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ABSTRACT

The paper presents an exploratory study on the appli-
cation to ship hydrodynamics of nonlinear design-space
dimensionality reduction methods, assessing the inter-
action of shape and physical parameters. Nonlinear
extensions of the principal component analysis (PCA)
are applied, namely local and kernel PCA. An artifi-
cial neural network approach, specifically a deep au-
toencoder (DAE) method is also applied and compared
to PCA-based approaches. The data set under investi-
gation is formed by the results of 9,000 potential flow
simulations coming from an extensive exploration of
a 27-dimensional design space, associated to a shape-
optimization problem of the DTMB 5415 model in calm
water at 18kn (Froude number, Fr = 0.25). Data in-
clude three heterogeneous distributed and suitably dis-
cretized parameters (shape modification vector, pres-
sure distribution on the hull, and wave elevation pattern)
and one lumped parameter (wave resistance coefficient),
for a total of 5, 101 × 9, 000 elements. The reduced-
dimensionality representation of shape and physical pa-
rameters is set to provide a normalized mean squared
error smaller than 5%. The standard PCA meets the
requirement using 19 principal components/parameters.
Local and kernel PCA provide the most promising com-
pression capability with 14 parameters required by the
reduced-dimensionality parametrizations. DAE achieve
the same error with 17 components, indicating signifi-
cant nonlinear interactions in the data structure of shape
and physical parameters. Although the focus of the cur-
rent work is on design-space dimensionality reduction,
the formulation goes beyond shape optimization and can
be applied to large sets of heterogeneous physical data
from simulations, experiments, and real operation mea-
surements.

INTRODUCTION

The simulation-based design (SBD) analysis and opti-
mization paradigm has demonstrated the capability of
supporting the design decision process, not only provid-

ing large sets of design options but also exploring oper-
ational spaces by assessing the hydrodynamic and struc-
tural performance for a large number of operating and en-
vironmental conditions. The recent development of high
performance computing (HPC) systems has driven the
SBD towards integration with global optimization (GO)
algorithms and uncertainty quantification (UQ) meth-
ods, moving the SBD paradigm to automatic determinis-
tic and stochastic SBD optimization (SBDO, Diez et al.
2018a,b) possibly aiming at global solutions to the de-
sign problem. In shape design, SBDO consists of three
main elements: (i) a deterministic and/or stochastic sim-
ulation tool (integrating physics-based solvers with UQ),
(ii) an optimization algorithm, and (iii) a shape modifi-
cation tool (see Figure 1, right box).

Even if efficient GO algorithms have been pro-
posed (Jones et al., 1993; Campana et al., 2009; Serani
and Diez, 2017a) and applied with success to SBDO
(Campana et al., 2015; Serani et al., 2016; Serani and
Diez, 2017b), finding a potentially global optimal solu-
tion within reasonable computational time/cost remains
a critical issue and a technological challenge. Addi-
tionally, UQ of complex applications is computationally
very demanding, especially if high-order statistical mo-
ments and/or quantiles need to be assessed as in robust
and reliability-based design optimization. Both GO and
UQ are affected by the curse of dimensionality as the
algorithms’ complexity and computational cost rapidly
increase with the problem dimension. This is generally
also true if metamodels are applied. Therefore, the as-
sessment and breakdown of the design-space dimension-
ality are key elements for the efficiency and affordability
of the SBDO (Diez et al., 2015).

In order to solve complex optimization prob-
lems, on-line linear design-space dimensionality reduc-
tion techniques have been developed, requiring the eval-
uation of the objective function or its gradient. Prin-
cipal component analysis (PCA) or proper orthogonal
decomposition (POD) methods have been applied for
local reduced-dimensionality representations of feasible
design regions (Raghavan et al., 2013). A PCA/POD-



Figure 1: SBDO scheme, including pre-optimization design-space dimensionality reduction (Diez et al., 2016).

based approach is used in the active subspace method
(Lukaczyk et al. 2014) to discover and exploit low-
dimensional monotonic trends in the objective function,
based on the evaluation of its gradient. This type of
methods improve the optimization efficiency by basis
rotation and/or dimensionality reduction. Nevertheless,
they do not provide an assessment of the design space
and associated shape parametrization before optimiza-
tion is performed or objective function and/or gradient
are evaluated. Moreover, if gradients are not directly pro-
vided (as in the case of black-box tools) they might be
inaccurate due to noise and/or residuals affecting the ap-
proximation of derivatives by finite differences. Finally,
these methods are local in nature and their extension to
global optimization is not trivial nor straightforward.

