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Abstract

In this paper we study blow-up and lifespan estimate for solutions

to the Cauchy problem with small data for semilinear wave equations

with scattering damping and negative mass term. We show that the

negative mass term will play a dominant role when the decay of its

coefficients is not so fast, thus the solutions will blow up in a finite

time. What is more, we establish a lifespan estimate from above which

is much shorter than the usual one.

1 Introduction

We consider the Cauchy problem with small data for the semilinear wave
equations with scattering damping and negative mass term





utt −∆u+

µ1

(1 + t)β
ut −

µ2

(1 + t)α+1
u = |u|p, in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,
(1)

where µ1 ≥ 0, µ2 > 0, α < 1, β > 1, p > 1, n ∈ N, T > 0 and ε > 0
is a “small” parameter. This problem comes from the recent interest in
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the “wave-like” or “heat-like” behaviour of semilinear wave equations with
variable coefficients damping. The Cauchy problems with small data for

utt −∆u = |u|p and ut −∆u = |u|p

admit critical powers, respectively, the so-called Strauss exponent pS(n) and
the Fujita exponent pF (n) (see [13] and [3]), where for “critical power” of a
problem we mean the exponent pc such that its small data solutions blow up
for 1 < p ≤ pc and exist globally in time for p > pc. It is of recent interest
the Cauchy problem with small data for

utt −∆u+
µ

(1 + t)β
ut = |u|p. (2)

If the Cauchy problem (2) admits a critical power related to pS(n), then we
say it has a “wave-like” behaviour, while if it is related to pF (n), then we
say it admits a “heat-like” behaviour. Generally speaking, if the decay rate
β of the damping coefficients is large enough, then the damping term seems
to have no influence and then we get a “wave-like” behaviour; otherwise, we
get a “heat-like” behaviour. According to the different value of β, we recover
four cases (overdamping, effective, scaling invariant, scattering), based on the
works by Wirth [20–22] (see also [2, 4–6, 8, 9, 16–19] and references therein).

On the other hand, people are paying more attention to the Cauchy prob-
lem for

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p,

which includes scale-invariant damping and mass in the mean time. In some
sense, this model describes the interplay between the damping and mass. For
this problem, the quantity

δ := (µ1 − 1)2 − 4µ2
2

plays an important role to the behaviour of the solutions. We refer the reader
to [10–12] and references therein.

Naturally, we want to consider the corresponding problem with scattering
damping and mass term. Very recently, the authors [7] studied the Cauchy
problem (1) with fast decay rate in the coefficients of the mass term, thus,
α > 1, in which we proved that the blow-up results and the upper bound
lifespan estimates are the same as that of the semilinear wave equations with
scattering damping but without mass term, see [9]. This implies that the neg-
ative mass term seems to have no influence on the behaviour of the solutions.
In this work, we are devoted to studying the case α < 1. Our motivation to
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study a negative mass term is simply a mathematical interest by [7], but one
may refer to the introduction of Yagdjian and Galstian [23] which mentions
its physical background. From our main result listed in Theorem 1 below,
it seems that the negative mass term will affect the qualitative properties
of the small data solutions of the Cauchy problem (1), due to two reasons:
firstly, the non-existence of global energy solutions can be established for all
p > 1 and n ≥ 1; moreover, the upper bound of the lifespan is smaller than
the usual one and it looks like a log-type with respect to ε.

2 Definitions and Main Result

First of all, let us introduce energy solutions of Cauchy problem (1).

Definition 2.1. We say that u is an energy solution for problem (1) over
Rn × [0, T ) if

u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ Lp
loc(R

n × (0, T ))

satisfies u(x, 0) = εf(x) in H1(Rn), ut(x, 0) = εg(x) in L2(Rn) and

∫

Rn

ut(x, t)φ(x, t)dx−
∫

Rn

εg(x)φ(x, 0)dx

+

∫ t

0

ds

∫

Rn

{−ut(x, s)φt(x, s) +∇u(x, s) · ∇φ(x, s)} dx

+

∫ t

0

ds

∫

Rn

{
µ1

(1 + s)β
ut(x, s)−

µ2

(1 + s)α+1
u(x, s)

}
φ(x, s)dx

=

∫ t

0

ds

∫

Rn

|u(x, s)|pφ(x, s)dx

(3)

for all test functions φ ∈ C∞
0 (Rn × [0, T )) and for all t ∈ [0, T ).

