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Abstract

Motivated by recent experimental work, we define and study a deterministic model of the complex miRNA-based
regulatory circuit that putatively controls the early stage of myogenesis in human. We aim in particular at a quantitative
understanding of (i) the roles played by the separate and independent miRNA biosynthesis channels (one involving a
miRNA-decoy system regulated by an exogenous controller, the other given by transcription from a distinct genomic
locus) that appear to be crucial for the differentiation program, and of (ii) how competition to bind miRNAs can
efficiently control molecular levels in such an interconnected architecture. We show that optimal static control via the
miRNA-decoy system constrains kinetic parameters in narrow ranges where the channels are tightly cross-linked. On
the other hand, the alternative locus for miRNA transcription can ensure that the fast concentration shifts required by
the differentiation program are achieved, specifically via non-linear response of the target to even modest surges in
the miRNA transcription rate. While static, competition-mediated regulation can be achieved by the miRNA-decoy
system alone, both channels are essential for the circuit’s overall functionality, suggesting that that this type of joint
control may represent a minimal optimal architecture in different contexts.

1. Introduction

Following years of experimental work, microRNAs (miRNAs) –small, endogenous, non-coding RNA molecules
ubiquitously found in plant and animal cells– have emerged as key agents in post-transcriptional regulation [1]. Their
primary mode of action is by protein-mediated base-pairing to target RNA molecules. For coding RNAs, this leads
to the repression of gene expression through mRNA cleavage or translational inhibition [2–5]. Their targets however
include both coding and non-coding transcripts like long non-coding RNAs (lncRNAs) [6–9], which places them at
the center of the RNA-based regulatory web. Over time, miRNAs have been found to constitute a remarkably versatile
regulatory layer, mediating functions ranging from the buffering of gene expression noise [10] to the timing of genetic
circuits [11]. Moreover, they are now known to be profoundly implicated in a variety of developmental and disease
processes [12]. Mathematical models have been employed to address the role of miRNAs in different contexts [13],
highlighting for instance how miRNA-based regulation may combine with circuit topology [14], kinetic heterogen-
eities [15, 16] and effects due to competition between miRNA targets [17] to generate diverse functional outcomes.
Competition, in particular, has been hypothesized to affect regulation in a broader, yet more subtle, way through
the so-called ‘competing endogenous RNA’ (ceRNA) effect [18], whereby co-regulated targets can establish, under
specific conditions [17, 19–22], an effective crosstalk with potentially far-reaching implications. While experimental
validations are currently putting under scrutiny the question of how effective this mechanism can be in standard con-
ditions [23–25], competition has been shown to be central in a number of situations, perhaps most notably in cancer
development [26–28] and muscle cell differentiation [29, 30].

Following recent work that has shed new light on its intricate genetic circuitry [31], we focus here on miRNA-
based control in early myogenesis. Key actors include two miRNA species (miR-133 and miR-135), two transcription
factors (MAML1 and MEF2C), a skeletal muscle-specific lncRNA (linc-MD1) and the RNA-binding human antigen
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R (HuR) protein (see Fig. 1A). miR-133 can be produced from a precursor RNA (pre-miR-133b) as well as from two
independent genomic loci. However, pre-miR-133b also provides the substrate for the synthesis of linc-MD1 through
a pathway alternative (and mutually exclusive) to that leading to miR-133. In addition, linc-MD1 possesses two target
sites for miR-135 and one for miR-133 and can therefore act as a ‘decoy’ for both miRNAs. The transcription factors
MAML1 and MEF2C, both essential in the expression of muscle-specific genes [32], are instead targets of miR-133
and miR-135, respectively. As a consequence, linc-MD1 is a ceRNA of MAML1 (resp. MEF2C) and competes with
it to bind miR-133 (resp. miR-135). In specific, miRNA sponging activity by linc-MD1 de-represses MAML1 and
MEF2C leading to muscle-cell differentiation via the expression of the specific genes controlled by the latter. The
HuR mRNA plays a subtle role in controlling the alternative processing of pre-miR-133b into linc-MD1 or miR-133.
Most importantly, it competes with linc-MD1 for miR-133, thereby favoring the former’s sponging activity and giving
rise to a positive feedforward loop that ultimately affects the levels of both species.

As discussed in [31], the trigger that possibly causes the system to exit the feedforward loop, repress muscle-
specific gene expression and access later stages of differentiation is an endogenous upregulation of miR-133 tran-
scription from the independent genomic loci. This suggests that the complex regulatory circuitry just described,
whereby miRNAs can be synthesized both via a protein controlled switch and from an independent locus, can provide
effective control of both timing and molecular levels.

