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Abstract: Lung cancer burden can be reduced by adopting primary and secondary prevention
strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50
and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier
stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30–50%)
with early stage disease still experience relapse and an adverse prognosis. Thus, the identification of
effective prognostic biomarkers in stage I lung cancer is nowadays paramount. Here, we applied a
multi-tiered approach relying on coupled RNA-seq and miRNA-seq data analysis of a large cohort
of lung cancer patients (TCGA-LUAD, n = 510), which enabled us to identify prognostic miRNA
signatures in stage I lung adenocarcinoma. Such signatures showed high accuracy (AUC ranging
between 0.79 and 0.85) in scoring aggressive disease. Importantly, using a network-based approach
we rewired miRNA-mRNA regulatory networks, identifying a minimal signature of 7 miRNAs,
which was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) and controls a
variety of genes overlapping with cancer relevant pathways. Our results further demonstrate the
reliability of miRNA-based biomarkers for lung cancer prognostication and make a step forward to
the application of miRNA biomarkers in the clinical routine.

Keywords: lung cancer; microRNA; gene expression; biomarkers; prognosis

1. Introduction

The latest global lung cancer data indicate a burden of 2.09 million new cases and 1.76 million
deaths in 2018 [1]. The main type of lung cancer is represented by Non-Small-Cell Lung Cancer (NSCLC)
(80–85%) including several heterogeneous tumor subtypes: lung adenocarcinoma (ADC, ~40% of
lung cancers), squamous cell carcinoma (SqCC, ~25% of lung cancers) and large cell carcinoma (LCC,
~10% of lung cancers) [2]. In the last decades, there have been significant improvements in lung cancer
treatment, such as stereotactic ablative radiotherapy (SABR), targeted therapy and immunotherapy [3–5].
Nevertheless, despite the successful introduction of these new treatments in clinical practice, global lung
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cancer mortality rates remained rather unchanged in the last 40 years, with some variability worldwide
due to different lifestyle, environmental and occupational exposures [4,6]. However, primary and
secondary prevention strategies such as anti-smoking campaigns and the implementation of large
CT screening programs resulted in a reduction of lung cancer mortality of ~20% in enrolled patients
and progressive lung cancer stage-shift [7,8]. In addition, the high level of molecular heterogeneity
of lung cancer enhances the metastatic dissemination of a large fraction of early stage tumors
(~30–50%) [9]. In-depth molecular and functional characterization of ADC could help to contextualize
tumor heterogeneity in specific molecular subtypes which may suggest alternative therapeutic options.
We recently described a 10-gene prognostic signature for stage I ADC which identified a subset
of tumors, namely C1-ADC [10,11], with peculiar gene/protein expression and genetic alterations
resembling more advanced cancer. This prognostic gene signature can be measured by qRT-PCR,
Affymetrix or RNA-seq, in fresh-frozen or in formalin-fixed, paraffin-embedded (FFPE) specimens [11].

To foster clinical translation of this 10-gene signature, here we present a miRNA signature as
a surrogate of the 10 genes, for prognostic risk stratification of ADC. A miRNA-based prognostic
signature would overcome the problem of using low-quality mRNA when extracted from FFPE samples,
which are routinely used for diagnostic purposes. Indeed, shorter non-coding RNA molecules such
as miRNA are more resistant to harsh conditions [12,13] and compatible with most of the expression
profiling methods including qRT-PCR.

2. Results

2.1. MiRNA-Signature Identification

We developed a multi-tiered approach summarized in Figure 1, which allowed us to identify a
surrogate miRNA-based signature for prognostication of ADC patients.

Firstly, we performed gene expression profile analysis of a total of 515 ADC patients belonging to
the TCGA-LUAD cohort (see Section 4), with available mRNA data. Patients and tumors characteristics
are reported in Table 1. Stage I tumors represented 54% of the cohort and smoking habit was present in
71%. Median length of follow-up in survivors was 2.1 years.

