
Optimal Control of Industrial Assembly Lines*

Francesco Liberati, Andrea Tortorelli, Cesar Mazquiaran, Muhammad Imran and Martina Panfili

Abstract—This paper discusses the problem of assembly line
control and introduces an optimal control formulation that can
be used to improve the performance of the assembly line, in
terms of cycle time minimization, resources’ utilization, etc. A
deterministic formulation of the problem is introduced, based
on mixed-integer linear programming. A simple numerical
simulation provides a first proof of the proposed concept.

Index Terms—assembly line control, industry 4.0, manufac-
turing, model predictive control.

I. INTRODUCTION

A. Motivation and Objectives

The industrial sector, worldwide, is undergoing a revo-
lution labelled Industry 4.0, whose pillars are digitalisation
and automation. The underlying technological developments
include: (i) deployment and management of pervasive (wire-
less) sensor networks, (ii) creation of virtualized environ-
ments for simulation, (iii) development of augmented reality
applications, (iv) use of big data, (v) full integration of
factories with the Information and Communication Tech-
nologies (ICT) continuum [1]. These elements are expected
to significantly increase productivity, flexibility, reliability,
quality of the manufactured products and revenues [2], [3].

The mentioned technological developments can be im-
plemented in all the industrial life cycle phases (i.e. pro-
curement, production, distribution, sales). In this paper, the
focus will be on the production phase and, in particular, on
assembly lines. The objective is to present an approach for
increasing flexibility of industrial assembly lines, through an
optimization framework able to, e.g., minimize the cycle time
and perform the re-scheduling of line activities, in presence of
unexpected events captured by the sensor networks, and pos-
sibly elaborated by means of big data analytics techniques.
These aspects will be further detailed in the next sections.

B. Literature Review

The optimization of industrial assembly lines is a well
known problem in the literature and many formulations have
been proposed. The literature will be reviewed with a focus
on the Assembly Line Balancing Problem (ALBP).

An assembly line consists of a set of workstations, each
performing different operations (tasks) on items moving on
the line according to a maximum or average time, called the

*This work has been carried out in the framework of the SESAME
project, which has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 821875.
The content of this paper reflects only the author’s view; the EU Com-
mission/Agency is not responsible for any use that may be made of the
information it contains.

1 The authors are with the DIAG department of Sapienza University of
Rome, Via Ariosto 25, 00185, Rome, Italy. Corresponding author: Francesco
LIBERATI. Authors’ email: [surname]@diag.uniroma1.it.

cycle time. The ALBP consists in the optimal assignment
of tasks to workstations, while always satisfying given con-
straints and requirements. Several formulations of the ALBP
have been proposed.

In [4] two main families of ALBP problems have been
identified: Single ALBP (SALBP) and Generalized ALBP
(GALBP). The SALBP is characterized by the production
of a unique element, a fixed common cycle time, a serial
one-sided line, precedence constraints and deterministic times
among other constraints [5]. The GALBP formulation relaxes
some of the SALBP assumptions for addressing more realis-
tic scenarios. In particular, GALBPs allow to consider multi-
model process, zoning constraints, delays, parallel stations
and more complex layouts among others. In this latter class
of problems there are the U-shape lines (UALBP) and the
Mixed-Model lines (MMALBP).

A further classification can be performed based on the
optimization criteria considered, which characterize the so-
called problem-type. A Type-1 problem consists in opti-
mizing the number of workstations for a given task and a
given cycle time. A Type-2 problem, instead, consists in
the minimization of the cycle time for a given number of
workstations. In Type-E problems, the objective function is
the efficiency of the assembly line. In Type-F problems the
objective is to find a feasible balance between the number of
workstations and cycle time which are both fixed [6], [7]. The
above standard problem types can be further particularized
to specific applications by customizing the mathematical
formulation of the optimization problem.