In order to analyze this issue in a quantitative framework, here we analyze a schematic version of the above
circuitry through a deterministic mathematical model based on mass-action kinetics, focusing specifically on the
roles of HuR and of the alternative loci for miRNA transcription. In a nutshell, by characterizing the magnitude
of the ceRNA effect and the response to a sudden increase of the transcriptional activity of miR-133, we show,
among other things, that, while HuR-controlled regulation of pri-miR-133 processing is crucial to tune molecular
levels, miRNA transcription from the alternative loci allows to achieve fast down-regulation of the target transcription
factors MAML1 and MEF2C. In particular, fast enough miRNA-ceRNA binding kinetics causes non-linear response
of the target level to upshifts in the miRNA biosynthesis rate as moderate as 20%, providing a highly efficient route
to amplifying the effect of the differentiation trigger. In order for both mechanisms to be active, though, kinetic
parameters need to be coordinated within specific ranges of values, which depend strongly on how sensitive pre-
miR-133b processing is to HuR levels. In other words, the space of interaction constants and transcription rates is
significantly constrained by crosstalk requirements.

The fact that crosstalk presupposes some degree of parameter tuning is not surprising per se, as strong ceRNA-
ceRNA effective interactions at stationarity are known to be mainly achieved through competition when the concen-
trations of the involved molecular species are nearly equimolar [19, 20]. Remarkably, though, we find that the sys-
tem’s dynamic behaviour in such ranges is completely compatible with that observed in time-resolved experiments.
This supports the conclusion that the two regulatory elements of the myogenesis clock, namely the HuR-controlled
miRNA-decoy system and the alternative locus for miRNA transcription, play different yet coordinated functional
roles.

2. Results

2.1. Definition of the model

Our model is closely based on the mechanism controlling skeletal muscle cell differentiation identified and dis-
cussed in [29, 31] (see Fig. 1A and B). We consider a precursor RNA species (labeled q) which can be processed
alternatively into a regulatory microRNA (labeled µ) or a lncRNA (labeled `). The relative weight of the two pro-
cessing pathways is controlled by another RNA species (labeled h), such that larger values of h increasingly favor
synthesis of ` over µ, thereby effectively repressing the latter. µ, however, can directly repress h. In addition, ` can
‘sponge’ (i.e., transiently sequester) µ and lift its repressive effect from h. Finally, µ negatively controls a target
mRNA (labeled m). Ultimately, `, m and h are ceRNAs, in that they compete to bind µ. Note that, following [31], we
allow µ to be synthesized independently of q from a separate genomic locus. We shall refer to the two distinct miRNA
biosynthetic pathways as the ‘HuR-controlled miRNA channel’ and the ‘alternative miRNA channel’, respectively
(see Fig. 1A). By comparing against the HuR-controlled miRNA-decoy system of Fig. 1A, one sees that q, µ, `, h and
m play the roles of pri-miR-133b, miR-133, linc-MD1, HuR and MAML1, respectively (we neglected the remaining
nodes for sakes of simplicity).
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Figure 1: Scheme of the miRNA-decoy circuit controlling skeletal muscle-cell differentiation (see text for details). (A) Circuitry identified in [31],
showing molecular species and their interactions. Red (resp. black) dashed lines represent standard (resp. mutually alternative) transcriptional
modes, while thick red lines indicate that the involved species compete to bind a miRNA. The thick purple line indicates that pri-miR-133 processing
is controlled by HuR. (B) Reduced model considered in this paper, with the corresponding nomenclature used in the mathematical model. Grey
arrows indicate effective interactions: the sponge and the controller are mutually reinforcing (an increase in the latter leads to increased synthesis of
the former, while increased miRNA sponging de-represses the controller), while both effectively repress the miRNA (increased levels of h reduce
the synthesis of µ while increased levels of ` enhance miRNA sponging).
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Processes and rates Parameters [units] In all Figs. In Fig. 2

Ex-novo synthesis
and degradation

∅
bm
−−⇀↽−−
dm

m bm [nM · s−1] 10−4 4 · 10−5

dm = d [s−1] 10−4 4 · 10−5

∅
bq
−⇀↽−
dq

q bq [nM · s−1] 10−4 6 · 10−5

dq = d [s−1] 10−4 4 · 10−5

∅
bh
−⇀↽−
dh

h bh [nM · s−1] variable 8 · 10−5

dh = d [s−1] 10−4 4 · 10−5

∅
bµ
−⇀↽−
dµ
µ

bµ [nM · s−1] variable 4 · 10−6

dµ = d [s−1] 10−4 4 · 10−5

Synthesis from the precursor q
(1−α)b
−→ µ α [adim.]