Hierarchical clustering analysis using the 10-gene signature of the TCGA-LUAD cohort (n = 515)
patients revealed 4 main branches, namely C1 (n = 201), C2 (n = 98), C3 (n = 39), and C4 (n = 177)
clusters (Figure 2a) that are consistent with previous findings [11]. Analysis of the 3-years overall
survival showed non-significant differences between C2, C3 and C4 clusters (log-rank test p-value = 0.90
and p-value = 0.48 in stage I and advanced stages, respectively), that were therefore collapsed into
non-C1 clusters. C1 cluster displayed the worse prognosis both in stage I (p-value = 0.0010) and in
more advanced stages (p-value = 0.0061) (Figure 2b). Furthermore, C1 cluster displayed a significant
higher fraction of male subjects and patients with more advanced lung cancer, and a nearly significant
higher proportion of smokers (Table S1), which is in line with the reported worse prognosis [9].

We then performed miRNA expression profile of 510 out of the 515 ADC of the TCGA-LUAD
cohort, with miRNAs expression data available. We used both DESeq2 R package and BRB-ArrayTools
(see Section 4) as alternative statistical approaches in order to identify differentially expressed miRNAs
in C1 and non-C1 clusters of ADC. We analyzed a total of 382 miRNAs, of which 200 were found
differentially expressed by DESeq2 and 90 by BRB-ArrayTools (Table S2A,B, respectively). A total of 87
miRNAs were overlapping in the two sets. Lasso regularization was then applied to identify optimized
miRNA-based signatures capable of stratifying C1 from non-C1 tumors. In total, two signatures
of 14- (from the 90 miRNA-set) and 19-miRNA (from the 200 miRNA-set) were derived (5 miRNA
overlapping; Table 2), which displayed a high accuracy in C1/non-C1 cancer patients stratification
(cross-validated AUC = 0.81 and AUC = 0.85, respectively; Figure 2c).
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Figure 1. Flow chart of study design with data sets and analysis.

To further reduce complexity of these miRNA-based biomarkers, we looked for a minimal set of
miRNAs capable of the same accuracy of the 14- and 19-miRNA signatures to identify C1 aggressive
disease. The following assumptions were made: (i) the molecular function of a miRNA is dependent
to the network of targeted mRNAs which, in this case, are those differentially expressed in C1/non-C1
tumors; (ii) a prognostic biomarker should be functionally linked to mechanisms involved in tumor
progression. Accordingly, we explored the miRNA-mRNA interactome characterizing C1 tumors by
performing ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) (see Section 4)
using the set of 200 miRNA, and a set of 2900 mRNA genes found significantly regulated in C1-ADC
(p-value < 0.05) by DESeq2 (see Section 4). Our analysis was restricted to genes identified by DESeq2
in order to reduce technical variability. The following rules were applied to rewire C1 miRNA-mRNA
interactome: (1) we selected miRNA-mRNA pairs generated in only C1 tumors and specific, but not
exclusive, for stage I (n = 2858); (2) we selected miRNA predicted to target C1-genes (n = 1787,
miRWalk3.0, see Section 4), and (3) with an opposite trend of expression than C1-genes (n = 598);
(4) we selected miRNA interacting with a least three C1-genes (n = 528).
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Table 1. Patients and tumors characteristics.

TCGA-LUAD Cohort
n = 515

CSS Cohort
n = 44

Age [years]
Median (Q1; Q3) 66 (59;73) 1 73 (67;77)

Gender
Male 238 (46.2%) 27 (61.4%)
Female 277 (53.8%) 17 (38.6%)

Smoking status
Current/former smoker 367 (71.3%) 20 (45.5%)
Never smoker 63 (12.2%) 11 (25.0%)
Missing smoking status 85 (16.5%) 13 (29.5%)

Stage
Stage I 279 (54.2%) 31 (70.5%) 2

Stage II 124 (24.1%) 6 (13.6%)
Stage III 84 (16.3%) 6 (13.6%)
Stage IV 27 (5.2%) 1 (2.3%)
Missing stage 1 (0.2) -

Follow-up 3

Survivors length of follow-up
<1 year 52 (10.3%) 13 (31.7%)
1–2 years 128 (25.3%) 11 (26.8%)
2–3 years 56 (11.1%) 10 (24.4%)
>3 years 133 (26.3%) 5 (12.2%)
Deaths within 3 years 137 (27.1%) 2 (4.9%) 4

Percentages could not add up to 100 due to rounding; 1 19 patients with missing information on age; 2 1 patient with
adenocarcinoma in situ; 3 9 patients with missing follow-up in the TCGA-LUAD cohort; 4 3 deaths were excluded:
1 without date of death, and 2 within 30 days from surgery.

