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The interdependence between thyroid hormones (THs), namely, thyroxine and
triiodothyronine, and immune system is nowadays well-recognized, although not yet fully
explored. Synthesis, conversion to a bioactive form, and release of THs in the circulation
are events tightly supervised by the hypothalamic–pituitary–thyroid (HPT) axis. Newly
synthesized THs induce leukocyte proliferation, migration, release of cytokines, and
antibody production, triggering an immune response against either sterile or microbial
insults. However, chronic patho-physiological alterations of the immune system, such
as infection and inflammation, affect HPT axis and, as a direct consequence, THs
mechanism of action. Herein, we revise the bidirectional crosstalk between THs and
immune cells, required for the proper immune system feedback response among diverse
circumstances. Available circulating THs do traffic in two distinct ways depending
on the metabolic condition. Mechanistically, internalized THs form a stable complex
with their specific receptors, which, upon direct or indirect binding to DNA, triggers
a genomic response by activating transcriptional factors, such as those belonging
to the Wnt/β-catenin pathway. Alternatively, THs engage integrin αvβ3 receptor on
cell membrane and trigger a non-genomic response, which can also signal to the
nucleus. In addition, we highlight THs-dependent inflammasome complex modulation
and describe new crucial pathways involved in microRNA regulation by THs, in
physiological and patho-physiological conditions, which modify the HPT axis and THs
performances. Finally, we focus on the non-thyroidal illness syndrome in which the
HPT axis is altered and, in turn, affects circulating levels of active THs as reported
in viral infections, particularly in immunocompromised patients infected with human
immunodeficiency virus.

Keywords: human immunodeficiency virus, hypothalamic–pituitary–thyroid, immune system, inflammasome,
microRNAs, non-thyroidal illness syndrome, thyroid hormones, Wnt/β-catenin
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INTRODUCTION

Thyrotropin-releasing hormone (TRH) and thyroid-stimulating
hormone (TSH) produced by the hypothalamus and pituitary
gland, respectively, are effectors of the hypothalamic–pituitary–
thyroid (HPT) axis, which regulates levels of circulating thyroid
hormones (THs; Kelly, 2000). TRH induces TSH release that,
once in circulation, stimulates THs biosynthesis and maturation,
events that take place in the thyroid. The bioactive form
of THs, namely 3,5,3′-triiodo-L-thyronine (T3; Incerpi et al.,
2016), in turn, acts via a negative feedback loop to control
the hypothalamic–pituitary component of the HPT axis (Kelly,
2000). T3 results from deiodination of thyroxine (T4) by
deiodinase (DIO) 1 and 2 enzymes, while DIO 3 activity converts
T4 in reverse T3 (rT3), an inert isomer of T3 (Incerpi et al.,
2016; Lanni et al., 2016). T3 and T4 may enter into the target
cells through specific transporters (Hennemann et al., 2001) and
act by binding to different molecules located either on plasma
membrane (i.e., integrin αvβ3; Bergh et al., 2005; Davis et al.,
2005; De Vito et al., 2011) or intracellularly (i.e., THα and THβ

receptors: THRs; Cheng et al., 2010; Brent, 2012; Incerpi et al.,
2016). These interactions activate a variety of pathways that
largely signal to the nucleus (Flamant et al., 2017), or the nuclear
transcription machinery by directly activating THs response
elements (TREs) on gene promoters (Singh et al., 2018). T3 shows
higher affinity than T4 for THRs, whereas T4 is more potent
than T3 in binding integrin avβ3. Both these receptors activate
signaling molecules such as phosphoinositide 3-phosphate kinase
(PI3K), protein kinase B (AKT), and mitogen-activated protein
kinases (MAPKs; Incerpi et al., 2016; Lanni et al., 2016; Davis
et al., 2019).

The immune system can also affect THs synthesis and release,
either centrally (from thyroid gland), or peripherally, from tissues
or target organs. Here, we review recent findings on how THs
and the immune system crosstalk. In particular, we will focus on
the THs-dependent regulation of (1) Nod-like receptor protein 3
(NLRP3)-mediated inflammasome, (2) small non-coding RNAs
such as microRNAs (miRNAs; Anastasiadou et al., 2018a,b),
and (3) Wnt/β-catenin pathway in anti- or pro-inflammatory
conditions, such as non-thyroidal illness syndrome (NTIS) and
(4) during chronic viral infections, such as those caused by
human immunodeficiency virus (HIV).

