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Abstract

We analyze a finite-difference approximation of a functional of Ambrosio—Tortorelli type in
brittle fracture, in the discrete-to-continuum limit. In a suitable regime between the competing
scales, namely if the discretization step 4 is smaller than the ellipticity parameter &, we show
the I"-convergence of the model to the Griffith functional, containing only a term enforcing
Dirichlet boundary conditions and no L? fidelity term. Restricting to two dimensions, we
also address the case in which a (linearized) constraint of non-interpenetration of matter is
added in the limit functional, in the spirit of a recent work by Chambolle, Conti and Francfort.
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1 Introduction

In this paper we provide a variational approximation by discrete finite-difference energies of
functionals of the form

k/ |£u(x)|2dx+,uf [divu(x)|? dx + H(K), (1.1)
2\K 2\K

where £2 is a bounded subset of R, K C 2 is closed, u € Cl(.Q\K; Rd), Eu denotes the
symmetric part of the gradient of u, div u is the divergence of u and H9~! is the (d — 1)-
dimensional Hausdorff measure. Functionals as in (1.1) are widely used in the variational
modeling of fracture mechanics for linearly elastic materials, in the framework of Griffith’s
theory of brittle fracture (see, e.g. [29]). Here §2 stands for the reference configuration and
u represents the displacement field of the body. The total energy (1.1) is composed by a
bulk energy in £2\ K, where the material is supposed to be linearly elastic, and a surface
term accounting for the energy necessary to produce the fracture, proportional to the area
of the crack surface K. A rigorous weak formulation of the problem (1.1), which is usually
complemented by the assignment of boundary Dirichlet datum, has been provided only in very
recent years [21,27]. In the appropriate functional setting, u is a (vector-valued) generalized
special function of bounded deformation, for which the symmetrized gradient £u and the
divergence div u are defined almost everywhere in an approximate sense (see [27]), and the
set K is replaced by the (d — 1)-rectifiable set J,,, the jump set of u.

However, the numerical treatment of functionals (1.1) presents relevant difficulties mainly
connected to the presence of the surface term H?~!(J,). Such difficulties already appear in
the case of antiplane shear (see, e.g., [12]) where the energy (1.1) reduces to the Mumford—
Shah-type functional

f [Vul>dx + HN (), (1.2)
2

for a scalar-valued displacement u € SBV (£2), the space of special functions of bounded
variation. In view of the aforementioned numerical issues, a particular attention has been
devoted over the last three decades to provide suitable discrete approximations, by means of
both finite-difference and finite-elements, of the functional (1.2).

A first approach, based on earlier models in Image Segmentation, has been proposed by
Chambolle [16] in dimensiond = 1, 2; there, the discrete model depends on finite differences
through a truncated quadratic potential. In the case d = 2, the surface term of the variational
limit is described by an anisotropic function ¢(v,) of the normal v, to J, depending on the
geometry of the underlying lattice. As a matter of fact, this anisotropy can be avoided by
considering alternate finite-elements of different local approximations of the Mumford—Shah
functional, as showed, still in dimension two, by Chambolle and Dal Maso [22]. We refer
to [8] (cf. also [11]) and to [28] for some other approximations using finite-elements and
continuous finite-difference approximations of (1.2), respectively.

A different strategy consists in replacing the Mumford—Shah functional by an elliptic
approximation (with parameter ¢ > 0) in the spirit of Ambrosio—Tortorelli [4,5], and then by
discretizing these elliptic functionals by means of either finite-difference or finite-elements
with mesh-size §, independent of ¢. For a suitable fine mesh, with size § = 6 (&) small enough,
these numerical approximations I"-converge, as ¢ — 0, to the Mumford—Shah functional.

This suggests that a remarkable problem to be addressed is the so called “quantitative anal-
ysis”: i.e., the study of the limit behavior of these approximations as § and & simultaneously
tend to 0. Following on the footsteps of the approximation of the Modica—Mortola functional
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proposed by Braides and Yip [14], this analysis has been recently developed by Bach, Braides
and Zeppieri in [6] for (1.2). They characterize the limit behavior of the energies
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showing the variational convergence to the functional (1.2) in the regime § << &. Other
scalings of the parameters are also studied: in the regime § ~ ¢, the surface energy is
described by a function ¢ (v,) solution to a discrete optimal-profile problem, while if § >> &,
the limit energy is the Dirichlet functional. Recently, approximations of (1.2) (thus without
anisotropy in the limit) have been obtained even when § ~ ¢, by employing discretizations
on random lattices. In particular, [7] analyzes the random version of the discrete energies in
[6], basing on [31] (cf. also [15]).

Coming back to the problem of providing discrete approximations of the Griffith
functional, we mention the finite-elements approximation in [30] and focus on the discrete-
to-continuum analysis performed by Alicando et al. [1]. They considered, in the spirit of [16]
and in the planar setting d = 2, discrete energies of the form

> p® Y 877 (D5 u). ) +ldiviui)). (1.3)

gezd OtER§

defined on a portion RE of £2 N 8Z%, where p is a positive kernel, € is a positive constant,
f(t) := min{z, 1}, Dgu(x) denotes the difference quotient %(u (x+8&) —u(x))and divg uis
a suitable discretization of the divergence which takes into account three-point-interactions
in the directions & and &1 (the vector orthogonal to &). In order to obtain compactness
of sequences of competitors with equibounded energy, they require that p(§) > 0 for
& € {£ey, Ley, =(e1 £e2)}, which amounts to consider nearest-neighbors (NN) and next-to-
nearest neighbors (NNN) interactions in the energies. Furthermore, an L° bound has to be
imposed, which is quite unnatural in Fracture Mechanics. Differently from [6], the character-
ization of the limit energy cannot be achieved with the reduction to a 1-dimensional case by
means of slicing techniques (see, e.g., [13,17,28]), due to the presence of the divergence term.
Hence, a different strategy has to be used, involving the construction of suitable interpolants
(see [1, Proposition 4.1]). As it happened in [16], the surface term in the limit energy is still
reminiscent of the underlying lattice, and only a continuous version of (1.3) allows to obtain
HI=1(J,) as surface energy. Furthermore, a possible extension of the model to dimension
d = 3, still involving NN and NNN interactions is proposed, but no compactness result is
provided.

Our results This leads us to the motivation of our paper, which complements the results
of both [1,6]. On the one hand, we provide a discrete Ambrosio—Tortorelli approximation to
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the Griffith functional both in dimension d = 2 and d = 3, of the form

1 1
32 2 0@ D@ + 55 Y0 8 we)’ Divsu()

EeSy aeRg(_Q) aeRIV(2)
d 2 (1.4)
1 a1 2 v(a + Ser) — v(a)
ty 28 <g(v(a)—1) te Y ( ; :
ae2nszd k=1
a+Se 2874

where Sy is a set of lattice directions (depending on the dimension d), Ds su and Divs u
are suitable discretizations of the symmetrized gradient and of the divergence of the vector-
valued u, and the latter term is a discrete Modica—Mortola functional. Notice that Divs u
takes into account (d + 1)-point-interactions on a complete set of orthogonal directions (see
(3.4)). Then we prove, as main result (Theorem 3), that (1.4) I"-converges as ¢ — 0 to the
Griffith’s functional under the assumption that § << €.

On the other hand, we conclude the analysis started in [1] for the finite-difference approx-
imation of (1.1) in dimension d = 3, although with a different approach, by both rigorously
proving a compactness result under more general assumptions, and recovering an isotropic
surface energy in the limit. We also stress the fact that the extension of the two-dimensional
model to the case d = 3 is not just a minor modification but requires the introduction of
additional interactions in the elastic term of the energies by specifying the set of directions
S3 (see (2.24)); namely, we need to take into account also next-to-next-nearest neighbors
(NNNN) interactions, corresponding to lattice vectors & € {3(e] & ez * e3)}.

The aforementioned compactness result, which is the content of Proposition 1, determines
the functional space domain of the limit: we benefit from the recent results [21,25] and prove
that sequences (i, v:) with equibounded energies (1.4) converge (up to subsequences) to a
limit pair (u, v) € GS BDgO(.Q) x {1}. We refer the reader to Sect. 2 for a precise definition
of this function space, where also the value oo is allowed. We underline that our compactness
result, valid under the weaker assumption that g be bounded, cannot be obtained in our view
through any slicing procedure (as it happened, on the contrary, in [6]) and also refines the
compactness lemma [17, Lemma 1] to deal with the vector-valued case. Indeed, while in the
scalar-valued case controlling the total variation along d independent slices of u, is enough to
provide BV -compactness, no analogue procedure is at the moment known in GSB D (whose
definition [27, Definition 4.1] in principle requires a uniform control of the symmetrized
slices on a dense set of directions in the unit sphere, cf. also [27, Remark 4.15]). Such issue
prevents us to get a uniform bound in GSB D from a control on the slices corresponding to
the directions of the lattice vectors, that could be easily obtained from the discrete functional
as in [6,17]. We notice that the situation is different with respect to the B D case, where it is
enough to control the slices on a finite set of directions, see [2, Proposition 3.2].

In fact, we are able to prove that a continuous Ambrosio—Tortorelli functional, defined on
the standard piecewise affine interpolations i, of the u, and on suitable piecewise constant
interpolations v, . of the v, (different than the standard ones), bounds from below the
discrete energies (1.4). To this aim, taking the additional (NNNN) interactions is crucial in
dimension d = 3 . In addition, we do not need to add any L? fidelity term to the discrete
energies, since compactness in G S BDgo does not require such limitations and is also able
to handle the fact that # may take value oo.

The proof of the I"-liminfinequality is subdivided into two steps. The lower semicontinuity
of the elastic part of the limit energies (see Lemma 5 and Proposition 2) can be obtained by
combining slicing arguments on suitable interpolations of u, and v, with a splitting into
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sublattices of §Z¢, which are frequently used techniques to work with discrete energies with
both short and long-range interactions (see, e.g., [1,13]). It must be noticed, at this point, that
both the first two summands in (1.4) give a contribution to the second term in (1.1). As, within
the proof technique described above, both are assumed to be nonnegative, the constants u
and X appearing there are related by 2 = A + 26 with & > 0, as it also happened, for
instance, in the statement of [1, Theorem 7.1]. Hence, our main result is stated in terms of
the two indendent parameters A and 6 and is valid for materials whose Poisson ratio (due to
the inequality 2« > A) does not exceed the value %

The lower bound for the surface term, instead, requires a more refined blow-up procedure
(Proposition 3) and this is the very first technical point where we need to assume that g — 0,in
order to recover the optimal constant. Indeed a slicing argument under the weaker assumption
that §/& be bounded would provide a lower bound with a wrong constant. We remark that,
also in this proof, similar arguments as in Proposition 1 have to be used, in order to get
compactness of a rescaled version of the u.. Moreover, additional care is needed in order to
deal with the fact that our limit displacements may assume the value infinity (see e.g. Step 2
in Proposition 2).

The construction of a recovery sequence (Proposition 4) relies on the density result for
G S B D? functions [19, Theorem 1.1], recalled here with Theorem 1. The upper bound for the
elastic term is obtained by first reducing the discrete energies to continuous ones by means
of a classical translation argument (see, e.g. [1, Proposition 4.4]) and then by exploiting
the upper estimates coming from the approximations of f [((Eu)&, &) |2dx and f (div u)? dx
outside an infinitesimal neighborhood of the jump set of the target function u. The limsup
inequality for the surface term is developed as in [6, Proposition 4.2], by also employing the
one-dimensional solution to the Ambrosio—Tortorelli optimal profile problem.

We conclude our analysis by investigating the compatibility of our two-dimensional model
with the constraint of non-interpenetration. The answer is positive under the assumptions of
[18] but, in order to obtain the desired upper bound, we need to require the stronger scaling
5% — 0 between the parameters.

As a final remark, we mention that our results also give a partial insight on the case § ~ €.
Indeed, the constructions in Sects. 5 and 6 can also be used to show that, whenever the ratio
8/¢ stays bounded, the I"-limit of the energy (1.4) can be controlled from above and from
below by functionals of the kind (1.1), with different constants appearing in the surface term.
However, a precise characterization of the limit energy in this case has to face additional
issues. The analysis performed in [6] for the scalar-valued case, indeed, relies on two major
ingredients. First of all, the limit energy is characterized as an abstract integral surface energy
by means of the global method for relaxation introduced in [10]. This could be also done
in our setting, by exploiting a recent integral representation result for energies on spaces of
functions of bounded deformation [26] (see also [23] in the planar setting). However, a crucial
step in this procedure consists in proving that a separation of bulk and surface contributions
takes place in the limit. In [6] this is done by means of an explicit construction which, however,
is confined to 2 dimensions and strongly exploits the SBV -setting. A more general point of
view, also suitable for higher dimensions, is for instance used in [7, Proposition 4.11] with
the help of a weighted coarea formula. This is unfortunately also a tool which is not available
when dealing with (G)SB D functions. The investigation of these issues has therefore to be
deferred to further contributions.

Outline of the paper The paper is organized as follows. In Sect. 2 we fix the basic nota-
tion and collect some definitions and results on the function spaces we will deal with. In
Sect. 3 we introduce our discrete model and state the main results of the paper. Section 4
contains the compactness result of Proposition 1. Section 5 is devoted to the liminf inequal-
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ity, proved with Proposition 3, while Sect. 6 deals with the upper inequality (Proposition 4).
Eventually, in Sect. 7 we analyze the compatibility of the two-dimensional model with a
non-interpenetration constraint.

