
HOW TO DISCRETIZE THE DIFFERENTIAL FORMS ON THE INTERVAL
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Abstract. We provide explicit quasi-isomorphisms between the following three algebraic struc-
tures associated to the unit interval: i) the commutative dg algebra of differential forms, ii) the
non-commutative dg algebra of simplicial cochains and iii) the Whitney forms, equipped with a
homotopy commutative and homotopy associative, i.e. C∞, algebra structure. Our main inter-
est lies in a natural ‘discretization’ C∞ quasi-isomorphism ϕ from differential forms to Whitney
forms. We establish a uniqueness result that implies that ϕ coincides with the morphism from
homotopy transfer, and obtain several explicit formulas for ϕ, all of which are related to the
Magnus expansion. In particular, we recover combinatorial formulas for the Magnus expansion
due to Mielnik and Plebański.
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Introduction

The purpose of this paper is to construct several explicit quasi-isomorphisms between three
algebraic structures associated to the unit interval [0, 1], and study some of their properties. The
first algebraic structure we consider is the commutative dg algebra of differential forms Ω∗([0, 1])
– with the usual de Rham differential and wedge product. The other two structures are defined
on the subcomplex C∗([0, 1]) ⊂ Ω∗([0, 1]) of Whitney forms

C∗([0, 1]) = {at+ b(1− t) | a, b ∈ k} ⊕ {c dt | c ∈ k},

consisting of affine functions and constant one-forms on [0, 1]. Notice that, as a complex,
C∗([0, 1]) is isomorphic to the complex of simplicial cochains on the one-dimensional simplex:
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as such, it is equipped with a dg algebra structure via the usual cup product ∪ of cochains, and
we denote this dg algebra by C∗∪([0, 1]). The cup product ∪ is not graded commutative.

On the other hand, since the inclusion ι : C∗([0, 1]) ↪→ Ω∗([0, 1]) is a quasi-isomorphism of
complexes, the general transfer theorems of homotopical algebra guarantee the existence of a
homotopy associative and commutative – i.e., a C∞ – algebra structure on C∗([0, 1]). The latter
was worked out explicitly in the papers [7, 9, 25], cf. Theorem 1.1 in Subsection 1.1 below, and
its Taylor coefficients are given in terms of Bernoulli numbers. We denote C∗([0, 1]), equipped
with this C∞ algebra structure, by C∗∞([0, 1]).

Furthermore, and again by homotopy transfer, one obtains a deformation of the inclusion
ι : C∗([0, 1]) → Ω∗([0, 1]) into a quasi-isomorphism µ : C∗∞([0, 1]) → Ω∗([0, 1]) of C∞ algebras –
see [7, 9, 25] for explicit formulas in terms of Bernoulli polynomials, and in particular [7] for the
verification that one obtains indeed a morphism of C∞ algebras (a different proof can be found
in Appendix B).

The C∞ algebra C∗∞([0, 1]) contains – in a precise mathematical sense – the same information
as the commutative dg algebra Ω∗([0, 1]). Since C∗∞([0, 1]) is finite-dimensional, one can think
of it as a natural discretization of Ω∗([0, 1]) – see also [25] for the corresponding interpretation
of C∗∞([0, 1]) in terms of a discretization of BF-theory on the interval. The map µ then provides
a canonical way to related the discretization C∗∞([0, 1]) to the original structure on Ω∗([0, 1]).

At this point, the following question naturally arises:

How to explicitly construct a homotopy inverse to µ : C∗∞([0, 1])→ Ω∗([0, 1])?

Or, to put it differently: how to provide a morphism from Ω∗([0, 1]) to its discretization? In
principle, one can again invoke the general transfer theorems of homotopical algebra, such as
those established in [16, 22]. However, this turns out to be a non-trivial task – in particular, we
do not know how to obtain explicit formulas this way.

To circumvent this problem, we make use of the fact that, as a complex, C∗([0, 1]) coincides
with the simplicial cochains on [0, 1]. The relation between the dg algebra of smooth, singular
cochains C∗(M) on a manifold M , and the dg algebra of differential forms Ω∗(M), is well-
understood: First, recall that de Rham’s Theorem asserts that integration of forms over simplices
provides a quasi-isomorphism of complexes

∫
: Ω∗(M)→ C∗(M).

Moreover, one can prove, cf. [12], that the chain map
∫

admits a refinement to an A∞ quasi-
isomorphism between (Ω∗(M), d,∧) and (C∗(M), δ,∪), which implies that integration induces
an isomorphism of algebras at the cohomology level. A rather explicit refinement in terms
of Chen’s iterated integrals was provided by Gugenheim in [13]. In our setting, Gugenheim’s
construction yields an explicit A∞ quasi-isomorphism

λ : Ω∗([0, 1])→ C∗∪([0, 1]).
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We combine µ and λ to produce the following diagram

Ω∗([0, 1])

λ

��

ϕ

vv
C∗∞([0, 1])

exp

∼=
33

µ

66

C∗∪([0, 1])

log

∼=ss

γ

VV

which yields, in particular, an explicit C∞ morphism ϕ from Ω∗([0, 1]) to its discretization
C∗∞([0, 1]). Let us briefly describe the constituencies of the diagram:

(1) µ is the quasi-isomorphism from C∗∞([0, 1]) to Ω∗([0, 1]) obtained by homotopy transfer.
(2) λ is a special case of Gugenheim’s A∞ morphism between differential forms and smooth,

singular cochains.
(3) exp is an isomorphism of A∞ algebras, defined as the composition

exp : C∗∞([0, 1])
µ→ Ω∗([0, 1])

λ→ C∗∪([0, 1]),

and log = (exp)−1 is its inverse. Both have a simple description in Taylor coefficients:
their linear part is the identity, and the higher Taylor coefficients vanish unless all their
arguments are one-cochains, in which case we recover the Taylor coefficients of the func-
tions exp(x)− 1 and log(x+ 1) respectively.

(4) γ is an A∞ morphism right inverse to λ, defined as the composition

γ : C∗∪([0, 1])
log→ C∗∞([0, 1])

µ→ Ω∗([0, 1]).

We derive explicit formulas for γ in Proposition 1.7 in Subsection 1.2.
(5) ϕ is a C∞ morphism left inverse to µ, defined as the composition

ϕ : Ω∗([0, 1])
λ→ C∗∪([0, 1])

log→ C∗∞([0, 1]).

The morphism ϕ is the main object of this paper. We shall derive explicit, as well
as recursive, formulas for ϕ, and find interesting connections with Lie theory and the
Magnus expansion.

Our main results concerning ϕ are:

(i) ϕ is indeed a C∞ morphism, which is not evident from its definition as the composition
of two A∞ morphism. We prove this directly in Corollary 2.7 in Subsection 2.1 and
indirectly in Corollary 2.14, Subsection 2.3. For the direct argument, we show the
identity ϕn = λn◦E∗, where ϕn, λn are the n’th Taylor coefficients of ϕ and λ respectively,
and E∗ is a canonical projector vanishing on the image of the shuffle product. More
precisely, E∗ is the adjoint to the first Eulerian idempotent E, which is a canonical
projector from the tensor algebra onto the free Lie algebra, see [27].

(ii) ϕ (as well as λ, exp, log) is uniquely characterized by the property that its higher Taylor
coefficients vanish whenever one of their arguments is a zero-form. As a consequence, we
show that ϕ coincides with the morphism constructed via homotopy transfer formulas,
as in [16, 22].

(iii) After scalar extension by a dg Lie algebra, our explicit formulas for ϕ recover known
formulas for the Magnus expansion, see [20, 17, 23].
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To add some perspective on the previous diagram, we remark that it continues to make sense
after we replace the interval/one-simplex [0, 1] by any manifold/simplicial set M . We already
observed this for Gugenheim’s A∞ morphism λ : Ω∗(M) → C∗∪(M). The C∞ algebra C∗∞(M)
and the C∞ morphism µ : C∗∞(M) → Ω∗(M) can be defined as before via homotopy transfer
(along Dupont’s contraction, see [8]). Finally, the rest of the diagram can be defined as before:

in particular, exp : C∗∞(M)
µ−→ Ω∗(M)

λ−→ C∗∪(M) continues to be an A∞ isomorphism with
linear part the identity. We remark that the previous diagram is natural in M , and in particular
our formulas continue to apply when M is a one-dimensional simplicial set. To the authors’
knowledge, it is both an hard and interesting open problem to better understand the higher
dimensional case. Let us point out some topics to which this problem is related:

• Rational homotopy theory: the composition of the functor C∗∞(−) and the Chevalley-
Eilenberg functor from C∞ algebras to (complete) dg Lie algebras yields a functor L(−)
from simplicial sets to (complete) dg Lie algebras, representing the underlying Quillen’s
equivalence from rational homotopy theory, see [3]. In this context, the A∞ isomorphism

exp from the previous diagram corresponds to an isomorphism of dg algebras ΩC∗(M)
∼=−→

U(L(M)), where U(L(M)) is the universal enveloping of L(M) and ΩC∗(M) is the
natural simplicial analog of the Adams-Hilton model studied in [14, 21]. More concretely,
ΩC∗(M) is the cobar construction of the dg coalgebra C∗(M) of normalized chains on
M . It would be interesting to compare the cocommutative dg Hopf algebra structure
induced on ΩC∗(M) by the previous isomorphism and the one studied in the papers
[14], [21, App. D], which is cocommutative only up to homotopy. This would open
up the possibility to use the results of the latter reference to get explicit comparisons
between L(M) and other classical models for the rational homotopy type of M . We
briefly address the particular case of M = [0, 1] in Remark 2.21, Subsection 2.3. In this
case, the dg Lie algebra L([0, 1]) recovers the well-studied Lawrence-Sullivan model of
the interval [18] (as was proved in [7], thus answering a question posed by Sullivan).
• Derived deformation theory: the functor L(−) from the previous paragraph is a left

adjoint to Getzler’s higher generalization of the Deligne groupoid functor, see [11, 10]
and the first author’s PhD Thesis. In this context, the previous diagram encodes the
equivalences between three models of the derived deformation theory associated to a dg
Lie algebra g: the one considered by Hinich in [15], the one considered by Getzler in
[11] and the one considered by Behrend and Getzler in [2, Section 8] (the latter makes
sense only for dg associative algebras, so either we assume that the Lie bracket on g is
the commutator of an associative product or we replace g by its universal enveloping
algebra). In the one-dimensional case, the three L∞ algebras Ω∗([0, 1]; g), C∗∞([0, 1]; g)
and C∗∪([0, 1]; g) obtained via scalar extension by g (again, the latter makes sense only
in the associative setting) encode, via the respective Maurer-Cartan equations (cf. for
instance [9, Section 7]), three different notions of gauge/homotopy equivalence between
Maurer-Cartan elements in the dg Lie/associative algebra g. As is well-known, these
three equivalence relations coincide, and our diagram established this fact by providing
direct comparisons.
• Mathematical physics: Let M be an oriented manifold and g a Lie algebra. From these

data one obtains a topological field theory on M , known as BF-theory. Its classical
action functional reads

SBF : Ω1(M ; g)⊕ Ωn−2
c (M ; g∗) → R,

(A,B) 7→
∫
M
< B, dA+

1

2
[A,A] >=

∫
M
< B,FA >,
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where < ·, · >: g∗×g→ R is the natural pairing. In this theory, the induced L∞ algebra
structure on Whitney forms with values in g corresponds to the tree-level effective action
functional Stree

eff on the space of infrared fields, obtained by integrating out ultraviolet
fields, see [25]. Moreover, the Wilson loop observable Wγ , given by

Wγ(A,B) = tr(holγ(A)),

where γ : S1 → M is a loop and holγ(A) is the holonomy of the connection A around
γ, can be expressed in terms of Chen’s iterated integrals. For the case of [0, 1], one is
therefore naturally led to consider λ and log ◦λ. We remark that several higher dimen-
sional generalizations of the Wilson loop observables were constructed and studied in
the mathematical physics literature, see for instance [5, 26].

