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Neurodegenerative diseases represent a class of fatal brain disorders for which

the number of effective therapeutic options remains limited with only symptomatic

treatment accessible. Multiple studies show that defects in sphingolipid pathways are

shared among different brain disorders including neurodegenerative diseases and may

contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis

that modulation of sphingolipid metabolism and their related signaling pathways may

represent a potential therapeutic approach for those devastating conditions. The

plausible “druggability” of sphingolipid pathways is greatly promising and represent a

relevant feature that brings real advantage to the development of new therapeutic options

for these conditions. Indeed, several molecules that selectively target sphingolipds are

already available and many of them currently in clinical trial for human diseases. A deeper

understanding of the “sphingolipid scenario” in neurodegenerative disorders would

certainly enhance therapeutic perspectives for these conditions, by taking advantage

from the already available molecules and by promoting the development of new ones.
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INTRODUCTION

Sphingolipids have long been viewed as merely ubiquitous components of the cell membrane, and
exert a critical role in regulating vital cell functions and formation of membrane microdomain
“lipid rafts” for integrating cell signaling (Gault et al., 2010; Olsen and Faergeman, 2017).
Sphingolipids synthesis can occur via de novo biosynthetic pathway or the hydrolysis of
sphingomyelin, or can also derive by the “salvage pathway” which determines the recovery of
sphingosine, by the recycling of complex sphingolipids (gangliosides) through a coordinated action
of several enzymes (see Figure 1) (Gault et al., 2010).

Enzymatic pathways result in the formation of several different and tightly regulated lipid
mediators such as ceramide, ceramide-1-phosphate (C1P), sphingosine, and sphingosine-1-
phosphate (S1P) (Gault et al., 2010; Goñi et al., 2014).

Ceramide is pivotal in the synthesis of sphingolipids (Mullen et al., 2012). It benefits early growth
and development of neuronal cells and, at low levels it promotes cell survival and division (Schwarz
and Futerman, 1997; Brann et al., 1999). Defects in its metabolism may have deleterious effects,
often resulting in its abnormal accumulation that causes an increase of the programmed cell death
in different cell types including neurons (Tohyama et al., 1999; Jana et al., 2009; Mullen and Obeid,
2012; Czubowicz and Strosznajder, 2014).
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FIGURE 1 | Simplified schematic representation of sphingolipid biosynthesis. Serine palmitoyltransferase (SPT) catalyzes the initial reaction of the de novo

biosynthesis of sphingolipids. Dihydrosphingosine (dhSPH) is generated after an intermediate step by the action of 3-keto-dihydrosphingosine reductase (KDS).

Successively, dhSph can be either phosphorylated, with the generation of dhSphingosine-1-phosphate by sphingosine kinases (SPHKs), or acetylated by ceramide

synthase (CERS) and desaturated by ceramide desaturase (DES) to form ceramide. Ceramide may also derive from the Salvage pathway through either the hydrolysis

of sphingomyelin or by the recycling of gangliosides by Sphingomyelin Phosphodiesterase (SMPD) and Glucosylceramidase (GBA) respectively. Ceramide can be

phosphorylated by Ceramide kinase (CerK) with the generation of ceramide-1-phosphate (C1P) which in turn can be re-converted in ceramide by Lipid Phosphate

Phosphatases (LPPs). Ceramide can be subsequently metabolized by Ceramidase (CDase) to generate sphingosine which, in turn, produces

sphingosine-1-phosphate (S1P) through phosphorylation by SPHKs. S1P can be either dephosphorylated and re-converted to sphingosine by S1P Phosphatases

(SPPs), or irreversible catabolized into hexadecenal + phospho-ethanolamine by S1P Lyase (SGPL1).