2 Preliminaries
2.1 Notation

The symbol (-, -) denotes the scalar product in R¢, while | - | stands for the Euclidean norm in
any dimension. For any x, y € RY, [x, y]is the segment with endpoints x and y. The symbol
£2 will always denote an open, bounded subset of R?. The Lebesgue measure in R? and the
s-dimensional Hausdorff measure are written as £¢ and H*, respectively. We will often use
the notation |A| for the Lebesgue measure of a Borel set A. The symbols < and > denote
the boundedness modulo a constant.

For any locally compact subset B C R? (i.e. any point in B has a neighborhood con-
tained in a compact subset of B), the space of bounded R™-valued Radon measures on B
[respectively, the space of R™-valued Radon measures on B] is denoted by Mj(B; R™)
[resp., by M(B; R™)]. If m = 1, we write M (B) for Mp(B; R), M(B) for M(B; R), and
MZ(B) for the subspace of positive measures of My (B). For every u € My (B; R™), its
total variation is denoted by |u|(B). We write {eq, ..., eq} for the canonical basis of R4,

2.2 GBD, GSBD, and GSBD?, functions

We recall here some basic definitions and results on generalized functions with bounded
deformation, as introduced in [27]. Throughout the paper we will use standard notations for
the spaces SBV and S B D, referring the reader to [3] and [2,9,32], respectively, for a detailed
treatment on the topics.

Leté € RA\{O}and [T = {y e RY : (£,y) = 0}. If y € [T€ and £2 C R? we set
Qeyi={teR:y+16ecRand 2 :={y e I°: 2, # V). Givenu : 2 — RY,
d > 2, we define u®Y : £2¢ , — R by

WS (1) = (u(y +18), €), 2.1)
whileif 2 : 2 — R, the symbol K8+ will denote the restriction of 4 to the set £2¢,y; namely,
hEY (1) := h(y + t&). (2.2)

Definition 1 An £¢-measurable function u : 2 — R4 belongs to G B D(S2) if there exists
a positive bounded Radon measure X, such that, forall t € C 1 (Rd ) with —% <t< % and
0<1t' <l1,andall& € S9-1_the distributional derivative Dg(t({u, &))) is abounded Radon
measure on £2 whose total variation satisfies

| De (r((u, £)))| (B) < Au(B)
for every Borel subset B of 2.

Ifu e GBD(£2)and & € ]Rd\{O} then, in view of [27, Theorem 9.1, Theorem 8.1], the
following properties hold:

(@) i (1) = (Eu(y + 16)E, &) forae. 1 € 25;
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(b) Jey = (Jf)§ for H" l-ae. y € I15, where
JE = e du st () —u” (), 6) #0): 23)

Definition 2 A functionu € G B D($2) belongs to the subset GS B D(£2) of special functions
of bounded deformation if in addition for every & € S¢~! and H¢~'-a.e. y € IT¢, the function

uby belongs to SB Vloc(.QyE).

By [27, Remark 4.5] one has the inclusions BD(£2) € GBD(£2) and SBD(£2) C
GSBD(£2), which are in general strict. Some relevant properties of functions with
bounded deformation can be generalized to this weak setting: in particular, in [27, The-
orem 6.2 and Theorem 9.1] it is shown that the jump set J, of a G B D-function is
H?~L_rectifiable and that G B D-functions have an approximate symmetric differential Eu(x)
at £%-a.e. x € £2, respectively. The space GSBD?(£2) is defined through:

GSBD*(2) :={u € GSBD(2) : Eu € L*(2; RY 1?=1(J,) < +o0}.

sym

Every function in GSBD?(£2) is approximated by bounded SBV functions with more
regular jump set, as stated by the following result ( [19, Theorem 1.1]). In order to deal with
the Dirichlet boundary value problem (in fact we will impose a Dirichlet boundary datum
up € H! (Rd ; Rd) on a subset dp 2 C 052), we report a version adapted for boundary data
(cf. [19, Section 5]). For technical reasons, we suppose that 952 = dp2Udy 2UN with ap 2
and dy §2 relatively open, dp 2 Ny 2 = @, HI "1 (N) = 0,0p2 # 8, 3(dpR2) = (I $2),
and that there exist a small § and xo € R9 such that for every 8 € (0, 4)

05,4, (0p82) C £2, (2.4)

where Ojs (x) :=x0 + (1 — 8)(x — x¢).
In the following, we denote by tr(u) the trace of u on 952 which is well defined for
functions in GSBD?(£2) if §2 is Lipschitz (see [27, Section 5]).

Theorem 1 Let 2 C R? be a bounded open Lipschitz set, and u € GSBDQ(.Q; Rd). Then
there exists a sequence u, such that

() un € SBVE(2; RY) N L®(2; RY);

(ii) each Jy, is closed and included in a finite union of closed connected pieces of C L
hypersurfaces;

(i) u, € WH(2\J,,; RY), and

U, — u in measure on 2, 2.5)
Euy — Euin L*(2; RE), (2.6)
HN (I, AT) — 0. 2.7

Moreover, if dpS2 C 052 satisfies (2.4) and ug € HY'(R?; R?), then one can ensure that each
u, satisfies u, = uq in a neighborhood U, C §2 of dpS2, provided that (2.7) is replaced by

lim HIN () = ROV () + HOT {tr(u) # tr(uo)} N dp2). (2.8)

A further approximation result, by Cortesani and Toader [24, Theorem 3.9], allows us to
approximate G S B D?(£2) functions with the so-called “piecewise smooth” S BV -functions,
denoted W(£2; R¥), characterized by the three properties

u e SBV(2; RN W™ (2 \ J,; RY) for every m € N,

HN T\ Ju) =0, (2.9)

J, is the intersection of £2 with a finite union of (d—1) -dimensional simplexes.

@ Springer



193  Page 80f46 V. Crismale et al.

As observed in [20, Remark 4.3], we may even approximate through functions u such that,
besides (2.9), also J,, C £2 holds and the (d—1)-dimensional simplexes in the decomposition
of J, may be taken pairwise disjoint with J, N IT; N IT j = ¢ for any two different hyperplanes
I1;, IT;. Furthermore, in the assumption under which (2.8) holds true, we may also ensure
that # = ug in a neighborhood of 3£2. We will employ these properties in Sect. 6.

We recall the following general GSBD? compactness result from [21]. In the follow-
ing, when we deal with sets of finite perimeter, such as A°, we identify the set with its
subset of points with density 1, with respect to d-dimensional Lebesgue measure (cf. [3,
Definition 3.60]), while we denote explicitly their essential boundary with the symbol 9*.

Theorem 2 (GSBD? compactness) Let 2 C R be an open, bounded set, and let (u,), C
GSBD?*(£2) be a sequence satisfying

suppen (1€unll 2@y +H ' (W) < +o0.

Then there exists a subsequence, still denoted by u,, such that the set AJ° = {x € §2 :
|un(x)| — +oo} has finite perimeter, and there exists u € GSBD?*(2) such that

(i) up, —> u  inmeasure on 2\ A°,

(i) Eup—Eu in L*(£2\ A% R,

sym

(i) liminf #9471 (J,,) = RN, U (87 A N 2)). (2.10)
n—0o0

GSB D2, functions.

Inspired by the previous compactness result, in [25] a space of GSBD? functions which
may also attain a limit value oo has been introduced, as we recall. The space RY ;= RYU{o0}
(with its sum given by a + oo = oo for any a € R?) is in a natural bijection with S¢ =
(€ € RIF! . |g] = 1} through the stereographic projection of S¢ to RY: for & #* ed+1,

P& = 1—517,,“(517 o ED), plegr1) = oo. Let ¢ : RY — S? denote the inverse. Note that
dga(x, y) =Y (x) = ¥ (y)| forx,ye R’ 2.11)
induces a bounded metric on R?. Then
GSBD?2 () :=

{u: 2 — R measurable : A;° = {u = oo} satisfies Hd_l(a*A,fo) < 400,
i = uxe\ax + 1xax € GSBDX(R) forallr € Rd}. (2.12)
Symbolically, we will also write u = u 2\ Ac +00 x A% . Moreover, forany u € GSBDgO(.Q)
Eu=0inA}° and J, = JMXQ\Ago U(@*A° N £2). (2.13)
In particular,

Eu = Euy £%ae.on 2 and Ju = Jg, H 'ae. foralmostallz € R, (2.14)

where i, is the function from (2.12). Hereby, we also get a natural definition of a normal v, to
the jump set J,, and the slicing properties described for GS B D? still hold in £2 \AZ°. Finally,
we point out that all definitions are consistent with the usual ones if u € G S BDZ(.Q); ie.,
if A>° = ¢. Since GSB D?%(£2) is a vector space, we observe that the sum of two functions
inGSB D<2>o (£2) lies again in this space. A metric on GSB DgO(Q) is given by

d(u,v) = / dra(u(x), v(x)) dx, (2.15)
2
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where dpa is the distance in (2.11). In Sects. 4 and 5, when we work in an extended domain
2, we will still write d(u, v) for fQ dpa(u(x), v(x)) dx. We say that a sequence (u,), C
GSBD2 (§2) converges weakly to u € GSBD2 (£2) if

SUP, N (||5un lz22) +HI- (Ju,,)) < +o0 and d(u,,u) - Oforn — co. (2.16)

2.3 Some lemmas

For a < b, we introduce the space PCjs(a, b) of piecewise-constant functions on partitions
of (a, b) C R with size §; namely,

PCs(a,b) .= {v : (a,b) — R : there exists a partition {xi}fvzo of [a, b] such that
|xi+1 — xi| = § and v(x) = v(x;) on [xi,xz'+1)}-

For every v € PCs(a, b), we denote by 0 the corresponding piecewise-affine interpolation
on the nodes of the same partition, defined as
v(xi41) —v(x)

X)) ==v(x) + ——————(x —xi), X € [x;, Xiq1). (2.17)
Xipl — Xi

Lemma1 Let (ve)e be a sequence such that v, € PCs(a, b), ve > 0, and let (0g). be the

sequence of the corresponding piecewise-affine interpolations defined as in (2.17). Assume
that there exists C > 0 such that

1 b b,
7/ (0e (1) — 1)2dt+s/ (De(1))?dt < C. (2.18)
& a a
Then, setting
I := {s € (a,b) : s, — s such that limi(I)lf Ve (Se) = 0} , (2.19)
£—

we have:
(a) for every fixed constant Nc > 0 depending only on C, it holds that

#I < Nc;
(b) for every A open such that A CC (a, b)\1, there exists no > 0 such that
lim inf inf > na.
migt nfvee) =
Proof The assertion (b) immediately follows from (a). As for the proof of (a), let us
fix N¢ := [4C] and, arguing by contradiction, we assume that #/ = N¢ + 1 and

I={s!, s2,..., sNetly For every such index i, we denote by (sé)g the sequence defined
by (2.19) such that s, — s* and

lim inf v shy =0. (2.20)
£—

Since by (2.18) v, — 1 a.e. in (a, b), we can find a sequence (té)g such that

i) s < t’ < s’+l

(ii) té — s
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(iii) liminf ve(r) = 1.
e—0
Moreover, we may assume that the subsequences of sé and té realizing the liminfin (2.20) and
(iii), respectively, have infinite terms of the sequences of the indices in common. Now, let 5’
and fg’ be the greatest nodes of the partition that are less or equal than s; and ¢, respectively.
Since § — 0 as & — 0, we have that |s} — §.| — O and |r} — 7{] — 0, which, combined with
the fact that 9 (51) = v, (51), D¢ (1) = ve(£!), with (2.20) and (iii) give
lim inf 9, (5]) = 0,
e—0
lim inf 0, (7)) = 1.
e—>0
Now, for every i and ¢, let 7! be the first node of the partition such that 7 > §i and

Vg (fé) > %, and let rsi be the first point in (§é, tz) such that f)g(ré) = %, whose existence is
ensured by the Mean Value Theorem. We then have

1 .
ve(s) < > Vs € (5, 75),
whence
1 . ,
[ve(s) — 1] > 5 Vs € (5, T)). (2.21)

Now, by Young’s inequality and (2.18),

Nc+1 Nc+1

C = liminf Z/ [os(£) — 1][9s(£)| dt > Z hmmff [0s (1) — 1[0 (£)| dt

6
Nc+1

Z hmmf/ [9s(1)| dt > 7(Nc+ 1,

@. 21) 1

which gives a contradiction. O

Lemma2 Let 2' CC 2 and (fe)e, (g¢)e be sequences of real-valued measurable functions
such that

Q) fo—> faein, 0< fo(x) <M;
(ii) ge—gin L*(2"),
for some measurable f and g. Then,
fege—fg in L*(2").

In particular,
lmM/%w%mz/U#mm
e—0 Q Q

For § > 0, and for any measurable function u : 2 C RY — RY and y € Rd\{O} we
define the translations

Tou(x) == u (ay +6 EJ) , (2.22)

where |z] = Zﬁizl L(z,ei)] e; and, for every t € R, 7] denotes the integer part of 7. We
have that Ty‘.su is constant on each d-cube o + §(0, 11, o € 8Z9. Moreover, the following
result holds (see, e.g., [1, Lemma 2.11]).
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Lemma3 Letus — uin LY(2;: R9) as 8§ — 0. Then for every $2' CC £2 it holds

)

lim Tous — s way dy = 0; 2.23
Jim, o 1T us — ull 1o ray dy (2.23)

(i) ifCs C [0, 11% is afamily of sets such that li(rsn i(I)lf |Cs| > O, then there exists a sequence
—

vs € Cs such that Ty‘saug — uin LY(2";RY).