Let us conclude the introduction of this paper with a brief outline of its structure.
In Section 1, we recall the C∞ algebra structure on the space of Whitney forms C∗([0, 1]),

along with the C∞ morphism µ from C∗([0, 1]) to Ω∗([0, 1]), and Gugenheim’s morphism λ
from differential forms to simplicial cochains. In Subsection 1.3, we compute exp := λ ◦ µ :
C∗∞([0, 1])→ C∗∪([0, 1]), as well as its inverse log. Moreover, we work out the morphism

γ : C∗∪([0, 1])
log→ C∗∞([0, 1])

µ→ Ω∗([0, 1])

in Subsection 1.4.
In Section 2, we introduce and study the morphism

ϕ : Ω∗([0, 1])
λ→ C∗∪([0, 1])

log→ C∗∞([0, 1]).

We start in 2.1 by establishing explicit formulas for ϕ. The first formula expresses the n’th
Taylor coefficient ϕn of ϕ in terms of an integral over the geometric n-simplex, see Theorem 2.2.
In Proposition 2.6 we express the Taylor coefficients of ϕ in terms of the adjoint E∗ to the first
Eulerian idempotent. Together with a symmetry property of E∗, Proposition 2.6 implies that
ϕ is a morphism of C∞ algebras, see Corollary 2.7. In Theorem 2.10, we establish a recursive
description of ϕ, which is inspired by [17]. In Subsection 2.3, we establish a uniqueness result
for morphisms between (very) special A∞ algebras, and C∞ algebras, respectively. This result
applies to ϕ, and as consequences we deduce that 1) ϕ coincides with the morphism obtained
from homotopy transfer and 2) we obtain a second proof that it is a morphism of C∞ algebras.

In Section 3, we study the pushforward along ϕ, after extension of scalars to a dg algebra A,
or a dg Lie algebra g, respectively. In the latter case, we recover known formulas for the Mangus
expansion.

The two appendices provide background material on A∞, L∞ and C∞ algebras.

Acknowledgements. We are grateful to Fabian Burghart, Pavel Mnëv and Jan Steinebrunner
for generously sharing a draft of their joint work [4], in which they independently derive Propo-
sition 3.4 in Subsection 3.2 below. Moreover, F.S. thanks Pavel Mnëv for interesting discussions
related to the topics of this paper, and R.B. thanks the University of Luxembourg for hospitality
during his visit in December 2015. Finally, we are in debt to James D. Stasheff for numerous
valuable comments on a draft version of this paper.

1. Differential forms on the interval

We briefly review three algebraic structures associated to the interval [0, 1], as well as the
known morphisms between them. We refer the reader to the Appendix for an explanation of
our notation and terminology concerning A∞, L∞ and C∞ algebras.
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1.1. Differential forms and Whitney forms. Throughout the article, Ω∗([0, 1]) denotes the
graded vector space of differential forms on the closed interval [0, 1]. To be more precise, there
are two variants of Ω∗([0, 1]) which we will consider:

• the space of real-valued, smooth differential forms on [0, 1], denoted by Ω∗dR([0, 1]),
equipped with the structure of a commutative dg algebra via the de Rham differen-
tial d and the wedge product ∧.
• the space of k-polynomial forms on [0, 1], where k is a field of characteristic zero, denoted

by Ω∗k([0, 1]): formally, Ω∗k([0, 1]) = Ω0
k([0, 1]) ⊕ Ω1

k([0, 1]) = k[t] ⊕ k[t]dt, where k[t] is
the polynomial algebra over k. Again, this is a commutative dg algebra via the wedge
product p(t) ∧ q(t) = p(t)q(t), p(t) ∧ q(t)dt = p(t)q(t)dt, p(t)dt ∧ q(t)dt = 0 and the
differential d : p(t) 7→ p′(t)dt and d : p(t)dt 7→ 0.

Since most of our constructions work in both contexts, we will usually just use Ω∗([0, 1]) to refer
to either variant.

The subcomplex of Whitney forms is the graded vector subspace of Ω∗([0, 1]) given by the
affine functions and constant one-forms, i.e.

C∗([0, 1]) = C0([0, 1])⊕ C1([0, 1]) = {at+ b(1− t) | a, b ∈ k} ⊕ {c dt | c ∈ k}.

Notice that this space is closed under the differential d, but not under multiplication. However,
C∗([0, 1]) can be identified with the complex of simplicial k-valued cochains on the standard 1-
dimensional simplex. As such, we might equip C∗([0, 1]) with the cup product ∪, which is
determined by the fact that the constant function 1 is a unit and that the relations

t ∪ t = t, t ∪ dt = 0 and dt ∪ t = dt

hold. The cup product is associative and compatible with d, hence it makes C∗([0, 1]) into a dg
algebra. We denote this dg algebra by C∗∪([0, 1]), and emphasize that the cup product is not
graded commutative.

In order to retain some form of commutativity on C∗([0, 1]), one can use homological perturba-
tion theory, as done in the references [16, 22], to transfer the wedge product on Ω∗([0, 1]) down to
a homotopy associative and homotopy commutative algebra structure, i.e., a C∞-algebra struc-
ture, on C∗([0, 1]). We refer to the Appendix for a short reminder on these algebraic structures.
To carry out the transfer of the wedge product from Ω∗([0, 1]) to C∗([0, 1]), we first need to fix
suitable contraction data from Ω∗([0, 1]) to C∗([0, 1]). Following [7, 9, 25] we consider Dupont’s
contraction (cf. [8]), which is given by the inclusion ι : C∗([0, 1]) ↪→ Ω∗([0, 1]), the chain map

π : Ω0([0, 1])→ C0([0, 1]), f 7→ f(1)t+ f(0)(1− t)

π : Ω1([0, 1])→ C1([0, 1]), a(t)dt 7→
(∫ 1

0
a(τ)dτ

)
dt

and the chain homotopy

h : Ω1([0, 1])→ Ω0([0, 1]), a(t)dt 7→ t

∫ 1

0
a(τ)dτ −

∫ t

0
a(τ)dτ.

We notice that the side-conditions

h ◦ h = 0, h ◦ ι = 0 and π ◦ h = 0

are satisfied.
The resulting homotopy algebra structure on C∗([0, 1]) was explicitly worked out in [7, 9, 25].

Below we denote by s the suspension endofunctor on the category of graded vector spaces, see
Appendix A for our conventions related to A∞ algebras.
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Theorem 1.1 ([7, 9, 25]). The maps mn+1 : sC∗([0, 1])⊗n+1 → sC∗([0, 1]), n ≥ 1, determined
by

• unitality with respect to the constant function 1,
• m2(st⊗ st) = st, m2(st⊗ sdt) = 1

2sdt, m2(sdt⊗ st) = −1
2sdt,

• for n > 1 the map mn+1 vanishes unless precisely one of its arguments is a function and
one has

mn+1((sdt)⊗i ⊗ st⊗ (sdt)⊗n−i) =
(
(−1)i+1

(
n

i

)
Bn
n!

)
sdt,

equip the complex (C∗([0, 1]), d) with the structure of a unital C∞-algebra. Here Bn is the n’th
Bernoulli number, defined in terms of the generating function

z

ez − 1
=
∑
n≥0

zn

n!
Bn.

We denote C∗([0, 1]), equipped with the C∞ algebra structure given by the maps (d,m2,m3, . . . ),
by C∗∞([0, 1]).

The C∞ algebra structure on C∗([0, 1]) comes with a quasi-isomorphism of C∞ algebras

µ : C∗∞([0, 1])→ Ω∗([0, 1]),

whose linear part is the inclusion C∗([0, 1]) ↪→ Ω∗([0, 1]), see [7]. Explicit formulas for µ were
worked out in [9, 25].

Proposition 1.2 ([7, 9, 25]). There is a C∞ morphism

µ : C∗∞([0, 1])→ Ω∗([0, 1])

whose Taylor coefficients are determined as follows:

• µ is unital.
• The linear part µ1 is the inclusion.
• For n ≥ 1, µn+1 vanishes unless precisely one of the inputs is a function and one has

µn+1((sdt)⊗i ⊗ st⊗ (sdt)⊗n−i) = s

(
(−1)i

(
n

i

)
Bn+1(t)−Bn+1

(n+ 1)!

)
.

Here Bn(t) is the n’th Bernoulli polynomial, defined in terms of the generating function

zetz

ez − 1
=
∑
n≥1

zn

n!
Bn(t).

1.2. Gugenheim’s A∞-morphism λ. Let X be a smooth manifold. In [13] Gugenheim con-
structed an A∞ quasi-isomorphism λX from the de Rham dg algebra Ω∗dR(X) of smooth, real-
valued differential forms on X to the dg algebra of singular, smooth R-valued cochains on X.
The construction relies on Chen’s theory of iterated integrals [6], see also the exposition in [1].

We obtain the following result when we specialize Gugenheim’s construction to X = [0, 1]:

Theorem 1.3. There is a unital A∞-morphism λ : Ω∗([0, 1])→ C∗∪([0, 1]) whose Taylor coeffi-
cients are determined as follows:

• The linear part λ1 is the chain map π from Subsection 1.1.
• For n > 1, λn vanishes on tensor products that contain a factor which is a zero-form.
• For n ≥ 1 we have

λn(sa1(t)dt⊗ · · · ⊗ san(t)dt) =

 ∫
0≤t1≤···≤tn≤1

a1(t1) · · · an(tn)dt1 · · · dtn

 sdt.
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We provide a direct proof of this fact below.

Remark 1.4. We remark that the previous theorem remains true when Ω∗([0, 1]) = Ω∗k([0, 1]) is
the dg algebra of k-polynomial forms: in this case, given p(t1, . . . , tn) ∈ k[t1, . . . , tn] and s ∈ k,
the integral

∫
0≤t1≤···≤tn≤s p(t1, . . . , tn)dt1 · · · dtn can be evaluated formally by setting∫

0≤t1≤···≤tn≤s
tl1−1
1 · · · tln−1

n dt1 · · · dtn =
sl1+···+ln

l1(l1 + l2) · · · (l1 + · · ·+ ln)

for all positive intgers l1, . . . , ln.

Proof. Let us evaluate the defining relations for λ to be an A∞ morphism on a tensor product
of elements in sΩ∗([0, 1]). We do this by considering three separate cases, which cover all
possibilities.

First, suppose all factors are one-forms. Then by degree reasons, the defining relation takes
values in the component of degree two of C∗([0, 1]), which is zero.

The second case to consider is that two or more of the factors are zero-forms. Since λn vanishes
for n > 1 if one of the inputs is a zero-form, the defining relation is trivially satisfied in this case
as well, unless we consider precisely sf1(t) ⊗ sf2(t). Then the defining relation for λ to be an
A∞ morphism reads

π(f1(t)f2(t)) = π(f1(t)) ∪ π(f2(t)),

which follows immediately from the definitions of π and ∪.
Finally, we consider an element of the form

sa1(t)dt⊗ · · · ⊗ sai(t)dt⊗ sf(t)⊗ sai+1(t)dt⊗ · · · ⊗ san(t)dt

with n > 0 and work out the defining relations of λ being an A∞ morphism, evaluated on such
an element.