Direct phosphorylation of ceramide by ceramide kinase
(CerK) is the major identified mechanism for generation of
C1P in cells (Bajjalieh et al., 1989). The role of C1P has been
mainly studied in blood cells in which it regulates proliferation,
migration, and survival (Hoeferlin et al., 2013). The function
of C1P in the brain is still poorly investigated. However, the
presence of CerK in synaptic vesicles (Bajjalieh et al., 1989), along
with the evidence that C1P regulates photoreceptor homeostasis
(Miranda et al., 2011) as well as P-glycoprotein transport at the
blood-brain barrier (Mesev et al., 2017), strongly suggests that
C1P may be involved also in the homeostasis of the central
nervous system (CNS).

Similarly, S1P is a potent signaling molecule that, beside
governing essential physiological processes like vascular, bone
formation (Hla et al., 2008; Xiong and Hla, 2014; Holmes,
2015) and inflammatory response (Huang et al., 2013; Aoki
et al., 2016), regulates many of the molecular events crucial
for brain development and neuronal survival (Mendelson et al.,
2014; van Echten-Deckert et al., 2014). S1P acts either in
the intracellular or in the extracellular compartments (Strub
et al., 2010; Mendelson et al., 2014). Intracellularly, S1P may
play different roles depending on its subcellular localization

and normally regulates mitochondria function (Strub et al.,
2011; Shen et al., 2014), gene expression by inhibiting histone
deacetylases (HDACs) (Hait et al., 2009; Riccio, 2010) and ER
stress (Lépine et al., 2011; Park et al., 2016).

Outside the cell, S1P acts as a high affinity agonist at five
known G protein-coupled receptors, S1PR1 -S1PR5, which in the
brain are expressed bymany CNS cell types (Blaho andHla, 2014;
Martin and Sospedra, 2014) and have been shown to influence
cell proliferation and migration, cell differentiation and survival
as well as neurite outgrowth and neurogenesis (Toman et al.,
2004; Anderson andMaes, 2014; Blaho andHla, 2014;Martin and
Sospedra, 2014; Ye et al., 2016).

Several studies showed that these sphingolipid mediators and
their enzymes are likely to have an integral role in different cell
processes including proliferation, inflammation, apoptosis, and
migration (Zheng et al., 2006; Maceyka et al., 2012).

S1P metabolism involves a number of different highly
specialized enzymes. S1P is normally synthesized by sphingosine
kinase-1 and−2 (SPHK1 and 2) and degraded by sphingosine-1-
phosphate phosphatase (SGPP) or lyase (SGPL1) (see Figure 1)
(Le Stunff et al., 2002; Morozov et al., 2013). SPHK1 activity
is mainly associated with cell survival (Le Stunff et al., 2002;
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Morozov et al., 2013; Di Pardo et al., 2017a), while SPHK2 is
widely described as being a dual-function protein whose activity
may either guarantee the proper occurrence of physiological
events like mitochondrial function and homeostasis as well as
regulation of gene expression through inhibition of Class I
HDACs or result detrimental mainly suppressing cell growth
and promoting apoptosis (Maceyka et al., 2005; Hait et al., 2009;
Riccio, 2010; Gomez et al., 2011; Strub et al., 2011).

On the other hand, the degradative enzymes SGPP and SGPL1
represent key regulators for the maintenance of balanced S1P
levels and other sphingolipid intermediates that may control
cell growth, proliferation and death (Serra and Saba, 2010).
Uncontrolled up-regulation of SGPL1 typically results in a
reduction of S1P availability and accumulation of hexadecenal,
a biochemical condition previously reported to be cytotoxic
(Kumar et al., 2011; Maceyka et al., 2012) that may likely
contribute to neurodegenerative processes.

This mini-review will shortly highlight the current knowledge
of research that now supports the idea that sphingolipids
are intimately involved in disease progression and, together
with altered expression/activity of metabolizing enzymes and
associated receptors, can provide effective drug targets for the
treatment of pathological states.