In [8], for example, it is presented an MMALBP Type-2
problem characterized by three different product models in
which the resources used in the assembly line and the product
rate variation are minimized. In [9], the authors solve a
MMALBP addressing simultaneously the line balancing and
sequencing problems, comparing the performances of two
algorithms: the multi-objective particle swarm optimization
(MOPSO) and the non-dominated sorting genetic algorithm
(NSGA-II); results show that the latter has better perfor-
mances. In [7], the authors address a SALBP-1 problem with
resources constraints. Three different objective functions are
taken into account: minimization of workstations, machines
used and the number of multi-skilled workers. In [10], the
authors show that the quality of SALBP solutions decreases
when products or resources increase. This is achieved by
considering the production of multiple products in a single
line, and the use of special machinery needed to perform
some tasks. In [11], the authors propose a mixed integer
linear programming (MILP) problem to plan the allocation of
jobs and workers at workstations, to minimize costs of setup,

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. DOI: 10.1109/CoDIT49905.2020.9263946. Link to paper: https://ieeexplore.ieee.org/abstract/document/9263946



personnel and early or late delivery. Capacity requirements
are estimated via linear regression on historical data, which
makes the model more robust. In [12], the authors propose
an integrated approach to optimal design of reconfigurable
assembly systems, taking into account future scenarios of
demand, and the consequent need of reconfiguring the as-
sembly system. The paper proposes an “assembly system
configuration tool”, “an assembly cell configuration tool”,
based on a set of logic constraints capturing the cells’
dynamics, a “production planning tool” (based on MILP) and
a “reconfiguration planning tool” (again based on MILP).
The overall objective is to minimize costs. In [13] the
authors define a two level problem, for first planning the
production lots’ size (by matching capacity with demand),
at a lower level, scheduling the execution of the planned
tasks. The two formulations are based on MILP, the overall
objective is to minimize operator costs and penalties on
early and late delivery. Finally, [14] provides an integer
programming (IP) model and a heuristic for optimizing the
planning of a multi-line assembly system for Printed Circuit
Board manufacturing. The optimization goal is to minimize
the total tasks tarty times (i.e., the accumulated delays) and
balance lines. The heuristic is shown to scale well also in
real scenarios.

C. Paper Contributions
Building on the literature, in this paper we address the

problem of optimally planning and controlling the execution
of tasks in an assembly line. Compared to the literature,
the present model is more detailed and flexible, in the
sense that it captures all the main relations and constraints
characterising resources (workers, tools, components, trans-
portation vehicles, etc.) and tasks. Such constraints are often
dynamical in nature, and need to be captured to have a
fine grained and applicable task controller. For example,
most of the time in literature the transportation of resources
across the assembly line is not modelled in detail as well
as the qualification/authorization requirements of workers to
be assigned to tasks, etc. This aspect is especially relevant
in complex operational environments, where given tasks can
only be executed by given workers. All these aspects are
crucial for an optimal planning and control of operations.
The model proposed in this work allows to address all of
these aspects allowing to provide human operators with a
valuable tool in support to decision making processes.

D. Outline
The remainder of this paper is organized as follows.

Section II presents the addressed problem and the reference
scenario. Section III presents an outline of the mathematical
formulation of the task planning and control problem. Section
IV presents a simple and illustrative numerical simulation.
Section V concludes the work.

II. PROBLEM DESCRIPTION AND REFERENCE SCENARIO

We consider the problem of optimally scheduling and then
controlling in real time the execution of a given set of tasks in

Fig. 1. Two usage scenarios: a) full plan optimization; b) real time planning
control/re-optimization.

a given assembly line. The tasks’ characteristic (such as du-
ration, needed input resources and resulting output resources)
are known inputs of the problem. Also, the layout and the
characteristics of the assembly line are known, for example
in terms of available workstations, technical specifications of
the workstations, tools and personnel available, etc.

The first scenario in which the proposed algorithm could
be applied regards the static optimization of a given assembly
process, composed of a high number of assembly tasks. It is
not uncommon in fact that, in practice, the assembly schedule
followed by the operators is a sub-optimal one, especially in
the most complex cases when the single human operator or a
team of scheduling operators cannot tame the combinatorial
complexity of the scheduling problem. This first scenario is
thus an optimal planning of the scheduling activities.