THs AND IMMUNE SYSTEM: A
BIDIRECTIONAL CROSSTALK
The existence of a bidirectional crosstalk between the endocrine
and the immune system, in which THs and cytokines represent
the key players, is well documented (Klecha et al., 2000, 2008;
De Vito et al., 2011). Interestingly, immune cells’ reactivity
to circulating THs (De Vito et al., 2011, 2012) as well as
responsiveness of endocrine cells to available cytokines, such as
interleukin-1 (IL-1), IL-6, interferon (IFN)-γ, and tumor necrosis
factor-α (TFN-α), positively correlate with the expression of these
molecules and to the affinity for their specific receptors (Klecha
et al., 2000, 2008). A central role of THs in the modulation
of immune system is confirmed by the influence of T3 and T4

in cytokine maturation and release, a process that involves the
activation of MAPKs and mediated by phosphorylation of the
Signal Transducer and Activator of Transcription 1α (STAT1α;
Lin et al., 1999; Shih et al., 2004).

Abnormal THs secretion, hyperthyroidism, autoimmune
thyroiditis, and hypothyroidism can affect immunological
functions. Hyperthyroidism correlates with increased humoral
and immune cell responses (De Vito et al., 2011). Opposite
effects were found in hypothyroidism (Klecha et al., 2008).
Moreover, levels of circulating THs positively match up with
an immunological reactivity in healthy individuals, such as
in physiological maintenance of lymphocyte subpopulations
(Hodkinson et al., 2009). Recently, it has been shown that
T3 increased the number of IL-17-expressing T lymphocytes
by activating dendritic cells, in vitro (Alamino et al., 2019).
In addition, T and B lymphocytes are capable of synthesizing
and releasing TSH (Smith et al., 1983; Harbour et al., 1989),
which might affect healthy and abnormal thyroid cells, expressing
the TSH receptor. This novel and unexpected non-pituitary
source of TSH could be also decisive in affecting immune
response during infections and chronic inflammation (Klein,
2006). Initial reports of TSH and immune cells appeared more
than 20 years ago (Smith et al., 1983; Kruger and Blalock,
1986). Bacterial toxins (Smith et al., 1983) or in vitro TRH
administration (Klein, 2006) enhance TSH production and
release from leukocytes. The work of Blalock et al. (1984) showed
that TSH induced a strong cellular and humoral response,
thus enhancing the lymphocyte proliferation by inducing the
production of endogenous inflammatory factors: IL-6 and
monocyte chemoattractant protein-1 (MCP-1; Gagnon et al.,
2014). Moreover, in vitro and in vivo studies showed that TSH
treatments significantly increased T3 levels in thymocytes and
other immune cells (Csaba and Pállinger, 2009). Experiments
performed in mice lacking the pituitary gland (unable to
produce central TSH) showed increased THs levels during
inflammation (Bagriacik et al., 2001). Conversely, unbalanced
immune response may be linked to low levels of THs in the
plasma, since TSH fluctuations might alter T3 and T4 release from
thyroid gland. Moreover, acute infections indirectly influence
THs release through the action of inflammatory molecules (like
IL-1, IL-6, and TFN-α) on hypothalamus, thus minimizing TSH
action on the thyroid and, consequently, reducing T3 and T4
in the circulation, promoting NTIS. This lowers the energy
expenditure during illnesses, offering an alternative pathway
to the HPT axis control, for central neuroendocrine–immune
and metabolic fine-tuning (Klein, 2006). However, induction
and regulation of NTIS may involve alterations in the HPT
axis and may be relatively independent of circulating THs
(de Vries et al., 2015).