Off-line linear models have been developed
with focus on design-space variability and dimension-
ality reduction for efficient optimization procedures. A
method based on the Karhunen-Loève expansion (KLE,
equivalent to POD) has been formulated in (Diez et al.,
2015) for the assessment of the shape modification vari-
ability and the definition of a reduced-dimensionality
global model of the shape modification vector. No ob-
jective function evaluation nor gradient is required by
the method. The KLE is applied to the continuous shape
modification vector, requiring the solution of a Fredholm
integral equation of the second kind. Once the equa-
tion is discretized, the problem reduces to the princi-
pal component analysis (PCA) of discrete geometrical
data. These methods improve the shape optimization
efficiency by reparametrization and dimensionality re-
duction, providing the assessment of the design space
and the shape parametrization before optimization and/or
performance analysis are carried out. The assessment is
based on the geometric variability associated to the de-
sign space, making the method fully off-line and compu-
tationally very efficient and attractive (no simulations are
required). Nevertheless, significant physical phenomena
induced by small shape modifications (such as transi-
tions, separations, etc.) may be overlooked as no phys-

ical information is processed by the method. Further-
more, linear methods such as PCA may not be efficient
when a complex nonlinear relationship between design
variables are involved.

An extension of the off-line design-space di-
mensionality reduction method to a combined shape and
physics based formulation was introduced and devel-
oped in earlier research (Diez et al., 2016; Serani et al.,
2017; Serani and Diez, 2018). The extension improved
the effectiveness of the dimensionality reduction, bring-
ing physics based information (provided by low-fidelity
computations) into the variability breakdown analysis.
The concept is summarized in Figure 1 (left box).

In order to address data with nonlinear struc-
tures, nonlinear dimensionality reduction methods have
been developed and investigated. Among others, local
PCA (LPCA) divides the initial design space in k clusters
and the PCA is applied to each of them, assuming each
cluster having approximately a linear structure. LPCA
techniques (Kambhatla and Leen, 1997) may be differ-
entiated on the basis of the clustering method which may
follow for instance k-means (Lloyd, 1982) or spectral
approaches (Von Luxburg, 2007). Kernel PCA (KPCA)
solves the PCA in a new space (called feature space) us-
ing kernel methods (Schölkopf et al., 1998). Artificial
neural networks have been also used to reduce data di-
mensionality (Hinton and Salakhutdinov, 2006), by per-
forming both encoder and decoder tasks. Specifically,
a deep autoencoder (DAE) is an architecture of a deep
feedforward neural network that both compress (encod-
ing) and reconstruct (decoding) the original data. Au-
toencoders or autoassociative neural networks have been
studied and proposed as nonlinear extension of PCA by
several researchers (Bourlard and Kamp, 1988; Kramer,
1991; Oja, 1991). They have been applied and found
more effective than their linear counterparts for image
compression applications (DeMers and Cottrell, 1993;
Hinton and Salakhutdinov, 2006). Preliminary studies on
the application of nonlinear design-space dimensionality
reduction methods in ship hydrodynamics have been pre-
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sented by D’Agostino et al. (2017, 2018a,b) for a USS
Arleigh Burk-class destroyer, namely the DTMB 5415
model, an early and open public version of the DDG-51.

The objective of the present work is the appli-
cation of nonlinear methods to design-space dimension-
ality reduction in shape optimization for ship hydrody-
namics, based on the interaction of shape and physical
parameters evaluated by low-fidelity solvers. Nonlinear
methods include LPCA, KPCA, and DAE. The efficiency
and effectiveness of these methods are assessed consid-
ering their compression capability and associated recon-
struction error compared to standard (linear) PCA. Cur-
rent formulations and methods go beyond design-space
dimensionality reduction for shape optimization and can
be extended to large sets of heterogeneous physical data
from simulations, experiments, and real operation mea-
surements.

The methods are demonstrated for the DTMB
5415 model in calm water at 18kn (Froude number,
Fr = 0.25). The data set under investigation is formed
by the results of 9, 000 potential flow simulations explor-
ing extensively a 27-dimensional design space. Data in-
clude three heterogeneous distributed and suitably dis-
cretized parameters (geometry modification vector, pres-
sure distribution on the hull, and wave elevation pattern)
and one lumped parameter (wave resistance coefficient),
for a total of 5, 101 × 9, 000 elements. The reduced-
dimensionality representation of shape and physical pa-
rameters is set to provide a mean squared error smaller
than 5%, normalized with the overall data variance.