q
αb
−→ ` b [s−1] 10−4 8 · 10−5

Degradation of the sponge (`) `
d`
−→ ∅ d` = d [s−1] 10−4 4 · 10−5

miRNA-ceRNA complex
formation

µ + m
kµm
−−→ cm kµm [nM−1 · s−1] 10−3 4 · 10−4

µ + `
kµ`
−−→ c` kmax

µ` [nM−1 · s−1] 10−3 1.2 · 10−4

µ + h
kµh
−−→ ch kµh [nM−1 · s−1] 10−3 4 · 10−4

Stoichiometric complex decay
(without recycling of µ)

cm
σm
−→ ∅ σm = σ [s−1] 10−4 4 · 10−5

c`
σ`
−→ ∅ σ` = σ [s−1] 10−4 4 · 10−5

ch
σh
−→ ∅ σh = σ [s−1] 10−4 4 · 10−5

Catalytic complex decay
(with recycling of µ)

cm
κm
−→ µ κm = κ [s−1] 5 · 10−4 2 · 10−4

c`
κ`
−→ µ κ` = κ [s−1] 5 · 10−4 2 · 10−4

ch
κh
−→ µ κh = κ [s−1] 5 · 10−4 2 · 10−4

Hill indices n [adim.] 2 2
p [adim.] 2 2

Dissociation constants hα [nM] 1.0 0.5
hµ` [nM] 1.0 0.7

Perturbation fold-size ∆ [adim.] 5

Table 1: Processes included in the model and their associated parameters. The transcription rates bh (controller) and bµ (miRNA) are the key
control parameters used in this study. Note that α and kµ` are functions of [h], see Eq. (1), that vary respectively in [0, 1] and [0, kmax

µ`
]. The value of

kmax
µ`

is as indicated. Numerical values used to obtain Fig. 2 are shown separately, since a specific fold-size perturbation ∆, describing the increase
in µ biosynthesis due to the alternative channel (see (10)), was chosen in order to reproduce empirical time courses.
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Our model includes the processes and rates reported in Table 1 together with the values used in this study. Note
that, since the exact mechanism of target repression by the miRNA is still unclear, we included both a stoichiomet-
ric and a catalytic decay mode for miRNA-ceRNA complexes. Indeed, while miRNAs incorporated into the RISC
could return to the cytoplasm following target degradation, complexes may be stored in P-bodies, leading to their
stoichiometric degradation [33]. As said above, h regulates the values of the probability that q is processed into ` (de-
noted by α) and of the (µ, `) binding rate (denoted by kµ`). In [31], it is shown that the HuR protein downregulates the
biogenesis of µ by repressing pri-miRNA cleavage by the enzyme Drosha, fostering accumulation of `. We therefore
assume that α and kµ` are Hill functions of [h] (the level of h), with indices n and p respectively, i.e.

α =
[h]n

[h]n + hn
α

, kµ` = kmax
µ`

[h]p

[h]p + hp
µ`

, (1)

with hα and hµ` the corresponding dissociation constants. For simplicity, we furthermore neglect miRNA-ceRNA
complex dissociation rates, as partially justified by the observation that the ratio between the binding and unbinding
rates of complexes is typically large [20]. Finally, in order to limit parameter proliferation and focus on the action of
the HuR-controlled switch and of the alternative miRNA channel, we assume homogeneous degradation and complex
processing constants for RNA molecules. (The point where biological realism is most sacrificed by this choice lies
in the assumption that the intrinsic decay rates for miRNAs and ceRNAs are comparable whereas such rates are most
likely linked to RNA length. This is however only going to affect our results in a quantitative way.)

With these choices, the mass-action dynamics of the regulatory element shown in Fig. 1B is described by

d
dt

[m] = bm − (d + kµm[µ])[m] , (2)

d
dt

[µ] = bµ + (1 − α)b[q] + κ([c`] + [cm] + [ch]) − (dµ + kµm[m] + kµ`[`] + kµh[h])[µ] , (3)

d
dt

[`] = αb[q] − (d + kµ`[µ])[`] , (4)

d
dt

[h] = bh − (d + kµh[µ])[h] , (5)

d
dt

[q] = bq − (d + b)[q] , (6)

d
dt

[cm] = −(σ + κ)[cm] + kµm[µ][m] , (7)

d
dt

[c`] = −(σ + κ)[c`] + kµ`[µ][`] , (8)

d
dt

[ch] = −(σ + κ)[ch] + kµh[µ][h] . (9)