Among the miRNA-mRNA networks identified, we found a set of interacting networks with 7
miRNA as “HUBs” which derived from both the 19-miRNA and 14-miRNA signatures (Table 2 and
Figure 2d). Hierarchical clustering analysis of this 7-miRNA signature (Table S3) showed an overall
increased expression in the more aggressive C1 tumors (Figure 2e). Importantly, the 7-miRNA
signature had a cross-validated AUC of 0.79 in C1/non-C1 patients’ stratification, which is comparable
to the other two signatures (Figure 3a), as well as when we considered differences in C1 predicted
probability (Figure 3b). The predicted C1 class from all the three signatures (7-, 14- and 19-miRNA)
presented significantly increased hazard of death at 3 years in patients of all stages, with an increased
risk comparable to C1 patients identified by using the 10-gene signature (Table 3). However, when we
focused the analysis to stage I ADC patients, we scored that the best risk-stratification was held by the
7-miRNA signature with approximately two-fold increased risk of death for C1 patients (HR = 2.11;
95% Confidence Interval: 1.11–4.00; p-value = 0.0223) (Table 3). Interestingly enough, the networks
of genes targeted by these 7 miRNAs were found significantly (q-value < 0.0001) enriched in gene
sets representing molecular mechanisms related to cancer progression, which fulfilled our initial
hypotheses (Figure 3c).

Despite most of 90 miRNAs identified by BRB-ArrayTools (87/90, 97%) were comprised in
the 200-miRNA set found by DESeq2, including 12 out of 14 miRNAs of the BRB-derived model,
we performed ARACNe as well by using this 90-miRNAs set. Among the three not overlapping
miRNAs, only hsa-miR-210-3p passed all the selection filters we described previously. However,
when we added this additional miRNA to the 7-miRNA signature and performed cross-validation in
C1/non-C1 patients’ stratification, the prediction performance remained the same (AUC = 0.79).
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Figure 2. mRNA and miRNA expression profile analysis of the TCGA-LUAD cohort.
(a) Hierarchical clustering analysis of the 10-gene expression signature. C1-C4 clusters are colored as per
the legend. Age, gender, smoking status and stage are colored as per the legend; Unavailable information
is colored in white. (b) Kaplan–Meier curves for 3-years overall survival stratified by C1–C4 clusters.
Log-rank p-values are shown for C1 vs. non-C1 clusters (C2-C4) comparison. (c) Receiver operating
characteristic (ROC) curves showing the False Positive Fraction and True Positive Fraction of the 19- (in blue)
and 14-miRNA (in red) models. The areas under curve (AUC) are reported. (d) Networks of miRNA derived
from 19-, 14- and 7-miRNAs model and corresponding target genes. Light blue rectangles represent genes; red
rectangles represent miRNA from 19-miRNA model; yellow rectangles represent miRNA from 14-miRNA
model; green rectangles represent miRNA from both 14- and 19-miRNA model. (e) Hierarchical clustering
of 7-miRNAs in the TCGA-LUAD cohort. C1 and non-C1 tumors (defined according to the 10-gene
signature) are colored as per the legend. Predicted C1 and non-C1 tumors (defined according the 7-miRNA
logistic model) are colored as per the legend.
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Table 2. TCGA-LUAD cohort. Differentially expressed miRNAs composing the three signatures with
19, 14 and 7 miRNAs.