A second scenario is the real time control of the planned
schedule, to make sure that the progress is in line with the
schedule, and to provide real-time re-planning functionality
in case of anomalies. In this second scenario thus, the
algorithm can be used to provide real time decision support
to the operator responsible for the scheduling activities.

The two scenarios are depicted in Fig. 1. The first scenario
(Fig. 1.a) aims at optimizing the whole task planning. Op-
timization is done once (i.e., static optimization). In case of
very complex schedules, the problem could require powerful
hardware or could be even intractable (for the high number
of variables in the model). In the second scenario (Fig. 1.b),
once an overall planning of the tasks execution is given
(either optimal or not), the proposed algorithm runs in real
time to enforce the scheduling, and to correct it in case that
anomalies happen, which requires the real-time computation
of alternative solutions. In complex scenarios, the real time
optimization would be performed on a reduced time window,
and not on the overall time span of the whole planned
schedule (which again could be computationally intractable).

In this paper, we outline the mathematical model underly-
ing both formulations. The simulations will refer to a simple
illustrative case, in which the point of view of the first usage
scenario can be directly adopted.



III. PROBLEM FORMULATION

In this section we first model the objects present in the
problem (tasks, workstations, transportation vehicles, etc.),
and then outline the mathematical formulation of the pro-
posed optimal task control problem. For reason of space,
we limit in the following to a high level presentation of the
mathematical framework, and we omit to detail some of the
constraints (which would require heavy mathematical nota-
tion to be precisely defined). The full, detailed formulation
will be subject of a future publication.

A. Model of Tasks, Resources and Workstations

1) Tasks: T is the set of all tasks to be planned/controlled.
Tasks are characterised by a duration dt, an earliest allowed
starting time, St, and a latest allowed finish time, Ft.

2) Resources: R is the set of all the resources (tools,
materials, people, etc.) available in the assembly line. Let
Rt denote the set of resources types (two or more resources
can be of the same type). Example of resource types are: C
consumables, i.e., resources which are consumed by the tasks
(e.g., water, power, chemicals, parts to be assembled, etc.),
I, instruments/tools/operators needed to execute a task (freed
after the task ends), V , the set of transportation vehicles, etc.
Tasks consume and produce resources. We denote with Ri

t

the input resources required by task t, and with Ro
t the output

resources/products produced by the task t.
3) Workstations: W is the set of workstations, i.e., the

specific machines and/or sectors of the assembly line where
the tasks are worked. Wt denotes the set of workstations
that can work task t ∈ T . We model the workstation as
a system which is composed by a processing unit, which
has an internal capacity (which limits the maximum amount
of tasks that can be worked in parallel), and a buffer for
storing the input and the output resources. A particular type
of workstation are the source and storage points of material
where the resources are stored.

4) Factory Layout: We model the overall factory as a
graph G = {W, E}, where the set of the graph’s nodes W
is the set of workstations and E is the set of transportation
paths connecting the workstations. By convention, we let
(w1, w2) ∈ E , only if w1 < w2.

B. Definition of the State Variables

The state of the assembly line at a given time k is given
by the collection of the following variables.

1) Workstation state variables.
a) ow,k the occupancy level (i.e., number and type

of tasks in execution) of workstation w at time k.
The occupancy level dictates the number of tasks
that can be accepted at each given time by the
workstation;

b) Rw,k,r, the level of the input/output buffer of
resources at workstation w at time k, for resource
type r. This dictates the number/type of tasks that

can be started at the workstations (since tasks
need input resources to execute).

2) Resources state variables.
a) Resources Location. Variable lr,k,(w1,w2) denotes

the location of resources in the factory (i.e.,
over the graph G). It is lr,k,(w,w) ∈ {0, 1} (i.e.,
Boolean variable), ∀w ∈ W , with lr,k,(w,w) = 1
if and only if the resource is at the workstation w.
It is instead lr,k,(w1,w2) ∈ [0, 1] (i.e., continuous
variable) ∀(w1, w2) ∈ E , with lr,k,(w1,w2) = l >
0 meaning that the resource is on path (w1, w2),
with l the percentage of the path travelled.