The T3 and T4 are also involved in the regulation of reactive
oxygen species (ROS) production through the activation of the
PI3K–AKT axis in immune cells (De Vito et al., 2011; Figure 1,
right panel). Moderate levels of ROS could act as a second
messenger and play an important role in the leukocyte activation
during immune surveillance and phlogosis (Figure 1, left panel).
This process, together with actin polymerization induced by
T4 and rT3, may contribute to the immune cell migration and
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FIGURE 1 | Regulation of NLRP3 inflammasome by thyroid hormones in macrophages. Physiological levels of T3 promote anti-inflammatory responses, bactericidal
activity, and phagocytosis (left panel). Mechanistically, T3–THRs–TREs complex downregulates TLR4, NF-kB, NLRP3, pro-IL-1β, pro-IL-18, and several miRNAs,
such as miR-31, -155, and -222, thus reducing ROS levels. Moreover, the T3–THRs–TREs complex upregulates miR-30, -133, and -144 that target Fasl, Ilk,
Serpine1, hepatocyte growth factor (Hgf), Beta secretase 1 (Bace 1), and C-X-C motif chemokine receptor 4 (Cxcr4), thus further preventing the assembly of NLRP3
inflammasome (Forini et al., 2019). Hypothyroidism induces acute and chronic inflammatory responses, such as NTIS (right panel). High levels of T4 cause a robust
production of ROS through the integrin αvβ3–PI3K–AKT signaling cascade, which ultimately triggers NLRP3 inflammasome. This is due to higher affinity displayed by
T4 then T3 for integrin αvβ3 receptor on cell membrane. In addition, the T4–integrin αvβ3–MAPKs axis enhances the expression of HIF-1α and COX2 to promote
NLRP3 inflammasome assembly and stability.

proliferation at the sites of inflammation (Marino et al., 2006; De
Vito et al., 2011, 2012).

ROLE OF THs ON NLRP3
INFLAMMASOME ACTIVATION

Inflammasomes are intracellular multiprotein complexes typical
of immune cells, such as monocytes and macrophages, which
mediate the first line of defense in response to sterile (absence
of microbial particles) and non-sterile (microbial infection)
threats, by activating pro-inflammatory cytokines (He et al.,
2016a,b; Mangan et al., 2018). The sterile signals include damage-
associated molecular patterns (DAMPs; Ahechu et al., 2018),
debris from dead or dying cells (Newton and Dixit, 2012), and
other organic and inorganic molecules (Allam et al., 2013; He
et al., 2016a,b; Amores-Iniesta et al., 2017). The non-sterile
agents encompass the pathogen-associated molecular patterns

(PAMPs), lipopolysaccharide (LPS; Schroder and Tschopp, 2010),
RNA (Franchi et al., 2014), and a wide range of bacterial toxins
(Greaney et al., 2015).

Inflammasomes consist of a sensor protein, such as NLRP3,
which recognizes the insults and activates effector proteins:
Caspase-1. The active Caspase-1 cleaves the inflammatory pro-
IL-1β and pro-IL-18 to generate their mature forms, as well as
gasdermin D, whose N-terminus domains auto-assemble into
pores on the plasma membrane for the release of bioactive
cytokines, thus inducing an inflammatory form of cell death
known as pyroptosis (Shi et al., 2015; Magupalli et al., 2020). Two
temporally distinct events are required for the full activation of
NLRP3-mediated inflammasome. The first step, priming, involves
engagement of Toll-like receptors (TLRs) by pathogens or sterile
particles. This is followed by recruitment of the myddosome
complex, which transduce downstream signal to NF-kB, allowing
an increase of NLRP3 and pro-ILs levels (Lamkanfi, 2011).
The second event, activation, consists in the assembly of the
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inflammasome proteins into a functional active structure and
includes different signal molecules, which cause an intracellular
ion disbalance and activation of ROS production, culminating
with NLRP3 inflammasome maturation (Wang L. et al., 2020).
The amplitude of the inflammasome activation is a crucial event
that controls shifts from acute to severe inflammation (Moossavi
et al., 2018; Wang Z. et al., 2020). Recent evidence suggests that
negative or positive modulation of the NLRP3 inflammasome
could be dependent on T3 availability and uptake in the target
cells, thus possibly diverting a physiological condition toward a
pathological status. Therefore, T3 activity could be crucial for
adequate macrophage function and tissue homeostasis. Indeed,
alterations in these processes could lead to cancer, diabetes,
intestinal bowel disease, or atherosclerosis (Wynn et al., 2013;
Kwakkel et al., 2014).