Letd € {2, 3}. We set

Sqg=1{ej:i=1,...,d}Ule;+ej,ei—e;: 1<i<j=d}

U{fertejte}: 1<i<j<k=d} 224
and consider a kernel function o : Z4 — [0, 4+00) such that
o(§) =oa(§) (2.25a)
and o (&) # 0O for every & € S;; we will often use the shortcut
oy :=o(r)when [£] =r. (2.25b)

Lemma4 Letd € {2,3} and M be a d x d symmetric matrix. Then, defining Sg and o as
before, it holds that

2
d d
0
Zﬁws,snz=c1,g,dZM3,.+zcz,g,d > MEtcsea (ZM”-),
i=1

£eSy i=1 l<i<j<d

(2.25¢)

where

o 8o
Clod = (m + Tﬁ(d - 2)) . Crod = <oﬁ + Tﬁ(d — 1) - 2)) ,

(% s
c3,a,d~—( P+t - 2)).
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Proof We can rewrite the sum on left hand side of (2.25¢) as (recall that {ey, ..., e4} denote
the canonical basis of R¥)

o1 ZMn + 22 (Mt ep)e; e

I<i<j<d
f 3 toe toe 2
[(M(e; £ejEter), e £ejLe)l
1<z<]<k<d
—UIZM%F— > (Mii + Mjj £ 2M;5)°
I<i<j<d

- 9f D (Mii + Mjj + My +2M;j & 2Mjy £ 2M i)

I<i<j<k<d
aﬁ(d ) T ?
_UIZM”-‘,-ZO'I Z 3 ZM”"FT ZMH
I<i<j<d i=1 i=1

d 2

+—La-na-2 Y —1)(d —2) (ZMw) :
I<i<j=d i=1
which coincides with the right hand side of (2.25c¢). O

Remark 1 Notice that setting ¢, 4 := min{c ¢4, ¢2.6.4}, from (2.25c) we may deduce the
bound

Go al M2 TEL (M 2.25d
&o.a|M| sg el £.8)° (2.25d)

Moreover, choosing in (2.25¢)

3

—o =1 ifd =2,
{‘71 (I . (2.25¢)
O1=1,0,5=1%0/3= 33 ifd =3,

we obtain the identity

1
> B Me )P = M+ 3 [Tem .

4
5, ¢l

3 Discrete models and approximation results

Letd € {2,3}, 2 C RY an open, bounded, Lipschitz set, with 02 satisfying (2.4) and the
related assumptions, and let ug € H 1 (Rd; R4 ). For any § > 0, we consider the scaled lattice
874 and set §25 := 2 N 8Z¢. We introduce suitable discretizations for both the symmetrized
gradient and the divergence. For & € R4 \{0},8 > 0,andu : 2 — R4 measurable we define

Diu(x) := <u(x + 88) — u(x), %>

|Ds eu(x)|? = [D5u(x)|> + | Dy Su(x).

3.1)
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For a scalar function v : £2 — R, we will often adopt the notation

A5v(x) == v(x + 88) — v(x). (3.2)
Moreover, for any {1, ..., ¥4} orthogonal basis of RY, we set
d
divy Vi) =Y DY u(x). (3.3)
i=1
Then we define
. 2. . kier,kaer, ..., k 2
IDivs u(x)|* := > |divy €D 2e2 ka1 2, (3.4)

(kt,....kg)e{=1,1}4

In order to impose a non-interpenetration constraint in the limit fracture energy, we treat
differently in the approximation the positive and negative part of the discrete divergence. We
set, for u: 2 — R measurable,

(divi) VY (x)

d +
(> pfruw) (3.52)
i=1

IDiviu(x))? = > |(divE)ykrerkaeakaeay (x)|2, (3.5b)
(ky,....kg)ef{—1,1}4

Foru: 2 — R4, v: 2 — Rmeasurable, £ € Zd\{O}, o|¢| fixed from (2.25), we consider
the functionals Ff , Fe, FIV defined as

&

1 _ 2

Fi,v)i= o )0 072 @@)? [Dsgu@]”, Folw,v) =) o Fi ),
aeRs () §€Sq

(3.6a)
. 1 )
F&u, v) == 2 > 8 (w@)? IDivsu(@) [, (3.6b)
aeRI(2)
where

d
R} (2) := {a €824 : [a — 86, a +8E] C 9} RIV(2) = ﬂkgf(fz), (3.7)
i=1

e )
and FIV', FAV° | F4V-NT oiven by

4 1
FO () = 50 3 892 0(@)? [Divy u(e)| (3.82)
aeRIV(2)
L 1 ) . L
FM W= o Y 87 Divu@) RSN ) = FIY (u,v) + FIY ().
aeRIV(2)

(3.8b)
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Notice that F’ SdiW does not include any contribution in v. Moreover, we introduce the discrete
Modica—-Mortola-type functional

d B 2
G.(v) ::% 3 s L@ — 12 +e 3 (U(“Hi’;) ”(O‘)> . (3.9
e € J=l
a+de e

It will be useful to introduce also a localized version of the functionals defined above. For
every A C 2 open bounded set, the symbols Ff(u, v, A), ngv(u, v, A) and G,(v, A)
denote the energies as in (3.6a), (3.6b) and (3.9), respectively, where the sums are restricted
toa € Rg (A) defined as in (3.7) with A in place of £2.

For 1,6 > 0, let EX? and (E}}), be defined on L'(2; RY) x L'(2; R) by

EX%(u, v) := A Fe(u, v) + 0 FIV(u, v) + G, (v)
and
(EN)e(u, v) := A Fo(u, v) + 0 VN, v) + Ge (v),
Let us define the class of vector-valued piecewise constant functions on £2

As(2; RY) = {u :2 - R u(x) = u(w) forevery x € (o +[0,8)9) N 82 forany « € 52"},

and, analogously, the class of real-valued piecewise constant functions .45(£2; R); in order
to deal with the Dirichlet boundary value problem, we set

AP (2; RY) = lAa(sz; RY): u = up(e) ina +[0, 8)* N 2 for any « € §Z°
such that (« + [0, §)4) N dp 2 £ @}

and A?ir(Q; R) for real-valued functions, with ug replaced by the constant function 1.

We introduce the energy functionals (EEié )e and, for every M > 0, (E)I:{%M)g defined for

u and v measurable by

EP) (. v) = {E;"G(u, v), if (u,v) € ADT(2;RY) x APT(2; R),
r.0)ellt, V) .=
’ +

00, otherwise,
and

(ENM) v)‘_[(Eﬁlg)g(u,v), if (u, v) € As(82; R x As(£2; R) and ||ul ;0 < M,
X0 AN =

+o00, otherwise.
(3.10)

For fixed A, 0 > 0 we consider the Griffith functional G, ¢ definedon GSB Dgo (£2) (recall
(2.13)) by

Goo(u) == A/ |Eu(x)|? dx + (% + 9) / |div u(x)|? dx + =N, N 2),
2 2
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and its Dirichlet version
A
g% () _A/ |Eu(x))? dx + (5+9>/ div u(x)|* dx
2

+HEN((J N 2) U ({tr(u) # tr(ug)} N 9p ).

Notice that a more compact expression of the jump part is obtained by considering a set
£2 D 2 with

2NiR =dp0, (3.11)
and by extending u to a function ' € GSB Dgo (5) defined as
W = {“ in &2, (3.12)
up in 2\ 2 :
then
Jo =Ly N 82) U ({tr(u) # tr(ug)} Nops2). (3.13)
We also set

5D (1. ) GP¥(w), ifu € GSBD*(2)andv =1ae.in 2,
u,v) =
~+00 otherwise

and, for every M > 0,

M, v) = !Qx,e(u), if [u] - v=0H""-ae onJy, ullpe <M, v="1ae in 2,

+00, otherwise.

Notice that gD”(u) = ~D‘r(ut, 1) for £%-ae.t € RY, by (2.14). Moreover, g)\ P dlsplays
a non-interpenetration constraint, not present in QD“ We define it directly accounting for
an L* bound for |u| at level M, for technical reasons. Finally, we do not take into account
the role of boundary conditions for the functional with non-interpenetration constraint, since
we employ results from [18] (cf. Lemma 7), where the boundary value problem was not
explicitly addressed.

We are now ready to state the main results of the paper. In the following we assume that
ug, A, 0 are fixed and that lim,_.o ¢ = 0.

Theorem 3 Under the assumptions above, it holds that:

i) ase — 0O, (ED”)S I"-converges with respect to the topology of the convergence in
measure to QADIGI ;
(ii) for ((ue, ve))e such that sup,(EL)e (g, ve) < 400, there exists u € GSBDZ,(£2)

such that d(ug, u) — 0, ve — 1, and
G, v) < hm 1nf(ED1r)5(u£, Ve). (3.14)

We remark that any sequence of minimizers (ug, vg). for (ED“)E satisfies, up to a sub-

sequence d(ug,u) — 0, foru € GSBD2 (£2) such that any (it;, 1) minimizes G ND“ g (recall
Uy = uy@\Ax +1xax). In particular, u, converges to u a.e.in £2\ AJ° and the bulk energles
of u, vanish in AJ° (cf. [19, Theorem 5.8]).

Theorem 4 Under the assumptions above, for every M > 0 it holds that:
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() gy g™ < r-liminf,o(E) 5™
(ii) every ((ug, v¢))e such that sup, (EE%M)S(ME, ve) < 400 converges, up to a subse-
quence, in L'(2; RY) x L' (2) to (u, 1) for u € SBD*(£2);
(iii) ifd =2 andlim, o % =0, then G, g™ = I'-Timsup, _o(E; ;")

where the I'-lim inf and I"-l1im sup above are with respect to the strong LY(2; RN x L1(2)
topology.

In Sects. 4 and 5 we actually work in the enlarged configuration 2 c R satisfying (3.11)
and with functions u,, v, in ABD“(.Q; RY), ABD“(.Q; R), where

AP (2 RY) = {Aa(sz; RY): u = up(e) in a + [0, 8)¢ N £2 for any o € §Z¢
such that (o + [0, 8)) N2\ 2 # @}

and A?ir(ﬁ; R) is defined similarly, for 1 in place of ug in 1%} \ £2. In particular, if u; — u
in GSBDgO(.Q) for some u, then u = ug in §2 \ §2. Let us also fix once and for all A, 6 > 0.

4 Compactness

In this section we prove a compactness result (Proposition 1) for the discrete approximations
of the Griffith energy, that holds under the assumption that g be bounded. We show that
sequences (i, ve): with equibounded energy E*? are approximated, in the sense of the
convergence in measure, by sequences with bounded continuous Griffith energy (for which
compactness is known from Theorem 2).

Proposition 1 Let g be bounded as ¢ — 0. Let (ug, vg)s C L! (5; Ry x L! (5; R) be such
that us € APT(2; RY), v, € AP (2; R) with

sup E;\’O(ug, ve) < +00. 4.1
&

Then there exist functions u, € SB D2(§; ]Rd) such that
ue — i = 0 L%a.e in 2 (4.2)

and
sup { /N |Eite (x)]? dx + H"—I(Jﬁe)} < fo0. (4.3)
>0 2
Moreover, if ||ug|| Lo < M, then ||itg| g~ < M.
Proof We introduce a suitable triangulation 7;‘1 of 5, based on the Freudenthal partition Xy
of the d-cube (see Fig. 1).
It is defined as the set of all d-simplexes T obtained through minimal chains of ordered

vertices connecting the origin to the vertex (1, 1, ..., 1). They are d! congruent simplexes
and each has volume 1/d!. In the case d = 2, we choose

2y :=1{T12, T2} = {conv{0, ey, ] + €2}, conv{0, ez, e1 + e2}},
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Fig.1 The Freudenthal
decomposition X3

(1,1,1)

(0,0,0)

while if d = 3, the decomposition is given by
23 :={T13, 123,133, Tu3, T5 3, Ts 3},
where
T3 =conv{0,er,e; +e2,e; +ex +e3}, Tr3=conv{0, ey, el +e3, e + e+ e3}
T33 = conv{0, ez, e1 +e2, €1 + e +e3}, T43 =conv{0, ez, e2 + €3, ¢] 4+ €2 + €3}
Ts53 = conv{0, e3, e1 +e3,e1 +e2 +e3}, Ts3 =conv{0, e3, e2 + €3, ] + €2 + e3}.

For every simplex T € X4, we denote by Dr the set of the edges directions for 7', which

contains d(d + 1) /2 linearly independent vectors of S;. For any vector £ € R?, we denote by

K?T the coordinates of £ ® £ in the basis {f)~j ®7;: & € Dr} ofR‘si;j,‘f, where ¥ := £, /|;].
Finally, we define the triangulation of £2 induced by the partition X as

T = {a+6T:T € T4, a €879 N 2).