3) Task state variables. {it,k, et,w,k, ft,k}, where
it,k, et,w,k, ft,k = 1 if and only if, respectively, task t
is idle, executing (at w) or finished at time k.

C. Definition of the Decision Variables

The control variables are:
1) at,w,k (“assign”), a Boolean variable equal to one if

and only if task t is assigned to workstation w at time
k. A second task control variable is st,k, which is equal
to one if and only if task t is started at time k. It is:

st,k =
∑

w∈Wt

at,w,k, ∀t, k. (1)

2) pr,v,k (“place”), a Boolean variable equal to one if and
only if resource r ∈ R (e.g., a driver, a tool, a semi-
finished component) is placed on vehicle v at time k.

3) −→g v,k,w1,w2
(“goto”), a Boolean variable equal to one

if and only if vehicle v moves from w1 to w2 at k;
4) ←−g v,k,w1,w2 (“goto”), a Boolean variable equal to one

if and only if vehicle v moves from w2 to w1 at k.

D. Definition of the State Dynamics

We specify in the following the laws according to which
the state of the system evolves in time.

1) Workstations’ occupancy level. The following equation
captures the dynamics of the occupancy level at a
workstation at a given time:

ow,k =
∑
t∈T

ctet,w,k, ∀w, k. (2)

The occupancy level can capture different aspects de-
pending on the task and the workstation types. For ex-
ample, it can be simply the number of tasks executing
at the workstation (in which case, it is ct = 1), or the
volume occupied, or the weight (in which case ct is a
volume or weight, etc.).

2) Dynamics of the workstation input/output inventories.
The level of resources at a workstation is equal to the
level of resources currently located at the workstation,
minus the resources consumed by starting tasks, plus
the resources generated/freed by the finishing tasks;

3) Dynamics of the vehicles’ locations: Transportation
vehicles move on the graph of the workstations, to



transport input/output resources across the worksta-
tions, to feed the tasks. The general equation of their
dynamics is, for all v, k, (w1, w2) ∈ E

(−→g v,k,w1,w2 +
←−g v,k,w1,w2)(lv,k+1,(w1,w2)+

− lv,k,(w1,w2)) = Tvv(
−→g v,k,w1,w2 −←−g v,k,w1,w2),

(3)

where T is the sampling time, vv the velocity of
the vehicle. The equation is effective only on the
links (w1, w2) for which −→g v,k,w1,w2 +←−g v,k,w1,w2 =
1, where it is lv,k+1,(w1,w2) = lv,k,(w1,w2) +
Tvv(

−→g v,k,w1,w2
− ←−g v,k,w1,w2

). This is a non-linear
(quadratic) equation, which can be exactly linearized
(as shown in [15]) to have faster solving times.

4) Dynamics of the task state. Task dynamcis is specified
by a set of equations which dictates the transition from
one state to the other, based on the decision variables.
For example, the state transits to “execution” when
st,k = 1, i.e., when at,w,k = 1 for some w:

at,w,k ≤ et,w,k, ∀t, w, k. (4)

Then, let dt,k denote the number of time steps left to
complete task t at time k. If a task is in the execution
state, i.e., et,w,k = 1 for some w, then it shall remain
in the execution state as long as dt,k > 0. If dt,k = 0,
then the task shall no longer be in the execution state,
i.e.,

et,w,k ≤ dt,k, ∀t, w, k. (5)

and will go to the “finished” state. Finally, it is not
possible to go back from the finished state:

ft,k ≤ ft,k+1, ∀t, k. (6)

E. Other Problem Constraints

The remaining problem constraints are as follows:
1) Unique task starting time. Only one starting time can

be chosen for every task, between the earliest allowed
starting time and the latest feasible one

Ft−dt∑
k=St

st,k = 1, ∀t. (7)

2) Unique workstation of execution. A task can be in
execution at most at one workstation∑

w∈W
et,w,k ≤ 1, ∀t, k. (8)

3) Unique task assignment to workstation. A task can be
assigned to one and only one workstation, only once.