miRNA Accession Signature
TCGA-LUAD Cohort—
C1 vs. non-C1 Cluster

FC p-value 1 C1 Trend

hsa-miR-193b-5p MIMAT0004767 19- and 7-miRNA 1.5 3.3 × 10−7 ↑

hsa-miR-31-3p MIMAT0004504 19- and 7-miRNA 3.2 1.9 × 10−20 ↑

hsa-miR-31-5p MIMAT0000089 19- and 7-miRNA 3.1 1.7 × 10−18 ↑

hsa-miR-550a-5p MIMAT0004800 19- and 7-miRNA 1.5 6.0 × 10−9 ↑

hsa-miR-196b-5p MIMAT0001080 19-, 14-miRNA and 7-miRNA 3.2 9.8 × 10−21 ↑

hsa-miR-584-5p MIMAT0003249 19-, 14-miRNA and 7-miRNA 2.8 1.2 × 10−40 ↑

hsa-miR-30d-5p MIMAT0000245 19- and 14-miRNA 0.6 4.8 × 10−16 ↓

hsa-miR-582-3p MIMAT0004797 19- and 14-miRNA 2.2 2.5 × 10−18 ↑

hsa-miR-9-5p MIMAT0000441 19 and 14-miRNA 1.8 1.7 × 10−6 ↑

hsa-let-7c-3p MIMAT0026472 19-miRNA 0.8 1.9 × 10−2 ↓

hsa-miR-138-5p MIMAT0000430 19-miRNA 1.9 1.2 × 10−10 ↑

hsa-miR-196a-5p MIMAT0000226 19-miRNA 1.4 2.7 × 10−2 ↑

hsa-miR-203a-3p MIMAT0000264 19-miRNA 1.4 3.1 × 10−4 ↑

hsa-miR-215-5p MIMAT0000272 19-miRNA 5.0 1.2 × 10−37 ↑

hsa-miR-2355-3p MIMAT0017950 19-miRNA 1.3 5.4 × 10−5 ↑

hsa-miR-30d-3p MIMAT0004551 19-miRNA 0.6 2.5 × 10−15 ↓

hsa-miR-4709-3p MIMAT0019812 19-miRNA 0.5 1.3 × 10−19 ↓

hsa-miR-548b-3p MIMAT0003254 19-miRNA 0.6 7.2 × 10−10 ↓

hsa-miR-675-3p MIMAT0006790 19-miRNA 2.1 1.5 × 10−8 ↑

hsa-miR-193b-3p MIMAT0002819 14- and 7-miRNA 1.4 8.6 × 10−6 ↑

hsa-miR-135b-5p MIMAT0000758 14-miRNA 0.7 3.7 × 10−6 ↓

hsa-miR-187-3p MIMAT0000262 14-miRNA 0.6 2.3 × 10−4 ↓

hsa-miR-192-5p MIMAT0000222 14-miRNA 3.1 9.8 × 10−21 ↑

hsa-miR-210-3p MIMAT0000267 14-miRNA 1.2 6.4 × 10−2 ↑

hsa-miR-29b-2-5p MIMAT0004515 14-miRNA 0.7 1.2 × 10−7 ↓

hsa-miR-3065-3p MIMAT0015378 14-miRNA 0.7 4.2 × 10−5 ↓

hsa-miR-375-3p MIMAT0000728 14-miRNA 1.2 1.7 × 10−1 ↑

hsa-miR-708-5p MIMAT0004926 14-miRNA 1.3 2.7 × 10−3 ↑

1 Wald test adjusted (Benjamini–Hochberg method) from DESeq2 tool. Accession, miRbase mature miRNA accession
number. FC, fold change. C1 trend, expression trend in C1 samples versus non-C1 samples.

Table 3. TCGA-LUAD cohort. Univariate and multivariable Cox regression analyses for 3-years overall
survival in patients of all stages and stratified by stage.

Univariate Analysis Multivariable Analysis 1

n (n Deaths) HR (95% CI) Wald Test p-value HR (95% CI) Wald Test p-value

ALL STAGES 501 (135) 2

10-gene 194 (75) 2.21 (1.57–3.10) <0.0001 2.03 (1.43–2.87) <0.0001
19-miRNA 169 (66) 2.13 (1.52–2.99) <0.0001 1.85 (1.31–2.61) 0.0005
14-miRNA 165 (67) 2.17 (1.55–3.04) <0.0001 2.06 (1.46–2.91) <0.0001
7-miRNA 146 (67) 2.90 (2.07–4.06) <0.0001 2.69 (1.91–3.78) <0.0001

STAGE I 274 (40)
10-gene 92 (23) 2.86 (1.53–5.36) 0.0010 2.96 (1.55–5.65) 0.0010
19-miRNA 73 (11) 1.07 (0.54–2.15) 0.8462 1.12 (0.55–2.26) 0.7529
14-miRNA 79 (17) 1.90 (1.01–3.56) 0.0451 1.99 (1.05–3.79) 0.0359
7-miRNA 65 (15) 2.11 (1.11–4.00) 0.0223 2.14 (1.11–4.12) 0.0235