Alteration of Sphingolipid Metabolism in
Neurodegenerative Disorders
A fine balance between synthesis of sphingolipids and their
degradation is normally required for many biological processes
(Gault et al., 2010; Mullen et al., 2012), thus changes in
their metabolism may profoundly affect brain homeostasis and
function. Over the past few years, perturbed metabolism of
the interconvertible bioactive sphingolipids, ceramide and S1P
is increasingly becoming recognized as potential pathogenic
factor in different neurodegenerative disorders (Table 1). Indeed,
a plethora of new information identifying the importance of
sphingolipids and their signaling pathways in these conditions
has accumulated.

Alzheimer’s Disease

Alzheimer’s disease (AD) is themost common neurodegenerative
disease and the leading cause of dementia in elderly people
(Kumar et al., 2015). Progressive neurodegeneration in brain
regions involved in learning and memory results in cognitive
decline, loss of memory and changes of social and emotional
behavior (Robins Wahlin and Byrne, 2011; Sona et al., 2013;
Levenson et al., 2014). AD is characterized by extracellular
accumulation of amyloid β-peptide (Aβ) toxic aggregates and
intracellular deposits of abnormally phosphorylated tau protein
(Blennow et al., 2006; Gouras et al., 2010).

A number of evidence demonstrates a key role of aberrant
sphingolipid metabolism in the pathogenesis of the disease
(Chakrabarti et al., 2016). Activity of ceramide synthetic enzyme
2 (CERS2), normally involved in the formation of long chain
ceramide species (Levy and Futerman, 2010), has been recently
found to be reduced in multiple brain regions of subjects
at the preclinical stage of the disease (Couttas et al., 2016).
Conversely, expression of genes involved in the de novo synthesis

of sphingolipids is upregulated early in the disease progression
(Katsel et al., 2007). Consistently, accumulation of ceramide has
been reported in brain tissues from AD patients even at early
stages of disease (Han et al., 2002; Cutler et al., 2004; He et al.,
2010; Filippov et al., 2012) and may contribute to neurotoxic
action of Aβ (Lee et al., 2004; Dinkins et al., 2015).

A number of evidence also indicates that, along with ceramide
abnormalities, metabolism of other sphingolipids is affected in
AD (Zheng et al., 2006; Mielke and Lyketsos, 2010). Also,
alteration in the expression and/or in the activity of S1P-
metabolizing enzymes as well as reduced levels of S1P has been
widely reported in AD human brains (Katsel et al., 2007; Ceccom
et al., 2014a,b; Couttas et al., 2014).

In particular, loss of SPHK1 and reduced bioavailability of
S1P have been found early in the pathogenesis of the disease
even before clinical diagnosis (Couttas et al., 2014). Conversely,
upregulation of SPHK2 has been described to modulate Aβ

release (Takasugi et al., 2011). Further indication of global
derangement of sphingolipid metabolism in AD comes from the
evidence of concomitant reduction in the levels of SPHK1 and
S1P receptor 1 with enhanced expression of SGPL1 in post-
mortem brains from human patients (Ceccom et al., 2014b).

Huntington’s Disease

Huntington’s disease (HD) is the most common dominantly
inherited brain disorder, characterized by progressive striatal and
cortical neurodegeneration which results in motor, cognitive and
behavioral disturbance (Mccolgan and Tabrizi, 2018). The disease
derives from the expansion of a polyglutamine stretch (polyQ) (>
36 repeats) in the N-terminal region of the protein huntingtin
(Htt) (Jimenez-Sanchez et al., 2017). Although the function
of this protein is not completely known, expansion of the
polyQ stretch endows mutant Htt (mHtt) with toxic properties,
resulting in the development of a number of deleterious effects
in both neuronal and non-neuronal cells (Maglione et al., 2005,
2006a,b; Carroll et al., 2015; Jimenez-Sanchez et al., 2017).

Among all cellular dysfunctions and biochemical defects,
classically associated with the disease, defective metabolism of
sphingolipids seems to play a key role in its pathogenesis (Di
Pardo et al., 2017a).