2.2. Comparison with experimental time courses and choice of parameters

Time courses for the levels of linc-MD1 (` in our model), miR-133 (µ) and HuR (h) for a mouse myoblast cell
culture capable of differentiation have been characterized in [31]. A Western blot showing the behaviour of MAML1
(m) during in vitro differentiation is instead displayed in [29]. These results indicate that 24 hours after the induction
of differentiation the levels of ` and µ are low, while the controller h is abundant. At this stage, µ is only synthesized
from the precursor q (i.e. from the genomic locus miR-133b). On the other hand, [m] is at its maximum. In this phase,
myoblasts differentiate and consistently express the target. 48 hours after induction, the level of h peaks while that of
the lncRNA ` appears to be increasing. This continues until about 72 hours after induction, during which time frame
[µ] also increases thanks to a rapid increase in miRNA synthesis from the independent genomic locus miR-133a [31].
In this scenario, ` can sponge miRNAs away from the target m. When myoblast differentiation is accomplished (at
about 72 hours after induction), though, m must be repressed. Because [h], and therefore [`], appear to be decreasing
between 72 and 96 hours, the sponge ` is no longer able to efficiently remove miRNAs from the target, which therefore
gets silenced. This brings the cell to the next stage of differentiation, namely the formation of myocytes, where the
expression of a different set of genes is paramount [8].
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Figure 2: Dynamical behaviour of the model, to be compared with the experimental time courses presented in [29, 31] and reported schematically
on the right. The controller (h) drives the synthesis of the sponge (`) at rates high enough to efficiently sequester miRNAs (µ) until the transcrip-
tion from the alternative locus markedly increases at t? ' 50 h. In turn, ` ensures that the target stays de-repressed long enough to bring the
differentiation process to maturation. When the level of µ becomes sufficiently high, m is rapidly silenced and the next stage of differentiation sets
in.

One sees that (i) µ is the agent that represses the target to complete the differentiation stage, (ii) ` plays a key
role in controlling the timing of differentiation when the miRNA population increases following the activation of the
alternative locus, while (iii) the controller (h) ensures that ` is synthesized at sufficiently high rates at the expense of
µ via the q-processing switch.

We have modeled the increase in miR-133 production from the independent genomic locus through a step-wise
perturbation on bµ of the form

bµ(t) = bµ
[
1 + ∆θ(t − t?)

]
, (10)

where ∆ measures the fold change in transcription rate after time t? and θ(x) is the Heavyside step function. Using
(10) together with the values of the kinetic parameters listed in Table 1, we obtain the scenario displayed in Figure
2, in which the concentrations of h, m, ` and µ are shown as functions of time. Prior to the perturbation, which takes
place at t? ' 50 h, the miRNA level is small while [h] and [`] rise together as the target level [m] decreases. When
the alternative channel for miRNA transcription sets in, µ levels shoot up, thereby repressing m, ` and h, in reasonable
qualitative (for concentrations) and quantitative (for time scales) agreement with observations [31]. (Note that results
have been obtained by fixing ∆ = 5.)

For the remaining analysis, the choice of kinetic parameters was based on loose ranges extrapolated from [34–37],
namely

d '
1
τ

, σ '
1
τ

, b j '
γ

τ
, (11)

kµi ∈

[
1

100γτ
,

100
γτ

]
, κ ∈

[
1

10τ
,

10
τ

]
, (12)

where j ∈ {h,m, µ, q}, i ∈ {h, `,m}, τ ' 104 s is a typical mRNA half life in human cells and γ ' 1 nM a reference
RNA concentration. The values of the kinetic parameters used in the numerical study of the steady state are shown in
Table 1.

2.3. ceRNA crosstalk at steady state

We shall now quantitatively assess the ability of the miRNA-decoy system to control the expression of the target by
analyzing both steady state and dynamical responses to perturbations. We focus specifically on the miRNA-mediated
ceRNA mechanism, whose regulatory effectiveness has been quantified in [15]. Molecular levels at steady state are
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easily seen to satisfy the conditions

[µ] =
bµ + (1 − α)b[q] + κ([c`] + [cm] + [ch])

dµ + kµm[m] + kµ`[`] + kµh[h]
, (13)

[m] =
bm

d + kµm[µ]
, [`] =

αb[q]
d + kµ`[µ]

, [h] =
bh

d + kµh[µ]
, [q] =

bq

d + b
, (14)

[cm] =
kµm[µ][m]
σ + κ

, [c`] =
kµ`[µ][`]
σ + κ

, [ch] =
kµh[µ][h]
σ + κ

. (15)

Solutions (see Fig. 3A) show that a change in the transcription rate of HuR (h, the controller) with all other parameters
fixed and no miRNA transcription from the alternative site affects the steady state concentrations of all other ceRNAs.
For small enough bh, the repressive effect of µ on the other RNAs is dominant, so the target (m) attains a low expression
level. As bh increases, [h] and, in turn, α and kµ` increase according to (1), enhancing the synthesis of the lncRNA
` (the sponge), which gradually de-represses the target by sequestering miRNAs. As a consequence, the target level
increases. For large enough bh, m and ` attain finite values while h increases linearly (as expected) and the level of
free miRNAs gets more and more suppressed.