We then denote by i, = (@}, ..., 4¢) and 9, the piecewise-affine interpolations of u, and
Ve On 7;‘1, respectively. We also consider the piecewise constant functions

Din.e (¥) 1= min{ve(B), B € a+8([0,119NZY)}, ifx e a+][0,8)". (4.4)

The result will be an immediate consequence of the following crucial claim and of [1,
Proposition A.1, Remark A.2], which hold true for any distance inducing the convergence in
measure on bounded sets (in particular, for the metric d(u, v) defined in (2.15)).

Claim: There exists a set K, C .5, with

HITN0*K,) < C, |Ke| > 0 (4.5)
such that, setting i1, := ii,(1 — xg,), we have that u, satisfy (4.3). We subdivide the proof

of this fact into two steps.
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Step 1: The preliminary remark is that from the equi-boundedness of the energies (4.1) we
can get

/xﬁmm,g(x)ﬂwﬁs(x)ﬁ dx<C (4.6)

2

/N |06 (x) — 1]| Ve (x)|dx < C. 4.7)
2

Let n > 0 be fixed, and consider QN = {x € Q- dist(x, R \ .(5) > n}. Since i, is the
affine interpolation of u, on each simplex of partition Xz, we have that

(ue(si) — ug(sj), v)

((Elg)v, v) = (4.8)
ls;i — sl
for every pair s;, s of vertices of [0, l]d, with v = |i: :;I

In order to prove (4.6), a simple computation based on (2.25d), (4.4) and (4.8) shows that

/N (Dmin,e (X)) |Ee (x)|* dx
on

O|g| ~ 21/ 0n 2
p min,e 5 & ) d
< y /a+5[01]d(v L) (EE. ) d

Co.d ~
@4 es74nG

Y 2y oy / (Bin e 2N E e (0, £) P dr

C
geSy 0 yeszdnG Tezy
2

SDIECED D B ICHACS i) S5 NI
o+ j

Co.d ~
@4 G es7dnG TeXy
2

<> 2 Z Ze“(vs(aws,))p ue (e +657)]

C
geSy 0 yeszdnG Tezy

where s;, 5; +&; represent the only two vertices of T whose difference is &;. Thus, by simple
inequalities we infer that

/N (i ()18 (0O dx S Fo (e, ve).
On

whence the assertion easily follows from (4.1) and by the arbitrariness of . For what concerns
(4.7), we notice that v, (x) can be rewritten on each simplex « + 8T, with vertices o + 8&;,

i =0,1,...,d (we use here the convention o + 850 = ), as
De(x) = Y pi(x)ve(er + 68), forevery x € a + 6T, (4.9)
i=0
d
for some affine functions p;(x), i =0, 1, ..., d such that Z pi(x) = 1.
i=0

We first prove that

~ TV -
W + eV () dx < Ge(ve, 27) (4.10)

on
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for § small. Indeed, on the one hand, since 0 is the piecewise affine interpolation of v, on
each simplex of the decomposition, we deduce that

d
1 £ 2
Ve (x0)]* = 52 E (Ag’ve(oz)) , forevery x € a + 4T,
i=I

so that, by means of elementary inequalities, for § sufficiently small we have that

d
/~ e|Vie(x))?dx < C Z Y L 2|:Z (Ag"vg(oz))z]
Il

aedZING i=l1

On the other hand, rewriting 0, (x) as in (4.9) on each symplex 48T forevery a € §Z% N 2,
with the convexity of z — (z — 1)? we obtain

2

(Ve (x) — 1) 1 /

—dx = i & +51 - d
./a+5T & g a+8T (Zp (v (@ si) ) g
1 p 2
;(Z(ve(wasi)—l) /

a+8T

IA

pi(x) dx)

(ve (0 + 8&;) — 1)
= 3dv dZ

&

Hence, summing up on all simplices o + 67 € ’Z;d we finally get, for § small enough,

1y 512
> 5"de3/~ Qe = D7 4y (4.11)

~ n &
aedZiNg 2

Now, as a consequence of (4.10), (4.1) and the Cauchy—Schwarz inequality we deduce
that

1 ) —1)?
C > 3 et = 1) + €| Ve (x) > dx > /N [De(x) — 1[|VDe (x)] dux,
& N

whence (4.7) follows by the arbitrariness of 7.

Step 2: We can start with the construction of the set K.. As a consequence of the coarea
formula and (4.7), we then have

1
C > /~ [De(x) — 1]| Ve (x)|dx > / (1-— s)Hd_l(B*{ﬁs <stN2)ds, (4.12)
Q2 0
whence, by the mean-value theorem, there exists s € (0, 1), say § = %, such that
! 3
/ (1 —s)H 1@ (D < s} N 2)ds > ZHd*l(a*lgl), (4.13)
0
where we have set
1 ~ 1
K, =1xe$2: vg(x)fz .

Thus, with (4.12) and (4.13) we deduce that
Hi-'o k! < C. (4.14)
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Furthermore, again by the equi-boundedness of the energies and (4.11), we have
IK}| < (é /ﬁ(ﬁg(x) — 1)2dx) e <Ce—0. (4.15)
Now, with k > 0 fixed, we consider the set
If,(s = {oz €es7inQ: ?g)‘jﬂvg(a) — V(o £ 88)|} > K} ,

and, denoting by Q, the cube « + [0, 8)?, we correspondingly define

K= ] Qu.

K
a€ly s

Notice that, if & € Z¢ , then by the triangle inequality there exists 8 € a +8([—1, 1] N Z%)
such that

max{|ve(B) — ve (B + dej)|, [ve(B) — ve(B —bej)|} = 2 j=1....d. (416

Since different o', " € Z7; may share the same B complying with (4.16) if and only if
o —ao” €8(-2,21YNZY), then
#(B : (4.16) holds) > _ Py (4.17)
o T #([=2,21N 27 .

From (4.1), the definition of Ig.’ s> and (4.17) we then infer that

ve () — ve(a & bej) 2

d
C=Ge(we) = ) ed'| )

: 8
ezt j=1 (4.18)
_ exc2sd—2 T
= d2#([=2,219Nzd) T
whence
e = zpay

Consequently, taking into account the boundedness of the ratio g, we have

Cs
HITH@KE) < Y0 TN Qo) = 25Ty < 5 < oo,

‘151—:3
Cs 4.19)
d
K= 3 10a] = 6%z < (;;)54 0.
otEI;‘ﬁ

Hence, setting
Ke. =K' UKX,
with (4.14), (4.15) and (4.19) we find that
HIN (0% K,) < Cand |K, | — 0.
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It will be sufficient to show that, for every fixed k > 0,
~ 1
2\ Ke i C {x € 821 Upine(x) > Z - 2K} . (4.20)

Indeed, choosing, e.g., k = 1¢ 6 and setting K, := K, L (4.20) and (4.6) allow us to deduce

a uniform bound for ||€ii, || ;2 outside the set K, namely,
/ |Eite ()] dx < 64 / (Bmin,e ()| Elte () > dx < C. 21)
2\K, Q2
In order to prove (4.20), let x € ﬁ\Kg,K and o € 8Z9 N 2 be such that x € Q. Since

De(x) > 1 it must be

1
maX{vs(a) {vg(aiSE)}gesd} "

&

Now, o ¢ Ty s, so that ve (o) > % — k and, by triangle inequality, Uy ¢ (x) > % — 2k as
desired.

Finally, setting i1, := i, (1 — xk,), we notice that J;, = 8* K so that, taking into account
(4.21) and H4~1(9*K,) < +oo we obtain (4.3). By the way, it is immediate to see that
llugllLoo < |lug||Loe. This concludes the proof of Claim and then of the theorem. ]

5 Semicontinuity properties for the Griffith energy

This section is devoted to prove the semicontinuity inequality (3.14) in Theorem 3, assuming
the convergence of u, to u guaranteed in Sect. 4 on sequences with bounded approximating
energies. In particular, we deduce the lower limit inequality for the I"-convergence approxi-
mation of the classic Griffith energy, with Dirichlet boundary conditions.

As in Sect. 4, we work with the extended set 2 c R?, d e {2, 3}, and functions in
AP (2, RY), ADIT(2: R). As observed in Sect. 3, if u; € ADT(2; RY) are such thatu, — i
a.e.in .Q then 4 = ugin Q \ 2. Then (recall the definition of &’ (3.12) and (3.13)), prove the
lower limit inequality for (E Dlr) ¢ 1s equivalent to prove the lower inequality for the energies
(Ej D“)e defined in the very same way of (E; D“) ¢, but with all the integrals and corresponding
notation considered in £2 in place of £2. To ease the reading, in the following we keep the
same notation of Sect. 3 for the functionals, just referring to the set 2 in place of £2 in
integrals, in sets of nodes, and in .A?ir (.{5; RY), .A?ir (.{5; R).

We estimate separately from below the terms F, and F3V (Lemma 5, Lemma 6, and
Proposition 2), and then address in Proposition 3 the lower bound for the Modica—Mortola
part G, by ablow-up argument. We remark that the results concerning F; and F, fi" hold under
the only assumption that § = &(¢) vanishes as ¢ — 0. In contrast, we use the assumption
limg_,0 g = 0 to estimate the Modica—Mortola terms from below in Step 3 of Proposition 3.

Lemma5 Letu, € A?ir(ﬁ; R, v, € A(;Dir(ﬁ; R) be such that
SUp(EP), (e, ve) < +00, (5.1)
&€
d(ue, u) — 0, withu € GSBD2,(22), and ve — 1 in L2(2). Then, for every & € Sy,

1121 _jgf FS (e, vg) >

0 / (Eu)g, &)1 dx. (52)
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[
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B
==
-I

b

Fig.2 The lattice corresponding to £ = e| + e + e3, with the plane /T & from two different points of view.
Notice that the main sidelengths are «/5, ﬁ, \@, so that Mg = 6

Proof For simplicity, we develop the proof in dimension d = 3, although the following
slicing argument would hold in any dimension d > 2. Let £ € S3 be fixed, and {&;, &, &3}
be an orthogonal basis of R such that & € Z3 for every i = 1,2,3 and & = £. Setting
Q¢ = Z?ZI[O, 1)&;, we note that Mg := |Q¢| = det(§1, &2, &3) and Mg € Z. If we denote
by z; the points of I7¢ such that

{z:l=1,..., Mg} :=7Z°N Q¢,
we can split Z3 into the union of disjoint copies of Z¢ := @?:1 7&; as

M

M
7 =Jz8 =@+ 25
=1 =1

(see the proof of [13, Theorem 4.1] and Fig. 2, in the sample case of £ = e1 + e2 + €3).
We claim that

- 1
liminf > 8(ve(e)* (e (o + 8¢) — ue(@), £))* = — /N((Su(x)é, £))*dx (5.3)
e—>0 - Mg Q
aezl(2)
for { = &£ and foreveryl =1, ..., Mg, where Zé(ﬁ) = Rg (.5) N 825, The conclusion
(5.2) will follow up to multiplying by L both the sides of (5.3) and summing up over the

. 1el*
sublattices.
In order to prove (5.3), we introduce two other piecewise constant interpolations i, and
Ue of u, and v,, respectively. For « € Zé(.Q) and Q¢ as before, we set

e (x) == ugs(a), Ug(x) 1= ve(ar), x €a+8Q¢. 5.4

The triangular inequality implies that v, — 1 in L! (5). We also have that d (ii,, u) — 0.
This follows from the fact that u, — i, — 0 in measure. To see this, set g§ = arctan({itg, ¢)),
gg = arctan({u,, ¢)), ¢ € {ey, €2, e3}. We have by definition of the interpolants that

/ 122 (x) — g¢ (x)| dx =/ 185 (@) — g8 (x)] dx
a+8Q¢

a+8Q¢

< Z/ . lgf (x — 89i) — gf ()| dx,
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where N is finite depending on & and ; are the vectors connecting o with the N¢ remaining
integer vertices in Q. We now observe two facts: (1) from Proposition 1 we have that there
exist u, with u; — u, — 0 in measure and u, — u weakly in GSBD2 (.Q) (2) arguing for
any fixed { = ¢; asin [21, proof of Theorem 1.1, Compactness] we have that arctan((u,, ¢))
is compact in Ll(ﬁ) (in fact, in Q \ A%, arctan((u, ¢)) — arctan({u, ¢)) forany ¢ € Sz,
and, in AS°, |arctan({ug, ¢))| — % for H2-a.e. IS S2, but the limit exists for any ¢). Then
gt is compact in L'(£2) so that, summing up on all @’s in Zs(£2) and using the Fréchet—
Kolomogorov criterion, we get g£ - gE — 0in L! (.Q) Hence, the claim is proved.
We define £2" as the set of x € £2 whose distance from 952 is at least n. Setting .Q[

U, ezl (a+8Q¢), we clearly have that onc .Ql for § small enough. Furthermore (we argue
for ¢ = £ in (5.3), the case ¢ = —£ is analogous)

D 8(e(@)* (e (o + 88) — ue(@), £))°

aezl($2)

1 - N -
=5 |, (48 = (0. £ 55)

1 iy -0\ .,
:7/ R f~ @7 (1)) dt dH*(y).
Mz el J@he 8

Observe that ﬁi‘y € PCs ((ﬁé) ¢,y), Wwhere P Cs here denotes the space of piecewise constant
functions on intervals of size §. We now define i, ¢ , as the piecewise linear interpolation

of IZE on (.Q )e,y. We remark that ii¢ ¢, has nothing to do with the slices i u Y of the affine
function i, used in Proposition 1, hence the different notation. Now, (5.5) can be rewritten
as

D 8(e(@)* (e (o + 88) — ue(@), £))°

aezk(2)

1 “E v R
- L / ) f~ (T (1)) e,y (1))? i AHE(y)
M Jre (3l J(@he
1 v R
> L / / (T (1) ey (1) dr dH2(y)
Mg Jxean J 3],
and we are left to prove that, for H>-a.e. y € IT¢,
/~ |L't§’y(t)|2dt§1iminf/~ (D5 (1)) |ihe .y (1) dt. (5.6)
2N\(AP)e.y e=0 Jal

Indeed, if the above holds, (5.2) will follow as a consequence of Fatou’s lemma by integrating
the above estimate over /75 and observing that, since u € GSBD%o (5), then 57 (1) =
(Eu(y +t£)€,&) forae. t € (5 \ Ago)e’y and Eu = 0in AS°. (Notice that we have also to
use the arbitrariness of n > 0.)