Expression of S1P-metabolizing enzymes was reported to be
aberrant in multiple HD settings (Di Pardo et al., 2017a,b; Pirhaji
et al., 2017). Levels of SPHK1 was found reduced in brain
tissues form two fully manifest HD mouse models (R6/2 and
YAC128 mice), and most importantly, in brain tissues from HD
patients (Di Pardo et al., 2017a). Conversely, levels of SGPL1 were
increased in the brain of multiple disease animal models and
in early manifest R6/2 mice (Di Pardo et al., 2017a), indicating
that defect in sphingolipid metabolism occurs early in the disease
stage likely contributing to its pathogenic process. First signs
of early defective sphingolipid metabolism in HD have been
reported also (Di Pardo et al., 2017a; Pirhaji et al., 2017) and
such further evidence corroborates the hypothesis that similar
alterations may conceivably contribute to the pathogenesis of the
disease.

The imbalance in S1P-metabolizing enzymes results in
decreased bioavailability of S1P and increased levels of ceramide
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TABLE 1 | Molecular alterations of sphingolipid metabolism detected in neurodegenerative disorders.

Molecule Alzheimer Disease Huntington Disease Parkinson Disease

CERS2 Downregulated (Couttas et al., 2016) Not Available Not Available

Ceramides Increased levels (Han et al., 2002; Cutler et al.,

2004; Lee et al., 2004; Dinkins et al., 2015)

Increased levels (Pirhaji et al., 2016, 2017; Di

Pardo et al., 2017a)

Increased levels (Ferrazza et al., 2016)

SPHK1 Downregulated (Ceccom et al., 2014b; Couttas

et al., 2014)

Downregulated (Di Pardo et al., 2017a) Downregulated (Sivasubramanian and Tay

Ssw, 2013; Pyszko and Strosznajder, 2014)

SPHK2 Upregulated (Takasugi et al., 2011) Upregulated (Di Pardo et al., 2017a;

Moruno-Manchon et al., 2017)

Downregulated (Sivasubramanian and Tay

Ssw, 2013; Pyszko and Strosznajder, 2014;

Sivasubramanian et al., 2015)

SGPL1 Upregulated (Ceccom et al., 2014b) Upregulated (Di Pardo et al., 2017a; Pirhaji

et al., 2017)

Not Available

S1P Reduced levels (Couttas et al., 2014) Reduced levels (Pirhaji et al., 2016, 2017; Di

Pardo et al., 2017a)

Not Available

species as reported in HD models (Pirhaji et al., 2016, 2017; Di
Pardo et al., 2017a).

Ultimately, synthesis of de novo sphingolipids is also affected
in HD animals, even at early stage of the disease (Di Pardo
et al., 2017b). This alteration determines a robust reduction of
certain dihydroceramide species along with dihydrosphingosine
and dihydroS1P (Di Pardo et al., 2017b).

Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative movement
disorder with a prevalence of approximately 1 to 2% of the
population over 65 years which increases up to 5% in people over
85 years old (Fahn, 2003; Obeso et al., 2010).

The pathological hallmarks of PD include the loss of
dopaminergic neurons in the substantia nigra pars compacta and
the formation of Lewy bodies mainly composed of aggregated
alpha-synuclein (a-syn) protein and other components, including
lipids (Gai et al., 2000; Halliday et al., 2005; Dickson et al., 2009).

Several studies demonstrated that defective ceramide
metabolism may contribute to the pathogenesis of PD (Bras
et al., 2008; Haughey, 2010; Fabelo et al., 2011). Mutations in
the gene encoding for Glucocerebrosidase (GBA), a lysosomal
enzyme converting glucosyl-ceramides into ceramide (see also
Figure 1), increase the risk of developing sporadic PD (O’Regan
et al., 2017).