After uptake, T3 partially migrates to the nucleus and binds to
the macrophage dominant isoform of THRs (i.e., THRα; Kwakkel
et al., 2014) and, subsequently, to the TREs located on promoters
of the target genes. The T3–THRs–TREs complex regulates
gene transcription through direct or indirect interactions with
the nuclear DNA (Singh et al., 2017). It is well-established
that the T3–THRs–TREs complex affects different miRNAs
families, as miR-30, -133, and -144, whose expressions are
increased by T3–THRs–TREs complex activity (Forini et al.,
2018, 2019). These miRNAs dampen pro-inflammatory genes,
such as Fast apoptosis signal Ligand (FasL; Chen et al., 2016)
and Integrin-linked kinase (Ilk), two key players that trigger
NLRP3 inflammasome assembly and inflammation (Boro and
Balaji, 2017). Moreover, it was recently shown that the T3–THRs–
TREs complex reduced cardiac-related miR-31, -155, and -222
(Forini et al., 2018). This results in an increased expression
of superoxide dismutase 1 (SOD1) and 2 (SOD2; Wang et al.,
2015; Forini et al., 2019), which lower the levels of ROS and
inhibit the activation of NLRP3 inflammasome. In addition,
the T3–THRs–TREs complex downregulates the TLR4/NF-kB
pathway (Furuya et al., 2017; de Castro et al., 2018), thus
reducing the levels of NLRP3, pro-IL-1β, and pro-IL-18. All this
suggests that T3–THRs nuclear action may direct immune cells
to an anti-inflammatory condition (Vargas and Videla, 2017;
Forini et al., 2019; Figure 1, left panel). In particular, cytosolic
T3–THRs complex controls nicotinamide adenine dinucleotide
phosphate oxidase (NADPH)-dependent ROS production by
involving the PI3K–AKT axis (Gnocchi et al., 2012). Cytosolic
ROS partially contribute to the generation of mitochondrial ROS
(mtROS; West et al., 2011; Pushpakumar et al., 2017), thus
forming a loop between NADPH and mitochondria, which keeps
intracellular levels of ROS within a physiological range (Dikalov,
2011). Finally, the cooperative interactions between the T3–
THRs complex, moderate levels of ROS and mtROS, maintain
the NLRP3 inflammasome activation under strict control and
promote bactericidal clearance, phagocytic activity, and anti-
inflammatory condition (Vernon and Tang, 2013; van der Spek
et al., 2018; Figure 1, left panel).

On the other hand, more pronounced pro-inflammatory
pathways might take place when levels of THs lean toward T4, a
common condition diagnosed in clinical hypothyroidism, often
associated with inflammation and risk of NTIS onset (Boelen

et al., 2004; Mancini et al., 2016). Circulating T4 binds to integrin
αvβ3, located on plasma membrane and signals to MAPKs,
thus increasing levels of hypoxia-inducible factor 1-alpha (HIF-
1α) and cyclooxygenase-2 (COX2; De Vito et al., 2011; Lin
H. Y. et al., 2013a), both involved in the NLRP3 inflammasome
activation (Hua et al., 2015; Gupta et al., 2017). In parallel, the
T4–integrin αvβ3 axis activates PI3K and AKT, thus inducing
a robust production of ROS (De Vito et al., 2012), as well as
enhancing HIF-1α expression (Lin H. Y. et al., 2013a; Hsieh
et al., 2017). All these events could ultimately lead to NLRP3
inflammasome activation (Figure 1, right panel). In support of
this, it was found that excessive iodine promoted pyroptosis of
thyroid follicular cells by the ROS–NF–kB–NLRP3 pathway in a
model of autoimmune thyroiditis (Liu et al., 2019).

In summary, the net immunological response is determined
by concentration and availability of circulating and intracellular
THs, as well as by the metabolic status that could potentially
promote an anti- or pro-inflammatory response by opposite
regulations on NLRP3 inflammasome activation and stability.

