈ (0, T )

dṗ(t)

d|ṗ(t)|
(x) ∈ NK(α(t,x))(σD(t, x)) for Ln–a.e. x ∈ {|ṗ(t)| > 0} , (5.16)

where σD(t, x) denotes the value of σD(t) at the point x and NK(α(t,x))(σD(t, x)) is the normal

cone to the closed convex set K(α(t, x)) at σD(t, x). In particular, if ṗ(t) ∈ L1(Ω) for a.e.
t ∈ (0, T ), we have that

ṗ(t, x) ∈ NK(α(t,x))(σD(t, x)) for Ln–a.e. x . (5.17)

Proof. It is enough to argue as in the proof of [17, Theorem 3.13]. �

A. Auxiliary results

In this Appendix we analyse the particular variation used to define the plastic dissipation
and show a property of monotone functions with values in Lp spaces.

A.1. A “weighted” variation. Let X be a Banach space, F a set, and H : F×X → R+∪{0}.
Given α : [0, T ] → F , p : [0, T ] → X, a, b ∈ [0, T ] with a < b, and P := {ti}0≤i≤N with
a = t0 < t1 < · · · < tN = b, we define

VPH(α, p; a, b) :=

N∑
i=1

H(α(ti), p(ti)− p(ti−1)) .

and the H-variation of p with respect to α on [a, b] as

VH(α, p; a, b) := sup
{ N∑
i=1

H(α(ti), p(ti)− p(ti−1)) | a = t0 < t1 < · · · < tN = b, N ∈ N
}

= sup
{
VPH(α, p; a, b) | P partition of [a, b]

}
.

(A.1)

When α(t) = α ∈ F for every t we use the symbols V̂H and V̂PH instead of VH and VPH, so that

V̂H(α, p; a, b) := VH(α, p; a, b)|α(t)=α , V̂PH(α, p; a, b) := VPH(α, p; a, b)|α(t)=α .

Let us assume that

H(α(t2), f) ≤ H(α(t1), f), for every 0 ≤ t1 ≤ t2 ≤ T, f ∈ X , (A.2a)

H(β, 0) = 0, for every β ∈ F , (A.2b)

H(β, f1 + f2) ≤ H(β, f1) +H(β, f2), for every β ∈ F, f1, f2 ∈ X . (A.2c)

Lemma A.1. With the notations and assumptions above, it follows that:

(1) If P1,P2 are partitions of [a, b], with P1 ⊂ P2, then

VP1

H (α, p; a, b) ≤ VP2

H (α, p; a, b) .
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(2) For every p : [a, b]→ X piecewise constant and continuous from the right, with discon-
tinuities at the points s1, . . . , sN with a < s1 < s2 < · · · < sN ≤ b,

VH(α, p; a, b) =

N∑
i=1

H(α(si), p(si)− p(si−1)) ,

where s0 := a.
(3) For every a ≤ t1 < t2 < t3 ≤ b,

VH(α, p; t1, t3) = VH(α, p; t1, t2) + VH(α, p; t2, t3) .

(4) Assume in addition that F is a measurable topological space, X is the dual of a separable
Banach space Y , p ∈ AC([a, b];X), α : [a, b]→ F is continuous for a.e. t ∈ [a, b], and

H(β, tf) = tH(β, f) for every β ∈ F, f ∈ X, and t > 0 , (A.3a)

f 7→ H(β, f) is weakly∗ lower semicontinuous in X for every β ∈ F , (A.3b)

H(βk, f)→ H(β, f) for every βk → β in F and f ∈ X . (A.3c)

Then t 7→ H(α(t), ṗ(t)) is measurable and

VH(α, p; a, b) =

∫ b

a

H(α(t), ṗ(t)) dt . (A.4)

Proof. (1) It is enough to see that for every a ≤ t1 ≤ t2 ≤ t3 ≤ b
H(α(t3), p(t3)− p(t1)) ≤ H(α(t3), p(t3)− p(t2)) +H(α(t2), p(t2)− p(t1)) .