Theorem 1. Let α < 1, n ≥ 1 and p > 1. Assume that both f ∈ H1(Rn) and
g ∈ L2(Rn) are non-negative, at least one of them does not vanish identically.
Suppose that u is an energy solution of (1) on Rn × [0, T ) that satisfies, for
some R ≥ 1,

supp u ⊂ {(x, t) ∈ Rn × [0, T ) : |x| ≤ t+R}. (4)

Then, there exists a constant ε0 = ε0(f, g, R, n, p, µ1, µ2, α, β) > 0 such
that T has to satisfy

T ≤ 3ζ(Cε)
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for 0 < ε ≤ ε0, where ζ = ζ(ε) is the larger solution to the equation

εζ
2

p−1
−n+ 1+α

4 exp

(
2

1− α

√
µ2 exp

(
µ1

1− β

)
ζ

1−α
2

)
= 1 (5)

and C is a positive constant independent of ε.

Remark 2.1. Let us make some observations:

• The assumption (4) can be replaced by supp{f, g} ⊂ {x ∈ Rn : |x| ≤ R}
when n = 1, 2, or p ≤ n/(n − 2) for n ≥ 3. This fact is established
by local existence of such an energy solution. See Appendix in the last
section.

• Since letting ε → 0 we have ζ → +∞ in (5), it is not difficult to see that
T ≤ c[log(1/ε)]2/(1−α) for some constant c > 0 follows from (5). In fact,
this inequality is trivial when the exponent δ := 2/(p−1)−n+(1+α)/4
of the first ζ is non-negative, while ζδ can be absorbed by square root of
the exponential term when δ < 0.

• It is an open question the optimality of the upper bound of the lifespan
in Theorem 1.

3 Kato’s type lemma

In order to prove our theorem, we need a slightly different version of the
improved Kato’s lemma introduced in [15].

Lemma 3.1. Let p > 1 and 0 ≤ T̃0 < T be positive constants. Suppose
that A ∈ C1([T̃0, T )), B ∈ C1([0, T )), m ∈ C1([0, T )) are strictly positive
functions, B = B(t) is decreasing and that m(t) is bounded by two constants
m,m > 0(m ≤ m(t) ≤ m) for t ≥ 0. Define the function

h(t) := B(t)1/2A(t)(p−1)/2−δ, (6)

where δ is a constant such that 0 < δ < (p− 1)/2 and h′(t) ≥ 0 for t ≥ T̃0.
Assume that F ∈ C2([0, T )) satisfies

F (t) ≥ A(t) for t ≥ T̃0, (7)

{m(t)F ′(t)}′ ≥ B(t)|F (t)|p for t ≥ 0, (8)

F (0), F ′(0) ≥ 0, F (0) + F ′(0) > 0. (9)
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If F ′(0) = 0, suppose that there exists a time t̃ > 0 such that

F (t̃) ≥ 2F (0). (10)

Define the time

T̃1 :=

{
mm−1F (0)/F ′(0) if F ′(0) 6= 0,

t̃ if F ′(0) = 0.

Then, for T̃ ≥ max{T̃0, T̃1} we have T ≤ 3T̃ assuming that

T̃ h(T̃ )A(T̃ )δ ≥ δ−1m
√
(p+ 1)/m. (11)

Proof. First of all, let us prove that F (t), F ′(t) > 0 for t > 0. We need to
consider two cases according to the initial conditions (9) on F .

Case 1: F ′(0) > 0. From (8) it follows F ′(t) ≥ m(0)F ′(0)m(t)−1 > 0, and
then F (t) ≥ F (0) +m(0)F ′(0)

∫ t

0
m(s)−1ds > 0 for t > 0.

Case 2: F ′(0) = 0. Then F (0) > 0. It follows from (8) evaluated in t = 0
that {mF ′}′(0) > 0, which implies m(t)F ′(t) > m(0)F ′(0) = 0 for small
t > 0. Hence, the fact that {mF ′}′(t) ≥ 0 for t ≥ 0 from (8) yields that
m(t)F ′(t) > 0, that is F ′(t) > 0, and so F (t) > F (0) > 0 for t > 0.

Moreover, observe that

F (t) ≥ 2F (0) for t ≥ T̃1. (12)

Indeed, if F ′(0) = 0, it follows by the hypothesis (10) and by the fact that
F is increasing. If F ′(0) > 0, by (8) and because m is bounded, we have
F (t) ≥ F (0) +mm−1F ′(0)t, from which (12) follows.

Multiplying (8) by m(t)F ′(t) > 0, we get
(
1

2
{m(t)F ′(t)}2

)′

≥ m(t)B(t)|F (t)|pF ′(t) for t > 0.