INTERPLAY BETWEEN THs, Wnt
PATHWAY, AND miRNAs DURING
INFLAMMATION

Interactions between THs and the Wnt/β-catenin pathway have
been investigated in recent years (Todaro et al., 2010). The
modulation of Wnt/β-catenin signaling pathway by the T3–
THRs–TREs complex affects fundamental biological processes
such as cell proliferation, development, tissue homeostasis,
and metabolism (Ely et al., 2018). While THRα1 receptor
controls gut development and homeostasis through the Wnt
pathway in physiological conditions (Kress et al., 2009), in
pathological conditions, such as colorectal cancer, the THRα1
receptor is thought to activate β-catenin/Tcf4 transcription,
thus increasing the cell proliferation and tissue rearrangement
in the gut (Kress et al., 2010). Grainyhead-like transcription
factor 3 (GRHL3), essential for epidermal differentiation and
morphogenesis, suppresses DIO3 activity (increasing T3 levels)
and acts as a downstream signal for the Wnt/β-catenin pathway
(Kimura-Yoshida et al., 2018). In addition, the T3–THRs–
TREs complex induces expression of Dickkopf (DKK) 4, which
antagonizes Wnt/β-catenin signaling in hepatocellular carcinoma
cell lines (HCC), suggesting a role for T3 in tumor suppression
and unraveling the T3/DKK4/Wnt/β-catenin pathway as a
possible therapeutic target in HCC (Liao et al., 2012; Figure 2A).
The T3–THRs–TREs complex also controls several epigenetic
mechanisms of gene expression (Dong et al., 2010; Janssen et al.,
2014; Forini et al., 2018). Dissecting T3–THRs–TREs-dependent
genetic and epigenetic crosstalk could provide new insights to
develop therapeutic strategies for pathologies that affect the
HPT axis, as NTIS and autoimmune thyroiditis (Tomer, 2014;
McDermott, 2019*). Decreased levels of THRs and THs have been
found in animal models for NTIS and in NTIS patients affected
by sepsis and cardiovascular disturbances (Warner and Beckett,
2010; von Hafe et al., 2019).
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FIGURE 2 | Thyroid hormones, Wnt pathway, and miRNAs crosstalk. (A) The T3–THRs–TREs complex upregulates DKK4, a tumor suppressor, which inhibits
Wnt/β-catenin pathway. (B) Also, the T3–THRs–TREs complex increases miR-499 and downregulates calcineurin and miR208a, thus reducing apoptosis, cardiac
hypertrophy, inflammation, and NTIS.

Several studies showed that T3–THRs–TREs signaling affects
miRNAs expression (Dong et al., 2010; Janssen et al., 2014;
Babu and Tay, 2019). For instance, T3–THRs–TREs binds to
miR-17 promoter and decreases transcription and processing of
mature miR-17, involved in cancer (Lin Y. H. et al., 2013b). Also,
some miRNAs regulated by THs play an important role in the
Wnt pathway. For instance, miR-499 related to cardioprotection
(Wang et al., 2011) inhibits calcineurin (a signaling molecule of
Wnt/β-catenin pathway), thus reducing the levels of Dynamin-
1-like protein (Drp1), which is involved in apoptosis (Tan
et al., 2008). Another cardiac-specific miRNA (Seok et al., 2014;
Wang et al., 2015; Su et al., 2016), miR-208a, inhibits T3-
mediated signaling pathway by repressing the THs Associated
Protein/Mediator Complex Subunit 13 (THRAP1/MED13) in
a mouse model of cardiac hypertrophy and hypothyroidism
(van Rooij et al., 2009; Neppl and Wang, 2014; Figure 2B).
Although there is ample evidence about the THs/THRs/miRNAs
alterations in immune-related pathologies, it will be crucial to
further explore the regulatory networks between miRNAs and
THs in pathological contexts such as NTIS.

NTIS AND THs DURING HIV INFECTION

Impairments in the HPT axis in the course of NTIS affect
circulating levels of THs, especially T3. NTIS may result

from HPT setpoint alterations that occur during prolonged
hospitalization in a variety of systemic diseases (Boelen et al.,
2011; de Vries et al., 2015; Yasar et al., 2015). In this context, it has
been described that patients affected by severe acute respiratory
syndrome (SARS) present signs of NTIS and HPT dysfunctions
(Marazuela et al., 2020; Pal and Banerjee, 2020). Same alterations
might also be caused by Coronavirus disease 2019 (COVID-19)
as recently reported (Khoo et al., 2020; Wai Lui et al., 2020).
However, other factors such as elevated levels of circulating IL-6
(Wajner et al., 2011) and TNF-α (Feelders et al., 1999) also inhibit
or reduce T4 conversion to T3 in NTIS patients.

NTIS is characterized by reduced circulating levels of T3
and increased rT3, as a result of dysregulated deiodination
of intracellular T4 by DIO3 and perhaps other deiodinases,
which inactivate THs, preventing their excess (De Groot,
1999; Wajner et al., 2011). In particular, LPS administration
is a model of NTIS that stimulates DIO2 activity, NF-κB
activation, and consequently cytokine increase, whereas it
decreases DIO1 levels (Boelen et al., 2011). Furthermore, many
systemic and non-endocrine pathologies such as congestive
heart failure, cardiorenal syndrome, and starvation/malnutrition
are commonly observed in NTIS patients (Larsen et al., 2002;
Lee and Farwell, 2016). It has been suggested that NTIS may
represent a form of hypothyroidism linked to the oxidative
stress and reduced antioxidant defense system, related to the
altered function of deiodinases (Mancini et al., 2016). In fact,
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the administration of the antioxidant N-acetylcysteine, in order
to prevent NTIS in patients with acute myocardial infarction,
increased serum T3 while decreasing rT3 (Vidart et al., 2014; de
Vries et al., 2015; Lee and Farwell, 2016). Interestingly, adaptive
NTIS response, in terms of thyroid function, during sustained
immune defense has been interpreted as an effort—in terms of
reduced available T3—to decrease the energy expenditure and
turnover of several proteins involved in host defenses (Klein,
2006; de Vries et al., 2015). Acute NTIS has also been interpreted
as a support mechanism for the immune response because of
high production of pro-inflammatory cytokines found at the early
stage of the disease (Boelen et al., 2011).