STAGE II-IV 226 (95)
10-gene 101 (52) 1.69 (1.13–2.54) 0.0108 1.64 (1.08–2.49) 0.0207
19-miRNA 95 (55) 2.27 (1.51–3.41) <0.0001 2.18 (1.43–3.31) 0.0003
14-miRNA 86 (50) 2.00 (1.34–3.00) 0.0007 2.04 (1.35–3.08) 0.0007
7-miRNA 80 (52) 2.89 (1.93–4.33) <0.0001 2.91 (1.93–4.39) <0.0001

1 all stages analyses were adjusted for age, sex, smoking status and stage; analyses stratified by stage were adjusted
for age, sex and smoking status; 2 1 patient with missing stage and 9 patients with missing follow-up.
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Figure 3. Validation of the 7-miRNA model. (a) ROC curve showing the False Positive Fraction and
True Positive Fraction of the 7-miRNA model. The AUC is reported. (b) Box-plot for C1 predicted
probability in C1 and non-C1 patients. Predicted probabilities are calculated through the 19-, 14- and
7-miRNA models. Wilcoxon–Mann–Whitney test p-values are reported. (c) Bubble plot of top 10 GeneSets
found significantly overlapping with gene networks targeted by the 7-miRNA signature. Bubbles size is
proportional to statistical significance (-Log of q-value) and color codes refer to number of genes found
in the overlap. In X-axis, ratios (k/K) of overlap of the query set of genes (k) with overlapping GeneSet
size (K). (d) Heatmap of the 10-gene expression of CSS cohort. C1 and non-C1 tumors are colored as per
the legend. Risk scores are calculated based on the 10-gene risk model. (e) ROC curves showing the False
Positive Fraction and True Positive Fraction of the 7-miRNA model in the CSS cohort, for all stages (in green)
or only stage I tumors (in orange). The AUC are reported. (f) Box-plot for C1 predicted probability in C1
and non-C1 tumors in CSS cohort, for all-stages tumors and stage I tumors. Predicted probabilities are
calculated through the 7-miRNA model. Wilcoxon–Mann–Whitney test p-values are reported.
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2.2. Seven-miRNA-Signature Validation

Finally, we validated the 7 miRNA-signature in an external cohort of 44 lung adenocarcinoma
patients, which was collected at the IRCCS Casa Sollievo della Sofferenza Hospital (CSS).
Clinical pathological characteristics of the CSS cohort are reported in Table 1, with an overrepresentation
of stage I tumors in CSS (70%) with respect to the TCGA-LUAD cohort (54%). We performed qRT-PCR
analysis of FFPE samples using the 10-gene signature and calculated relative risk-score to stratify the
cohort into C1 (n = 16) and non-C1 (n = 28) groups (Figure 3d) (see Section 4). Next, we performed
Low-Density Taqman miRNA Arrays to profile the 7-miRNA signature in the same cohort of 44 ADC
and, using logistic regression, we rederived a model based on the expression profile of the 7-miRNA
signature (Table S4). The 7-miRNA model stratified C1 from non-C1 tumors with an AUC of 0.76
(Figure 3e) and with significant difference (p-value = 0.0028) in C1 predicted probability (Figure 3f).
Remarkably, when we limited the analysis to stage I tumors, we scored an AUC of 0.81 (Figure 3e)
and a significant difference (p-value = 0.0108) in C1 predicted probability (Figure 3f).

3. Discussion

Improvements in lung cancer early diagnosis by large scale low-dose CT screening trials is
resulting in a stage-shift towards earlier stage lung cancer, with subsequent reduction in mortality
as observed in NELSON and NLST trials [7,8]. For this reason, there is an urgent need of prognostic
biomarkers for patients with stage I lung cancer who could eventually benefit from systemic adjuvant
chemotherapy (platinum-based) rather than molecular targeted/immuno therapeutics in case of
aggressive disease. Nowadays, the advent of more sophisticated and precise bioinformatic tools and
computational approaches has sped up the identification of novel diagnostic and prognostic cancer
biomarkers, either focused on proteins, coding transcripts, epigenome modifications or non-coding
transcripts [14,15]. In lung cancer, in particular, the differential expression of miRNAs allowed the
development of innovative and promising cancer biomarkers [16].