Ft−dt∑
k=St

∑
w∈W

at,w,k = 1, ∀t. (9)

4) Task time dependencies constraints. Tasks can be in
one of the following temporal dependence relations:

a) Finish to Start: every task t′, predecessor of task
t, must finish before t can start:

dt′ +

Ft′−dt′∑
k=St′

kst′,k ≤
Ft−dt∑
k=St

kst,k. (10)

Note that the left hand side represents the finish
time of task t′, while the right hand side is the
start time of task t;

b) Start to Start: every task t′, predecessor of task
t, must start before t can start:

Ft′−dt′∑
k=St′

kst′,k ≤
Ft−dt∑
k=St

kst,k; (11)

c) Finish to Finish: every task t′, predecessor of task
t, must finish before t can finish:

dt′ +

Ft′−dt′∑
k=St′

kst′,k ≤ dt +
Ft−dt∑
k=St

kst,k; (12)

d) Start to Finish: every task t′, predecessor of task
t, must start before t can finish:

Ft′−dt′∑
k=St′

kst′,k ≤ dt +
Ft−dt∑
k=St

kst,k. (13)

5) Task state constraints. A task can be in one and only
one state at every given time.

it,k +
∑

w∈Wt

et,w,k + ft,k = 1, ∀t, k. (14)

6) Workstations occupancy constraints.

omin
w ≤ ow,k ≤ omax

w , ∀w, k. (15)

7) Workstation resource inventory constraints.

Rmin
w,r ≤ Rw,k,r ≤ Rmax

w,r , ∀w, k, r ∈ Rt. (16)

The above constraints also make sure that a task is
assigned to a workstation only if there are always
enough input resources and enough “space” to store
the output resources.

8) Vehicles localization constraints. A complex set of
constraints is included to enforce the proper movement
of vehicles along the paths connecting the workstations.

9) Resources localization constraints. Another set of con-
straints is needed to model the movement of resources
across the assembly line. In short, resources cannot
move if they are not associated to a vehicle. On
the contrary, when they are associated to a vehicle,
their location variables will coincide with the location
variables of the vehicle they are associated with.



F. Objective Function

The objective function is written as the convex combina-
tion of several terms, reflecting different optimization goals:

V =
∑
i=1

αiVi, (17)

with αi ≥ 0 and
∑

i αi = 1.
Possible relevant terms are discussed in the following.
1) V1 (minimization of task completion time). We pose:

V1 = τ (18)

where τ is an auxiliary variable greater or equal than
all the finish times.

τ ≥ dt +
Ft−dt∑
k=St

kst,k ∀t (19)

Hence, when minimized, τ represent the latest task
finish time, and the inclusion of V1 minimizes it;

2) V2 (minimization and balancing of the input/output
resource inventory).

V2 =
∑
w,k,r

(
Rw,k,r −Rref

w,r

)2
(20)

where Rref
w,k is the reference level of the resources

inventories (if put to zero, inventory is minimized);
3) Cost minimization. Cost minimization can be easily

integrated, for example to take into account the opera-
tional cost of utilizing workstations, the cost of storing
inventory, the penalty cost of early or late delivery, etc.

In the following simulations we will consider only the
minimization of the overall tasks completion time (i.e., the
cycle time).

IV. SIMULATIONS

A. Definition of the Simulation Scenario

We present a simple simulation to provide a proof of
the concept. The analysis of a more complex scenario is
demanded to a future publication. Simulations are performed
with the open-source technical computing language Julia,
version 1.3.1 (https://julialang.org/). The optimization prob-
lem is written using the Julia JuMP modelling package [16]
and solved using Gurobi optimizer [17], on an Intel I7, 8GB
RAM machine running Windows 10.