DIMENSIONALITY-REDUCTION FORMULA-
TIONS AND METHODS

General definitions and assumptions are presented in the
following, along with the shape-based formulation for
design-space dimensionality reduction, its extension to
combined shape- and physics-based formulation, and the
solution of data reduction by principal component anal-
ysis (PCA), local and kernel PCA (LPCA and KPCA),
and deep autoencoder (DAE).

Shape-Based Formulation

Consider a geometric domain G (which identifies the ini-
tial or parent shape) and a set of coordinates x ∈ G ⊂ Rn

with n = 1, 2, 3. Assume that u ∈ U ⊂ RM is the
design-variable vector, which defines a continuous shape
modification vector δ(x,u) ∈ Rm with m = 1, 2, 3
(with m not necessarily equal to n). Consider u as a ran-
dom variable, with associated probability density func-
tion p(u).

The aim of the dimensionality reduction is to
identify a reduced-dimensionality representation of the

shape modification vector δ̂(x,α), for which its shape
modification depends on a new reduced order design
variableα ∈ A ⊂ RN withN < M . The reconstruction
vector δ̂(x,α) is estimated during a process of encod-
ing/decoding by the dimensionality reduction methods:
the original shape modification vector δ(x,u) is encoded
in a low dimensional latent space defining the new design
variable α. The decoding process reconstruct the origi-
nal shape modification vector as δ̂(x,α) for which its
modification on the original domain depends on the vec-
tor α(u) learned by the dimensionality reduction meth-
ods. Figure 2 shows an example with n = 1 and m = 2.

Figure 2: Scheme and notation for the current formu-
lation, example for n = 1 and m = 2.

A convenient metric to evaluate the goodness
of fit of δ̂(x,α) respect to δ(x,u) is the mean squared
error (MSE) normalized to the total original geometric
variance (σ2) as

NMSE =
MSE

σ2
= (1)

=

∫∫
U×A,G

‖δ̂(x,α)− δ(x,u)‖2p(u,α)dxdudα∫∫
U,G
‖δ(x,u)‖2p(u)dxdu

,

where p(u,α) is an unknown joint probability distribu-
tion over the product space U ×A.

Discretizing G by a number of Q elements of
equal measure ∆G, assuming for the sake of simplicity
and without loss of generality a centered data set (i.e.,
with zero mean value) with ∆G = 1, and sampling U by
a statistically convergent number of Monte Carlo realiza-
tions S, so that {uk}Sk=1 ∼ p(u), the spatial discretiza-
tion d(u)k of δ(x,uk) are organized in a [S × L] data
matrix as

D =

 d(u)
T
k=1

...
d(u)

T
k=S

 , (2)
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Figure 3: Domains for shape modification vector, distributed physical parameter vector, and lumped (or global)
physical parameter vector.

where L = mQ. The expectation in Eq. 1 can be ap-
proximated by evaluating the MSE as

MSE =
1

S

S∑
k=1

‖d̂(α)k − d(u)k‖2 (3)

and the total geometric variance σ2 as

σ2 =
1

S

S∑
k=1

‖d(u)k‖2. (4)

Combining Eqs. 3 and 4, the discretized form of Eq. 1
can be expressed as

NMSE =
MSE

σ2
=

∑S
k=1 ‖d̂(α)k − d(u)k‖2∑S

k=1 ‖d(u)k‖2
(5)

Details of formulation, equations, and numeri-
cal discretization can be found in Diez et al. (2015).

Extension to Combined Shape- and Physics-Based
Formulation

Consider the shape modification vector δ ∈ Rm1 , m1 =
1, ..., 3, along with a distributed physical parameter vec-
tor π ∈ Rm2 , m2 = 1, ...,∞ (representing, e.g., ve-
locity, pressure distribution, wave elevation, etc.), and a
lumped (or global) physical parameter vector θ ∈ Rm3 ,
m3 = 1, ...,∞ (representing, e.g., ship resistance, mo-
tion RMS, etc.).