Overall, Fig. 3A describes how competition for µ controls the expression levels of the competitors (m, ` and h)
through modulation of the rate of synthesis of the controller and via the action of the q-processing switch alone (as
bµ is taken to be zero). Note that the regulatory element appears to be more sensitive to changes in bh in a relatively
narrow range of values. In this range, molecular populations achieve near equimolarity, a condition under which the
magnitude of miRNA-mediated crosstalk is maximal [19, 20].

Figures 3B–D display the dependence of [m], [µ] and α on bh and on the rate bµ of exogenous miRNA transcription,
i.e. from the independent genomic locus miR-133a. As bµ increases, the window of values of bh where the ceRNA
effect is stronger shifts towards higher values. Expectedly, though, the magnitude of target de-repression decreases
significantly as more miRNAs become available (Fig. 3B), implying that effective ceRNA crosstalk requires a fine
tuning of transcription levels from the alternative miRNA locus. Likewise, small values of bh lock the precursor
processing pathway into synthesizing µ preferentially over the sponge ` (i.e. α ' 0), see Fig. 3D. Note that the
transition between the two states of the HuR-controlled switch is sharper when the transcriptional activity from the
independent miRNA channel is low and becomes more graded for high values of bµ. This suggests that, in order
to avoid step-wise transitions (which would impose a high extra metabolic burden on cells and could be affected by
different types of noise, including cell-to-cell variability in transcription rates) as well as slow cross-overs (which
would require large changes in transcriptional activity to robustly switch from one state to the other), both bµ and bh

should lie in an intermediate range of values.

2.4. Optimal control is achieved in specific ranges of kinetic parameters

In order to quantify the magnitude of ceRNA crosstalk and to understand how crosstalk requirements constrain
kinetic parameters, we follow [19, 22] and focus on the ‘susceptibilities’

χmh =
∂[m]
∂[h]

(16)

χmbµ =
∂[m]
∂bµ

, (17)

which represent, respectively, the response of the target m to a (sufficiently small) variation in the level of the controller
h or the rate of miRNA transcription from the alternative channel. Such quantities, similar to those employed for the
study of magnetic spin systems in statistical physics, are especially useful for the analysis of ceRNA networks as
they allow to focus specifically on the effects induced by competition to bind miRNAs. In principle, the existence
of ceRNA crosstalk could also be signaled by a positive (Pearson) correlation between ceRNA levels. However,
positive correlations can simply result from random fluctuations of miRNA levels: as both targets respond to changes
in miRNA availability, their fluctuations are expected to be correlated when miRNA levels fluctuate stochastically.
This however does not necessarily imply that the level of a ceRNA will change when the level of its competitor is
altered. Quantities like (16), on the other hand, can be non-zero even for a deterministic system and therefore capture
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precisely the competition-induced aspect highlighted by the experimental literature. (See [38] for a detailed study of
the relationship between susceptibilities and correlations in ceRNA networks.)

In order to calculate χmbµ , we notice that (13) can be re-written as

[µ] =
bµ + (1 − α)b[q]

dµ + w(kµm[m] + kµ`[`] + kµh[h])
, (18)

where
w =

σ

σ + κ
(19)

is the stoichiometricity ratio quantifying the relative weight of the stoichiometric pathway of miRNA-ceRNA complex
degradation. In turn, [m], [`] and [h] take the form

[m] =
bm

d + kµm [µ]
, [`] =

αb[q]
d + kµ` [µ]

, [h] =
bh

d + kµh [µ]
. (20)

From (18) and (20) one derives a system of three equations for the susceptibilities χmbµ , χ`bµ , χhbµ , namely

χmbµ =
[µ][m]2kµm

bm
G(χ) , (21)

χ`bµ =
[µ][`]2kµ`
αb[q]

G(χ) +
[`]
α

(
dα

d[h]
−

[`][µ]
b[q]

dkµ`
d[h]

)
χhbµ , (22)

χhbµ =
[µ][h]2kµh

bh
G(χ) , (23)

with χ = {χmbµ , χ`bµ , χhbµ } and

G(χ) =
w[µ]

[
kµmχmbµ + kµ`χ`bµ +

(
kµh +

b[q]
[µ]w

dα
d[h] + [`] dkµ`

d[h]