Here we present surrogate miRNA signatures which recapitulate a previously described 10-gene
prognostic signature in stage I ADC [11]. The 7-, 14- and 19-miRNA signatures were all effective in
identifying aggressive C1-ADC disease (AUC = 0.79–0.85). Notably, 6 out of 7 miRNAs of the 7-miRNA
signature were well-detected in FFPE samples (median Ct < 30; Table S3) which confirmed the proven
higher stability of miRNAs in low-quality RNA [17]. Importantly, in our approach, we adopted a
network-rewiring strategy by specifically selecting miRNA-mRNA pairs which characterize aggressive
stage I tumors (C1). Such an approach allowed us to select a core of 7 miRNAs capable to stratify C1 from
non-C1 samples with an accuracy comparable to the 14- and 19-miRNA models (Figures 2c and 3a),
and, importantly, interacting with C1 tumor transcriptome. This is relevant for capturing molecular
mechanisms controlled by miRNAs which are associated to tumor progression. As a matter of fact,
we observed a large overlap between the ‘7-miRNA network’ with several gene sets representing cancer
relevant pathways (Figure 3c). Further experiments are therefore warranted in order to investigate
whether this 7-miRNA network is functionally linked to lung cancer progression.

The 7-miRNA signature is composed by hsa-miR-31-5p, hsa-miR-31-3p, hsa-miR-193b-3p,
hsa-miR-193b-5p, hsa-miR-196b-5p, hsa-miR-550a-5p and hsa-miR-584-5p. Some of these miRNAs
were described to be altered in cancer and also with a functional role. Alterations in the expression of
miR-31-5p and miR-31-3p were associated with a variety of cancers including lung cancer and have both
oncogenic and onco-suppressor behavior [18–24]. Furthermore, hsa-miR-193b-3p was found associated
to a tumor-suppressor phenotype (by targeting STMN1) in hepatocellular carcinoma [25] and colorectal
cancer [26]. Remarkably, hsa-miR-193 in prostate cancer was shown to target FOXM1 and RRM2 [27],
the last being one of the genes composing the prognostic 10-gene signature. The hsa-miR-196b-5p was
found to promote tumor progression in non-small cell lung cancer when up-regulated [28]. Interestingly,
hsa-miR-196b-5p was also found to molecularly interact with HOXB7 and GALNT5 and inhibit their
expression in colorectal cancer [29]. Again, HOXB7 is one of the genes composing the 10-gene signature,
which we also recently showed to promote a stem cell-like phenotype in lung adenocarcinoma [30].
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On the other hand, very little is known about hsa-miR-550a-5p and hsa-miR-584-5p biological functions.
However, hsa-miR-550a-5p was found to be a prognostic factor in ADC in association with other 3
miRNAs indicating its possible oncogenic role [31]. Lastly, in gastric cancer, hsa-miR-584-5p was found
to induce apoptosis and inhibits proliferation [32], while in hepatocellular carcinoma hsa-miR-584-5p
was shown to have an oncogenic role [33].

In conclusion, we developed a 7-miRNA signature which is capable in identifying aggressive early
stage lung adenocarcinoma. The expression profile of such miRNAs can be measured by standard
qRT-PCR and using FFPE samples. A limit of the present study is the relatively small size of the
external validation cohort (CSS) and the short follow-up (1.6 median years in survivors, and three
deaths recorded within 3 years), which did not allow us to quantify the excess of mortality risk for
patients with predicted aggressive tumors.

4. Materials and Methods

4.1. TCGA-LUAD Cohort

We selected the cohort of 515 patients with lung adenocarcinomas from the TCGA data portal
(https://portal.gdc.cancer.gov/) at 2018. A total of 510 tumors were profiled for both gene and miRNA
expression. Log2 read counts were used for expression analysis. Patients follow-up information was
used for survival analysis: overall survival was defined as the time from the date of tumor resection
until death from any cause. Follow-up was truncated at 3 years to reduce the potential overestimation
of overall mortality with respect to lung cancer–specific mortality.