The simulation scenario is as follows. We consider an
assembly line with three workstations and a job of two tasks,
as illustrated in Fig. 2. Figure 2.a reports the topology of the
paths linking the workstations, and the initial state of the
workstations’ resource buffers (i.e., the distribution of the
resources in the plant). Figure 2.b reports the task dependency
graph and the inputs needed to execute each task, as well as
the outputs produced by the tasks.

The simulation is on a time horizon of 20 time steps.
The tasks last 3 time steps, can start at any time and at any
workstation (provided that the input resources are available at

Fig. 2. Workstations (a) and tasks (b).

Fig. 3. Tasks’ state.

that time/workstation). One vehicle is present in the scenario.
A constant velocity is assumed for it.

B. Simulation Result

Figure 3 reports the tasks’ state: task 1 is immediately
executed, since it has available at w1 all the needed inputs.
Task 2 instead needs r3 (which is generated at w1 as output of
task 1), worker 2, who is at w2, and r4, which is at w3. Figure
4 reports the movements of the vehicle (i.e., its location along
the paths connecting the workstations). After r3 is generated,
the vehicle carries it from w1 to w2 (i.e., lv,k,(1,2) grows
from 0 to 1). Once at w2, the vehicle carries also worker 2

Fig. 4. Vehicle’s movements.



Fig. 5. Resources’ movements.

and brings both r3 and worker 2 at w3, where then all the
resources are available to start task 2. Notice that, when the
vehicle is at a workstation, it is also at the end of all the paths
incoming into that workstation (e.g., when the vehicle is at
w3, both lv,k,(1,3) and lv,k,(2,3) are equal to one). Figure 5
reports the location of resources in time (wbar is a fictitious
workstation that stores the resources still to be created and
the consumed ones). It is seen that the location of resources
is consistent with that of the vehicle and with task execution.
Notice for example that r3 is created at time 4 at w1, then
at time 9 it reaches w2, then at time 14 it finally arrives at
w3, where it is consumed by task 2. The solution found was
the one minimizing the job finish time. Simulation time was
10.75 seconds. There are 3043 variables in the model.

V. CONCLUSIONS

This paper has presented an optimal control-based ap-
proach for the scheduling of tasks in an assembly line.
The derived optimization problem is based on mixed-integer
linear programming and it allows a fine-grained control and
optimization of resources (including, personnel, vehicles,
input/output resources, etc.) and tasks’ execution time. A
simple proof of concept simulation has been presented on
an illustrative scenario in which the minimization of the total
job time is sought. Though there is an inherent combinatorial
complexity arising from the presence of binary variables, the
linear formulation derived allows the model to be scaled on
realistic scenarios. Future works will regard the extensive
simulation of the proposed framework on realistic scenarios,
also using state of the art modelling and simulation tools. The
authors are currently investigating model predictive control
and deep learning approaches for addressing the compu-
tational complexity that may arise in realistic scenarios.
Indeed, in some scenarios the sub-optimality of solutions
may be acceptable given complexity and real-time require-
ments. Finally, while the present paper has mostly shown
the application of the proposed optimization framework to
task planning, the focus of future works will also be more
on real time task control (i.e., rescheduling) in presence of
uncertainties and disturbances, for which model predictive
approach appears a promising candidate methodology.

ACKNOWLEDGMENT

The authors thank the CRAT team for the valuable contri-
bution to the design of the algorithm, and all the members
of the SESAME H2020 European project for the fruitfull
discussions.

REFERENCES

[1] R. Davies, “Industry 4.0 - digitalization for productivity and growth,”
European Parliamentary Research Service, 2015.

[2] B. C. Group, “Industry 4.0: the future of productivity and growth in
manufacturing,” Boston Consulting Group, 2015.

[3] A. Fiaschetti, V. Suraci, and F. D. Priscoli, “The SHIELD framework:
How to control security, privacy and dependability in complex sys-
tems,” in 2012 Complexity in Engineering (COMPENG). Proceedings.
IEEE, Jun. 2012. DOI: 10.1109/compeng.2012.6242962

[4] I. Baybars, “A survey of exact algorithms for the simple assembly line
balancing problem,” Management science, vol. 32, no. 8, pp. 909–932,
1986.