If 0 < i < n we obtain∫
0≤t1≤···≤tn+1≤1

a1(t1) · · · ai(ti)
(
df

dt
(ti+1)

)
ai+1(ti+2) · · · an(tn+1)dt1 · · · dtn+1

!
=

∫
0≤t1≤···≤tn≤1

a1(t1) · · · ai(ti)
(
f(ti+1)ai+1(ti+1)

)
ai+2(ti+2) · · · an(tn)dt1 · · · dtn

−
∫

0≤t1≤···≤tn≤1

a1(t1) · · · ai−1(ti−1)
(
ai(ti)f(ti)

)
ai+1(ti+1) · · · an(tn)dt1 · · · dtn

which is a consequence of Stokes theorem. For the extremal case i = 0, we obtain,∫
0≤t1≤···≤tn+1≤1

(
df

dt
(t1)

)
a1(t2) · · · an(tn+1)dt1 · · · dtn+1

!
=

∫
0≤t1≤···≤tn≤1

(
f(t1)a1(t1)

)
a2(t2) · · · an(tn)dt1 · · · dtn

−f(0)

 ∫
0≤t1≤···≤tn≤1

a1(t1) · · · an(tn)dt1 · · · dtn

 ,
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while for i = n, we obtain∫
0≤t1≤···≤tn+1≤1

a1(t1) · · · an(tn)

(
df

dt
(tn+1)

)
dt1 · · · dtn+1

!
=

 ∫
0≤t1≤···≤tn≤1

a1(t1) · · · an(tn)dt1 · · · dtk

 f(1)

−
∫

0≤t1≤···≤tn≤1

a1(t1) · · · ak−1(tk−1)
(
an(tn)f(tn)

)
dt1 · · · dtn.

Also the latter two equations are immediate consequences of Stokes theorem. �

It is well known that iterated integrals behave well with respect to the shuffle product [6]: in
the case of the interval, we have the following proposition, which we will use in the next section.

Proposition 1.5. We denote by pλ : T (sΩ1([0, 1])) → sC1([0, 1]) = k the corestriction of the
degree zero part of Gugenheim’s morphism: then pλ is a morphism of commutative algebras,
where we equip T (sΩ1([0, 1])) with the shuffle product ~ (cf. Appendix B).

Proof. Denoting by ∆i = {(t1, . . . , ti) ∈ Ri s.t. 0 ≤ t1 ≤ · · · ≤ ti ≤ 1} the i-dimensional simplex,
we have

λj
(
sa1(t)dt⊗ · · · ⊗ saj(t)dt

)
· λk
(
saj+1(t)dt⊗ · · · ⊗ saj+k(t)dt

)
=

=

∫
∆j×∆k

a1(t1) · · · aj+k(tj+k)dt1 · · · dtj+k,

Using the natural triangulation of ∆j ×∆k∐
σ∈S(j,k)

∆n
σ−→ ∆j ×∆k, (t1, . . . , tn)

σ7→ (tσ(1), . . . , tσ(n)),

where S(j, k) is the set of (j, k)-unshuffles, we can rewrite the right hand side of the previous
equation as ∫

∆j×∆k

a1(t1) · · · aj+k(tj+k)dt1 · · · dtj+k =

=
∑

σ∈S(j,k)

∫
∆n

a1(tσ(1)) · · · aj+k(tσ(j+k))dt1 · · · dtj+k

=
∑

σ∈S(j,k)

∫
∆n

aσ−1(1)(t1) · · · aσ−1(j+k)(tj+k)dt1 · · · dtj+k

= λn
(
(sa1(t)dt⊗ · · · ⊗ saj(t)dt)~ (saj+1(t)dt⊗ · · · ⊗ saj+k(t)dt)

)
,

by definition of the shuffle product ~. �

1.3. Comparing two structures on Whitney forms. We can now combine the C∞ mor-
phism µ : C∗∞([0, 1]) → Ω∗([0, 1]) with the A∞ morphism λ : Ω∗([0, 1]) → C∗∪([0, 1]). Since
the linear part of the composition λ ◦ µ is the identity, we obtain an A∞ isomorphism between
C∗∞([0, 1]) and C∗∪([0, 1]).

Proposition 1.6. The Taylor coefficients of the unital A∞ isomorphism

exp := λ ◦ µ : C∗∞([0, 1])→ C∗∪([0, 1])

are determined as follows:
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• The linear part exp1 is the identity.
• For n > 1, expn vanishes on tensor products that contain a factor of degree 0.
• For n ≥ 1, we have

expn(sdt⊗ · · · ⊗ sdt) =
1

n!
sdt.

The inverse log : C∗∪([0, 1]) → C∗∞([0, 1]) to exp is the unital A∞ isomorphism whose Taylor
coefficients are determined as follows:

• The linear part of log1 is the identity.
• For n > 1, logn vanishes on tensor products that contain a factor of degree 0.
• For n ≥ 1, we have

logn(sdt⊗ · · · ⊗ sdt) =
(−1)n+1

n
sdt.

Proof. Let us first consider the map exp: we already observed the assertion about the linear
part.

If we evaluate expn+1, n ≥ 1, on a tensor product of the form

(sdt)⊗i ⊗ st⊗ (sdt)⊗n−i,

only the contribution from πµn+1((sdt)⊗i ⊗ st ⊗ (sdt)⊗n−i) can be non-zero, since all higher
order terms of λ map tensor products which contain a factor that is a zero-form to zero. Hence
we obtain

expn+1((sdt)⊗i ⊗ st⊗ (sdt)⊗n−i) = (−1)i
(
n

i

)(
Bn+1(1)−Bn+1

(n+ 1)!

)
st = 0,

since Bn+1(1) = Bn+1 for n ≥ 1.
On the other hand, only λnµ

⊗n
1 contributes to the evaluation of expn on the tensor product

(sdt)⊗n, since the higher order terms of µ vanish unless precisely one argument is a function,
and we find

expn(sdt⊗ · · · ⊗ sdt) =

 ∫
0≤t1≤···≤tn≤1

dt1 · · · dtn

 sdt =
1

n!
sdt,

as desired. Finally, it is clear by degree reasons that expn vanishes if two or more arguments
are functions.

It is straightforward to check that log as defined in the proposition is indeed the inverse to
exp. �

1.4. A one-sided inverse to λ. We define an A∞ morphism γ as the composition

γ : C∗∪([0, 1])
log // C∗∞([0, 1])

µ // Ω∗([0, 1]).

By construction, we have λ ◦ γ = λ ◦ µ ◦ log = exp ◦ log = id.

Proposition 1.7. The Taylor coefficients of the unital A∞ morphism

γ = µ ◦ log : C∗∪([0, 1])→ Ω∗([0, 1])

are determined as follows:

• The linear part γ1 is the inclusion C∗([0, 1]) ↪→ Ω∗([0, 1]).
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• For i ≥ 0, j ≥ 0, we have

γi+j+1((sdt)⊗i ⊗ st⊗ (sdt)⊗j) = s
i∑
l=0

(
1− t
l

)(
t

i+ j + 1− l

)
,

where
(
τ
n

)
= τ(τ−1)···(τ−n+1)

n! .
• For n ≥ 1, we have

γn(sdt⊗ · · · ⊗ sdt) =
(−1)n+1

n
sdt.

Proof. We introduce the following generating function

F (z, w) :=
∑
i,j≥0

γi+j+1((sdt)⊗i ⊗ st⊗ (sdt)⊗j)ziwj

and compute

F (z, w) =
∑
i,j≥0

∑
i1+···+ip=i
j1+···+jq=j

ziwj
(−1)i+p

i1 · · · ip
(−1)j+q

j1 · · · jq
µp+q+1((sdt)⊗p ⊗ st⊗ (sdt)⊗q)

=
∑
p,q≥0

log(1 + z)p log(1 + w)qµp+q+1((sdt)⊗p ⊗ st⊗ (sdt)⊗q)

=
∑
n≥0

( ∑
p+q=n

(
n

p

)
(−1)p log(1 + z)p log(1 + w)q

)
Bn+1(t)−Bn+1

(n+ 1)!

=
∑
n≥0

Bn+1(t)−Bn+1

(n+ 1)!
(log(1 + w)− log(1 + z))n

= G

(
log

(
1 + w

1 + z

))
,

where G(u) is the formal power series

G(u) =
∑
r≥0

Br+1(t)−Br+1

(r + 1)!
ur =

etu − 1

eu − 1
.

Hence we find

F (z, w) =

(
1+w
1+z

)t
− 1

1+w
1+z − 1

= (1 + z)1−t 1

w − z
(
(1 + w)t − (1 + z)t

)
.

Since z and w are formal variables, we can apply Newton’s generalized binomial Theorem to
obtain

1

w − z
(
(1 + w)t − (1 + z)t

)
=

1

w − z
∑
k≥0

(
t

k + 1

)
(wk+1 − zk+1) =

∑
r,s≥0

(
t

r + s+ 1

)
wrzs

where, by definition, (
t

k

)
:=

t(t− 1) · · · (t− k + 1)

k!
.

We therefore have

F (z, w) =

∑
l≥0

(
1− t
l

)
zl

∑
r,s≥0

(
t

r + s+ 1

)
wrzs

 .
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Consequently, the coefficient for ziwj of F (z, w) is

i∑
l=0

(
1− t
l

)(
t

i+ j + 1− l

)
.

We conclude that

γi+j+1((sdt)⊗i ⊗ st⊗ (sdt)⊗j) = s
i∑
l=0

(
1− t
l

)(
t

i+ j + 1− l

)
.

Since µn vanishes for n > 1 if we evaluate it on a tensor product that contains only elements
of degree one, the only relevant contribution to γn(sdt⊗· · ·⊗sdt) is (µ1 ◦ logn)(sdt⊗· · ·⊗sdt) =
(−1)n+1

n sdt. �

2. The C∞ morphism ϕ from Ω∗([0, 1]) to C∗∞([0, 1])

In this section we study the composition

ϕ : Ω∗([0, 1])
λ // C∗∪([0, 1])

log // C∗∞([0, 1]).

Our main results concerning ϕ are as follows:

(1) We provide several formulas for the Taylor coefficients of ϕ.
(2) We show that ϕ is a C∞ morphism of C∞ algebras.
(3) We prove that ϕ is unique within a certain class of A∞ morphisms, and, as a consequence,

that it coincides with the morphism obtained via homotopy transfer along Dupont’s
contraction, cf. Subsection 1.1.

2.1. An explicit formula. The aim of this subsection is to make the A∞ morphism

ϕ : Ω∗([0, 1])→ C∗∞([0, 1]),

defined as the composition of λ : Ω∗([0, 1])→ C∗∪([0, 1]) from Subsection 1.2 and log : C∗∪([0, 1])→
C∗∞([0, 1]) from Subsection 1.3, explicit.

Definition 2.1. The descent number dσ of a permutation σ ∈ Sn is the non-negative integer

dσ := |{i ∈ {1, . . . , n− 1} such that σ(i) > σ(i+ 1)}|.

Theorem 2.2. The higher Taylor coefficients ϕn, n ≥ 2, of ϕ vanish unless all of the inputs
are one-forms, in which case one has

ϕn(sa1(t)dt⊗ · · · ⊗ san(t)dt) =

∫
0≤t1≤···≤tn≤1

1

n

∑
σ∈Sn

(
(−1)dσ(
n−1
dσ

) a1(tσ(1)) · · · an(tσ(n))

)
dt1 · · · dtnsdt.