This is true because, by (A.2c), H(α(t3), p(t3) − p(t1)) ≤ H(α(t3), p(t3) − p(t2)) +
H(α(t3), p(t2)− p(t1)); apply then (A.2a) to the second term in the right-hand side.

(2) Observe firstly that given a partition P := {ti}0≤i≤M of [a, b] it is possible to choose
a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ N such that

VPH(α, p; a, b) ≤
k∑
j=1

H(α(sij ), p(sij )− p(sij−1)) . (A.5)

In fact, if si ≤ tj < tj+1 < si+1, then

H(α(tj+1), p(tj+1)− p(tj)) = H(α(tj+1), p(si)− p(si)) = 0 ,

while if si ≤ tj < si+1 < · · · < si+l ≤ tj+1 < si+l+1 it follows that

H(α(tj+1), p(tj+1)− p(tj)) = H(α(tj+1), p(si+l)− p(si)) ≤ H(α(si+l), p(si+l)− p(si)) ,
by (A.2b) and (A.2a). From (1) and (A.5), for every P partition of [a, b] the inequalities

VPH(α, p; a, b) ≤
N∑
i=1

H(α(si), p(si)− p(si−1)) ≤ VH(α, p; a, b)

hold. The conclusion follows by taking the supremum over the partitions of [a, b].
(3) It is always true that VH(α, p; t1, t3) ≥ VH(α, p; t1, t2) + VH(α, p; t2, t3) because for

every partitions P1 and P2 of [t1, t2] and [t2, t3], P := P1 ∪P2 is a partition of [t1, t3].

On the other hand, for every P partition of [t1, t3], P̃ := P ∪ {t2} is the union of two
partitions of [t1, t2] and [t2, t3] respectively; since, by (1),

VPH(α, p; a, b) ≤ VP̃H(α, p; a, b) ,

the latter inequality holds.
(4) From (A.2c), (A.3a), and (A.3b), we have that for every β ∈ F the function f 7→
H(β, f) is weakly∗ lower semicontinuous, convex and positively one-homogeneous.
Then, by [20, Theorem 5], for every β ∈ F there exists a bounded closed convex
set Kβ ⊂ Y such that

H(β, f) = sup
y∈Kβ

〈y, f〉 ,

where 〈·, ·〉 denotes the duality pairing between X and Y . Being Y separable, we get
H(β, f) = supy∈K0

β
〈y, f〉, where K0

β is a countable dense subset of Kβ .
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Since p ∈ AC([a, b];X), the weak∗-limit

ṗ(t) := w∗- lim
s→t

p(s)− p(t)
s− t

exists for a.e. t ∈ [a, b], and then the function t 7→ 〈y, ṗ(t)〉 is measurable for every
y ∈ Y . Therefore t 7→ H(β, ṗ(t)) is measurable for every β ∈ F . Moreover, from [7,
Theorem 7.1],

V̂H(β, p; t1, t2) =

∫ t2

t1

H(β, ṗ(t)) dt , (A.6)

for every a ≤ t1 < t2 ≤ b and every β ∈ F .
Let us fix ε > 0. There exist points t0, . . . , tN , with a = t0 < t1 < t2 < · · · < tN ≤ b,

such that

VH(α, p; 0, t)− ε ≤
N∑
i=1

H(α(ti), p(ti)− p(ti−1)) . (A.7)

For every k ∈ N we consider the set
(
a+ i b−ak

)k
i=0
∪ (tj)

N
j=1 =: sk0 < sk1 < · · · < sKM(k),

with sk0 = a, and we define αk as

αk(t) := α(sj+1) when t ∈ (sj , sj+1]

and αk(a) = α(a). In other words αk is the left-continuous piecewise constant inter-
polation of α with nodes (sj)j . By construction

αk(tj) = α(tj) for every j ∈ {1, . . . , N} (A.8)

and by (A.2a) and (A.3c) we get that for every f ∈ X
H(αk(s), f) ≤ H(αk+1(s), f) ≤ H(α(s), f) (A.9)

for every s ∈ [a, b], and

H(αk(s), f)→ H(α(s), f) (A.10)

for every s continuity point of α.
Since the functions αk are piecewise constant, from the point (3) and (A.6) we have

that

VH(αk, p; a, b) =

M(k)∑
j=1

VH(αk, p; s
k
j−1, s

k
j ) =

M(k)∑
j=1

V̂H(αk(skj ), p; skj−1, s
k
j )

=

M(k)∑
j=1

∫ sj

sj−1

H(αk(skj ), ṗ(t)) dt =

∫ b

a

H(αk(t), ṗ(t)) dt .