From this inequality, the positivity of F and the facts that B is decreasing
and m is bounded, it follows that

1

2
F ′(t)2 ≥ 1

2
m−2m2F ′(0)2 +m−2mB(t)

∫ t

0

F (s)pF ′(s)ds

≥ m−2m

p+ 1
B(t)F (t)p{F (t)− F (0)} for t ≥ 0,

and so, using equation (12), we get

F ′(t) ≥ m−1
√

m/(p+ 1)B(t)1/2F (t)(p+1)/2 for t ≥ T̃1. (13)
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Now, fix T̃ := max{T̃0, T̃1} and define the function

H(t) :=

∫ t

T̃

h(s)ds =

∫ t

T̃

B(s)1/2A(s)(p−1)/2−δds for t ≥ T̃ .

Because 0 < δ < (p− 1)/2, from inequality (13) and from (7) we obtain

F ′(t)/F (t)1+δ ≥ m−1
√

m/(p+ 1)B(t)1/2A(t)(p−1)/2−δ for t ≥ T̃ .

Integrating this inequality on [2T̃ , t] we get

1

δ

(
1

F (2T̃ )δ
− 1

F (t)δ

)
≥ 1

m

√
m

p+ 1

∫ t

2T̃

B(s)1/2A(s)(p−1)/2−δds.

Neglecting the second term on the left-hand side, from (7) evaluated in t = 2T̃
and recalling the definition of H , we have

A(2T̃ )−δ ≥ F (2T̃ )−δ ≥ δm−1
√

m/(p+ 1)[H(t)−H(2T̃ )] (14)

for t ≥ 2T̃ . Since h is increasing, we get

H(2T̃ ) ≥ h(T̃ )

∫ 2T̃

T̃

ds = T̃ h(T̃ ). (15)

Observe moreover that A is increasing, in fact

h′(t) = h(t) {B′(t)/(2B(t)) + [(p− 1)/2− δ]A′(t)/A(t)} ,

and so, because h,A,B > 0, h′ ≥ 0 and B′ ≤ 0, we get A′ ≥ 0. Then, by
equation (15), hypothesis (11) and the monotonicity of A, we have

A(2T̃ )δH(2T̃ ) ≥ A(T̃ )δ T̃ h(T̃ ) ≥ δ−1m
√

(p+ 1)/m.

Inserting this inequality in (14) we obtain 2H(2T̃ ) ≥ H(t). Since H ′′(t) =

h′(t) ≥ 0 we have also, integrating two times on [2T̃ , t], that H(t) ≥ H(2T̃ )+

H ′(2T̃ ){t− 2T̃}. These two relations give us the estimate

t ≤ 2T̃ +H(2T̃ )/H ′(2T̃ ) for t > 2T̃ .

Finally, observe that

(H(t)/H ′(t))
′
= 1−H(t)H ′′(t)/(H ′(t))2 ≤ 1

from which, integrating on [T̃ , 2T̃ ], we get

H(2T̃ )/H ′(2T̃ ) ≤ H(T̃ )/H ′(T̃ ) + 2T̃ − T̃ = T̃ ,

and so we have t ≤ 3T̃ . Therefore the proof of the lemma is completed.
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4 Proof of Theorem 1

Following the idea in [7] and [9], we introduce the multiplier

m(t) := exp

(
µ1

(1 + t)1−β

1− β

)
.

Clearly, 1 ≥ m(t) ≥ m(0) > 0 for t ≥ 0. Let us define the functional

F0(t) :=

∫

Rn

u(x, t)dx,

and then F0(0) = ε
∫
Rn f(x)dx, F

′
0(0) = ε

∫
Rn g(x)dx are non-negative and

do not both equal to zero, due to the hypothesis for the initial data.
Taking into account of (4), we choose the test function φ = φ(x, s) in

the definition of energy solution (3) such that it satisfies φ ≡ 1 in {(x, s) ∈
Rn × [0, t] : |x| ≤ s+R}, to get

∫

Rn

ut(x, t)dx−
∫

Rn

ut(x, 0)dx+

∫ t

0

ds

∫

Rn

µ1

(1 + s)β
ut(x, s)dx

=

∫ t

0

∫

Rn

µ2

(1 + s)α+1
u(x, s)dx+

∫ t

0

ds

∫

Rn

|u(x, s)|pdx,

which yields, by taking derivative with respect to t,

F ′′
0 (t) +

µ1

(1 + t)β
F ′
0(t) =

µ2

(1 + t)α+1
F0(t) +

∫

Rn

|u(x, t)|pdx. (16)