For the sake of simplicity, consider one set of
coordinates x ∈ Rn, and assume G, P , and Q as the do-
main of δ, π, and θ respectively, as schematized in Fig-
ure 3. Note thatQ has a null measure and corresponds to

an arbitrary point xθ where the lumped physical param-
eter vector is virtually defined. Also note that generally
D = G ∪ P ∪Q is not simply connected.

Consider a combined vector γ ∈ Rm with
m = max{m1,m2,m3}

γ(x,u) ∈ D =

 δ(x,u) if x ∈ G
π(x,u) if x ∈ P
θ(x,u) if x ∈ Q

, (6)

The aim of the dimensionality reduction is to
identify a reduced-dimensionality representation of the
vector γ̂(x,α), able to minimize the MSE:

MSE = (7)

=

∫∫
U×A,D

‖γ̂(x,α)− γ(x,u)‖2p(u,α)dxdudα.

The MSE and the data matrix are recast in the
same form of Eqs. 3 and 2, provided that dk represent
the discretized values of γ(x). Furthermore, the data ma-
trix is assumed centered and normalized such that each
domain (shape, distributed/lumped physical parameters)
provides an associated data variance equal to one. De-
tails of formulation, equations, and numerical discretiza-
tion can be found in Diez et al. (2016) and Serani et al.
(2017).

Principal Component Analysis

PCA allows to reduce the dimensionality of the data ma-
trix by representation in a linear subspace defined by the
eigenvectors z of the [L × L] sample covariance matrix
C:

C =
1

S
DTD, (8)
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Thus, PCA reduces to the solution of the eigen-
problem

Cz = λz. (9)

The eigenvectors Z = {zi}Si=1 have the prop-
erties to maximize the variance (σ2) associated to the
linear representation and minimize the associated MSE
(Hotelling, 1933; Pearson, 1901). Moreover, the eigen-
values λ represent the variance resolved along the eigen-
vectors. Given this property, a subset of N eigenvectors
is used to define a reduced-dimensionality representation
of the shape modification vector as

d̂ = Ẑα with α = ZTd (10)

where Ẑ has dimension [L×N ] and is composed by the
first N largest-variance eigenvectors.

For practical purposes, Eq. 9 may be solved by
the singular value decomposition of the matrix D.

Local Principal Component Analysis

LPCA is a nonlinear extension of PCA. LPCA performs
a PCA for each disjoint region of the input space I. If
local regions are small enough the associated data mani-
fold will not curve much over the extent of the region and
the linear model is assumed to be a good fit (Kambhatla
and Leen, 1997).

The first step in LPCA is clustering the data in k
sets, such that D = {Di}ki=1. Here, the k-means cluster-
ing algorithm (Lloyd, 1982) is used as described in Alg.
1.

Algorithm 1 k-means clustering algorithm

Require: A number of k random centroids as representative
points of each cluster Di ∀i = 1, . . . , k.

1: repeat
2: Assign each point dj to the nearest centroid µi using the

Euclidean distance as similarity measure.
3: Update the centroids according to: µi = 1

|Di|
∑

dj∈Di
dj

4: until µi ∀i = 1, . . . , k remains unchanged

After k clusters are defined, k PCA eigenprob-
lems are solved

Cizi = λizi ∀i = 1, . . . , k. (11)

LPCA results are highly dependent on the clus-
tering method and the number of clusters. The number of
clusters needs to be defined carefully to avoid increasing
the computational cost and data overfitting.

Kernel Principal Component Analysis

The KPCA method (Schölkopf et al., 1998) finds direc-
tions of maximum variance in a higher (possibly infi-
nite) dimensional feature space F , mapping data points

from the input space I by a (possibly) nonlinear function
Φ : I → F

dk → Φ(dk), ∀k = 1, . . . , S. (12)

The PCA is computed in the feature space F . Assuming∑
k Φ(dk) = 0, the kernel principal component {zp}Pp=1

can be found solving the eigenproblem

ΣΦzp = λpzp, (13)

where ΣΦ is the [P ×P ] covariance matrix in the feature
space F :

ΣΦ =
1

S

S∑
k=1

Φ(dk)Φ(dk)T. (14)

Defining K(di,dk) = Φ(di)
TΦ(dk) and zp as

zp =

S∑
k=1

cpkΦ(dk), (15)

Eq. 13 can be rewritten as

Kcp = λpScp, (16)

where K is the symmetric and positive-semidefinite [S×
S] kernel matrix, with Kik = K(di,dk). The length of
the S-component vector cp is chosen such that zTpzp =

λpScTpcp = 1. Once the eigenproblem of Eq. 16 is
solved, the new parametrization can be found projecting
Φ(d) on zp as

α = Φ(d)zp =

S∑
k=1

cpkΦ(d)TΦ(dk) (17)

=

S∑
k=1

cpkK(d,dk).