In the following we argue for 2in place of .5,,, in order to simplify the notation, since
we know that d(ii., u) — 0. Nevertheless, all the inequalities may be localized on 5,].
Since 1, — u in measure in Q \ AS°, by Fubini’s Theorem (see [19, (5.5)]) we have that
ﬁg’y — 45 in measure in (£2 \ Ag")é,V for H?-a.e. y € IT¢. The same holds then for the

piecewise affine functions i, ¢ . Summarizing, we have for H?-ae.y e IT5:

fegy — ub in measure in (£ \ AP)g v 35 — lin L'(2z.,), (5.7
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where the second one follows by Fubini’s Theorem. For fixed y € IT ¢ such that (5.7) holds
and the lim inf in (5.6) is finite, denoting by 0, ¢, the piecewise affine interpolations of ﬁf’y,
from (5.1) and the triangular inequality we deduce that

1 . .
,/N @5 (1) — 1)2dt+e/N ey ()2 dr < C(y).
& 2.y ¢y

In view of Lemma 1, there exists a finite set / £y ¢ .Qg y such that for every A%Y open, with
A% cc Qg \ 16, there exists « > 0 such that

liminf inf vé)(s) > k.
e—>0 scAéy

In particular, we may assume that there exists «” > 0 such that, for & small enough,
T)ﬁ’y(s) >/, s e A5V,

so that

&

K’sup/ liie & (1) dr < sup /N (05 (1)) |ike ., (1) |* di < +o0. (5.8)
& ASwy Qg_y

Up to considering separately its connected components, we may assume that A be con-
nected and contained in one of the finitely many connected components of ﬁg, y\ 1 £ (it is
not restrictive to assume §2 connected). Arguing as in [21, part below (3.21)], we have that
by the regularity of i, ¢, (5.7), and (5.8) one of the following two alternative possibilities
hold:

1. either |it; ¢ (x)| converge to 400 for some x € A%Y and then litg.e y| = +o000on A8y
and ASY C (A y;
2. or (fig,¢,y)e is bounded in H'(A%Y) and then

utY € H'(A%Y) and it ¢ y—u® in H'(A5Y).

In partlcular SZ; y\ 1 &5 is made up of a finite union of intervals, where either it¢ ¢ , converge
in HloC or ilg gy — +00. Therefore we may partition SZg y as .Q y U 92 U I5Y where

.Qg y .QZV £y are finite unions of open intervals with boundary contalned in I §.Y_ such that
lggy — +o0in ﬁgy and e ¢y — u5Y in H'(A5Y) for every A5 CC §E]y
With (5.7) and Lemma 2 we obtain that for every A%Y cC .551 y

/ 15 ()2 dr < liminf/ (05 (1)) e ., (1) dt. (5.9)
A&y e—0 ﬁé,y '
Notice that (5.9) holds for any arbitrary open set A5 ¢ ﬁgyy,so that (since §§’y C (A®)e,y)

/N Idé’)’(t)lzdtffN |L'¢§’y(t)|2dt§1iminf/~ (05 (1)) e .y (1) dt.
2\A)g ! e—>0

2 2y

As observed before, the above estimate may be localized in ﬁn, obtaining (5.6) and thus
concluding the proof. O

For every & € Rd\{O}, u e Ll(ﬁ; RY), v € Ll(ﬁ), we define

HE (u, v) ::/ﬁ(v(x))zKé'u(x)é—' é—lﬂ dx. (5.10)
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Fig.3 The half-cubes Qo ; +

€

Q2m, i, +

QQm,i,—

/4

Setting Zs (5) = Rgi" (.5) N 8Z, where Rgﬁ"(ﬁ)xvas defined in (3.7) (for the domain £2,
here we consider as always the analogous one for £2), and Z := 274, and

O i={x eRY: |(x,e)) <m,i=1,...,d}, (5.11)
Qom.i+ = {x € Qom : £(x,¢;) = 0} (5.12)

(see Fig. 3), we introduce the class of real-valued piecewise constant functions on the cells
o + 8 Q7 defined as

Azmg(ﬁ; R) := {v: 2 — R: v(x) = v(x) forevery x € (@ +5Q2m) N Q for any « € 25(5)}.

Lemma6 Letu € GSBDgO(ﬁ) and (wg)e, (ve)e be sequences such that ve € Ajs (5; R),
d(wg, u) — 0,

d
sup 4 > " H (we. ve) p < +00, (5.13)
>0 i—1
wiY € HY (e, ) forae ye I, i=1,....d, (5.14)

N 2
Z (Sd (i(vg(a) _ 1)2 te <UE(0[ +28€1) US((X)) ) < C, i = 1’ ,d (515)

~ )
a€Zs(82)

Then

lim inf /~(v8(x))2(div we (x))% dx > /~(divu(x))2 dx. (5.16)
8—)0 0 Q

Proof Notice that, under the assumption (5.13), from the identity

d
D (Aei, i) = tr(A) (5.17)

i=1
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we infer that sup,_q fﬁ (v (X)) (div we (x))? dx < 400. We then show that
ve divw,—divu  in L2(2 \ A), (5.18)

from which (5.16) immediately follows, recalling that Eu = 0 in A>°. Note that by Egorov’s
Theorem, with fixed n > 0 there exists 5,7 c 2\ A% such that 1(2\ A\ ﬁnl < n and
ve > 1 —non .5,, for & small enough.

Now, under assumptions (5.13)—(5.15), an analogous slicing argument as for the proof of
Lemma 5 applied to wg ™ shows that

(Ve {(Ewe (X))er, ) — g(x))* dx

(5.19)

/~ ((Eux))ei, ei) — g(x))*dx < limigf/

2\A® 2\A®

for every g € L2 \ A%®) and every i = 1,...,d. The proof of (5.19) can be developed
in the case g = 0, the general case following by approximation of g € L322\ AS°) with
piecewise constant functions on a Lipschitz partition of 2.

From (5.19) we then get

((Ewg)e;, e,')xgn—\((ﬁu)ei, e,-))(@n in L2(§ \ AP), foreveryi=1,...,d, (5.20)
whence, by the identity (5.17) we obtain
divw, xg —divuyg —in L2(2\ A).
Finally, since (2 \ A)\ §n| < n, letting n — 0 and by the absolute continuity of the
integral we obtain
divw,—divu in L(£2 \ AD). (5.21)

The assertion (5.18) now follows from (5.21) and Lemma 2 since v, < 1 and v, — 1 a.e. in
2. O

Asaconsequence of Lemma 6, we deduce now the optimal lower bound for the functionals
FECllv (u, v) as defined in Sect. 3.

Proposition 2 Let u, € As(2; R?), v, € As(2; R) be such that
SU(EP), (e, ve) < +00, (5.22)
£

d(ue,u) — 0, withu € GSBD2,(2), and ve — 1 in L*($2). Then
liminf F&Y (ug, ve) > / |div u(x)]? dx. (5.23)
e—0 Q

Proof We prove (5.23) for d = 3, the case d = 2 being analogous. Notice that Z> admits the
following decomposition:

8
7’=J7"=zu U{Z +&: 6 e flelizas letejlizicjzs e+ e +€3}}-
=1
Correspondingly, recalling that Zé (2) = Rgi" (2) N 57! and setting

. 1 .
F& vy =2 37 80(@)’ Pivsu(e)?
ané(ﬁ)
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we can rewrite the energies as FEdiv (u,v) = Z?:l Ffiv’l(u, v), so that

8
lim inf F&(ug, ve) > ; lim inf FSV (i, ve). (5.24)

With fixed n > 0 and 5,7 defined as in the proof of Lemma 6 we argue for / = 1 and claim
that

: 1
lim inf FS Vg, v) > s |- (divu)? dx. (5.25)
E—> Qﬂ

For this, we start by defining two other piecewise constant interpolations it and v, of u,
and v,, respectively. For @ € Z5(£2) and Q3 as in (5.11), we set

Ue(x) == ug(a), Ve(x) := v (@), x €ea+380s. (5.26)

It is immediate to check that v, — 1 in L! (.5 ), and, more in general, that (5.15) are satisfied.
Indeed, for every o € 87> and i = 1, 2, 3, by triangle inequality we have

|ve (@+28€)— v (@) |* < 2<|vs<a+28e1-)—v5(a+8e,»)|2+|v£(a+8ei>—vs(a>|2).

We also have that d (ii., u) — 0. This follows arguing as in Lemma 5.
We introduce further interpolations of u,, whose components z;,,i = 1, 2, 3 are piecewise
affine, defined as

ul(e) + $D§ uc(@)(xi — o), ifx € (@ +80Q2,1) N2,
zé(x) =
ul(@) + 1Dy Tug (@) (i — ), ifx € (@+802:)N 2,
(5.27)

where Q> ; + are as in (5.12).

Notice that, by the definition (5.27), the first component of z. is continuous across inter-
faces which are orthogonal to e . Indeed, clearly no discontinuity of z l (x) can appear at points
x on the interface between « + 6 Q2,1 + and o + § Q2 1,—; the only points to be checked are
those x on the boundary between o + § 0 and (@ + 28e1) + 6 Q2. A direct computation
shows that, since X € d(o +802,1,+) N I(( + 28e1) + §02,1,—), one has

lim zgl x) = u;(oe + dey),
X—>X

which proves the claim.

It follows that z&'* € H'(£2,, ) for H?-almost every y € I1°'. A similar argument

shows that 757 € Hl(ﬁg,.,y) for H>-almost every y € IT¢ for every i = 2,3. We now

prove that z; — u in measure on £2. It will be enough to show that
B (ze — i) — 0in L'(2).

To see this, again we may argue componentwise and observe that, since |8 Q>| = 883,

[x+8Q2

Be(zh — )| dv = 1267w @) (1D e @) + 105 “us @)1
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By the Cauchy—Schwarz inequality, and using equiboundedness of the energies, we get

> -
wezs(3) A0
1 1 1

< 1253( > Ive(oz>|2|D§,ef“a<°‘)'2))z<#(Z‘3(§))>2 - C83<#(Z‘3(§)))2 =

aeZs(2)

which entails the convergence of z; — u in measure on 2.

Forall ¢ € S%itholds (Ez(x)yr, ¥) = 0y (z(x), ¥), where 9y w stands for the directional
derivative of w with respect to 1. Applying this to the unitary vectors e;, by (5.27) we have
that

1 pei i .
(Eze(x)er, ef) = { {SD Ds_ée,.’;i ((‘;)) llff’; i";i‘lQszi (5.28)
Then, by using the identity (5.17), we have that
(divze (1)) = 812|div’g1€1”‘2‘32”‘363u5(o¢)|2 if x € sQliererkiesg)y  (529)
for every (ki, ko, k3) € {—1, 1}3, where we have set
sk @) = () (@ + 802 signtk)- (5.30)

i=1,2,3
(see Fig. 4). Since |5 QF1er-keea.kzes| — §3 it holds

f (e () (divze ()P dy = 8(e(@)® Y [divy RSy, ()2
oo (k1.k2.k3)e{—1,1}3 (5.31)

= 8(ve (@) [Divsue (o).
Now, from the equi-boundedness of the energies (5.22), we infer that

sup { H' (z¢, Ue) + H (ze, Ue) + H® (2¢, Ue)} < +00, (5.32)

e>0

where H¢ is defined as in (5.10). Thus, the conclusion (5.16) of Lemma 6 holds with z, and
U in place of w, and v, respectively. Therefore, with (5.31), it follows that

s div,1 P l ~ 201 2 l cN2
liminf F.™ " (ug, ve) > liminf (Ve (x))“(div zg(x))“dx | > (divu)“ dx,
e—0 £—0 8 _(j” 8 5,,

which proves the claim (5.25).
We now observe that we have also, for every / and 1 small,

beiiv,l(ua’ US) > l/N (ljg(x))z(diVZS(X))z dx.
8 2,

In fact, (5.28)—(5.31) continue to hold smce the lattices Z' are just suitable translations of
Z! = Z, while the compact subset .Q of 2 appears on the right-hand side. We deduce that
(5.25) follows also for general F div.l' in place of F§ div. 1,
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Fig.4 The cubes Qkte1.kaex.kzes

Qkier Kae2,bses

N 7

By (5.24) we eventually obtain that
lim inf FI (u,, ve) > / (div u(x))? dx,
e—0 ﬁn

whence (5.23) follows by the arbitrariness of n > 0. O

With the results proven before in this section, we are in position to prove the liminf
inequality for (E}\)Ig)g.