(A.11)

Moreover the fact that α is continuous for a.e. t ∈ [a, b] and (A.10) imply that

t 7→ H(α(t), ṗ(t)) is measurable ,

as well as ∫ b

a

H(α(t), ṗ(t)) dt = lim
k→∞

∫ b

a

H(αk(t), ṗ(t)) dt , (A.12)

using the Monotone Convergence Theorem.
By (A.7), (A.8), and (A.9) we obtain

VH(α, p; a, b)− ε ≤
N∑
i=1

H(αk(ti), p(ti)− p(ti−1)) ≤ VH(αk, p; a, b) ≤ VH(α, p; a, b) ,

and using (A.11) and (A.12) we can pass to the limit as k →∞ and get

VH(α, p; a, b)− ε ≤
∫ b

a

H(α(t), ṗ(t)) dt ≤ VH(α, p; a, b) .

We therefore conclude since ε is arbitrary.
�
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A.2. A remark about monotone functions from time into Lp spaces.

Lemma A.2. Let (X,µ) a measure space with µ(X) < ∞, and α : [0, T ] → L∞(X,µ) such
that ‖α(t)‖∞ ≤M for every t ∈ [0, T ] and

α(t2) ≤ α(t1)µ-a.e. in X for every t1 ≤ t2 . (A.13)

Then there exists a countable set E ⊂ [0, T ] such that for every 1 ≤ p < ∞ the function α is
continuous in every t ∈ [0, T ] \ E with respect to the Lp(X,µ) norm.

Proof. For every s ∈ (0, T ] and t ∈ [0, T ) we define

α−(s) := inf
n∈N

α(t−n ), α+(t) := sup
n∈N

α(t+n ) ,

where t−n < s and t < t+n are sequences in [0, T ] convergent to s and t, and

α−(0) := α(0), α+(T ) := α(T ) .

By (A.13) these definitions are well posed. Indeed, let for instance t < s+
n be a sequence

that converges to t, and α̃(t+) := supn∈N α(s+
n ). For every m ∈ N, there exists nm such

that t < s+
n ≤ t+m for every n ≥ nm: therefore α̃(t+) ≥ α(s+

n ) ≥ α(t+m) for every m, and
α̃(t+) ≥ α(t+), taking the supremum over m. The opposite inequality follows by interchanging
the two sequences. Moreover for every t ∈ [0, T ]

α(t+n )→ α+(t), α(t−n )→ α−(t) strongly in Lp(X,µ) , (A.14)

by Monotone Convergence Theorem and (A.13) again, and

α−(t) ≥ α(t) ≥ α+(t) ,

for every t ∈ [0, T ]. Let us consider now the function

g(t) :=

∫
X

(
α−(t)− α+(t)

)
dµ .

It takes values in R+ ∪ {0} and for every t1 < · · · < tk ∈ E := {t ∈ [0, T ]| g(t) > 0} we get,
using in particular (A.13), that

k∑
i=1

g(ti) ≤
∫
X

(
α−(t1)− α+(tk)

)
dµ ≤ 2Mµ(X) .

By a standard argument, we deduce that E is a countable set. By definition of E, α+(t) =
α−(t) = α(t)µ-a.e. for every t ∈ [0, T ] \ E and we conclude by (A.14). �
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[18] M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Internat. J.

Solids Structures, 33 (1996), pp. 1083–1103.
[19] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals, Duke Math. J.,

31 (1964), pp. 159–178.
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