The reconstruction of the original data from the
feature spaceF in KPCA is more problematic than PCA.
Here, the approximate pre-images technique proposed by
Bakır et al. (2004) is used.

Deep Autoencoders

An autoencoder is a feedforward artificial neural network
that performs two main tasks: (i) an encoder function E
maps the input data dk into compressed data αk; (ii) a
decoder function D maps from the compressed data αk

back to d̂k. The overall operation is performed setting
the same number of neurons (L) in the input and output
layer. The hidden layer is set to have N < M neurons
and is responsible for the data compression.
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Figure 5: A single hidden layer autoencoder.

Consider a single hidden layer autoencoder (see
Figure 5) and assume no bias vector. New design vari-
ables αk can be expressed as

αk = E(H(1)dk), (18)

where H is a weight matrix and subscript “(1)” indicates
the encoding operation.

The reconstruction vector d̂k can be expressed
as

d̂k = D(H(2)αk), (19)

where subscript “(2)” indicates the decoding operation.
Finally, the network parameters H =

{H(1),H(2)}, are evaluated by the (non trivial) mini-

mization of the MSE in the form:

MSE(H) =
1

S

S∑
k=1

‖d̂k − dk‖2 = (20)

1

S

S∑
k=1

‖D(H(2)E(H(1)dk))− dk‖2. (21)

Using nonlinear activation functions and multi-
ple hidden layers, DAE provides a nonlinear generaliza-
tion of the PCA. The intrinsic dimensionality of the data
(the number of neurons N in the central hidden layer) is
usually unknown and defined based on parametric mini-
mization of the MSE, varying N .

APPLICATION

Figure 6 shows the geometry of the CNR-INSEAN 2340
model, a geosim replica of the DTMB 5415 model used
for towing tank experiments, as seen in Stern et al.
(2000). The main particulars of the model scale and
tests conditions are summarized in Table 1. Since no
rudder is considered here, the length between perpendic-
ulars (Lpp) is calculated from the fore perpendicular to
the transom bottom edge.

Figure 6: A 5.720 m length model of the DTMB 5415
(CNR-INSEAN model 2340).

Figure 4: Distributed shape and physical parameters for current application.
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Table 1: DTMB 5415 model scale main particulars and
test conditions

Description Unit Value

Displacement tonnes 0.549

Length between perpendiculars m 5.720

Beam m 0.760

Draft m 0.248

Longitudinal center of gravity m 2.884

Vertical center of gravity m 0.056

Water density kg/m3 998.5

Kinematic viscosity m2/s 1.09E-06

Gravity acceleration m/s2 9.803

Froude number – 0.250

Reynolds number – 9.82E+06

X
Y

Z

c
1

(a) Hull

x/L
pp

 [  ]

y
/L

p
p
 [
 

 ]

1 0 1 2 30.0

0.5

1.0

1.5

c
2

(b) Free-surface

Figure 7: DTMB 5415 body and free-surface discretiza-
tion used for both design-space dimensionality reduction
and potential flow simulation.

The shape parameter vector used for design-
space dimensionality reduction collects the y-component
(δy) of the shape modification vector (δ). The heteroge-
neous/distributed physical parameter vector collects val-
ues of the pressure distribution (p) and the wave elevation
pattern (η) (see Figure 4), whereas the lumped physical
parameter vector includes the wave resistance coefficient
(Cw). Physical parameters are based on a calm-water po-
tential flow solution at Fr = 0.25.

Shape Modification Method

The shape modification is defined using a linear combi-
nation of M = 27 orthogonal basis functions (OBFs)
over a hyper-rectangle embedding the demi hull (Serani
et al., 2016)

ψi(x) : V = [0, Lx1
]×[0, Lx2

]×[0, Lx3
] ∈ R3 −→ R3,

(22)

with i = 1, . . . ,M , as

δ(x,u) =

M∑
i=1

uiψi(x), (23)

where the coefficients ui ∈ R (i = 1, . . . ,M) are the
(original) design variables,

ψi(x) :=

3∏
j=1

sin

(
aijπxj
Lxj

+ rij

)
eq(i), (24)

and the following orthogonality property is imposed:∫
V
ψi(x) ·ψk(x)dx = δik. (25)