Proof. Since both the higher Taylor coefficients of λ and log vanish unless all of the inputs are
one-forms, the first assertion is clear. When all the inputs are one-forms, by definition of log
and λ we have

ϕn(sa1(t)dt⊗ · · · ⊗ san(t)dt) =

=

n∑
m=1

(−1)m+1

m

∑
i1+···+im=n

(∫
∆i1

a1(t1) · · · ai1(ti1)dt1 · · · dti1 · · ·
∫

∆ik

an−im+1(t1) · · · an(tim)dt1 · · · dtim

)
sdt.
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According to (the proof of) Proposition 1.5, the right hand side of the previous equation equals
sdt multiplied by the scalar

∑
σ∈Sn

 ∑
i1+···+im=n
σ∈S(i1,...,im)

(−1)m+1

m

∫
∆n

a1(tσ(1)) · · · an(tσ(n))dt1 · · · dtn.

Hence the proof is completed by the following lemma. �

Lemma 2.3. Given a positive integer n and a permutation σ ∈ Sn, we have∑
i1+···+im=n
σ∈S(i1,...,im)

(−1)m+1

m
=

(−1)dσ

n
(
n−1
dσ

) ,
where the sum runs over all ordered partitions i1+· · ·+im = n of n such that σ is an (i1, . . . , im)-
unshuffle.

Proof. Let us consider partitions i1 + · · · + im = n with a fixed m such that σ ∈ S(i1, . . . , im).
One sees that there are (

n− dσ − 1

m− dσ − 1

)
of those. Hence we find∑

i1+···+im=n
σ∈S(i1,...,im)

(−1)m+1

m
=

n∑
m=dσ+1

(−1)m+1

m

(
n− dσ − 1

m− dσ − 1

)
=

n−dσ−1∑
j=0

(−1)dσ+j

dσ + j + 1

(
n− dσ − 1

j

)
.

The latter sum can be identified with the n’th Taylor coefficient of log (1 + z)(1 + z)n−dσ−1 at
z = 0 and is given by

(−1)dσ
(n− dσ − 1)!dσ!

n!
=

(−1)dσ

n
(
n−1
dσ

) .
�

Definition 2.4. We denote by Cn,d the numbers Cn,d := (−1)d

n(n−1
d )

, n ≥ 1, 0 ≤ d < n: these satisfy

the identities
Cn,d = Cn−1,d + Cn,d+1, Cn,d = (−1)n+1Cn,n−d−1,

as it follows by straightforward computations. For n ≤ 6, they are given by

1

1
2 −1

2
1
3 −1

6
1
3

1
4 − 1

12
1
12 −1

4
1
5 − 1

20
1
30 − 1

20
1
5

1
6 − 1

30
1
60 − 1

60
1
30 −1

6

The element e
[1]
n :=

∑
σ∈Sn Cn,dσσ ∈ k[Sn] of the group algebra of the symmetric group is called

the (first) Eulerian idempotent, see [19, 27].

Remark 2.5. There is a natural action of Sn on the functions on the n-cube, by permuting the

variables, and a projector corresponding to e
[1]
n : then the integrand of Theorem 2.2 is precisely

the image of a1(t1) · · · an(tn) under this projector.
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It is well known that e
[1]
n is an idempotent of the group algebra, and in fact a Lie idempotent.

The latter means the following: let V be a vector space and T (V ) the reduced tensor algebra
on V , then the mapping

(1) E : T (V )→ T (V ), v1 ⊗ · · · ⊗ vn 7→
∑
σ∈Sn

Cn,dσvσ(1) ⊗ · · · ⊗ vσ(n)

is a projector from T (V ) onto the subspace Lie(V ) spanned by Lie words, i.e. onto the free
Lie algebra on V , see [19, 27]. Notice that the restriction of E to n’fold tensor products is

precisely the projector corresponding to e
[1]
n under the natural action of Sn on Tn(V ). It is not

immediately clear how to express E(v1⊗· · ·⊗vn) as a linear combination of Lie words: one way
to do it is to compose E with a second Lie idempotent, for instance the Dynkin idempotent

γ : T (V )→ T (V ), v1 ⊗ · · · ⊗ vn 7→
1

n
[v1, · · · , [vn−1, vn] · · · ].

Since both E and γ are projectors with image Lie(V ), we see that E = γ ◦ E, that is

(2) E(v1 ⊗ · · · ⊗ vn) =
1

n2

∑
σ∈Sn

(−1)dσ(
n−1
dσ

) [vσ(1), · · · [vσ(n−1), vσ(n)] · · · ].

We shall make use of the above identity in Section 3 below.

A choice of basis of V induces a scalar product (−,−) on T (V ), by imposing that the induced
basis of T (V ) is orthonormal. We consider the adjoint E∗ of (1) with respect to this scalar
product: this is independent on the choice of basis, and may be computed explicitly as in the
proof of [27, Theorem 6.3] (where ~ is the shuffle product, cf. the Appendix)

E∗ : T (V )→ T (V ), E∗(v1 ⊗ · · · ⊗ vn) =

= v1 ⊗ · · · ⊗ vn +
n∑
k=2

(−1)k+1

k

∑
i1+···+ik=n

(v1 ⊗ · · · ⊗ vi1)~ · · ·~ (vi1+···+ik−1+1 ⊗ · · · ⊗ vn).

By definition of the shuffle product, a straightforward application of Lemma 2.3 yields the more
explicit formula

E∗(v1 ⊗ · · · ⊗ vn) =
∑
σ∈Sn

Cn,dσvσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Proposition 2.6. The corestriction pϕ : T (sΩ∗([0, 1])) → sC∗([0, 1]) of the A∞ morphism
ϕ : Ω∗([0, 1])→ C∗∞([0, 1]) equals

pϕ = (pλ) ◦ E∗,
where pλ : T (sΩ∗([0, 1]))→ sC∗([0, 1]) is the corestriction of Gugenheim’s A∞ morphism λ and
E∗ : T (sΩ∗([0, 1]))→ T (sΩ∗([0, 1])) is defined as above.

Proof. This is a straightforward consequence of the previous formula for E∗: if one of the
arguments is a zero-form, both the left- and the right-hand side of the claimed identity vanish,
otherwise, we see that

(λn ◦ E∗)(sa1(t)dt⊗ · · · ⊗ san(t)dt) =
∑
σ∈Sn

Cn,dσ

∫
∆n

aσ−1(1)(t1) · · · aσ−1(n)(tn)dt1 · · · dtn =

=
∑
σ∈Sn

Cn,dσ

∫
∆n

a1(tσ(1)) · · · an(tσ(n))dt1 · · · dtn = ϕn(sa1(t)dt⊗ · · · ⊗ san(t)dt).

�
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Corollary 2.7. The map ϕ : Ω∗([0, 1])→ C∗∞([0, 1]) is a C∞ morphism.

Proof. Recall, cf. Appendix B, that since ϕ is a morphism of A∞ algebras, we only have to
check that the Taylor coefficients ϕn, n ≥ 2, vanish on the image of the shuffle product

~ : T (sΩ∗([0, 1])⊗ T (sΩ∗([0, 1]))→ T (sΩ∗([0, 1]).

This follows from the previous proposition, since E∗ vanishes on the image of the shuffle product,
compare with the proof of [27, Theorem 6.3]. �

We shall give another proof of the previous corollary below, in Subsection 2.3.

2.2. A recursive formula. In this subsection we derive an alternative presentation of the C∞
morphism

ϕ : Ω∗([0, 1])→ C∗∞([0, 1]),

closely related to Magnus expansion (see [20, 17]), cf. Section 3 below.

Definition 2.8. For all n ≥ 1 we define maps

Mn : (Ω0([0, 1]))⊗n → Ω0([0, 1])

as follows:

• for n = 1, we set M1(a1(t))(s) =
∫ s

0 a1(t1)dt1,
• for n ≥ 2, we apply the recursive formula (where the suspension points inside parentheses

are to be filled by the arguments in the order a1, . . . , an, and we denote by pj the partial
sum pj =

∑
h≤j ih)

Mn(a1(t)⊗ · · · ⊗ an(t))(s) =
n−1∑
k=1

Bk
k!

k∑
j=0

(−1)j
(
k

j

)
∑

i1+···+ik=n−1

∫ s

0
Mi1(· · · )(tn) · · ·Mij (· · · )(tn)apj+1(tn)Mij+1(· · · )(tn) · · ·Mik(· · · )(tn)dtn.

Definition 2.9. We denote by (βs)s∈k (s ∈ [0, 1] in the smooth case) the one-parameter family
of maps given by βs(t) = s · t. We refer to the corresponding endomorphisms β∗s of the dg algebra
Ω∗([0, 1]) as the scaling morphisms and define a one-parameter family of C∞-morphisms from
Ω∗([0, 1]) to C∗∞([0, 1]) by setting ϕs := ϕ ◦ β∗s .

Theorem 2.10. The n’th Taylor coefficient ϕs,n of the C∞ morphism ϕs is given by

ϕs,n(sa1(t)dt⊗ · · · ⊗ san(t)dt) =Mn(a1(t)⊗ · · · ⊗ an(t))(s)sdt.

Proof. We proceed by showing that the family of maps

νn : (Ω0([0, 1])⊗n → Ω0([0, 1])

defined by νn(a1(t)⊗· · ·⊗an(t))(s)sdt = ϕs,n(sa1(t)dt⊗· · ·⊗san(t)dt) obeys the same recursion
as the family of maps (Mn)n≥1 from above.

Recall that by definition we have ϕs = ϕ◦β∗s . Let X be an arbitrary element of T (sΩ1([0, 1]))
and consider the curve

s 7→ ϕs(X) ∈ T (sC1([0, 1])) ∼= T (k).

If we differentiate it with respect to s, we find

d

ds
ϕs(X) = ϕ

(
d

ds
β∗s (X)

)
.
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Now suppose we find a one-parameter family of elements Ys ∈ T (sΩ∗([0, 1])) such that d
dsβ
∗
sX =

Q(Ys), where Q denotes the codifferential which encodes the dg algebra structure on Ω∗([0, 1]).
We would then conclude that

d

ds
(ϕs(X)) = ϕ(

d

ds
β∗s (X)) = ϕ(Q(Ys)) = M(ϕ(Ys))

holds, where M is the codifferential on T (sC∗([0, 1])) which encodes the C∞ algebra structure
on C∗([0, 1]) from Theorem 1.1.

We now consider X = sa1(t)dt⊗ · · · ⊗ san(t)dt and claim that an appropriate Ys is given by

Ys = −
n−1∑
j=0

sβ∗s (a1(t)dt)⊗ · · · ⊗ sβ∗s (aj(t)dt)⊗ s(taj+1(st))⊗ sβ∗s (aj+2(t)dt)⊗ · · · ⊗ sβ∗s (an(t)dt).

It is straightforward to show that applying the linear part Q1 of the codifferential Q, which
encodes the de Rham differential, yields Q1(Ys) = X. One checks that the contribution from
the quadratic part Q2 of the codifferential, which encodes the wedge product, vanishes. This is
due to the equality

β∗s (aj(t)dt)(taj+1(st)) = staj(st)aj+1(st)dt = (taj(st))β
∗
s (aj+1(t)dt).