Proposition 3 Assume that limg_,¢ g = 0. Let (ug, vg)e C Ll(é; Rd) X L2(§; R) be such
that ug € .A,;(fj; Rd), Ve € Ag(ﬁ; R),

Sup(EPY)e (e, ve) < +00, (5.33)
&
d(ug,u) — O foru € GSBD2 (2), ve — 1in L*($2). Then
lim inf (E}5)e (e, ve) > G ). (5.34)
e— ’ ’
Proof Let us fix a small ¢ € (0, 1). For every ¢ > 0, we define the discrete measures

d 2
1 1 ve (o + dex) — ve (o)
ut =3 EN: s8¢ (6(118(01) -1 +e) < ; ) )]10,

aEfs k=1

é‘ —
FIYY 5 0@) Dy

§€8a 4e R (2)

where 1, denotes the Dirac delta in «. We observe that

(E)]?,i(;,)s(”es» ve) > (1 - %)A’FS(MS! ve) + QFSiV(ug, V) + Mg(ﬁ)
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In view of Lemma 5 (recall Remark 1) and Proposition 2, the general proof will be a conse-
quence of

lim inf 1é(2) = 17N, N 2), (5.35)
£—>

by the arbitrariness of ¢ € (0, 1). Therefore we prove (5.35) in the following. We divide the
proof into three steps: in Step 1 we see that (5.35) is guaranteed from (5.37); in Step 2 we
show that, after a blow up procedure around a fixed xg in a set of full H4~ 1 _measure of Jus
(5.37) would follow from (5.46); in Step 3 we prove (5.46).

Step 1. Since by (5.33) it holds that

sup ug (ﬁ) < 400,
e>0
we have that there exists a positive bounded Radon measure 5 such that, up to subsequences,

u A ut weakly in M+(.Q) Since J,, is countably rectifiable, so that H¢~! L J, is o-finite,
and u¥ € M; (£2), then the Radon-Nikodym derivative of Mf with respect to H4~1_J,

exists (cf. e.g. [20, Theorem 2.9]). Denoting its density by pL 7€ L'(J,; RT), we have that
/L‘; may be explicitly computed by (see e.g. [3, Theorems 1.28 and 2.83])

1E(QY (x0)) ST
o M T(Qn o) N ) — e T

15 (x0) = , forH% -ae. xo € 45.36)
where v := v, (xg) and Q“ (x0) = x0 + p Q, QV being the unitary cube centered in xo with
two faces in planes orthogonal to v. Let us set (Q xoNTFi=xo+p 0O F={xe Q (xp) :
+(x — x0, v) > 0} for the following discussion.

‘We now claim that

15 (x0) = 1 for HY™! -ae. x € Jy. (5.37)

Once (5.37) has been proved, the conclusion (5.35) follows by a standard argument. Indeed,
by choosing an increasing sequence of cut-off functions (¢x) C C°(§2) suchthatO < ¢ <1
and sup; ¢ = 1, we get

lim inf 128 (§2) > lim inf / prdpé = / oedut > / ordp’,
e—0 e—0 o o Juﬂﬁ
whence (5.35) follows lettmg k — 400 by the Monotone Convergence Theorem.
Step 2. Since u € GSBD? (.Q) we may subdivide J, into J, N (.Q \ A°) and 9*AS°.
Moreover, U; := UX G\ Az +ixax € GSBDZ(.Q) and J, = Jy, (uptoa Hd 1-neghglble
set) for £9-a.e. t € R?. Therefore, for H? '-a.e. xg € J, N (Q \ A°) there exist two values
u*(xg) € R¥ such that

aplim  u(x) = u™ (x); (5.38)
xe(Q)(xo)*

X—>X0

moreover, for H¢ !-a.e. xg € 9™ AS°, assuming that v is the outer normal to Q \ A%, itholds
that there exists u ™~ (xg) € R? such that

aplim  u(x) =u" (xp), aplim tanh(|u(x)|) = 1. (5.39)
x€(Q} (x0))~ x€(Q) (o)™
X—>X0 X—> X0
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In fact, the latter identity may be seen by considering the GSBD? function i, for a ¢ for
which J, = J3,, so that xo € Jg,. Thus the approximate limit of ii; as x — xp in (Q;(xo))+
is t; on the other hand, we have that i, (x) = ¢ if and only if |u(x)| = +00, so we deduce
the latter identity in (5.39).

Let us fix xg € J, such that (5.36) and either (5.38) (if xg € Q \ AS°) or (5.39) (if
xp € 9*A7°) hold. Notice that this corresponds to fix xp in a subset of J, of full HA-1
measure. Since ué € Mb (.Q) we have that M{(Q (x0)) = [L{(Q}))(xo)) except for a
countable family of p’s. Moreover, for p small the upper semicontinuous function x 0, has

compact support in £2.Thus, in view of [3, Proposition 1.62(a)] and the Besicovich Derivation
Theorem (see, e.g., [3, Theorem 2.22]) we infer that for every p,, — 0 and every &; — 0 it
holds that

¢ v

we; (Q), (x0))

l/«i(xo) > lim limsup %,
m—+00 j—4o00 Pm

¢ v
. He (@), (X0)) .
so that we need an estimate from below of ——*"" For this, we first note that for every

Jj and for every m we can find xé € 8;24 and py, ; > 0 such that xé — X0, Om,j —> Pm
as j — +ooand §; y/ANe (% ; (xé) =34 jZd N Qp, (x0). Now, setting in correspondence to

(Sj = S(Sj)
8; i

Tm,j = — > Om,j ‘= ,
Pm, j Pm, j

we introduce the functions u; , € Ag, ;(Q"; R?), v j.m € Ag, ;(Q"; R) characterized by
the following “change of variables in the nodes”

. . S
Wjm(B) = we; () + pm.jB). Vim(B) 1= e, (x) + pm.jB) forevery B € P 770 Q"
m, j
(5.40)
Let G, y and Fo, be defined by replacing, in (3.9) for G(,m ., both &, ; with 7, ; and &, ;

with o, j, and, in (3 6a) for F, O, j with 7, ;. We find that

Om,j>

K08 (0D ([ o \4! oo
1o, Cp 0D (—’) Gon ) i Q)+ EFp uj v 5 (5.41)
Pm Pm ,0

In particular we have that

¢ v

1 pd=1 g, (Y L, (X0) 1 we; (@), (x0))

SUPFa,n,(”vavjm)<Su P 27] dpl < —sup —L—Pm_ "~ dpl
m,j lOm j Pm m, j Pm

(5.42)

Notice that we used above that ¢ > 0 is fixed, and it holds indeed that lim,, ; Fo,
(”] ms Vjm) = 0.
By (5.41), (5.42), Proposition 1, and Theorem 2, we obtain that (Wj m, Vjm)j,m converges,
up to a subsequence, towards a suitable couple in GSB D2 (.Q) X Lz(.Q)
Moreover, setting u,, (y) := u(xo + pmy) fory € QU it holds that (u,,),, converges in
L2(Q"; RY) to
ut(xg), if (x —xg,v) >0,

= = ifxg e J, N(2\ A®), 5.43
uo(x) - (xo). if (x — x0.v) <0, xoe JuN(L2\A) (5.43)
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while, if xo € 0*A;°, we have that u,, | gv.— converges in LO9(0V;RY) to uy (x) :=u"(xo)
in Q" and that tanh(|u, |)| gv.+ converges in LY(0"*: R?) to the constant function 1. Since,
for fixed m, uj j, v}, cOnverge in measure to uy,, v, as j — +00, by a diagonal argument
we may find a sequence m; — +00 such that the above properties hold for uj := u; »; as
J — oo in place of u,, as m — +ooand v; := Vjim; = I in LZ(Q“), 0j i=0m;,j > 0,
Tj = Ty;,j — 0,and

115 (x0) = liminf G, (v;, QV).
J—>+o0 ’

We now collect these informations and the fact that (u;, v;); converges L£%-ae.,uptoa
subsequence (see discussion below (5.42)). Therefore

uj — ug € GSBD2,(2) L%ae.in Q" (5.44)
andv; — lin L2(QV), where ug is given by (5.43) if xg € J, N (5 \ AJ°) and by

up(x) € RO\ RY, if (x — xo, v)

u~(xo), if (x — xp,v) <0,

>0,

uo(x) := ifxo € %A, (5.45)

Thus, (5.37) (and then the result) would follow from
liminf Go; (v}, oY) > 1, (5.46)
J—+0o0

that we show in the remaining part of the present proof.

Step 3. Up to passing to a subsequence, we may assume that the liminf in (5.46) is actually
a limit. Now, we consider a suitable triangulation ’Z'jd of 0", as introduced in Proposition 1.
Namely, we set

T ={a+8T: TeXyaerZnQ")
2
FEE
and v; on T4, respectively. We have that ii; — u¢ inmeasureon 9V, and 9; — 1in LZ(Q”).
With fixed n > 0, by arguing as for the proof of (4.10) we can prove that for j large

Go, (v; Q”)>/ ®;0 -1?
R T

We then denote by ii; = (i } i - ﬁ?) and v; the piecewise-affine interpolations of u ;

+ 0|V (x)[*dx. (5.47)

Now, we introduce the piecewise constant functions U;,, ; as in (4.4) and, along the lines
of the proof of (4.6), with (5.33) (here we use again that { > 0 is fixed in the definition of
Mg as done for (5.42)) we have that

liminf/ (Omin, j C)*ERj(x)* dx < C < 400,
J—+00 Qll}fn

whence we can assume, by taking a further (not relabeled) subsequence, that

su_p/ (Omin, j CN21ERj(0)? dx < C < +o0. (5.48)

i Yo,

Recalling the notation for slicing in Section 2, for any fixed n > 0 there exists y = y (1)
such that, setting I, := (#, 177'7), it holds

y+tv+9) c Q¥ forall y € Q'ff,]ﬂH”,teI,], B evt, |9 < y.
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Therefore, recalling also (5.44), (5.45), we infer that for H '-ae. y € 0}, NI and
¥ € v, |9] < y (with the notation for slicing from (2.1), (2.2))

ﬁ;v+19),y c HI(I,]), ﬁ§v+z9),y (v+2),y El

—> Uy -a.e.in Iy,

We now have that for H9 '-ae. 9 e v1,0 # |9 <y

= {0}, if (u™ (x0)—u" (x0), v) # O,

5.49
I, g+ = {0k i (™ (xo)—u™ (x0), v) =0, 649

for Hl-ae. y € Q‘{_n N IT". In the case where xo € J, N (2 \ A), (5.49) are readily
obtained and the second expression holds true for every . In the case xg € 3*AS°, we
regard the points where u(v'H?) "7 (here possibly & = 0) passes from a finite to an infinite
value as jump points, that is we adopt the same convention as for GSB D2 functions, and
we work with the usual product between two numbers in R and R, setting 0 - (00) = 0. By
standard arguments (in the spirit of e.g. [21, Lemma 2.7]), we can see that for H¢ !-ae. &,
lim,_, o+ Iug’y(t)l = 4oo for H l-ae. y.

From now on we assume that (" (xp)—u " (x0), v) # 0, so that we may take ¥ = 0 to
ease the reading. In the opposite case, we may argue in the very same way, just replacing
the slices along the direction v through the slices along a direction v+, for some ¥ € v+,
0 # || < y, and considering, below (5.53), 7¥*?: RY — [T given by 7’7 (x) =
{x +t(v+9):t € R}NITY, in place of 7".

Then, with (5.48) and Fubini’s Theorem, we have

too=C > / (B, ()21 ()P dx

1-n

> f ( @i, ;2@ () dr) dH (),
b,NITY

whence we deduce the existence of a set N C IT” with H¢~1(N) = 0 such that
sup f Bin O)2@" (1)) dt < 400 (5.50)
j Iy

v,y

forevery y € (Q_ p N ITY)\N. It is not restrictive to assume that i u;” e H! (1) for every

y € (Q‘fﬂ7 N H”)\N. Now, let /; be any open interval such that 0 € 1,; C I,. If it were

lim inf 1nf 7V (s) > 0, (5.51)

mln
J J4 J

v,y

from (5.50) we would infer that ﬁ;v—\u Yin H! (I,’]) and Ju(v),,v N I,; = @, which clearly
would contradict (5.49). Thus, the liminf in (5.51) is 0, so that for every y € (Q‘l’_,7 NIT)\N
there exists a sequence (sjy- )j C I,7 complying with

Umin, /(Sj) — 0as j — +oo. (5.52)

Now, with fixed ¥ > 0, we claim that there exists a set N C IT", with H9~ 1(N’() -0
as j — +o0, such that for every y € (Q]_ p N ITY)\(N U N") there exists jo := jo(y K)
satisfying

A~ y 5 j 1
v;’y(S;) < ZK for every j > jo.
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For this, for every o € 7;Z9 N Q" we set

M = max{lvj(ot) —v;(B)|: BetZIN Q" |a— Bl =1jlE]. £ € sd]
and

Koo 7d V. o f
Ij .—{aerJZ no .szz}.