Multiplying both sides of (16) with m(t) yields

{m(t)F ′
0(t)}

′
= m(t)

µ2

(1 + t)α+1
F0(t) +m(t)

∫

Rn

|u(x, t)|pdx. (17)

Integrating the previous equation twice on [0, t], we obtain

F0(t) ≥ F0(0) + F ′
0(0)

∫ t

0

ds

m(s)
+ µ2

∫ t

0

ds

m(s)

∫ s

0

m(σ)F0(σ)

(1 + σ)α+1
dσ

+

∫ t

0

ds

m(s)

∫ s

0

m(σ)dσ

∫

Rn

|u(x, σ)|pdx for t ≥ 0.

(18)

By a comparison argument, we observe F0(t) > 0 for t > 0, and con-
sequently also F ′

0(t) > 0 for t > 0 by an integration of (17). In fact, if
F0(0) > 0, then F0 is strictly positive for at least small times. Supposing
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that t0 is the smallest zero time of F0, calculating (18) in t0 we get a con-
tradiction. If F0(0) = 0, then F ′

0(0) > 0 and so F ′
0(t) > 0 for at least small

time; due to the fact that F0 is strictly increasing we then conclude that it is
positive for at least small time t > 0. Supposing that t0 > 0 is the smallest
zero point of F0, calculating (18) in t0 we get again a contradiction.

Moreover observe that if F ′
0(0) = 0, neglecting the last term on the right-

hand side of (18), and noting that F is increasing and m is bounded, we
have

F0(t) ≥ F0(0) + 2−1m(0)µ2F0(0)(1 + t)−max{0,α+1}t2

and so F0(t̃) ≥ 2F0(0), if we choose t̃ = t̃(µ1, µ2, α, β) > 0 such that

2−1m(0)µ2(1 + t̃)−max{0,α+1} t̃2 = 1.

Now we need estimates for {mF ′
0}′ and F0. Neglecting the first term on

the right-hand side of (17) and applying Hölder’s inequality for the last term,
there exists C1 = C1(n, p, R) > 0 such that, for t ≥ 0,

{m(t)F ′
0(t)}

′ ≥ m(0)C1(1 + t)−n(p−1)|F0(t)|p =: B(t)|F0(t)|p (19)

Fix t0 > 0 to be chosen later and consider the auxiliary function

J(t) = εJ0 + εJ1(t− t0) +m(0)µ2

∫ t

t0

ds

∫ s

t0

J(σ)

(1 + σ)α+1
dσ for t ≥ t0,

where J0 :=
1
2
‖f‖L1(Rn), J1 :=

1
2
m(0) ‖g‖L1(Rn). By the similar way as above,

we get by comparison argument that F0(t) ≥ J(t) for t ≥ t0. Setting for the
simplicity c := m(0)µ2, q := 1− α, the function J satisfies

J ′′(t) = c(1 + t)q−2J(t) for t ≥ t0,

with J(t0) = εJ0, J
′(t0) = εJ1. One can check that the solution of this

ordinary differential equation is

J(t) = εc+J+(t) + c−J−(t)

where, setting B+
1/q := I1/q and B−

1/q := K1/q the modified Bessel functions

respectively of the first and second kind with order 1/q, we have

J±(t) := (1 + t)1/2B±
1/q

(
2

√
c

|q| (1 + t)q/2
)
,

c± := ± 2

q
(1 + t0)

−1/2 [(1 + t0)J1 − J0]B
∓
1/q

(
2
√
c

|q| (1 + t0)
q/2

)

+ J0
2
√
c

|q| (1 + t0)
(q−1)/2B∓

1+1/q

(
2
√
c

|q| (1 + t0)
q/2

)
.
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Observe that c+ > 0 at least for t0 > 0 (independent of ε) large enough.
From the asymptotic expansions of the modified Bessel functions (see Section
9.7 in [1]), when t > 0 is large we have that

J±(t) =

√
π∓1q

2c1/4
(1 + t)

1

2
− q

4 exp

(
±2

√
c

q
(1 + t)

q

2

)[
1 +O

(
(1 + t)−

q

2

)]
.