From this we infere that

d

ds
(ϕs(sa1(t)dt⊗ · · · ⊗ san(t)dt) =

−Mϕ

n−1∑
j=0

sβ∗s (a1(t)dt)⊗ · · · ⊗ sβ∗s (aj(t)dt)⊗ s(taj+1(st))⊗ sβ∗s (aj+2(t)dt)⊗ · · · ⊗ sβ∗s (an(t)dt)

 .

Recall from Subsection 1.1 that the Taylor coefficients of M are only non-zero on tensor products
which contain exactly one factor in sC0([0, 1]), while the Taylor coefficients (ϕn) all vanish for
n ≥ 2 whenever one of the factors is a function. Furthermore, we notice that ϕ1 = π evaluates
on taj+1(st) to aj+1(s)t. We thus obtain that the projection of

−Mϕ

n−1∑
j=0

sβ∗s (a1(t)dt)⊗ · · · ⊗ sβ∗s (aj(t)dt)⊗ s(taj+1(st))⊗ sβ∗s (aj+2(t)dt)⊗ · · · ⊗ sβ∗s (an(t)dt)


to sC∗([0, 1]) equals (by definition of the functions (νn)n≥1)

−
∑
`≥1

∑̀
p=0

(−1)`+1

(
`

p

)
B`
`!

n−1∑
j=0

∑
n1+···+n`=n−1

νn1(· · · )(s) · · · νnp(· · · )(s)aj+1(s)νnp+1(· · · )(s) · · · νn`(· · · )(s)

times sdt.
On the other hand, the projection of

d

ds
(ϕs(sa1(t)dt⊗ · · · ⊗ san(t)dt)

to sC∗([0, 1]) equals

d

ds
(ϕs,n(sa1(t)dt⊗ · · · ⊗ san(t)dt)) =

d

ds
(νn(a1(t)⊗ · · · ⊗ an(t))(s)sdt)
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and hence we finally arrive at the recursion

d

ds
(νn(a1(t)⊗ · · · ⊗ an(t))(s)) =

=
∑
`≥1

∑̀
p=0

(−1)`
(
`

p

)
B`
`!

n−1∑
j=0

∑
n1+···+n`=n−1

νn1(· · · )(s) · · · νnp(· · · )(s)aj+1(s)νnp+1(· · · )(s) · · · νn`(· · · )(s).

This is precisely the recursion which the family of maps (Mn)n≥1 obeys.
�

2.3. Some uniqueness results. The aim of this section is to show that the C∞ morphism
ϕ : Ω∗([0, 1]) → C∗([0, 1]) coincides with the A∞ morphism induced via homotopy transfer
along Dupont’s contracion, cf. Section 1.1. We do so by showing a uniqueness result for A∞
morphisms satisfying some properties in the following lemma. We shall rely heavily on the
notations and results from the Appendix.

Lemma 2.11. Let (V,Q1, . . . , Qn, . . .) be an A∞ algebra, together with a decomposition of V in
the direct sum of graded subspaces V = X ⊕ Y such that sY ⊂ Q1(sX). Let (W,R1, . . . , Rn, . . .)
be a second A∞ algebra and G,G′ : V →W two A∞ morphisms such that

(1) the linear parts of G and G′ are equal and
(2) whenever there exists 1 ≤ i ≤ n such that vi ∈ X, then

Gn(sv1 ⊗ · · · ⊗ svn) = G′n(sv1 ⊗ · · · ⊗ svn).

Under these conditions, the morphisms G and G′ coincide.
In particular, if there exists an A∞ morphism F : V → W with a given linear part and the

property that its higher Taylor coefficients Fn, n ≥ 2, vanish whenever at least one of their
arguments is in X, it is unique.

Proof. We have to prove that in the given hypotheses for all n ≥ 1 and y1, . . . , yn ∈ Y we
have Gn(sy1 ⊗ · · · ⊗ syn) = G′n(sy1 ⊗ · · · ⊗ syn). We use induction, knowing by hypothesis that

G1 = G′1. We denote by Qin the composition sV ⊗n ↪→ T (sV )
Q−→ T (sV ) → sV ⊗i and similarly

for Gin, G
′i
n : sV ⊗n → sW⊗i: notice that for i ≥ 2 Gin = G′in by the inductive hypothesis, since

they only depend on G1 = G′1, . . . , Gn−1 = G′n−1. Since G is an A∞ morphism we have the
identity

n∑
i=1

RiG
i
n =

n∑
j=1

GjQ
j
n,

and similarly for G′. Finally, we choose x1 ∈ X such that sy1 = Q1(sx1), then by the hypotheses
of the lemma Gn(sx1⊗sy2⊗· · ·⊗syn) = G′n(sx1⊗sy2⊗· · ·⊗syn), and together with the inductive
hypothesis this shows that (notice that Q1(sY ) = 0)

Gn(sy1 ⊗ · · · ⊗ syn) = GnQ1(sx1 ⊗ sy2 ⊗ · · · ⊗ syn)

=

 n∑
i=1

RiG
i
n −

n−1∑
j=1

GjQ
j
n

 (sx1 ⊗ sy2 ⊗ · · · ⊗ syn)

=

 n∑
i=1

RiG
′i
n −

n−1∑
j=1

G′jQ
j
n

 (sx1 ⊗ sy2 ⊗ · · · ⊗ syn)

= G′nQ1(sx1 ⊗ sy2 ⊗ · · · ⊗ syn) = G′n(sy1 ⊗ · · · ⊗ syn).

�
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Corollary 2.12. The A∞ morphisms

λ : Ω∗([0, 1])→ C∗∪([0, 1]), exp : C∗∞([0, 1])→ C∗∪([0, 1]) and ϕ : Ω∗([0, 1])→ C∗∞([0, 1])

are the only A∞ morphisms with linear parts equal to π, id and π respectively, and the property
that their higher order Taylor coefficients vanish whenever one of the arguments is a zero-form.

Proof. Apply the last assertion of the preceding lemma to V = Ω∗([0, 1]), X = Ω0([0, 1]) and
Y = Ω1([0, 1]) (respectively, V = C∗([0, 1]), X = C0([0, 1]) and Y = C1([0, 1])). �

Lemma 2.13. Under the same hypotheses as in the previous lemma, suppose moreover that V
and W are C∞ algebras. If there exists F : V → W as in the final claim, then F is a C∞
morphism.

Proof. We denote the Taylor coefficients of the C∞ algebra structure on V and W by (Qi)i≥1

and (Ri)i≥1, respectively. We have to show Fn((sy1 ⊗ · · · ⊗ syi) ~ (syi+1 ⊗ · · · ⊗ syn)) = 0 for
all n ≥ 1, 1 ≤ i < n and y1, . . . , yn ∈ Y . The case n = 1 being empty, we use induction: in
particular, we can consider the morphism of graded coalgebras F<n : T (sV ) → T (sW ), whose
Taylor coefficients are (F<n)i = Fi for i < n and (F<n)i = 0 for i ≥ n, and according to
the inductive hypothesis and Lemma B.4, this is a morphism of graded bialgebras. We define
coderivations Q≥2 on T (sV ) and R≥2 on T (sW ) by declaring their Taylor coefficients to be
(Q≥2)i = Qi, (R≥2)i = Ri if i ≥ 2 and (Q≥2)1 = (R≥2)1 = 0: according to Lemma B.3 these
are biderivations. Thus H := R≥2F<n − F<nQ≥2 : T (sV ) → T (sW ) is an F<n-biderivation by
Lemma B.2, and in particular it sends the image of the shuffle product in T (sV ) into the image
of the shuffle product in T (sW ). As in the proof of the previous lemma we choose x1 such that
Q1(sx1) = sy1: we finally compute, denoting by p : T (sW )→ sW the natural projection, that

Fn((sy1 ⊗ · · · ⊗ syi)~ (syi+1 ⊗ · · · ⊗ syn)) =

= (FnQ1 −R1Fn)((sx1 ⊗ sy2 ⊗ · · · ⊗ syi)~ (syi+1 ⊗ · · · ⊗ syn))

=

 n∑
i=2

RiF
i
n −

n−1∑
j=1

FjQ
j
n

 ((sx1 ⊗ sy2 ⊗ · · · ⊗ syi)~ (syi+1 ⊗ · · · ⊗ syn))

= pH((sx1 ⊗ sy2 ⊗ · · · ⊗ syi)~ (syi+1 ⊗ · · · ⊗ syn))

= 0,

since p vanishes on the image of the shuffle product. �

Corollary 2.14. ϕ : Ω∗([0, 1])→ C∗∞([0, 1]) is a morphism of C∞ algebras.

Remark 2.15. Since λ, exp, log, ϕ are all compatible with the simplicial structure on [0, 1], we
can extend them to morphisms over any 1-dimensional simplicial complex T , and Corollary 2.14
still holds. If, moreover, H1(T ) = 0, we can apply the previous lemmas to Ω∗(T ) = Ω0(T )⊕Ω1(T )
and C∗(T ) = C0(T )⊕C1(T ), respectively, to obtain uniqueness results parallel to Corollary 2.12.

Lemma 2.16. For n > 1 the Taylor coefficients of the A∞ morphism Ω∗([0, 1]) → C∗∞([0, 1])
obtained via homological perturbation theory vanish on n-fold tensor products which contain a
factor that is a zero-form.

Proof. Given the contraction data ι, π, h from Ω∗([0, 1]) to C∗([0, 1]) as in Section 1.1, we denote
by

Hn
n =

n−1∑
i=0

id⊗i ⊗ (−h)⊗ (ιπ)⊗n−i−1 : Tn(sΩ∗([0, 1]))→ Tn(sΩ∗([0, 1])),
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Qn−1
n =

n−2∑
i=0

id⊗i ⊗Q2 ⊗ id⊗n−i−2 : Tn(sΩ∗([0, 1]))→ Tn−1(sΩ∗([0, 1])),

where Q2 : T 2(sΩ∗([0, 1])) → sΩ∗([0, 1]) is the quadratic part of the codifferential, encoding
the wedge product on Ω∗([0, 1]), and finally by πn : Tn(sΩ∗([0, 1])) → sC∗([0, 1]) the Taylor
coefficients of the A∞ morphism π∞ : Ω∗([0, 1]) → C∗∞([0, 1]) induced via homotopy trans-
fer. According to the usual perturbation formulas, cf. [16, 22], the maps πn are determined
recursively by π1 = π,

πn = πn−1Q
n−1
n Hn

n for n ≥ 2,

and we want to prove that for n ≥ 2 they vanish on tensor products of total degree less than
0. For n = 2 we have π2 = πQ2H

2
2 : if both arguments are functions, this vanishes by degree

reasons, while if exactly one argument is a function, it vanishes since π vanishes on functions of
the form f(t)h(a(t)dt), as π : Ω0([0, 1]) → C0([0, 1]) is strictly multiplicative and the image of
h is contained in the kernel of π. For n ≥ 3 the thesis follows by a straightforward induction,
since Qn−1

n Hn
n : Tn(sΩ([0, 1]))→ Tn−1(sΩ([0, 1])) preserves the total degree. �

We obtain the following result as an immediate consequence of Lemma 2.11:

Corollary 2.17. The A∞ morphism Ω∗([0, 1])→ C∗∞([0, 1]) obtained from homological pertur-
bation theory – see [16, 22] – coincides with the C∞ morphism ϕ : Ω∗([0, 1])→ C∗∞([0, 1]).

We next show that similar uniqueness results hold for the C∞ algebra structure on C∗∞([0, 1])
and the C∞ morphism µ.