)
χhbµ

]
− 1

bµ + (1 − α)b[q]
, (24)

where

dα
d[h]

=
nhn

α[h]n−1

([h]n + hn
α)2 , (25)

dkµ`
d[h]

= kmax
µ`

php
µ`

[h]p−1

([h]p + hp
µ`

)2
. (26)

Upon solving the above system one obtains explicit expressions for the susceptibility vector χ. Specifically, for χmbµ ,
Eq. (17), one gets

χmbµ =
kµmbh[µ][m]2

w[µ]2A− bmbh

[
bµ + (1 − α)b[q]

] , (27)

A = k2
µ`[`]

2 bmbh

αb[q]
+ k2

µm[m]2bh + kµh[h]2bm

[
kµh +

(
kµ`[`]
α

+
b[q]
[µ]w

)
dα

d[h]
+

(
1 −

[`][µ]kµ`
αb[q]

)
[`]

dkµ`
d[h]

]
.

By similar steps, one can compute susceptibilities such as χmh, Eq. (16), for which we find in particular

χmh =
[m]2kµm[µ]αb[q]

αb[q]bm[bµ + (1 − α)b[q]] − w[µ]2(kµm
2[m]2αb[q] + kµ`2[`]2bm)

×

×

{
b[q]

dα
d[h]

+ w[µ]
[
kµh +

dkµ`
d[h]

` +
kµ`[`]
α

(
dα

d[h]
−

[`][µ]
b[q]

dkµ`
d[h]

)]}
. (28)
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Figure 4: (A–B) Heat maps of χmh and χmbµ as functions of bh and bµ. The grey lines represent, respectively, the curve of maximum χmh and
minimum χmbµ , where control is optimized at fixed bh. In both cases, optimal target control at stationarity is achieved for bh ' 2 · 10−4 nM · s−1

and very small bµ. (C) Indeed, for bh = 10−5 nM · s−1 and bh = 1.5 · 10−4 nM · s−1 (red and blue curves), χmh is maximum for bµ = 0 and it is
monotone decreasing with bµ. This behaviour however changes drastically for slightly larger bh, when χmh peaks at a non-zero value of bµ. (D)
Likewise, optimal χmbµ is always achieved for bh , 0, although its absolute value gets smaller as bµ increases.
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The heat maps displayed in Fig. 4A and B represent χmh and χmbµ as functions of bh and bµ, with grey lines
showing the curve of maximum χmh and minimum χmbµ , respectively. (Note that while χmh is positive or zero since
h represses µ that in turn represses m, χmbµ is negative or zero, since a positive shift of bµ causes the level of m
to decrease.) The key observation is that the miRNA-decoy system appears to achieve optimal target control in a
restricted range of kinetic parameters.

Figure 4C and D detail these effects with a higher resolution. From the former one sees that for bh = 10−5 nM · s−1

(red curve) χmh is maximum for bµ = 0 and it is monotone. In other terms, for a sufficiently small bh, i.e. when the
expression level of the controller is low enough, the target level appears to be maximally sensitive to the controller
level when the alternative miRNA channel is inactive. As the controller’s level increases, instead, optimal control
requires a non-zero transcriptional activity from the alternative miRNA locus. A similar scenario is obtained by
analyzing the sensitivity of the target to bµ upon changing bh. Overall, optimal control is achieved in a restricted range
of parameters characterized by bh ' 2.5 · 10−4 nM · s−1 and small bµ & 10−5 nM · s−1.

To sum up, we see that effective target control via h can be achieved at steady state in absence of the alternative
miRNA channel. However, if both the HuR-controlled channel and the alternative miRNA channel are active, then
optimal regulation requires that their rates are coordinated (the faster the former, the faster the latter). On the other
hand, effective target control by the alternative miRNA channel requires a controller. This provides quantitative
support to the idea that the controller (h) ensures fine tuning at stationarity, when the alternative miRNA channel
is off, while the latter appears to serve the mainly dynamical purpose of guaranteeing fast target downshifts, in full
agreement with results obtained in [22], where a dynamical analysis of the ceRNA effect has shown that the optimal
strategy to achieve fast target downregulation consists in rapidly upregulating miRNA levels.