In Eq. 24, {aij}3j=1 ∈ R define the order
of the function along j-th axis; {rij}3j=1 ∈ R are the
corresponding spatial phases; {Lxj

}3j=1 are the hyper-
rectangle edge lengths; eq(i) is a unit vector. Modifica-
tions are applied along x1, x2, or x3, with q(i) = 1, 2, or
3 respectively. Details of equations and setting parame-
ters may be found in Serani et al. (2016).
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Figure 8: Calm-water model scale validation. The sink-
age is positive if the center of gravity sinks; the trim is
positive if the bow sinks.

Hydrodynamic Solvers and Computational Grids

Hydrodynamic simulations are conducted using the code
WARP (Wave Resistance Program), developed at CNR-
INSEAN. Wave resistance computations are based on
linear potential flow theory using Dawson (double-
model) linearization (Dawson, 1977). The frictional re-
sistance is estimated using a flat-plate approximation,
based on the local Reynolds number (Schlichting and
Gersten, 2000). Details of equations, numerical imple-
mentations, and validation of the numerical solver are
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Figure 9: Probability density function of the heterogeneous parameters, using S = 9, 000 random designs.

given in Bassanini et al. (1994). Grid sensitivity study
can be found in Diez et al. (2015).

Simulations are performed for the right demi-
hull, taking advantage of symmetry about the xz-plane.
The computational domain for the free-surface is defined
within 1Lpp upstream, 3Lpp downstream, and 1.5Lpp

sideways, for a total of 75 × 20 grid nodes. The associ-
ated hull grid (90× 25 nodes) is shown in Figure 7.

The solvers validation versus the experimen-
tal fluid dynamics (EFD) data collected at the INSEAN
(Olivieri et al., 2001) is depicted in Fig. 8, showing a
reasonable agreement.

Numerical Results

The original design space is sampled using a uniform
random distribution of S = 9, 000 hull-form designs.
Figure 9 shows the geometry and physics based variabil-
ity associated to the design space. The PDF is shown for
normalized geometric variation δy/Lpp of a point on the
hull (C1 , see Fig. 7a), variation of the normalized pres-
sure distribution ∆[p/p0] of C1 (where p0 is the pres-
sure reference), variation of the normalized wave eleva-
tion ∆η/Lpp of a point downstream (C2 , see Fig. 7b),
and variation of the wave resistance coefficient ∆Cw.

The reduced-dimensionality models are built
using a training set Dtrain formed by the 80% of the orig-
inal data set D, whereas the remaining 20% is used as
a test set Dtest to evaluate the normalized MSE (cross-
validation procedure). The reduced-dimension N is set
so as to achieve a normalized MSE equal to 0.05.

A number of cluster k = 45 is used for LPCA.
A quadratic polynomial kernel is used for the KPCA.
Three hidden layers are used for DAE (composed by
L−600−N−600−L neurons) with an exponential linear
units (ELUs, Clevert et al. 2015) activation function for
the first and the third hidden layer. A linear activation
function is used for the output layer and for the central
hidden layer. Adam optimization algorithm (Kingma and
Ba, 2014) is used for train the autoencoder using a mini-
batch size of 512 data point for gradient evaluation by
the backpropagation algorithm (Rumelhart et al., 1988).

Table 2 summarizes the dimensionality-
reduction results in terms of number of compo-

nents/parameters N required by the methods to recon-
struct successfully the data set along with the associated
normalized MSE. The number of components N also
indicates the reduced-dimensionality parametrization of
the shape modification vector for future SBDO.

Table 2: Methods’ compression capability and NMSE
(p-value < 0.05)

Method N NMSE% (training) NMSE% (test)

PCA 19 4.5 4.6

LPCA 14 3.6 4.6

KPCA 14 4.1 4.6

DAE 17 4.3 4.5

The non-linear methods outperform linear
PCA. Specifically, LPCA and KPCA are found the most
effective methods for the current problem in terms of di-
mensionality reduction capability (N = 14). DAE and
PCA show a sufficient compression capability, whereas
the latter is found the least effective method requiring
N = 19 principal components. This suggests the pres-
ence of significant nonlinear structures the data set. The
breakdown per shape/physical variable of the normalized
MSE is provided in Table 3.