[5] N. Boysen, M. Fliedner, and A. Scholl, “A classification of assembly
line balancing problems,” European journal of operational research,
vol. 183, no. 2, pp. 674–693, 2007.

[6] C. Becker and A. Scholl, “A survey on problems and methods in
generalized assembly line balancing,” European journal of operational
research, vol. 168, no. 3, pp. 694–715, 2006.

[7] N. Kamarudin and M. A. Rashid, “Modelling of simple assembly
line balancing problem type 1 (salbp-1) with machine and worker
constraints,” Journal of Physics: Conference Series, vol. 1049, no. 1,
p. 012037, 2018.

[8] M. M. Razali, M. F. F. A. Rashid, and M. R. Abdullah, “Mathe-
matical modelling of mixed-model assembly line balancing problem
with resources constraints,” International Engineering Research and
Innovation Symposium (IRIS), 2016.

[9] M. Rabani, M. Yazdanbakhsh, and H. Farrokhi-Asl, “Solving a multi-
objective mixed-model assembly line balancing and sequencing prob-
lem,” Journal of Industrial and Systems Engineering, vol. 10, no.
special issue on production and inventory, pp. 155–170, 2017.

[10] J. Pereira, “Modelling and solving a cost-oriented resource-constrained
multi-model assembly line balancing problem,” International Journal
of Production Research, vol. 56, no. 11, pp. 3994–4016, 2018.

[11] D. Gyulai, B. Kádár, and L. Monosotori, “Robust production
planning and capacity control for flexible assembly lines,” IFAC-
PapersOnLine, vol. 48, no. 3, pp. 2312 – 2317, 2015. DOI:
https://doi.org/10.1016/j.ifacol.2015.06.432 15th IFAC Symposium on-
Information Control Problems inManufacturing.

[12] M. Manzini, J. Unglert, D. Gyulai, M. Colledani, J. M. Jauregui-
Becker, L. Monostori, and M. Urgo, “An integrated frame-
work for design, management and operation of reconfigurable as-
sembly systems,” Omega, vol. 78, pp. 69 – 84, 2018. DOI:
https://doi.org/10.1016/j.omega.2017.08.008

[13] D. Gyulai, B. Kádár, and L. Monostori, “Scheduling and operator
control in reconfigurable assembly systems,” Procedia CIRP, vol. 63,
pp. 459 – 464, 2017. DOI: https://doi.org/10.1016/j.procir.2017.03.082
Manufacturing Systems 4.0 – Proceedings of the 50th CIRP Confer-
ence on Manufacturing Systems.

[14] J. Koskinen, C. Raduly-Baka, M. Johnsson, and O. S. Nevalainen,
“Rolling horizon production scheduling of multi-model pcbs for several
assembly lines,” International Journal of Production Research, vol. 58,
no. 4, pp. 1052–1073, 2020.

[15] H. D. Sherali and W. P. Adams, Reformulation–Linearization
Techniques for Discrete Optimization Problems. New York, NY:
Springer New York, 2013, pp. 2849–2896. ISBN 978-1-4419-7997-1.
[Online]. Available: https://doi.org/10.1007/978-1-4613-0303-9 7

[16] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language
for mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–
320, 2017.

[17] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,”
2016. [Online]. Available: http://www.gurobi.com

https://doi.org/10.1007/978-1-4613-0303-9_7
http://www.gurobi.com

	Introduction
	Motivation and Objectives
	Literature Review
	Paper Contributions
	Outline

	Problem Description and Reference Scenario
	Problem Formulation
	Model of Tasks, Resources and Workstations
	Tasks
	Resources
	Workstations
	Factory Layout

	Definition of the State Variables
	Definition of the Decision Variables
	Definition of the State Dynamics
	Other Problem Constraints
	Objective Function

	Simulations
	Definition of the Simulation Scenario
	Simulation Result

	Conclusions
	References