Proposition 2.18. The unital C∞ algebra structure on C∗∞([0, 1]), as in Theorem 1.1, is the
only one with linear part m1(st) = −sdt, quadratic part satisfying m2(st ⊗ st) = st and higher
Taylor coefficients vanishing unless precisely one argument is a zero-form. The morphism µ is
the only unital C∞ morphism from C∗∞([0, 1]) to Ω∗([0, 1]) with linear part the inclusion.

Proof. We shall denote by M the codifferential on T (sC∗([0, 1])) encoding the C∞ algebra struc-
ture, by mn its Taylor coefficients as in Theorem 1.1 and by M i

n the composition

M i
n : Tn(sC∗([0, 1])) ↪→ T (sC∗([0, 1]))

M−→ T (sC∗([0, 1]))� T i(sC∗([0, 1])).

Notice that the higher coefficients mn+1, n ≥ 1, vanish by degree reasons unless precisely one
or two of the arguments are zero-forms. To illustrate the result we check the first claim directly
for m2: by the C∞ property 0 = m2(st ~ sdt) = m2(st ⊗ sdt) + m2(sdt ⊗ st), where ~ is the
shuffle product (cf. Appendix B), hence

2m2(st⊗ sdt) = m2(st⊗ sdt)−m2(sdt⊗ st) = m2M
2
2 (st⊗ st) = −m1m2(st⊗ st) = sdt,

from which we get m2(st ⊗ sdt) = 1
2sdt = −m2(sdt ⊗ st). Next we assume inductively to have

shown the thesis up to a certain n. First of all, the C∞ property implies

mn+1((sdt)⊗i ⊗ st⊗ (sdt)⊗n−i) = (−1)i
(
n

i

)
mn+1(st⊗ (sdt)⊗n).

In fact, since this is clear for i = 0, it follows in general by induction on i and

0 = mn+1(sdt~ ((sdt)⊗i−1 ⊗ st⊗ (sdt)⊗n−i)) =

= imn+1((sdt)⊗i ⊗ st⊗ (sdt)⊗n−i) + (n− i+ 1)mn+1((sdt)⊗i−1 ⊗ st⊗ (sdt)⊗n−i+1).

Combined with the fact that M is a codifferential, this shows

(n+ 1)mn+1(st⊗ (sdt)⊗n) = mn+1M
n+1
n+1 (st⊗2 ⊗ (sdt)⊗n−1) = −

n∑
i=1

miM
i
n+1(st⊗2 ⊗ (sdt)⊗n−1).
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Since by hypothesis mn+1(st⊗2 ⊗ (sdt)⊗n−1) = 0 for n ≥ 2,

(n+ 1)mn+1(st⊗ (sdt)⊗n) = −
n∑
i=2

miM
i
n+1(st⊗2 ⊗ (sdt)⊗n−1),

which proves the thesis inductively, as the right hand side only depends on m2, . . . ,mn.
The claim about µ is proven similarly. For n ≥ 2, by degree reasons µn vanishes unless

precisely one or none of the arguments are zero-forms. In the latter case, by the C∞ property
µn((sdt)⊗n) = 1

n!µn((sdt)~n) = 0. In the former case, the C∞ property implies µn+1((sdt)⊗i ⊗
st⊗(sdt)⊗n−i) = (−1)i

(
n
i

)
µn+1(st⊗(sdt)⊗n) as before. In particular, we see that (n+1)µn+1(st⊗

(sdt)⊗n) = µn+1M
n+1
n+1 (st⊗2 ⊗ (sdt)⊗n−1), and using the facts that µn+1(st⊗2 ⊗ (sdt)⊗n−1) = 0

by degree reasons and µ commutes with the codifferentials, we conclude as before that the right
hand side only depends on µ1, . . . , µn. �

Remark 2.19. In contrast with the final claim of the previous proposition, there can be several
A∞ morphisms C∗∞([0, 1])→ Ω∗([0, 1]) whose linear part is the inclusion. For instance, a direct
verification shows that F : C∗∪([0, 1]) → Ω∗([0, 1]), defined in Taylor coefficients F1, . . . , Fn, . . .
by

• F is unital and F1 is the inclusion;
• Fn((sdt)⊗n) = (−1)n−1s(tn−1dt) for n ≥ 1;

• Fn((sdt)⊗(n−1) ⊗ st) = (−1)ns(tn−1(1− t)) for n ≥ 2;
• For n ≥ 2, Fn vanishes if an argument different from the rightmost one is a zero-form;

is a unital A∞ morphism (which is right inverse to λ, by a straightforward application of Lemma
2.11). Therefore F ◦ exp : C∗∞([0, 1]) → Ω∗([0, 1]) is an A∞ morphism different from µ, whose
linear part is the inclusion.

The proof of Proposition 2.18 leads to the following result, which is of independent interest:

Proposition 2.20. Let Aut∞(C∗∞([0, 1])) be the group of unital C∞ automorphisms of C∗∞([0, 1]),
and GL(C∗([0, 1])) ∼= k∗nk ∼= Aff(k) the group of those automorphisms of the complex C∗([0, 1])
which map 1 to itself. The correspondence

r : Aut∞(C∗∞([0, 1])) → GL(C∗([0, 1])) ∼= Aff(k)

ψ = (ψ1, ψ2, . . . ) 7→ ψ1

is an isomorphism of groups.

Proof. That the map r is a morphism of groups is clear. The same argument as in the proof of
Proposition 2.18 shows that a C∞ morphism with domain C∗∞([0, 1]) is uniquely determined by
its linear part, hence r is injective.

To conclude the proof, we have to show that r is surjective. Let us fix an automorphism ξ of
the complex C∗([0, 1]) mapping 1 to itself. Evidently, ξ is determined by its value on t, given by

ξ(t) = α t+ β,

for α ∈ k∗ and β ∈ k two constants. Our aim is to show that ξ lies in the image of r. We define
an automorphism ρ of the unital dg algebra Ω∗k([0, 1]) = k[t]⊕ k[t]dt by declaring its action on
the generator t to be ρ(t) = α t+ β. The composition

ξ̃ : C∗∞([0, 1])
µ→ Ω∗k([0, 1])

ρ→ Ω∗k([0, 1])
ϕ→ C∗∞([0, 1]),

is a unital C∞ automorphism of C∗∞([0, 1]) such that r(ξ̃) = ξ.
�

We close this section by sketching a relation with the papers [14, 21], which was also briefly
outlined in the introduction.
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Remark 2.21. We denote by L([0, 1]) = L̂(x, y, a) the Lawrence-Sullivan model of the interval:
this is the free complete graded Lie algebra on generators x and y in degree one and a in degree
zero, and the unique differential such that x, y are Maurer-Cartan elements and a is a gauge
equivalence between them, see [18], namely,

d(x) = −1

2
[x, x], d(y) = −1

2
[y, y], d(a) = ada(y) +

∑
n≥0

Bn
n!

(ada)
n(y − x),

where ada(−) = [a,−] is the adjoint. As observed in the paper [7], this is also the Chevalley-
Eilenberg dg Lie algebra associated to the C∞ algebra C∗∞([0, 1]). We shall denote by U(L([0, 1]))
its universal enveloping algebra. Following the notations from the introduction, we shall denote
by ΩC∗([0, 1]) the cobar construction of the dg coalgebra of normalized chains on [0, 1], i.e., the

complete tensor algebra T̂ (x, y, a) over generators x, y, a as before, equipped with the differential

d(x) = −x2, d(y) = −y2, d(a) = (1 + a)y − x(1 + a).

Notice that both ΩC∗([0, 1]) and U(L([0, 1])) have the same underlying graded algebra T̂ (x, y, a),
and only the differentials differ. The A∞ isomorphism exp : C∗∞([0, 1]) → C∗∪([0, 1]) from
Subsection 1.3 yields an isomorphism of dg algebras

ΩC∗([0, 1])
∼=−→ U(L([0, 1])), x 7→ x, y 7→ y, a 7→ ea − 1.

In particular, there is an induced cocommutative dg Hopf algebra structure on ΩC∗([0, 1]), and
it is easy to check that the induced diagonal ∆ : ΩC∗([0, 1])→ ΩC∗([0, 1])⊗ ΩC∗([0, 1]) is

∆(x) = x⊗ 1 + 1⊗ x, ∆(y) = y ⊗ 1 + 1⊗ y, ∆(a) = a⊗ 1 + 1⊗ a+ a⊗ a.

Finally, it can be proved, in the spirit of this subsection, that the above ∆ may be characterized
as the unique morphism of unital augmented dg algebras satisfying ∆(x) = x⊗1+1⊗x,∆(y) =
y ⊗ 1 + 1 ⊗ y: details are left to the interested reader1. From this, one can deduce that the
diagonal ∆ coincides with the Alexander-Whitney cobar diagonal on ΩC∗([0, 1]), constructed as
in the paper [14].

3. Pushforward and the Magnus expansion

In this subsection we present implications of our previous results for differential forms on [0, 1]
with values in a dg algebra A or a dg Lie algebra g, respectively.

Remark 3.1. We will extend the scalars for Ω∗([0, 1]) and C∗([0, 1]) from k to either a dg
algebra A or a dg Lie algebra g. In order for our previous discussion to remain meaningful, we
have to guarantee existence and convergence of certain constructions. Two instances where this
works are:

(1) Pro-case: Assume that A is unital and augmented and that the augmentation ideal
A is pro-nilpotent. Correspondingly, assume that g is pro-nilpotent. Then consider
polynomial differential forms on [0, 1] with values in A or g.

(2) Finite-dimensional case: Assume that A and g are finite-dimensional and consider
smooth differential forms on [0, 1] with values in A or g.

1We have ∆(a) =
∑
i,j≥0 ri,ja

i ⊗ aj for certain constants ri,j ∈ k: then r0,0 = 0, since ∆ is a morphism of

augmented dg algebras, and one checks, using the fact that T̂ (x, y, a) is a free algebra, that the remaining ri,j
are uniquely determined by ∆(x) = x ⊗ 1 + 1 ⊗ x,∆(y) = y ⊗ 1 + 1 ⊗ y and the requirement that ∆ ◦ d(a) =
∆(y − x) + ∆(a)∆(y)−∆(x)∆(a) = (d⊗ id + id⊗ d) ◦∆(a).
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In both cases we obtain dg algebras Ω∗([0, 1];A) and C∗∪([0, 1];A), an A∞ algebra C∗∞([0, 1];A),
as well as a dg Lie algebra Ω∗([0, 1]; g) and an L∞ algebra C∗∞([0, 1]; g). The latter two were
described in [25] and [9]. Observe that, since C∗∪([0, 1]) is not commutative, extension of scalars
to g is not meaningful in this case (within the world of algebras).

3.1. Forms with values in a dg algebra. We first consider extension by a unital dg algebra
A. The family of C∞ quasi-isomorphisms ϕs : Ω∗([0, 1])→ C∗∞([0, 1]) extends to a one-parameter
family of A∞ quasi-isomorphism

ϕs : Ω∗([0, 1];A)→ C∗∞([0, 1];A),

see Definition 2.9. The explicit formulas from Theorem 2.2 and 2.10 remain valid in this setting,
i.e. they are compatible with scalar extension by A (essentially, because they keep the arguments
in order). Notice however that Proposition 2.6 fails in the non-commutative case.