Consequently, we can find constants C2, T1 > 0 independent of ε, such that,
for every t ≥ T1, the following estimate holds:

F0(t) ≥ εC2(1 + t)
1+α

4 exp

(
2

√
m(0)µ2

1− α
(1 + t)

1−α

2

)
=: A(t). (20)

Thanks to estimates (19) and (20), we can apply Lemma 3.1. Fix δ :=
(p− 1)/4 and, using the definition (6) of h, observe that

h′(t) = B1/2(t)A(p−1)/2−δ(t)(1 + t)−1

×
{
−n(p− 1)

2
+

(
p− 1

2
− δ

)[
1 + α

4
+
√
m(0)µ2(1 + t)

1−α
2

]}
,

so we can find a time T2 = T2(n, p, µ1, µ2, α, β) ≥ 0 such that h′(t) > 0 for

t ≥ T2. Then we can choose T̃0 = max{T1, T2}.
Let us set T̃ ≡ ζ − 1 and C = C3[δm(0)

√
C1/(2

√
p+ 1)]2/(p−1), where

ζ ≡ ζ(ε) is the larger solution to (5) with ε = Cε. There exists ε0 > 0

such that, for 0 < ε ≤ ε0, we have T̃ ≡ ζ − 1 ≥ max{T̃0, T̃1}, where T̃1,
independent of ε, is defined as in the statement of the Lemma. We can also
suppose T̃ ≥ 1, so that ζ−1 ≥ ζ/2. Therefore, one can check that (11) holds

and so the maximal existence time T of F0 satisfies T ≤ 3T̃ ≤ 3ζ . The proof
of the Theorem 1 is completed.

5 Appendix

In this section we are going to show the local existence and finite speed of
propagation property for energy solution to our problem, as stated in the
second point of Remark 2.1. In the following, the positive constant C may
vary from line to line. We assume that p ≤ n/(n− 2) when n ≥ 3.

Let us denote the function space

BT,K :=
{
φ ∈ C

(
[0, T ), H1(Rn)

)
∩ C1

(
[0, T ), L2(Rn)

)
:

supp φ ⊂ {(x, t) ∈ Rn × [0, T ) : |x| ≤ t+R}, ‖φ‖BT,K
≤ K

}
,

9



where T,R,K are fixed positive constants and

‖φ‖BT,K
:= sup

t∈[0,T )

E
1/2
φ (t), Eφ(t) :=

1

2

∫

Rn

(φ2
t + |∇φ|2)dx.

It can be proved that BT,K is a Banach space.
Consider the following Cauchy problem for v ∈ BT,K

{
utt −∆u = |v|p +m2(t)v − b(t)vt =: Fv(x, t), in Rn × (0, T ),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ Rn,
(21)

where we set for the simplicity

m2(t) =
µ2

(1 + t)α+1
, b(t) =

µ1

(1 + t)β
.

However, all the calculations below are trivially generalized for any m2, b ∈
C([0, T )).

We want to show that the map

M : v 7→ u = Mv, v ∈ BT,K ,

is a contraction. Note that, for v ∈ BT,K , by Gagliardo-Nirenberg inequality
and Poincaré inequality, we have

‖v‖L2p(Rn) ≤ C‖v‖1−θ(2p)

L2(Rn)‖∇v‖θ(2p)L2(Rn), θ(2p) := n

(
1

2
− 1

2p

)
,

for p ≤ n/(n− 2) when n ≥ 3, and

‖v‖L2(Rn) ≤ C(t+R)‖∇v‖L2(Rn),

which imply

‖v‖L2p(Rn) ≤ C(t +R)1−θ(2p)‖∇v‖L2(Rn) ≤ C(t+R)1−θ(2p)E1/2
v . (22)

In particular, for fixed T > 0, we can check that

Fv(x, t) ∈ L2 (Rn × [0, T )) .

Let us start proving that the map M is onto. Firstly, we show the finite
speed propagation of the energy solution, i.e.

supp u ⊂ {(x, t) ∈ Rn × [0, T ) : |x| ≤ t +R},

10



by using the density argument similarly to [14]. By density of C∞
0 (Rn) in

L2(Rn), we can approximate the energy data f, g by sequences of smooth
and compactly supported functions {fm}m∈N, {gm}m∈N in the energy norm
H1(Rn) and L2(Rn) respectively. Noting that Fv(x, t) has compact support,
we can find also a sequence of smooth and compactly supported functions
{Fv,m}m∈N converging to Fv in the norm L2 (Rn × [0, T )). Let um be the
smooth solution of the problem

{
(um)tt −∆um = Fv,m(x, t) in Rn × (0, T )
u(x, 0) = εfm(x), ut(x, 0) = εgm(x) in Rn.