Acquired immunodeficiency syndrome (AIDS), in which HIV
seriously compromises immune defenses, is associated with
dysfunction of HPT and endocrine organs and shows typical
markers of endocrine alterations related to NTIS, such as high
ROS levels (Parsa and Bhangoo, 2013). More importantly, recent
findings suggest that HIV-related conditions promote NRLP3-
mediated inflammasome activation (Haque et al., 2016; Bandera
et al., 2018; Figure 1, right panel).

The screening of TSH is highly recommended in HIV patients
and, if the levels of TSH are found altered, free T3 and
T4 measurements become necessary. During such screenings,
possible occurrence of NTIS must be considered for differential
diagnosis related to the abnormal thyroid functionality, especially
in individuals with advanced AIDS (Hoffmann and Brown, 2007).
Analysis of THs metabolism on post-mortem tissues of HIV-
infected patients showed alterations in the HPT axis and 27% of
screened HIV patients showed abnormal TSH levels (50% had
TSH < 0.5 mU/L and the remaining had >4 mU/L; Langford
et al., 2011). HPT axis alterations are usually considered as
NTIS and depend on the severity of HIV-related disease. TSH
may change, and usually the activity of deiodinases is decreased;
therefore, higher circulating T4 and rT3 levels are found, whereas
circulating T3 is decreased (Hoffmann and Brown, 2007). The
lack of effectiveness of T3 administration/replacement in NTIS
patients (Chopra, 1997; De Groot, 2006; Warner and Beckett,
2010; de Vries et al., 2015) could be explained by the actions of
rT3, which is largely inactive (Lanni et al., 1993, 2016; Moreno
et al., 2008).

The autoantibodies, namely, TgAb and TPOAb, were also
altered in HIV-infected individuals (Ketsamathi et al., 2006).
Drug abuse, or its withdrawal, may also contribute to this
(Langford et al., 2011). Interestingly, during anti-retroviral
therapy (ART), a subclinical hypothyroidism is commonly
observed. Indeed, isolated levels of TSH are elevated, whereas
low free T4 is found (Hoffmann and Brown, 2007). Similarly,
results on THs alterations have been reported in a study on

HIV-infected children treated with ART. Therefore, due to the
serious outcome of these pathologies and their consequences on
the psychosomatic development, the thyroid dysfunctions should
be carefully evaluated not only in adults but also in children
(Viganò et al., 2004). Indeed, impact of NTIS in critically ill
children (Jacobs et al., 2019) remains unclear.

DISCUSSION AND FUTURE
PERSPECTIVES

Herein, we have discussed the bilateral crosstalk between
the immune system and THs both in physiological and
patho-physiological conditions. The activation of NLRP3
inflammasome, modulation of the Wnt/β-catenin pathway, and
NTIS could rely on a complex interplay that involves THs and
miRNAs. Finally, how viral infections could affect NTIS and
HPT functions have been discussed. Broadly, we have provided
new insights into how the immune system and endocrine system
interact with each other. Ultimately, it is our hope that ideas
discussed here will eventually open novel avenues of research and
drug development (Silverman et al., 2020). In particular, since
miRNAs are involved in the crosstalk between inflammation
and THs-related diseases, they might be considered not only
as biomarkers but also as potential druggable targets in order
to combat, with higher efficiency, NTIS. Indeed, a recent study
has shown how downregulation of miR-155 by an anti-miRNA
compound, cobomarsen, reduced inflammation and tumor
volume in preclinical models and in a patient (Anastasiadou
et al., 2020). Future studies related to how THs affect the immune
system in physiological and pathological settings, including those
that mimic HIV infection in vitro, will provide important insights
and impetus to this exciting field.
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