Definition 3.2. The pushforward along ϕs is the mapping

(ϕs)∗ : s
(
Ω0([0, 1];A1)⊕ Ω1([0, 1];A0)

)
→ s

(
C0
∞([0, 1];A1)⊕ C1

∞([0, 1];A0
) ∼= sA1 ⊕ sA1 ⊕A0

f(t) + a(t)dt 7→
∑
n≥1

ϕs,n(s(f(t) + a(t)dt)⊗ · · · ⊗ s(f(t) + a(t)dt)).

Remark 3.3. Since ϕs,n vanishes for n > 1 whenever one of the inputs is a zero-form, we find∑
n≥1

ϕs,n(s(f(t) + a(t)dt)⊗ · · · ⊗ s(f(t) + a(t)dt)) =

s(f(s)t+ f(0)(1− t)) +
∑
n≥1

ϕs,n(sa(t)dt⊗ · · · ⊗ sa(t)dt).

Therefore, we see that the essential information is the restriction of (ϕs)∗ to sΩ1([0, 1];A0).

We remark that in the pro-case, we have to restrict the domain of definition of (ϕs)∗ to

s
(
Ω0([0; 1];A1)⊕ Ω1([0, 1];A

0
)
)
,

i.e. we have to require the one-forms to take values in the augmentation ideal A
0

of A0. The
reason is that this guarantees that the potentially infinite series in the definition of (ϕs)∗ is
well-defined. Whenever we consider the pro-case, we will from now on apply this restriction.

The following result was established independently by Burghart-Mnëv-Steinebrunner in [4].

Proposition 3.4. For a given a(t)dt ∈ Ω1([0, 1];A0), consider the curve

[0, 1]→ A0, s 7→ A(s)sdt := (ϕs)∗(sa(t)dt).

Its exponential

eA(s) := 1A +
∑
k≥0

1

k!
(A(s))k.

satisfies the differential equation

d

ds
eA(s) = eA(s) a(s), eA(0) = 1A.

Proof. Since pushforward is compatible with composition of morphisms, we find that

exp∗ ◦(ϕs)∗ = exp∗ ◦ log∗ ◦(λs)∗ = (λs)∗,

where λs = λ ◦ β∗s , with β∗s being the scaling morphism from Definition 2.9. We therefore have
eA(s) = 1A + (λs)∗(sa(t)dt).
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The pushforward along λs is given by

(λs)∗(sa(t)dt) =
∑
n≥1

∫
0≤t1≤···≤tn≤s

a(t1) · · · a(tn)dt1 · · · dtn.

Differentiation with respect to s yields

d

ds
(1A + (λs)∗(a(t)dt)) =

(
1A + (λs)∗(a(t)dt)

)
a(s)

and for s = 0, we have (1A + (λ0)∗(a(t)dt)) = 1A. This concludes the proof. �

Remark 3.5.

(1) By Theorem 2.2, we can write the pushforward along ϕ as

(ϕs)∗(sa(t)dt) =

∑
n≥1

1

n

∫
0≤t1≤···≤tn≤s

∑
σ∈Sn

(
(−1)dσ(
n−1
dσ

) a(tσ(1)) · · · a(tσ(n))

)
dt1 · · · dtn

 sdt.

(2) Alternatively, we may use Theorem 2.10 to describe the pushforward along ϕs as fol-
lows. We define maps Mn : Ω0([0, 1];A0)⊗n → Ω0([0, 1], A0) recursively as in Defini-
tion 2.8. Given a(t)dt ∈ Ω1([0, 1];A0), we simplify the notations and put Mk(s) :=
Mk(a(t)⊗k)(s), M∞(s) :=

∑
k≥1Mk(s). Then, according to Theorem 2.10,

M∞(s)sdt =
∑
k≥1

(Mk(s)sdt) :=
∑
n≥1

ϕs,n(sa(t)dt⊗ · · · ⊗ sa(t)dt) = (ϕs)∗(sa(t)dt).

Differentiating the defining recursion for the maps Mk, we find

d

ds
M∞(s) = a(s) +

∑
k≥1

Bk
k!

k∑
j=0

(−1)j
(
k

j

) ∑
i1,...,ik≥1

Mi1(s) · · ·Mij (s)a(s)Mij+1(s) · · ·Mik(s)

=
∑
k≥0

Bk
k!

k∑
j=0

(−1)j
(
k

j

)
M∞(s)ja(s)M∞(s)k−j

=
∑
k≥0

Bk
k!

[· · · [a(s),M∞(s)] · · · ,M∞(s)] ,

which is equivalent to∑
k≥0

1

(k + 1)!

[
· · ·
[
d

ds
M∞(s),M∞(s)

]
· · · ,M∞(s)

]
= a(s).

According to a classical result by Hausdorff, compare with [17, Theorem 2.1], this shows

that eM∞(s) is the solution to the differential equation d
dse
M∞(s) = eM∞(s)a(s) with

initial condition eM∞(0) = 1A, and provides another proof of Proposition 3.4.

3.2. Forms with values in a dg Lie algebra. For g a dg Lie algebra, we obtain a one-
parameter family of L∞ quasi-ismorphisms

ϕs : Ω∗([0, 1]; g)→ C∗∞([0, 1]; g)

from ϕs : Ω∗([0, 1]) → C∗∞([0, 1]) by extension of scalars (cf. [24] for the defintion of scalar
extension of a C∞ algebra by a dg Lie algebra). By compatibility between scalar extension
and homotopy transfer, together with Corollary 2.17, this is the same as the composition of the
scaling morphism β∗s and the L∞ morphism induced via homotopy transfer along the obvious
extension of Dupont’s contraction (cf. [9]).
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We denote the universal enveloping dg algebra of g by U(g). By compatibility with the
symmetrization functor from A∞ algebra to L∞ algebras, ϕs may also be characterized by the
commutative diagram of L∞ algebras and L∞ morphisms,

Ω∗([0, 1]; g) �
� //

ϕs

��

Ω∗([0, 1];U(g))

sym(ϕs)

��
C∗∞([0, 1]; g) �

� // C∗∞([0, 1];U(g))

where the horizontal arrows are the strict inclusions and the right vertical arrow is the sym-
metrization of the A∞ morphism studied in the previous subsection. For convenience, let us
define maps

Mn :
n⊙

(Ω0([0, 1]; g) → Ω0([0, 1]; g)

by setting Mn(l1(t)� · · · � ln(t))(s)sdt := ϕs,n(sl1(t)dt� · · · � sln(t)dt).

Theorem 3.6. (1) The maps (Mn)n≥1 are given by

Mn(l1(t)� · · · � ln(t))(s) =∫
0≤t1≤···≤tn≤s

 1

n2

∑
σ,τ∈Sn

ε(τ)
(−1)dσ(
n−1
dσ

) [lτ(1)(tσ(1)), · · · , [lτ(n−1)(tσ(n−1)), lτ(n)(tσ(n))] · · · ]

 dt1 · · · dtn,

where ε(τ) is the Koszul sign associated to τ , i.e. the sign given by l1(t)� · · · � ln(t) =
ε(τ)lτ(1)(t)� · · · � lτ(n)(t).

(2) Equivalently, we may define the maps (Mn) recursively by puttingM1(l1(t))(s) =
∫ s

0 l1(t1)dt1
for n = 1, and for n > 1

Mn(l1(t)� · · · � ln(t))(s) =

=
n−1∑
k=1

(−1)k
Bk
k!

∑
i1+···+ik=n−1

∑
σ∈Sn

ε(σ)

∫ s

0

[
Mi1(· · · )(tn), · · ·

[
Mik(· · · )(tn), lσ(n)(tn)

]
· · ·
]
dtn,

where the suspension points inside Mi1(· · · ), . . . ,Mik(· · · ) have to be filled by the argu-
ments in the order lσ(1)(t), . . . , lσ(n−1)(t).

Proof. The first explicit presentation follows by symmetrizing the formulas for the A∞-morphism
ϕs : Ω∗([0, 1];U(g)) → C∗∞([0, 1];U(g)) coming from Theorem 2.2, where now the arguments
li(t)dt are elements in Ω1([0, 1]; g0) ⊂ Ω1([0, 1];U0(g)): we see that ϕs,n(l1(t)dt � · · · � ln(t)dt)
is the integral over the n’th simplex of the image of∑

τ∈Sn

ε(τ)lτ(1)(t1) · · · lτ(n)(tn)dt1 · · · dtn ∈ Ωn([0, 1]×n;U0(g))

under the Eulerian projector E : U0(g)→ g0. We recall, compare [27], that the latter may also
be understood as the composition E = p ◦ PBW−1 of the inverse of the Poincaré-Birkhoff-Witt
isomorphism PBW : S(g) → U(g) and the natural projection p : S(g) → g. Finally, we get the
desired formula for Mn by composing E with the Dynkin idempotent, as we did in formula (2)
on page 14.

The claimed recursive presentation for the maps Mn is precisely the one we get, after sym-
metrization, from the corresponding one in the A∞ case coming from Definition 2.8, as it follows
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by straightforward computations, keeping in mind the formula∑
σ∈Sk

ε(σ)[xσ(1), [· · · [xσ(k), y] · · · ]] =

=
∑
σ∈ Sk

ε(σ)
k∑
j=0

(−1)k−j+
∑
h>j |y||xh|

(
n

j

)
xσ(1) · · ·xσ(j)yxσ(j+1) · · ·xσ(k),

valid in any associative graded algebra. Thus, the second claim follows by Theorem 2.10.
�

Remark 3.7. The first few instances of the previous recursion are

M1(l1(t))(s) =

∫ s

0
l1(t1)dt1,

M2(l1(t)� l2(t))(s) =
∑
σ∈S2

ε(σ)
1

2

∫ s

0

[∫ t2

0
lσ(1)(t1)dt1, lσ(2)(t2)

]
dt2,

M3(l1(t)�l2(t)�l3(t))(s) =
∑
σ∈S3

ε(σ)
1

4

∫ s

0

[∫ t3

0

[∫ t2

0
lσ(1)(t1)dt1, lσ(2)(t2)

]
dt2, lσ(3)(t3)

]
dt3+

+
∑
σ∈S3

ε(σ)
1

12

∫ s

0

[∫ t3

0
lσ(1)(t1)dt1,

[∫ t3

0
lσ(2)(t2)dt2, lσ(3)(t3)

]]
dt3.

For the pushforward, we find the following general recursion, where for simplicity we put
Mn(s) =Mn(l(t)�n)(s), M∞(s) =

∑
n≥1

1
n!Mn(s),

(ϕs)∗(l(t)dt) =M∞(s)sdt =
∑
n≥1

1

n!
Mn(s)sdt =

=

∫ s

0
l(t1)dt1 +

∑
n≥2

n−1∑
k=1

(−1)k
Bk
k!

∑
i1+···+ik=n−1

∫ s

0
[Mi1(tn), · · · [Mik(tn), l(tn)] · · · ] dtn

 sdt.

Modulo the switch from [·, ·] to the opposite bracket [x, y]op := [y, x], this is precisely the
recursive expansion given by Magnus, see [20, 17], for the solution of the differential equation
d
dse
M∞(s) = eM∞(s)l(s) in the enveloping algebra U(g0), compare with Proposition 3.4. By the

previous theorem, we also find

M∞(s) =
∑
n≥1

∫
0≤t1≤···≤tn≤s

(
1

n2

∑
σ∈Sn

(−1)dσ(
n−1
dσ

) [l(tσ(1)), · · · , [l(tσ(n−1)), l(tσ(n))] · · · ]

)
dt1 · · · dtn.