(23)

Fix (x0, t0) ∈ Rn × (0, T ) with |x0| ≥ t0 +R and set

C(x0,t0) := {(x, t) ∈ Rn × [0, T ) : |x− x0| ≤ t0 − t},

the backward cone with vertex in (x0, t0). Then, denote the energy on a
time-section of the cone as

Et0−t(t, u(t)) :=
1

2

∫

Bt0−t(x0)

(u2
t + |∇u|2)dx, (24)

where Br(x0) := {x ∈ Rn : |x−x0| ≤ r}. The standard space-time divergence
form yields a local energy inequality

E
1/2
t0−t(t, um(t)) ≤ E

1/2
t0 (0, um(0)) +

∫ t

0

‖Fv,m(·, s)‖L2(Bt0−s(x0)) ds.

Applying the previous inequality to the difference um − un of two solutions
of (23), we have that {um(·, t)}m∈N is a Cauchy sequence in the norm (24)
uniformly in t ∈ [0, t0]. Hence the limit u is an energy solution satisfying

E
1/2
t0−t(t, u(t)) ≤ E

1/2
t0 (0, u(0)) +

∫ t

0

‖Fv(·, s)‖L2(Bt0−t(x0)) ds,

which gives us the fact that

f(x) ≡ g(x) ≡ 0 in Cx0,t0 ∩ {t = 0} and Fv ≡ 0 in C(x0,t0)

and Poincaré inequality imply

u ≡ 0 in C(x0,t0).

Next, we show that ‖Mv‖BT,K
≤ K. It is easy to obtain

∂

∂t

(
1

2
(u2

t + |∇u|2)
)

= div(ut∇u) + |v|put +m2(t)vut − b(t)vtut. (25)
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Exploiting (22) we get the estimate

∫

Rn

|v|p|ut|dx ≤
(∫

Rn

|v|2pdx
)1/2√

2E1/2
u (t)

≤ C(t+R)p{1−θ(2p)}Ep/2
v (t)E1/2

u (t).

Moreover, it is trivial that
∫

Rn

|v||ut|dx ≤ C(t+R)E1/2
v (t)E1/2

u (t)

and ∫

Rn

|vt||ut|dx ≤ 2E1/2
v (t)E1/2

u (t).

Integrating (25) over Rn × [0, t] and using the divergence theorem and
the estimates above, we obtain

Eu(t) ≤ Eu(0) + C

∫ t

0

aK(s)Eu(s)
1/2ds,

where
aK(t) := Kp(t+R)p{1−θ(2p)} +K(t +R)m2(t) +Kb(t),

which yields, by Bihari’s inequality, that for some positive constant γ

Eu(t)
1/2 ≤ E1/2

u (0) + C

∫ t

0

aK(s)ds

≤ E1/2
u (0) + Cmax{K,Kp}T (1 + T )γ.

Hence we can choose K large enough and T small enough such that

E1/2
u (0) ≤ K

2
and Cmax{K,Kp}T (1 + T )γ ≤ K

2
,

and then E
1/2
u (t) ≤ K.

Finally, we can prove the contraction of the map M in a similar way.
Fixed v1, v2 ∈ BT,K , let

u1 = Mv1, u2 = Mv2 and u = u1 − u2, v = v1 − v2.

We have that u satisfies the problem

{
utt −∆u = |v1|p − |v2|p +m2(t)v − b(t)vt, in Rn × (0, T ),

u(x, 0) = ut(x, 0) ≡ 0, x ∈ Rn,
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and the equation

∂

∂t

(
1

2
(u2

t + |∇u|2)
)

= div(ut∇u) + (|v1|p − |v2|p) ut +m2(t)vut − b(t)vtut. (26)

Observe that, by (22), it holds

∫

Rn

||v1|p − |v2|p| |ut| dx ≤ C

∫

Rn

|v1 − v2|(|v1|+ |v2|)p−1|ut|dx

≤ C‖|v|(|v1|+ |v2|)p−1‖L2‖ut‖L2

≤ C‖v‖L2p (‖v1‖L2p + ‖v2‖L2p)p−1 ‖ut‖L2 ,

≤ CKp−1(t+R)p{1−θ(2p)}E
1/2
v E

1/2
u .

Then, integrating (26) on Rn× [0, t], exploiting again the Bihari’s inequality
and proceeding similarly as above, we reach the estimate

‖u‖BT,K
≤ Cmax{1, Kp−1}T (1 + T )γ‖v‖BT,K

,

from which, choosing T small enough, we infer that M is a contraction. The
proof of the desired local existence is now completed.
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