From the equiboundedness of the energies (5.33) and an analogous argument as for the proof
of (4.18), we deduce that there exists a constant C > 0 such that

cz) 2 o

wm»wﬂmr>
Tj ~

) -2
D ot MY 2 #(TKPo T

a€If per;2nQ" o€}
le—Bl=7;
for every j, whence
" c(k) .
#(Ij) < T for every j. (5.53)
gj ‘L'j

Let 7V : R? — IT" be the orthogonal projection onto the hyperplane /7" and set

N¢ = 7V + 7,00, D).

K
otEIj

then, with (5.53) we infer that

HITNNE) < VTR < ﬁc(l{)? — 0, asj — +oo. (5.54)
J
Now let j € N be large, y € (Q‘f_,7 N IT")\(N U N}‘), and consider the corresponding
sequence (sjy. ) as defined in (5.52). By the definition of v,,;,,; we deduce the existence of
ap = ap(y) € (erd N Q”)\I}f such that y + s;’v € ap + 1[0, D4 and Umin, j (o) =
min{v; (o), {vj (oo & 7;§)}ees,} — 0as j — +oo.

Therefore, for every k > 0 and every y € (Q‘ff77 N ITY)\(N U N}f) there exists jo :=
Jo(k,y) € N such that U, j(cp) < % for every j > jo. Moreover, since og € (‘L'jZd N
Q”)\I}( we also have v; (o) < %K, vi(ap £ 7€) < %K for every j > jo and every £ € Sy.
This implies, by convexity, that

, 5
0 (y —|—s; V) < i for every j > jo. (5.55)

Since in the previous argument ¥ > 0 was chosen arbitrarily, from now on we may assume

that 0 < x < 3. As we already know, up to a possible subsequence, ﬁ;’y — 1ae., so that
v

Yoy y y
we can find risti € I, such that ri <8 <t; and
ﬁ;’y (r;) > 11—k, f);‘y(t;) > 1—«, for jlarge enough. (5.56)
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Now, for every fixed y € (Q‘l’ﬂ7 NITY)\(NU N’;), by using the Cauchy Inequality and taking
into account (5.55)—(5.56) we obtain '

077 (x) — 1) ,
1/ M—l—oj(f);’y(x)fdx
I’7

2 Uj

5! _ o ,
> / A= 07 nld) ol dx + / =9 D) (0l dx
r; s;
1—«

5 9
32/ (l—2)dz=1—k+—k>=1—¢ >0
Ep 2 16

for every j > jo.
From (5.54) we deduce that, up to subsequences,

X(QY?WQH”)\(NUN}() — 1 Hdil — ae.in Ql])—r] NI’ (557)

so that

e (ﬁ,”f-"(x)—l)z+ e .
e \2 ), P o (07 () dx | xoy_ nmnavuns) = 1= ce

for H? l-ae. y € (Q‘l’_i7 N ITV). Finally, from (4.10), the Fatou’s Lemma with (5.57) we
obtain

~ -1 2
hm G“j (Uj5 QU) > 11m1nf/ M +O_i|vﬁi(x)|2 dx
Jj—+o0 Jj—>+o0 Qll)—r; oj . .
o1 @Y =12 . .
> ‘/Qv lim inf (2 ﬂ -J 7 + O—j(Ul];’) (x))z dx X(QY,HQH”)\(NUN}‘) de l(y)
1= n

) Jj—+oo o
> (1= cHNQ)_, NIT") = (1 —co)(1 =),

whence (5.46) follows letting k — 0 and then n — 0. m]

6 The upper limit for the Griffith energy

In this section we prove the I"-limsup inequality for the convergence stated in Theorem 3.
Differently to what done in the previous sections, here we argue for the reference configuration
£2. The constraint u, € ABDir(.Q; RY), v, € A(SDir (£2; R) for the recovery sequence will follow
from the part of the density result Theorem 1 concerning the treatment of Dirichlet boundary
conditions.

Proposition 4 Assume that limg_,( g = 0, and let u € GSBD?(82). Then there exists a
sequence (Ug, vg) € A?ir(.Q; RY) x AaDir(Q; R) such that (ug, ve) — (u, 1) in measure on
2 x 2 and
lim sup(EPD) (ue, ve) < GO (). (6.1)
e—0 ’ '
Proof In view of Theorem 1 and remarks below, by a diagonal argument it is not restrictive to

assume that u € W(£2; R?) and that J,, is a closed subset of the hyperplane I7¢ = {x; = 0},
that we denote by K. To fix the notation we argue for d = 3, the case d = 2 being analogous.
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We recall from [6, (4.23)-(4.24)] the following fact about the optimal profile problem
for the Ambrosio—Tortorelli functional: for fixed n > 0, there exist 7;, > 0 and f; €
C?([0, +00)) such that f10) =0, f,(t) =1fort > T, f,;(Tn) = ,;’(T,,) =0, and

Tﬂ
/0 (fy@) = D> + (fy@)*dr < 147,

Letx = (x', xg) foreach x € R?, and K}, := {x € [T% : dist(x, K) < h} for every h > 0.
Let T > T, and y, > 0O be a sequence such that y, /e — 0 as e — 0. We set

A, ={xeR:x' e K, /350 1Xdl < ve + V38},
Al =(xeR¥x e Ky /350 |Xdl < ve + /38 + T},
Bei={x e R':x" € Kepa, Ixal < ve/2), Bl :={x e R*: X' € Ko, Ixal < ve),

and Ag 5 := A N 873, A/,a =A.N 873 . Notice that, for ¢ small,

&
K C B CC B, CC A; CC A, CC £,
recalling that K C £2. Let ¢ be a smooth cut-off function between B, and B}, and set
ue(x) == u(x)(l — @e(x)).

Since u € W (2\J,; R?) we have u, € W1 (§2; R?). Moreover, since Al is a compact
set in £2 and u = up in a neighborhood of dp 2, also u, = ug in a neighborhood of dp 2.
Note also that, by the Lebesgue Dominated Convergence Theorem, u, — u in L! (£2; R3 ).
If ¢ is a cut-off function between K, 5 and K,_, /35, we define

Ve (%) 1= Y (he(xg) + 1 = Yo (x), (6.2)

where the function /4, : [0, +00) — R is given by

0 ifr < e ++/38
he(@) = f (T gy /38 <t <y + /38t 6T
1 ift >y, ++/38+¢T.

By construction, v, € Wh®(2) N C%(2) N C*(2\A,) and ve — 1in L'(2).
We start proving that there exists a sequence (i, vg) € A(SD“(.Q; R?) x ASD“(.Q; R)
converging in measure to (u, 1) on £2 x £2 such that

. o 1

lim sup F (it U:) < Y _ 0| / —[(Eu(0)g, &) dx, (6.3)

e0 S gl

and
li div - = ) 2
imsup F. (g, Ug) 5/ |div u(x)|“ dx. (6.4)
e—0 2
Setting

e (x) := min{v, (@), 1}, x € a +[0,8)>, o € £2s,

since F (-, U¢) < Fe(, 1) and FIV (-, 3,) < FAV(-, 1), it will be sufficient to prove both (6.3)
and (6.4) for the pair of admissible functions (u,, 1). Notice that v, € .A(SD”(.Q; R) by (6.2)
and since A/, is a compact subset of £2.
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Let & € S3 be fixed. Define
Q5 = {x eR*: [x — 85, x + 8] C Q). (6.5)
Since ve(a) = 0 forall @ € Ay, let x € £25\A.: by construction, x + 8 € £25\B!

and u, = u on §2\B,. Thus, by using the Fundamental Theorem of Calculus and Jensen’s
inequality we deduce that

1 / ¢ 2

— |Dsu(x)|” dx :/

2 8

3% Jaf\n, 25\B,
- /95\Bg

1 1/
= W/Qs\B, 7/ [(Eulx +10)¢, ) drdx

/ (Eu)g, )P dx

2
dx

<u(x+8§) —u(x) L>
8 ek

2
dx

1 $

(6.6)

- |;“|4

forevery ¢ € {££}. Moreover, setting 20" := 2§' N 252 N 25>, by arguing as for [1, (4.9)],
we have that

1
g(div’glel”‘zez”““u) Xogv g, — divuin L3(), 6.7)

for every (ki, k2, k3) € {—1, 133,
For simplicity, we prove (6.7) in the case (k1, k2, k3) = (1, 1, 1). We first notice that

1 2
H —(div§! ’ez‘e3u))(9d;v\3/ —divu
8 8 € LZ(Q)
s 3 2
_ 1 > , 2
= ) - ((Eulx + sex) — Eu(x))ek, ex)ds | dx + ' (divu(x))” dx.
e \8Jo (3 2\@"\BY)

Now, since |.Q\(.Qgiv\Bé)| — 0 as ¢ — 0, with the absolute continuity of the integral,
Jensen’s inequality and the Cauchy—Schwarz inequality we deduce that

2
S/Q,?‘V\BE<Z / |Eu(x+ser)— 5u(x)|2ds)dx+o(1)

L2(£2) k=1

1 . .
H 5 (divgh > 1) X v, gy —div

as ¢ — 0. Finally, as a consequence of Fubini’s theorem we have

2
3/ (Zf |Eu(x+ser)—Eu(x)] dx>ds+o(1)

Lz(.Q)_ 1)

I . .
H g(dwg‘ S u) Y g,y —div u

as ¢ — 0, whence (6.7) follows from the continuity of translations in L2,
With the estimates (6.6), by summing over £ € S3 and taking into account Remark 1 we
infer that

lim sup Z m/ 52 |D5§M(X)’ dx | < ZOm/ |é__|4| (Eu(x)é, S>| dx(6.8)

e—>0 5653 £€S;
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From (6.7), we deduce that

1
lim sup / — |D1V,;u(x)|2 dx _/ |div u(x)|? dx. (6.9)
cs0 \8 odv\p, 0 7]

Now, we adapt to our case the argument of the proof of [1, Proposition 4.4], which
combined with (6.8)—(6.9) will give (6.3)—(6.4).

For every y € (0, 113, we introduce the sequence T)‘,Sug as defined in (2.22) for d = 3,
which satisfies T u (x) = uc(8y 4 o) for every x € a + (0,81, a € 877°.

Now, since for « € §Z3 and & € Z> we have § L%J =awaand$ LO‘JS‘SEJ = o + 6§, we get

/ (F (Tue. 1) + FV(T)ue, 1)) dy
0,1)3 ’

1 1 .
320k D / 8| Dscute+8y)* dy+5 Y- / gmmwa+dey
EeS; aeRE (2)\A; ©.1? aERd‘V(Q)\A ’

Yo ¥

§eS83 aeRE(_Q)\Ag

1 2 1 . 2
= D dy + < — D dy,
=5 > |$|/ 2 | s.eu(y)|” dy g /K?gi"\Ag 52 [Divsu()|” dy

1
Dscu(y)|” dy + / L Divsu()? dy
0.8 82 ’ : | 8 Z b 0.8 8%

aeRIV(2)\A,

§eS3
(6.10)
whence, with (6.8)—(6.9), we infer that
lim sup/ (Fg(Tfug, 1+ FadiV(T)‘?ua, 1)) dy < Gig(u) < M. (6.11)
e—=0 J(0,1)3

Moreover, with fixed n > 0, (6.11) implies that the set
Cl = {z € (0. 1) : Fo(TPue, 1) + FV(TPue, 1)
5/ im@%n+@W%Mﬂ®+ﬂ
0.1)3 !

has strictly positive Lebesgue measure for ¢ small enough. Indeed, for ¢ small enough and
with (6.11) we deduce that

Sio (Fe(Tiue, 1) + F& (Tue, 1) dy Iy

<
Jiony (Fg(Tfua, 1)+ F3v(T}u,, 1)) dy+n M+n

10, ’\C5| < <1,
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so that |CS | >1-— W > 0. Now, as a consequence of Lemma 3(ii) we deduce that, for

every ¢ > 0, there exists z, € Cfl such that Tz‘ius — uin L! and

Rt 0+ F@ue ) = [ (R )+ B @ ) dy 4o,
0,1)° i

(6.12)
Finally, setting i1, := Tz‘iug, with (6.11)—(6.12) we obtain
lim sup (Fp (e, 0s) + FO (it )
e—0
<1i (F Tou,, 1) + FI¥(T? ,l)d
. Tﬁ?p/;na e(ye, DA P (yue, D)) dy o (6.13)

< Zam/ |$|4| Eu(x)E, &) dx+9/ |div u(x)|? dx + 7,

£EeS3

whence the assertion follows letting n — 0. We observe that u, < A?ir(Q; R?), since
ug = uo in a neighborhood of dp £2.
We provide now an estimate for G (v, ). Setting, for o« € §25 such that o + ey € £2,

3 2
Gﬁw:=%ﬁ(éwm)—n2+e§:(ﬁﬁié%L:ﬂ£» )

k=1

we have (below we have to restrict the sums over o € §25 such that o + dex € §2, we omit it
to ease the notation)

Gl = Y GEwe)

aEs aEfs
3 2
1 1 ve(a + Sex) — ve ()
= Z 553 (8(’)6(05)—1)24-82( 5 > )
aef25\Al k=1
1,51 3 et + be) — ve@)\2) &P
3 2 & — Ug
+ Y 28<8wxm—4)+e§:< . ))
ae(A))s\(Ae)s k=1
131 2 2 (ve(a +ep) — ve(@) 2
+ ) 79 <8(U£(O‘)_l) +sz< 5 ) .
a€(Ag)s k=1

The argument now follows the proof of [6, Proposition 4.2], so that we will only recall
briefly the main steps.
First, we note that

> Gl =0 (6.15)

ae;\AL

since for any o € £25\ A/, we have that v (o + ex) = ve(a) = 1 forevery k = 1, 2, 3 from
the definition of %.. Then, by exploiting also the regularity of v,, it can be proved that (for
Bs := B N §Z3 for every B C R3 Borel)

3 Gl <cC <V€ )HZ(KHH) — 0. (6.16)

a€(Ag)s
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Indeed, we have that v, (@) = ve(x + dex) = 0,k = 1,2, 3 for every o € (A;)s such that
o + dex € (Ag)s forevery k = 1, 2, 3. This implies that

83 Ve + 6
> Gee) = #(an - = € (T) HA(K i)
{ae(Ag)s: a+dexeAe s, Vk=1,2,3}
On the other hand,
o 83 $ 2
> Gi(ve) =#(0A)s— = C (=) (K, 5p)-

(0€(Ae)s: a+dere(AL)s\(A)s. Yk=1,2.3}

Finally, taking into account the fact that f; is a Lipschitz function, we obtain

5
Y Gl < (1 +n+cg> HA (K, s55) + C6. (6.17)
e(ADs\(A0)s

Now, collecting the estimates (6.14), (6.15), (6.16), (6.17) we deduce that
lim sup G (3,) < (1 4+ nH>(J, N £2), (6.18)

e—0
whence the desired bound follows by the arbitrariness of n > 0.
In addition, (6.18) implies that

1
limsupf/ (Ve (x) — l)zdx <C,
eJe

e—0

then o, — 1in L'(£2). O

Remark 2 The argument for the proof of Proposition 4 shows that an analogous (local version)
of the upper bound inequality (6.18) can be obtained also under the assumption that [ :=

)
lin}) — € (0, +00). In this case, there exists a constant C; > 0 such that
e—>0 &

limsup G (3) < (1 + CH' ()
e—0
In particular, this permits to control from above the I"-lim sup of E?fg through a Griffith-type
functional.