This formula for the Magnus expansion was found by Mielnik and Plabański [23].

Appendix A. Review of A∞ and L∞ algebras

We briefly describe our terminology and notations concerning A∞ and L∞ algebras. In the
next section we shall review in more detail some results concerning C∞ algebras.

• The suspension endofunctor s maps a graded vector space V to its suspension sV , whose
component (sV )i in degree i ∈ Z is V i+1.
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• T (V ) =
⊕

n≥1 T
n(V ) denotes the reduced tensor coalgebra on a graded vector space,

with the deconcatenation coproduct ∆ : T (V )→ T (V )⊗ T (V ),

∆(x1 ⊗ · · · ⊗ xn) =
n−1∑
i=1

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xn).

It is the cofree object over V in the category of coassociative, locally conilpotent (i.e.,
the union of the kernels of the iterated coproducts is exhaustive) graded coalgebras.
• We denote by Sn the n’th symmetric group. Given an integer n ≥ 1 and an ordered

partition i1+· · ·+ik = n, we denote by S(i1, . . . , ik) ⊂ Sn the set of (i1, . . . , ik)-unshuffles,
i.e., permutations σ ∈ Sn such that σ(i) < σ(i+ 1) for i 6= i1, i1 + i2, . . . , i1 + · · ·+ ik−1.
• The symmetric group Sn acts on Tn(V ) by σ(x1⊗· · ·⊗xn) = ε(σ)xσ(1)⊗· · ·⊗xσ(n), where
ε(σ) = ε(σ;x1, . . . , xn) is the usual Koszul sign. We denote the space of coinvariants
either by Sn(V ) or by

⊙n(V ), and by x1 � · · · � xn the image of x1 ⊗ · · · ⊗ xn under
the natural projection Tn(V )→ Sn(V ). The reduced symmetric coalgebra over V is the
space S(V ) =

⊕
n≥1 S

n(V ), with the unshuffle coproduct

∆(x1 � · · · � xn) =

n−1∑
i=1

∑
σ∈S(i,n−i)

ε(σ)(xσ(1) � · · · � xσ(i))⊗ (xσ(i+1) � · · · � xσ(n)).

This is the cofree, coassociative, cocommutative and locally conilpotent graded coalgebra
over V .
• Let (C,∆) be a graded coalgebra. A map Q : (C,∆)→ (C,∆) of degree 1 is a codiffer-

ential if Q ◦Q = 0 and ∆ ◦Q = (Q⊗ id + id⊗Q) ◦∆ hold true.
• An A∞ algebra structure on a graded vector space V is a codifferential Q of the graded

coalgebra (T (sV ),∆). Similarly, an L∞ algebra structure on V is a codifferential Q of
the graded coalgebra (S(sV ),∆).
• A morphism of A∞ algebras from A∞ algebra V to A∞ algebra W is a morphism of

the corresponding dg coalgebras F : (T (sV ),∆, QV ) → (T (sW ),∆, QW ). In the same
manner one defines morphisms of L∞ algebras.
• An A∞ algebra structure Q on V is determined by its Taylor coefficients (Qn)n≥1, which

are the maps given by

Tn(sV ) // T (sV )
Q // T (sV )

p // T 1(sV ) ∼= sV.

Moreover, a morphism F of A∞ algebras from V to W is determined by its Taylor
coefficients Fn : Tn(sV ) → sW , which are defined in the same manner as the Taylor
coefficients of an A∞ algebra structure.
• Similarly, an L∞ algebra structure Q on V is determined by its Taylor coefficients Qn :⊙n(sV ) → sV , for n ≥ 1, and a L∞ algebra morphism F from V to W is determined

by its Taylor coefficients Fn :
⊙n(sV )→ sW .

• A morphism of A∞ algebras, respectively L∞ algebras, is called a quasi-isomorphism if
its first Taylor coefficient induces an isomorphism on cohomology.
• The category of dg algebras embeds into the category of A∞ algebra via the embedding

(A, ·, d) 7→ (T (sA), Q),

where Q is the coderivation whose non-trivial Taylor coefficients are Q1(sa) = −s(da)

and Q2(sa⊗ sb) = (−1)|a|s(a · b). Similar formulas define an embedding of the category
of dg Lie algebras into the category of L∞ algebras.
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• The forgetful functor from dg associative algebras to dg Lie algebras admits the following
higher generalization. Given a graded vector space V , we denote by symn, n ≥ 1, the
maps

symn : Sn(sV )→ Tn(sV ), sx1 � · · · � sxn 7→
∑
σ∈Sn

ε(σ)sxσ(1) ⊗ · · · ⊗ sxσ(n).

If Qn : Tn(sV ) → sV , n ≥ 1, are the Taylor coefficients of an A∞ algebra structure
on V , then the Qn ◦ symn : Sn(sV ) → sV are the Taylor coefficients of an L∞ algebra
structure sym(Q) on V . Similarly, if Fn : Tn(sV )→ sW are the Taylor coefficients of an
A∞ morphism F : (V,QV ) → (W,QW ), then Fn ◦ symn : Sn(sV ) → sW are the Taylor
coefficients of an L∞ morphism sym(F ) : (V, sym(QV )) → (W, sym(QW )). This defines
the symmetrization functor from the category of A∞ algebras to the one of L∞ algebras.

Appendix B. Review of C∞ algebras

C∞ algebra structures are A∞ algebra structures which are compatible with the shuffle product
on the reduced tensor coalgebra. To be precise, the reduced tensor coalgebra (T (V ),∆) can be
equipped with the structure of a graded bialgebra by introducing the shuffle product

(v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vn) =
∑

σ∈S(p,q)

ε(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n),

where S(p, q) is the set of (p, q)-unshuffles, i.e. a permutation σ of {1, . . . , n} such that σ(i) <
σ(i+ 1) for all i 6= p.

Definition B.1. A C∞ algebra structure on a graded space V is a dg bialgebra structure Q :
T (sV ) → T (sV ) on the graded bialgebra (T (sV ),∆,~). A C∞ morphism F : V → W between
C∞ algebras V and W is a morphism of dg bialgebras F : T (sV )→ T (sW ).

Let (C,∆C ,mC) and (D,∆D,mD) be graded bialgebras with coproducts ∆C , ∆D and prod-
ucts mC , mD respectively. Recall that given a morphism F : (C,∆C) → (D,∆D) of graded
coalgebras, a linear map R : C → D is an F -coderivation if it satisfies the identity ∆DR =
(R⊗F +F ⊗R)∆C . Similarly, given a morphism of graded algebras F : (C,mC)→ (D,mD), a
linear map R : C → D is an F -derivation if it satisfies the identity RmC = mD(R⊗F +F ⊗R).
Finally, given a morphism of graded bialgebras F : (C,∆C ,mC) → (D,∆D,mD), a linear map
R : C → D is an F -biderivation if it is both an F -coderivation and an F -derivation. When
F = idC we recover the usual definition of a (resp.: co, bi)derivation on C. The proof of the
following lemma is a straightforward verification.

Lemma B.2. Given a morphism of (resp.: co, bi)algebras F : C → D and (resp.: co,
bi)derivations Q : C → C, Q′ : D → D, then the maps FQ,Q′F : C → D are F -(resp.:
co, bi)derivations.

We say that a graded coalgebra (C,∆C) is locally conilpotent if C =
⋃
n≥1 ker(∆n

C), where ∆n
C :

C → C⊗n+1 is the iterated coproduct. Recall that (T (V ),∆) is the cofree locally conilpotent
graded coalgebra over V : in particular, if C is locally conilpotent every morphism of graded
coalgebras F : C → T (V ) (resp.: every F -coderivation R : C → T (V )) is determined by its
corestriction pF : C → V (resp.: pR : C → V ), where we denote by p : T (V ) → V the natural
projection. This applies to C = T (V )⊗ T (V ), equipped with the induced (locally conilpotent)
coalgebra structure: in particular, the shuffle product ~ : T (V ) ⊗ T (V ) → T (V ) is the only

morphism of graded coalgebras with vanishing corestriction 0 = p~ : T (V )⊗ T (V )
~−→ T (V )

p−→
V .
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Lemma B.3. A coderivation Q : T (V )→ T (V ) of a reduced tensor coalgebra is also a derivation
with respect to the shuffle product ~ if and only if its Taylor coefficients Qn : V ⊗n → V vanish
on the image of ~.

Proof. We have to show Q~ = ~(Q ⊗ id + id⊗Q). Since both the left and the right hand side
are ~-coderivations by Lemma B.2, it suffices to show that they have the same corestriction: as

p~ = 0, this happens if and only if the composition T (V )⊗ T (V )
~−→ T (V )

Q−→ T (V )
p−→ V also

vanishes. �

Lemma B.4. A morphism of graded coalgebras F : (T (V ),∆)→ (T (W ),∆) is also a morphism
of graded bialgebras if and only if its Taylor coefficients Fn : V ⊗n → W vanish on the image of
the shuffle product.

Proof. As for the previous lemma, the two morphisms of graded locally conilpotent coalgebras
~(F ⊗ F ), F~ : T (V )⊗ T (V )→ T (W ) coincide if and only if they have the same corestriction

if and only if the composition T (V )⊗ T (V )
~−→ T (V )

F−→ T (W )
p−→W vanishes. �

Given an A∞ algebra V , whose Taylor coefficients are (Qi)i≥1, and contraction data

( sW
F1 // sV
G1

oo ,K).

The usual A∞ homotopy transfer theorem – see [16, 22] – tells us that the maps Rn : sW⊗n →
sW (where R1 is the differential on sW ) and Fn : sW⊗n → sV , defined recursively by

(3) Rn =
n∑
i=2

G1QiF
i
n, Fn =

n∑
i=2

KQiF
i
n,

where F in =
∑

j1+···ji=n Fj1 ⊗ · · · ⊗ Fji : sW⊗n → sV ⊗i, are respectively the Taylor coefficients
of an A∞ algebra structure on W and an A∞ quasi-isomorphism F : W → V .

Theorem B.5. In the above hypotheses, if V is a C∞ algebra then Rn, Fn as in formula
(3) are the Taylor coefficients of a C∞ algebra structure on sW and a C∞ quasi-isomorphism
respectively.

This result was established by Cheng and Getzler [7] with a different proof.

Proof. Suppose inductively we have shown that Ri, Fi vanish on the image of the shuffle product
for all i < n, the induction starting at n = 2 where it is trivial: then the morphism of graded
coalgebras F<n : T (sW )→ T (sV ) with Taylor coefficients (F<n)i = Fi if i < n and (F<n)i = 0
if i ≥ n, is also a morphism of graded bialgebras. Moreover, since V is a C∞ algebra the
coderivation Q≥2 : T (sV ) → T (sV ) with vanishing linear part (Q≥2)1 = 0 and the same
higher Taylor coefficients as Q, (Q≥2)i = Qi if i ≥ 2, is also a biderivation. Both statements
follow by the previous two lemmas. Finally, Rn and Fn are respectively the composition with
G1 : sV → sW and K : sV → sV of the map

sW⊗n ↪→ T (sW )
F<n−−→ T (sV )

Q≥2−−−→ T (sV )
p−→ sV,

and the latter vanishes on the image of the shuffle product: in fact, so does the corestriction
map p : T (sV ) → sV , and by Lemma B.2 the composition Q≥2F<n : T (sW ) → T (sV ) is an
F<n-biderivation, hence it sends the image of the shuffle product in T (sW ) into the image of
the shuffle product in T (sV ). �
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