4.2. The CSS Cohort

We selected a cohort of 44 patients with lung adenocarcinoma underwent surgery between
February 2017 and February 2020 at the CSS. Written informed consent was obtained from all study
patients. None of these patients received preoperative chemotherapy. Clinical information was
obtained through review of medical records. Vital status was assessed through the Vital Records
Offices of the patients’ towns of residence or by contacting directly the patients or their families.

4.3. Gene Expression Analysis of the TCGA-LUAD Cohort

Hierarchical clustering analysis was performed on the 10-gene signature for the entire cohort of
510 patients. Clustering was done by using Cluster 3.0 for Mac OS X (C Clustering Library 1.56, Tokyo,
Japan) with uncentered correlation and centroid linkage, and Java TreeView software environment
(version 1.1.6r4; http://jtreeview.sourceforge.net). A total of four main branches were selected to build
clusters. Kaplan–Meier survival curves were stratified by clusters and log-rank test p-values were
calculated. C1 cluster was associated to the worse prognosis, and all other clusters were pooled
together (non-C1 clusters).

To retain most informative expression data (i.e., transcripts detected in most of tumor samples),
we considered miRNAs with raw counts >0 in at least the 50% of patients either in C1 or non-C1,
identifying a total of 382 miRNAs. This allowed us to reduce also the complexity of the TCGA-LUAD
dataset (2237 miRNAs). We applied the complexity reduction also to genes and we selected the
most varying across all samples (standard deviation in the top 25%), identifying a total of 4899 genes.
Using DESeq2 R package (R Core Team, R Foundation for Statistical Computing, Vienna, Austria) [34],
we identified a total of 2900 differentially expressed genes between C1 and non-C1 tumors.

BRB-ArrayTools [35] and DESeq2 (R package) [34] tools were used for class prediction (C1 cluster
vs. non-C1 clusters) according to miRNA expression. BRB-ArrayTools uses statistics based on
two-sample T-test with multivariate permutations test (1000 random permutations); confidence level
of false discovery rate assessment, 80%; maximum allowed proportion of false-positive genes, 0.05.
DESeq2 is based on Wald test statistics to identify differentially expressed transcripts. Lists of miRNAs
differentially expressed were obtained from BRB-ArrayTools and DESeq2 tools were subsequently
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reduced via Lasso regularization. In details, a penalized unconditional logistic regression was applied
considering cluster as discrete outcome (C1 cluster vs. non-C1 clusters) and miRNA expressions as
explanatory variables. Cross-validated (10-fold) log-likelihood with optimization (50 simulations)
of the tuning penalty parameter was used to control for potential overfitting.

Starting from differentially expressed genes (identified with DESeq2) and miRNAs (identified with
both DESeq2 and BRB-ArrayTools), we used ARACNe [36] with 1000 bootstraps to infer direct regulatory
relationships between transcriptional regulators (i.e., miRNAs) and target genes. ARACNe was
performed using all patients, stage I patients and stage II-IV patients. miRNA target genes were
retrieved using miRWalk 3.0 [37].

Probability of being in the C1 cluster was estimated using the unconditional logistic regression for
the three signatures of 19, 14 and 7 miRNAs. Model performance was assessed using the cross-validated
area under the receiver operating curve, and assessing the difference in C1 predicted probability between
C1 and non-C1 patients (Wilcoxon–Mann–Whitney test). Cox regression model was used to evaluate
the prognostic role of these miRNA signatures and their ability to recapitulate the risk-stratification of
the original 10-genes signature.

To receive insights into the biology of the 7-miRNA model, we verified the enrichment of
cancer-relevant pathways associated to their target genes. We investigated the Molecular Signature
Database (MSigDB; v7.2) (https://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) using the list of
87 targeted genes by interrogating the CGP (chemical and genetic perturbations, 3358 gene sets).
Bubble plot analysis was performed using JMP 15.2.1 (SAS Institute, Inc., Cary, NC, USA) software.

Hierarchical clustering analysis was performed on the 7-miRNA signature for 510 patients,
those with available miRNA expression data. Clustering was completed by using Cluster 3.0 for Mac
OS X (C Clustering Library 1.56) with uncentered correlation and centroid linkage, and Java TreeView
software environment (version 1.1.6r4; http://jtreeview.sourceforge.net).