2.5. The HuR-controlled channel dominates miRNA biosynthesis when ceRNA crosstalk is optimal

In order to further clarify how the interplay between the two modes of miRNA biosynthesis impacts ceRNA
crosstalk, we analyze here how the adimensional quantity

β ≡
bµ

(1 − α)b[q]
=

bµ([h]n + hn
α)

b[q]hn
α

, (29)

representing the ratio between the miRNA transcription rates from the independent genomic locus (bµ, corresponding
to miR-133a) and from the precursor (corresponding to miR-133b), changes upon changing bµ and the transcription
rate of the controller, bh. Figure 5 displays results, with the grey and green curves outlining, respectively, the β = 1
and β = 2 contours as a reference. We see that the HuR-controlled channel is consistently dominant for small enough
bµ and bh (where ceRNA control is most efficient), while the alternative channel becomes increasingly more relevant
as transcription rates increase. This again suggests that activation of transcription from the independent locus mainly
plays a role in determining fast target downregulation. Notice that a two-fold increase of transcription rates with
respect to optimal values for ceRNA crosstalk would be required in order to substantially alter this scenario.

2.6. The Hill index characterizing precursor processing sharpens the region of maximum ceRNA crosstalk

In Eq. (1), we have assumed that the parameters α and kµ` are Hill functions of the HuR level [h], and the
corresponding Hill indices n and p have been so far kept fixed (see Table 1). Interestingly, though, they appear to
have different effects on the emerging crosstalk scenario (see Fig. 6). An increase of the Hill index p controlling the
sharpness of kµ`’s response to [h] does not significantly influence the behaviour of the susceptibility χmh. On the other
hand, by increasing n (which modulates α’s response to [h]), the region of maximal susceptibility gets much sharper
while preserving its overall qualitative behaviour. Notice that a larger n would allow to stretch optimal control to much
higher values of bµ, albeit at increased metabolic costs associated to the fine-tuning of bµ and bh and without significant
gains in terms of χmh. Whether an increased sensitivity of the miRNA-decoy switch is advantageous therefore appears
to depend crucially on the transcriptional activity of the alternative miRNA channel, with lower (resp. higher) levels
requiring lower (resp. higher) sensitivity for α.
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Figure 5: Heat maps showing the value of β, Eq. (29), as a function of bh and bµ for different values of b (increasing, as displayed, from (A) to
(D)). The grey (resp. green) curve gives the β = 1 (resp. β = 2) contour.
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Figure 6: Behaviour of the susceptibility χmh versus bh and bµ upon varying the Hill indices n (controlling the steepness of the dependence of α
on the controller level [h]) and p (controlling the steepness of the dependence of kµ` on [h]). Top left panel: n = p = 2. Top right: n = 2, p = 5.
Bottom left: n = 5, p = 2. Bottom right: n = p = 5. χmh is only weakly affected by changes in p, while it is very sensitive to n. In particular, the
optimal range of values of bh (for fixed bµ) generically shrinks, while a more tight control can be obtained for larger values of bµ.
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Figure 7: Integrated Response IR (absolute value) as a function of the fold-increase ∆ of the transcriptional activity from the alternative locus
for miRNA expression, for several values of the miRNA-ceRNA binding rates. Generically, stronger coupling constants lead to non-linear target
response already for ∆ ' 20%, while the response is linear for smaller binding rates. Results obtained for bh = 5 · 10−4 and bµ = 5 · 10−5.

2.7. Fast binding kinetics leads to non-linear response

The effectiveness of the mechanism allowing to exit the myoblast stage of differentiation can be analyzed by
studying the change in the steady-state value of m as a function of the perturbation size ∆ (see Eq. (10)), quantified
by the Integrated Response [22]

IR(∆) =

∫ ∞

0

[
[m](t + t?) − [m](t?)

]
dt , (30)

where t? stands for the time at which the perturbation is switched on. IR clearly depends on ∆, as well as on the
duration of the perturbation, and it is sensitive to the subsequent relaxational dynamics. In the context of miRNA-
ceRNA networks, it has the extra advantage that it is directly linked to the total amount of protein synthesized from m
in response to the perturbation, which represents the key output variable in transcriptional regulatory systems. Note
that, upon activating the alternative miRNA transcriptional channel with rate bµ, [m] decreases monotonically, so that
IR is always negative. Numerical results obtained for different values of the perturbation size ∆ and for several values
of the binding rates kµm, kmax

µ` and kµh are shown in Fig. 7. For small values of the binding rates (see e.g. orange and
green curves) IR is roughly linear in ∆. As the binding rates increase, though, a regime characterized by non-linear
response sets in, as seen for instance from the red and purple curves. Notice that a 20% increase of the miRNA
transcription rate from the alternative locus can suffice to deviate from a linear behaviour.

Therefore, a sufficiently fast miRNA-ceRNA binding kinetics may lead to a strong variation of the target level
even for a modest change in the perturbation size, suggesting an energetically cheap mechanism for the regulation of
the expression of a gene involved in a differentiation process, as m, that has to be turned on at a definite time in the
differentiation program.