Alterations in the expression of ceramide synthase genes as
well as in the levels of certain ceramide species have been reported
in post-mortem brain tissues from sporadic PD patients (Abbott
et al., 2014). Consistently, mice knock out for Leucine-rich repeat
kinase 2 (LRRK2), whose gene mutations cause inherited PD (Li
et al., 2014), show a significant increase in the content of brain
ceramide (Ferrazza et al., 2016).

Although very little, defects in S1P metabolism have
been also reported in PD. Levels of SPHK1 and 2 have
been described aberrant in both in-vitro and in-vivo models
highlighting a potential contribution of S1P metabolism to the
pathogenesis of the disease (Sivasubramanian and Tay Ssw,
2013; Sivasubramanian et al., 2015). Consistently, further studies
demonstrate altered expression of S1P metabolizing enzymes
with reduced activity for both SPHK1 and 2 in an in-vitro PD

model (neuronal dopaminergic SH-SY5Y cells) induced by 1-
methyl-4-phenylpyridinium (MPP+) (Pyszko and Strosznajder,
2014).

Sphingolipid Pathways as Target for the
Development of Potential Therapeutic
Interventions
The study of bioactive sphingolipids as novel therapeutic targets
for the treatment of brain disorders is still relatively young,
however efforts are beingmade to question how therapeutics may
be designed to take advantage of sphingolipid signaling pathways.
Over the past few years it has been established that modulation
of sphingolipid metabolism can lead to improved efficacy in
many brain disorders ranging from neurodevelopmental to
neurodegenerative settings (Deogracias et al., 2012; Asle-Rousta
et al., 2013a; Di Pardo et al., 2014; Miguez et al., 2015; Moruno
Manchon et al., 2015; Pirhaji et al., 2017; Zhao et al., 2017).

Cell survival and proper functioning of neuronal circuits
is critical to the effectiveness of therapies in brain disorders.
Sphingolipids are key signaling molecules regulating many of
these cellular processes, thus it is very likely that manipulation
of sphingolipid metabolismmay represent a great way to develop
more effective and targeted therapeutic strategies.

Alzheimer’s Disease

Very little is still known about the therapeutic effect that
the modulation of sphingolipid metabolism may have in AD,
however there is evidence demonstrating that stimulation of S1P
receptors is beneficial in pre-clinical models of the diseases (Asle-
Rousta et al., 2013a,b, 2014; Hemmati et al., 2013; Takasugi et al.,
2013). Infusion of FTY720 (fingolimod), a non-selective S1P
receptor modulator and FDA- approved drug for the treatment
of Multiple Sclerosis, prevents spatial learning and memory
impairments as well as Aβ induced-changes in the expression
of some pro-apoptotic and inflammatory markers in AD animal
models (Asle-Rousta et al., 2013a, 2014; Hemmati et al., 2013).
Consistently, treatment with fingolimod leads to reduction of
Aβ species in both in-vitro and in-vivo disease models (Takasugi
et al., 2013).
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Activation of specific S1P receptors also exerts beneficial
effect in animal models of the disease. Indeed, administration of
SEW2871, a S1PR1 selective agonist, ameliorates spatial memory
impairments and attenuates the Aβ1-induced hippocampal
neuronal loss in an AD rat model (Asle-Rousta et al., 2013b).

Huntington’s Disease

The effective therapeutic potential of the modulation of both
levels and activity of S1P-metabolizing enzyme in HD is
increasingly becoming evident in the last few years (Moruno
Manchon et al., 2015; Di Pardo et al., 2017a; Pirhaji et al., 2017).

Recent evidence demonstrates that SPHK1 co-localizes with
autophagosomes and its over expression favors autophagy-
mediated clearance of mutant Htt exon-1 construct in vitro
(Moruno Manchon et al., 2015). Coherently, stimulation of
SPHK1, by the selective pharmacological activator K6PC-5 (Ji
et al., 2015), significantly reduces apoptosis in mouse striatal
derived HD cell lines and leads to the activation of pro-survival
signaling pathways (Di Pardo et al., 2017a). The potential
therapeutic validity of this pharmacological approach in HD is
further supported by the beneficial effects that modulation of the
kinase has in human HD iPSC-derived neurons (Di Pardo et al.,
2017a).