7 The non-interpenetration constraint

This section contains the proof of the I'-convergence approximation in Theorem 4. The
lower inequality relies on the results proven in Section 4. For the upper inequality we employ
a density result for couples (u, v), here recalled in Lemma 7, which has been shown in
dimension 2 in [18] to prove the upper bound in a continuum approximation for the Griffith
energy with a linearized non-interpenetration constraint. We give first the proof of Theorem 4,
keeping in the last part of the section the auxiliary results.

Proof of Theorem 4 As a preparation for (i) and (ii) we notice that, since v < 1, then Ffi" <
FIV-NI (see (3.6b) and (3.8b)), and E? < (ENL),.

Proof of (ii). Consider (i, ve)e with sup, (E})e(ue, ve) < +oo. In particular, from the
previous observations, (4.1) holds true. Then by Proposition 1 we have that u, has the same
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pointwise limit of a suitable function u,, that satisfies (4.3) and ||it¢||p~ < M. Therefore
(cf. [9]) (ug)e converges in every L7 (£2; RY), p € [1,00), to some u € SBD?(£2) with
llullLe < M.

Proof of (i). We argue for d = 3, the case d = 2 being analogous. Fix (u., ve¢), such that
sup, (EN)e (e, ve) < +ooandug — u,u € SBD*(£2). By (ii), |ull= < M anduy — u
in every LP($2; Rd). In particular, Eu is a measure, with

Eu=Eul® + (u] ©v)H" L J,. (7.1)

Let us show that u satisfies Div_u = Tr~ (Eu) € L2(£2). In fact, let us examine the proof
of Proposition 2, with now the control on ngiV*NI(ug, ve) at hand, which improves that on
Fsdi"(ug, ve). (The only difference is that in Section 4 we worked with Q , now with £2;
anyway, one could as well in this case obtain the lower limit inequality imposing a Dirichlet
datum). Arguing as in that proof, we introduce the functions z, as in (5.27). Then z; — u in
every LP(£2; R?), since they converge in measure to # and ||z¢||~ < M. Moreover, taking
the negative part of the scalar functions in (5.28), we obtain that

1
div.ze(x) = a—z(divg)klel‘kzez’h%ug(a) if x € sQherherkse ) (7.2)

for every (ki, k2, k3) € {—1, 1}, where we recall the definition of §Q¥1e1-k2e2.k3¢3 () i
(5.30). Then, arguing as for (5.31), we get that

/ (div™z: (1)) dx = 8(ve(@))?|Divy e (@)]?. (7.3)
a+3802

Summing over « and recalling the control on ngV’Nl(ug, ve), (3.8b), and (3.7), we infer that
if ¢ > 0 is small enough then

div=zell 2, = C,

for C > 0 depending on M and 6. In view of the L' convergence of z. to u, we have that
div z, converges in the sense of distributions on §2 to Divu = Tr(Eu). Then, arguing as in
e.g. [3, Proposition 1.62], we can see that div™ z, converges weakly in L2(.Q,7) to a suitable
non negative function f, with f > Div~u. Then the positive measure Div-u = Tr™ (Eu) is
indeed in L2(£2).

Now, computing the negative part of the trace of the identity (7.1), we obtain the non-
interpenetration condition [u]-v > 0 H¢"!-a.e. on J,, since Div~u has no singular part. We
deduce that G2 3™ (u, 1) = Gy g (u, 1; £2) < +00. Then, by Theorem 3 and E}? < (ENL),
we conclude (i’). ’
Proof of (iii). Let uf ‘l, vf ! the functions provided by Lemma 7, in correspondence to families
of e, B,1 € (0, 1). First we show that for every /, 8

B.1\2 B.1\2

A (ve™) B.1 2 0 (ve™) s+ Bl e

Zam/;ﬁ 3T ‘Ds,gus dx—l—Z i 82 ’Dlva uy

£eSy B B
0 2
dx} <

A
lim sup [/ (vf’1)2<A|5(uf’l)|2 n (E 4 ﬂ)|div+ uf’l|2> dx
Q

1
A I S
-i-4/-;2giiv 52 ‘Dwgua
g—0
A . B2
+<5+ﬂ) | tdiv ! x|

dx

lim sup |:

e—0

(7.4)
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Indeed, in view of the assumption lim,_,¢ 8% = 0 and of Remark 3, we have that

19 2
lim sup ~ / (b + 5606, 6) — (Eul (0, £)| ds =
e—0 0

uniformly with respect to & € R2\ {0}, B, [, and x with dist(x, 3§2) > 8|&|. Therefore

B.l

&

2
8
lim sup 52/ PO D ub (x) dx—hmsup/Q / (Eu(x +10)¢, ¢)de| dx
8

e—0 e—0 £ 5|§|2
:1imsup|§|4/ (v/f”) |5u/31(x){ §)| dx
e—0

for every ¢ € {£+£}. Similarly, one estimates

1
lim Sup/ _ 7|(divg)klel’k2€2uf’l|2 dx
Qghv 6

e—0

10 :
= lim sup/ . <§/ (Eufvl(x +t(kier))er, er) + (Euf*l(x + t(kaen))en, ez)dt> dx
agv 0

e—0

: Bl Bl 2 : o= B2
= lim sup - ((Sus’ (X)er, er) + (Eul>" (x)en, 62)) dx = lim sup Qdiv(dlv ug )" dx
8

e—0 e—0

and then obtains (7.4).
From (7.4) we pass to an estimate on A 2&52 Olg| Fg (ug , Ua ) + 6 Fav: NI(uf , vs ) by

arguing as in the proof of Proposition 4. We thus consider for every y € (0, 1]? the functions
ug l, ‘S ’3‘1 as defined in (2.22) ford = 2 and u = u? [, vf[ By the definition of the

operator Ty , arguing similarly to (6.10) we deduce

/01 2 (AFE(T‘S Bl T)‘fvf’l)—I—GFfiV’NI(T}‘,SufJ,T}‘,Svf’l)) dy
©.1)

y Ug™s
0 2
a8 [
_lev

A(v ¥
<> m/ ‘Dssuﬂ 1

EeSy

dx  (7.5)

0
8il%
+ 4/de 7 ‘DIVB

Following the very same argument as that to get (6.13), applied to (T5ug , T‘Sve ) in place

dx.

of T‘Sug, for n > 0 fixed we infer that for every [, B, € there exists z e (0, 1)? such that,

setting ug = T‘Sﬁ.l 51, 1751 = T‘Sﬁvl v ,1t holds that
Ze Ze
lim [| @8, @'y — @l v =0 (7.6)
e—0
and

lim sup (AFS(uﬁl -ﬂl)+9Fd1v NI(Mﬂl 5B 1))
e—0

(7.7)

e—0

< lim sup/ . (}\.FS(TVBMSﬁ’Z, Ty‘svf’l) + GFSdiV’NI(Ty‘Suf’l, T)‘,svf’l)) dy + 7.
©O,1) ’
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As for the Modica—Mortola term, we first introduce a variant of G, obtained by replacing
a by o 4 8y in the expression of G, (3.9), namely for every v: £2 — R measurable we set

2 _ 2
Gév(”):%252<§(v<a+6y)—1)2+e 3 (v<a+5(y+ek>) v(a+6y)) )

)
aEeR;s k=1
a+28eref

Now we may argue exactly as done in [6, Proposition 4.2, Step 2] and in the last part of
the proof of Proposition 4, with & + &y in place of « (that is, the functions are evaluated in
o + 38y instead of «, inside each cube o + 5[0, 1)) and the role of K, h, played now by I8,
y(3) from (i) in Lemma 7 (notice that we use the regularity of I” £ to control its discretized
neighborhoods). We then obtain that for every y € [0, 1)?

i B . 1 W' — 1) 12
lim sup G} (v#') < lim sup§/ (7 + | VP )dx. (7.8)
0 &

e—=0 e—0
Moreover, notice that for every y € [0, 1)2

lim sup G? (v/"") = lim sup G (T vP"') (7.9)
e—0 e—>0
Let us choose I, B, n in dependence on ¢, vanishing as ¢ — 0, and denote by u,, v, the

corresponding ﬁf ’[, ﬁsﬁ ! (before we omit the further dependence on 7). By collecting (7.5),
(7.7), (7.8), (7.9) and (iv) in Lemma 7, we eventually deduce that

lim sup(Ey 5 ™) (e, 5e) < Gy g™ (u, 1),
e—0

and (7.6) with (ii) in Lemma 7 give that iz, v, converge to # and 1. This concludes the proof
of (iii). O

We recall the following result, which is a direct outcome of [18].

Lemma7 Letd =2 andu € SBD*(2) N L®°(2; RY) with Div—u = Tr— (Eu) € L%(2).
Then, for every families of parameters ¢, B, | € (0,1) there exist functions v~ €
C>(£2: 0, 1]), u?' € C(2: RY) such that

(i) for every B > O there exists a set I'P, which is a finite union of C' hypersurfaces
and of at most CB/(el) isolated points (for C > 0 a universal constant), such that
HY(J,ATP) < ;32 and vg’l has the form

&

Bl _ y((dist(x, r— 16ﬁez)+>

where y is a smooth scalar function with y (t) € [0, 1], y(0) = 0, lim;— 400 Y (¢) = 1.
In particular, for every B, 1, it holds vf'l — lin LZ(.Q) ase — 0;

(i) for everyl, it holds lim supj_,o lim sup, ¢ ul — ul > = 0;

(iii) uf’l = Qg * ﬁf'l, for a suitable iif’l in L®(2; RY) with I|ﬁf’lllLoo < |lullp~ and
Qo] = (sl)_zw(?[) for ¢ € C(B12) with f(pdx = 1 a given radially symmetric
mollifier;
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@iv) it holds that

)
lim sup lim sup lim sup [/ Wh? <x|5(u§*1)|2 + (7 + ﬂ)|div+ u5»1|2) dx
-0 6—0 e—0 2 2

Bl 2
A . 1 (vg” = 1)
A pr g L[ (e =17 pip
+<2+/3)/Q|dlv bl dx+2/9( —— +elVo I)dx:|
<G"%m).

Proof Properties (i), (ii), (iii) are clear from the construction for the lim sup inequality for [18,
Theorem 1], in [18, Subsections 3.1 and 3.2]. In particular, for (i) see (with the numeration
in [18]) the definition of vé at the beginning of Subsection 3.1 and (17), for (ii) the very last
sentence of Section 3, and for (iii) the definition of u, below (24), where u has to be replaced
by u;, as explained below (34).

As for (iv), this is a consequence of (18) for the Modica—Mortola part in v (with a minor
modification since the Modica—Mortola term here is slightly different), of (27), that states

Bl # 0 (then one can treat separately £ uf !

bl o

that £ uf lisa good approximation of Eu where v
and divtu?’, as we did), and of (36)~(37) for the treatment of div_u

Remark 3 From (iii) it follows that
||Vu§’l ||Wl.oo(951) < C(81)72

forevery fixed 8,1, ¢, C depending only on ||u|| L~ and ¢, and §2,; := {x € §2: dist(x, 0§2) >
el}. In fact, for x, y € §2¢

Jubl(x +y) — bl (x) = /R L (0iga (e +y = 2) = diga (x — )u(z) dz.

We deduce the claim by noticing that | Vgg || y1,0 < (el)*4||V<p||W|,oo and that the above
integral is indeed computed on the set B2 (x + y) U Bgy/2(x), with area C (eh)?.
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