3. Discussion

We have defined and studied a minimal, deterministic mathematical model of the regulatory circuit that has been
recently found to control the timing and expression levels in the early phase of myogenesis [31]. We aimed at un-
derstanding the roles played by the various mechanisms that appear to coordinate the expression of a target mRNA,
including a HuR-controlled channel for the mutually exclusive biosynthesis of the target repressor miR-133 and of
its sponge linc-MD1, and an externally-controlled alternative channel for the synthesis of miR-133 from independent
genomic loci. In summary, our results indicate that HuR, by controlling the linc-MD1/miR-133 switch, provides es-
sential fine tuning of target levels, while the rapid increase of miRNA transcription from the alternative locus contrib-
utes to the fast downregulation of target levels when myoblast differentiation is accomplished. The former mechanism
exploits the ceRNA effect and competition to bind miRNAs to indirectly regulate target levels. This strategy has been
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shown to deliver optimal results at stationarity [15, 19]. miRNA upregulation has instead been found to be the optimal
mechanism to rapidly decrease the level of a target [22].

Note that the selection of a miRNA-decoy system over a simpler miRNA-sponge pair, in which the sponge’s bio-
synthesis is unrelated to that of the miRNA, guarantees an optimal level of complementarity (hence a strong coupling)
between the miRNA and its lncRNA interaction partner. As we have seen, this condition is crucial for the emergence
of non-linear response to a rapid increase of transcriptional activity from the alternative locus. Therefore the presence
of a miRNA-decoy system in this context ultimately provides a major advantage both in terms of performance and in
terms of metabolic costs.

Revealingly, while static control could be achieved in absence of the alternative channel for miRNA transcription,
HuR-based regulation alone would not be as efficient in downregulating the target, as that would require rapid degrad-
ation of the controller (i.e. of HuR) to shift miRNA levels up. Both control routes are therefore essential. In addition,
the activation of the alternative transcriptional loci can lead to non-linear (negative) response in target levels already
for a modest (ca. 20 %) increase of miRNA biosynthetic rates, providing further support to the idea that miRNAs are
optimal dynamical down-regulators.

Our analysis of the complex circuitry controlling skeletal muscle-cell differentiation has been highly simplified
on several fronts. In first place, we have focused on a deterministic model, ignoring intrinsic noise sources altogether.
The central reason for this lies in the fact that the ceRNA effect as quantified by susceptibilities like (16) occurs even
in absence of fluctuations. Most importantly, in such conditions competition is the only possible source of ceRNA
crosstalk (if direct transcriptional dependencies are excluded, as in the present case), as correlations due to the fact
that both ceRNAs may respond to stochastic fluctuations in miRNA levels (which do not necessarily signal a positive
effective coupling between ceRNAs) are forced to be absent from the picture. In this sense, deterministic models like
the one discussed here are ideal to evaluate the role of competition in miRNA-based regulatory elements. Extending
the present analysis to include intrinsic (molecular) noise will however allow to quantify the effectiveness of control
more precisely by employing different measures, including correlation coefficients [20] and information-theoretical
capacities [15].

Likewise, it would be important to perform an exploration of parameter space (especially for miRNA-ceRNA in-
teraction constants and complex processing rates) so as to shed light on how robust our conclusions are against kinetic
changes. miRNA-based regulatory elements have indeed been shown to be able to exploit kinetic heterogeneities in
order to further optimize the efficiency of control with respect to kinetically homogeneous systems [15]. While we
have focused on the more conservative scenario here, further work in this direction would highlight which functional
aspect would most benefit from an accurate tuning of parameters and how the circuit’s overall functionality (which
encodes for a key developmental program) can be affected by specific perturbations.

Finally, our model has focused for simplicity on a reduced version of the experimentally characterized system,
namely one in which a miRNA (miR-135) and a ceRNA (MEF2C) have been suppressed. By influencing the level
of linc-MD1, miR-135 however indirectly affects the feedforward loop controlled by HuR. In a full-fledged model
accounting for all molecular species shown in Fig. 1A, then, one should observe a modulation of the levels of linc-
MD1 due to its increased sponging activity. As MEF2C is effectively controlled only by miR-135 and, indirectly,
by linc-MD1, a down-regulation of the latter will suffice to repress both MEF2C and MAML1, which indeed have
similar time courses [31]. Therefore, it is reasonable to expect that the overall scenario will be qualitatively identical
to that discussed here, albeit with a quantitative shift of the relevant parameter ranges. In specific, changes in α (the
probability with which the HuR-controlled switch leads to linc-MD1) and/or b (the intrinsic synthesis rate of linc-
MD1) might suffice account effectively for the suppressed molecular species. A more detailed study (involving more
parameters) will provide the complete picture.
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