4.4. RNA Extraction and qRT-PCR Analysis and Data Interpretation

One tissue core (1.5 mm in diameter) from FFPE blocks, in representative tumor areas with
adequate tumor cellularity (>60%) selected by a pathologist, was processed for total RNA extraction.
The AllPrep DNA/RNA FFPE kit (QIAGEN, Inc., Hilden, Germany) was used for total RNA extraction.
Quantitative real-time PCR (qRT-PCR) was performed to analyze the 10-genes signature as described in
Dama et al. [11]. Briefly, RNA was quantified using Nanodrop ND-10000 Spectrophotometer and a total
of 200 ng was retro-transcribed using SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific,
Inc., Waltham, MA, USA) (Thermo Fisher Scientific) and pre-amplified for 10 cycles with PreAmp
Master Mix Kit (Thermo Fisher Scientific), following manufacturer’s instructions. qRT-PCR analysis
was performed starting from 1:10 diluted pre-amplified cDNA, using the TaqMan Fast Advance
Master Mix and hydrolysis probes (Thermo Fisher Scientific; for primers see Dama et al. [11]), in a
QuantStudio 12k Flex (Thermo Fisher Scientific). Thermal cycling amplification was performed with
an initial incubation at 95 ◦C for 30 s, followed by 45 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s.
For miRNA expression analysis, a total of 10 ng RNA was reverse-transcribed using the TaqMan
Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific). Poly(A) tailing, adapter ligation,
RT reaction and miR-Amp were performed following manufacturer’s instructions. qRT-PCR was
performed following manufacturer’s instructions (i.e., 95 ◦C for 30 s, 45 cycles of 95 ◦C for 5 s, and 60 ◦C
for 30 s) using a Card Custom Advance (Thermo Fisher Scientific; Table S5) in a QuantStudio 12k Flex
(Thermo Fisher Scientific). The hsa-miR-16-5p was used as standard reference for CT normalization
using a previously described methodology [38]. Briefly, the normalized CT of each miRNA (i) of each
sample (j) was alculated as the difference between the raw CTij and a scaling factor (SF) specific for
each sample (j); the SFj represented the difference between the raw CT of the miRNA “hsa-miR-16-5p”
used as a reference in the sample (j) and a constant equal to 21.87. Notably, hsa-miR-16-5p expression
profile analysis in both TCGA-LUAD and CSS cohorts revealed a comparable expression in C1 and
non-C1 tumors subsets (Table S6).
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Risk-scores were assigned to each patient based to the 10-gene risk model described in Dama
et al. [11]. Before applying the risk-model, data were rescaled (q1-q3 normalization). Patients with
risk-scores higher than the 66th percentiles [11] were classified as C1 tumors. Next, unconditional
logistic regression (C1 vs. non-C1 tumors) with 7 miRNAs as explanatory variables was applied,
and the area under the receiver operating curve was calculated. Difference in C1 predicted probability
between C1 and non-C1 patients was evaluated through Wilcoxon–Mann–Whitney test.

All statistical analyses were performed using SAS software, version 9.4 (SAS Institute, Inc., Cary,
NC, USA) and R 3.3.1 (R Core Team, 2016) and JMP 15 (SAS). p-values less than 0.05 were considered
statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-553X/6/4/48/s1. Table S1:
Patients and tumors characteristics according to C1/non-C1 stratification; Table S2A: TCGA-LUAD cohort. n = 200
miRNAs significantly regulated by DESeq2 in C1 vs. non-C1 clusters comparison; Table S2B. TCGA-LUAD cohort.
n = 90 miRNAs significantly regulated by BRB-ArrayTools in C1 vs. non-C1 clusters comparison; Table S3:
distributions of expression for the 7 miRNAs (median, first-Q1 and third-Q3 quartiles are reported) in TCGA-LUAD
and CSS cohorts; Table S4: Logistic model regression coefficients for the 7 miRNAs, for all stages and stage I tumors
of CSS cohort; Table S5: TaqMan assays used to amplify miRNA of the 7-miRNA signature, the “standard reference”
miR-16-5p is also reported; Table S6: Expression profile of miR-16-5p in the CSS and TCGA-LUAD cohorts (median,
first-Q1 and third-Q3 quartiles are reported).
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