Table 3: Breakdown per variable of NMSE

NMSE%

Method δy p η Cw

PCA 9.42 9.58 2.37 5.26e-04

LPCA 10.7 8.24 2.29 1.01e-01

KPCA 10.0 8.84 2.39 8.86e-04

DAE 9.43 9.06 2.60 3.27e-04

Figures 10, 11, and 12 show the reconstruction
of the shape (δy) and the distributed physical (p and η)
parameters vector for an example design in the test set.
Longitudinal wave cut comparison at y = 0 is also pro-
vided in Fig. 13. A good agreement between the target
and reconstructed data is achieved by all methods. Fi-
nally, Figure 14 shows the reconstruction of the Cw for
the whole test set, showing a remarkable agreement.
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(a) Target geometry (M = 27)

(b) PCA (N = 19)

(c) LPCA (N = 14)

(d) KPCA (N = 14)

(e) DAE (N = 17)

Figure 10: Reconstruction of hull form of the
DTMB 5415: original versus reduced-dimensionality
parametrization.

CONCLUSIONS AND FUTURE WORK

Nonlinear design-space dimensionality reduction meth-
ods have been applied to the DTMB 5415 in calm water
at Fr = 0.25, based on the interaction of shape and het-
erogeneous physical parameters. Nonlinear extensions
of PCA have been applied, namley local and kernel PCA.

(a) Target pressure (M = 27)

(b) PCA (N = 19)

(c) LPCA (N = 14)

(d) KPCA (N = 14)

(e) DAE (N = 17)

Figure 11: Reconstruction of pressure distribution for
the DTMB 5415 at Fr=0.25: original versus reduced-
dimensionality parametrization.

An artificial neural network approach, namely a DAE
method, has been also applied and compared to PCA-
based approaches.

The data matrix under investigation was formed
by the results of 9, 000 potential flow simulations com-
ing from an extensive exploration of a 27-dimensional
design space associated to a shape-optimization prob-
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(a) Target free surface (M = 27)

(b) PCA (N = 19)

(c) LPCA (N = 14)

(d) KPCA (N = 14)

(e) DAE (N = 17)

Figure 12: Reconstruction of the free surface for the DTMB 5415 at Fr=0.25: original versus reduced-dimensionality
parametrization.

lem. Data include three heterogeneous distributed pa-
rameters (shape modification vector, pressure distribu-
tion on the hull, and wave elevation pattern) and one

lumped parameter (wave resistance coefficient), for a to-
tal of 5, 101× 9, 000 elements.
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(a) PCA (N = 19) (b) LPCA (N = 14)

(c) KPCA (N = 14) (d) DAE (N = 17)

Figure 13: Reconstruction of longitudinal wave cut at y = 0 for the DTMB 5415 at Fr=0.25: original versus
reduced-dimensionality parametrization.

The reduced-dimensionality representation of
shape and physical variables was set to achieve an MSE
smaller than 5% of the data variance. The standard (lin-
ear) PCA meets the requirement using 19 principal com-
ponents/parameters. DAE achieve the worst compres-
sion capability among the nonlinear methods with 17
parameters. Finally, Kernel PCA and Local PCA pro-
vides the most promising compression capability with
14 components required by the reduced-dimensionality
parametrization. Reconstructed data for shape, pressure,
wave elevation, and wave resistance coefficients were
presented, showing a remarkable agreement to target val-
ues. As a significant result, the number of parameters
required by the methods also indicates the reduced di-
mensionality for shape parametrization in future SBDO
studies by higher-fidelity solvers.

The current results are very promising, rep-
resenting a first step towards data compression and
reduced-order model prediction of complex physical
phenomena. Current formulations go beyond shape op-
timization and can be applied to large sets of heteroge-
neous physical data from simulations, experiments, and
real operation measurements.

Future work includes extensions to seakeeping
and multiple operating conditions. The possibility of us-
ing higher-fidelity analysis such as Reynolds-averaged
Navier-Stokes solver with metamodels will be addressed.
In parallel, a similar approach is being applied to parti-

cle image velocimetry data of complex flows to assess
the compression capability of nonlinear extensions of the
POD technique (Clement et al., 2019).
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(a) PCA (N = 19) (b) LPCA (N = 14)

(c) KPCA (N = 14) (d) DAE (N = 17)

Figure 14: Reconstruction of wave resistance coefficient Cw for the DTMB 5415 at Fr=0.25: original versus reduced-
dimensionality parametrization.
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