Inhibition of SPHK2 or SGPL1 also represents a possible
pharmacological strategy to increase survival in HD cell models
(Di Pardo et al., 2017a; Moruno-Manchon et al., 2017; Pirhaji
et al., 2017). Stimulation of S1P receptors is an additional
therapeutically effective approach in this context. It stimulates
the production of neurotrophins, activates neuronal pro-survival
pathways and ultimately delays disease progression in HDmouse
models (Di Pardo et al., 2014; Miguez et al., 2015).

Parkinson’s Disease

Modulation of S1P pathways has been recently explored in
experimental models of PD. Pharmacological inhibition of
SPHK1 reduces cell survival and increases oxygen reactive species
in MPP+ human dopaminergic neuronal cells (Pyszko and
Strosznajder, 2014). Conversely, treatment with S1P significantly
reduced apoptosis in the same experimental model by regulating
the expression of S1PR1 (Pyszko and Strosznajder, 2014).

Coherently, inhibition of SPHK2 leads to downregulation
of mitochondrial-related genes such as proliferator-activated
receptor γ coactivator-1α (PGC-1α) and its downstream
targets nuclear respiratory factor 1 (NRF-1) and mitochondrial
transcription factor A (TFAM) in multiple PD experimental
models (Sivasubramanian et al., 2015). Furthermore, treatment
with S1P enhance the expression of PGC-1α and NRF-1 in a
mouse model of the disease and exert neuroprotective effect
of dopaminergic neurons via S1PR1 (Sivasubramanian et al.,
2015).

The potential role of S1PR1 stimulation in PD has been further
explored. Treatment with FTY720 attenuates motor deficit and
prevent dopaminergic neuronal loss in two chemical-induced PD
models (Zhao et al., 2017). The neuroprotective effect of the drug
is associated with the activation of pro-survival kinase ERK in

both in-vitro and in-vivo PD models (Zhao et al., 2017). The
benefit of FTY720 was abolished by the co-treatment withW146,
a S1PR1 selective antagonist, indicating that action of fingolimod
was mediated, at least in part, by its binding at S1PR1.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In the last few years, the recognition of aberrant sphingolipid
metabolism is becoming more evident in neurodegenerative
disorders and, its deeper investigation may either strongly
contribute to a better understanding of the disease pathogenesis
or support the development of novel and more targeted
therapeutic approaches.

Defects in this metabolism may profoundly affect the CNS
and may interfere with selective biological pathways, whose
dysregulation can explain some of the molecular and cellular
alterations underlying neurodegeneration.

The hypothesis of candidating sphingolipid pathways as
attractive therapeutic targets is strongly supported by evidence
that demonstrates that modulation of such pathways has
beneficial effects in different neurodegenerative conditions. To
date, what makes sphingolipid metabolism a promising target
with a real potential to be successfully translated into clinical
practice of brain disorders is the evidence that some of the
drugs targeting S1P and its receptors are already marketed or
in advanced phases of clinical development for the treatment
of human disorders (Hatoum et al., 2017; O’Sullivan and Dev,
2017). This could certainly allow to take advantage from the
already available molecules and eventually to promote the
development of new ones.

Takin into account the diverse functions that some
sphingolipids may have, reducing ceramide accumulation
and/or targeting its conversion into other sphingolipid species
may represent an alternative approach for brain disorders
(Brodowicz et al., 2018). In this context, the feasibility of
lowering ceramide levels and its effectiveness is supported by a
number of pre-clinical studies and by the evidence that some
drugs that target ceramide production are currently approved
for clinical use (Kornhuber et al., 2010). On the other hand,
boosting ceramide metabolism toward the synthesis of C1P
and/or S1P, through the use of specific kinase activators (Kwon
et al., 2007; Tada et al., 2010), may also represent a fascinating
approach.
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