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STANDARD MONOMIAL THEORY FOR WONDERFUL

VARIETIES

P. BRAVI, R. CHIRIVÌ, J. GANDINI AND A. MAFFEI

Abstract. A general setting for a standard monomial theory on a multiset
is introduced and applied to the Cox ring of a wonderful variety. This gives a
degeneration result of the Cox ring to a multicone over a partial flag variety.
Further, we deduce that the Cox ring has rational singularities.

1. Introduction

The first appearance of the idea of a standard monomial theory may be traced
back to Hodge’s study of Grassmannians in [20], [21]. Then Doubilet, Rota and
Stein found a similar theory for the coordinate ring of the space of matrices in [18].
This was reproved and generalized to the space of symmetric and antisymmetric
matrices by De Concini and Procesi in [15].

A systematic program for the development of a standard monomial theory for
quotients of reductive groups by parabolic subgroups was then started by Seshadri
in [31] where the case of minuscule parabolics is considered. Further, in [24] Seshadri
and Lakshmibai noticed that the above mentioned results could be obtained as
specializations of their general theory.

This program was finally completed by Littelmann. Indeed, in [25], he found a
combinatorial character formula for representations of symmetrizable Kac-Moody
groups introducing the language of L-S paths. Moreover, he used L-S paths to
construct a standard monomial theory for Schubert varieties of symmetrizable Kac-
Moody groups in [27]. This theory has been developed in the context of LS algebras
over posets with bonds in [9], [10] and [11].

We want now to briefly recall what a standard monomial theory is, the reader
may see [12] for further details about this general setting. Let A be a finite subset
of an algebra A and suppose we are given a transitive antisymmetric binary relation
←− on A. We define a formal monomial a1a2 · · · aN of elements of A as standard
if a1 ←− a2 ←− · · · ←− aN . If the set of standard monomials is a basis of the
algebra A as a vector space then we say that (A,←−) is a standard monomial
theory for A. Suppose, further, we have an order 6 on the monomials of elements
of A. By the previous assumption, we may write any non-standard monomial m′ as
a linear combination of standard monomials. If in such an expression only standard
monomials m with m′6m appear, then we say that we have a straightening relation
for m′. If we have a straightening relation for each non-standard monomial, then
we say that (A,←−,6) is a standard monomial theory with straightening relations.

Given a simply connected semisimple algebraic group G over an algebraically
closed field k of characteristic 0, a Borel subgroup B ⊂ G and a maximal torus
T ⊂ B, let Λ+ ⊂ Λ be the monoid of dominant weights and the lattice of weights,
respectively. For a dominant weight λ, let Vλ be the irreducibleG–module of highest
weight λ. Let B ⊂ P ⊂ G be a parabolic subgroup of G contained in the stabilizer
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of the line generated by a highest weight vector in Vλ. Moreover, we denote by Bλ

the set of L-S paths of shape λ (see Section 3 for details).
Littelmann’s construction provides a basis Aλ = {pπ |π ∈ Bλ}, indexed by L-S

paths, for the module Γ(G/P,Lλ) ≃ V ∗
λ , where Lλ is the line bundle over G/P

associated with λ. The ring of sections Aλ =
⊕

n>0 Γ(G/P,Lnλ) is generated in
degree one and it is the coordinate ring of the cone over the closed embedding
G/P −֒→ P(Vλ) induced by Lλ. On the basis Aλ one may define a relation←− and
an order 6 such that (Aλ,←−,6) is a standard monomial theory with straightening
relations for Aλ.

In [13], the second and fourth named authors adapted Littelmann’s basis to the
Cox ring (see below) of complete symmetric varieties; this class of varieties has
been introduced by De Concini and Procesi in [16]. As a consequence, they proved
the degeneration of the Cox ring to the coordinate ring of a suitable multicone over
a flag variety. This degeneration allowed a new proof of the rational singularity
property for the Cox ring of complete symmetric varieties.

The purpose of the present paper is a further extension of these results to the Cox
ring of wonderful varieties. As a first step, we take the opportunity to introduce
a general setting for a standard monomial theory on a multiset modelled on the
above recalled one. This setting may be briefly summarized as follows, see Section
2 below for details.

Let A
.
= A1⊔A2⊔ · · · ⊔An be the union of disjoint finite subsets of an algebra

A. Suppose we have a binary relation ←− on A such that ←− restricted to Ai is
transitive and antisymmetric for all i = 1, 2, . . . , n and, further, suppose we have
bijective maps φi,j , called swaps, from the set of comparable pairs a ←− b of
Ai × Aj to the set of comparable pairs b′ ←− a′ of Aj × Ai satisfying φi,i = Id
and φi,jφj,i = Id. We define a formal monomial a1a2 · · · aN as weakly standard if
a1 ←− a2 ←− · · · ←− aN , and we say it is standard if all monomials obtained by
repeatedly swapping adjacent pairs in all possible ways, via the φi,j ’s, are weakly
standard. If the set of standard monomials is a basis for A as a vector space, we say
that (A,←−, φi,j) is a standard monomial theory on the multiset A for the algebra
A. As above we introduce also the notions of order for monomials and straightening
relations for non-standard monomials.

We prove that the kernel of the natural map from the symmetric algebra overA to
A is generated by the straightening relations of minimally non-standard monomials,
that is by the straightening relations of those non-standard monomials which are
not a product of non-standard monomials of smaller degree. In particular, we show
that if any weakly standard monomial is standard then such kernel is generated in
degree two.

We also show how, given a valuation map for monomials that is compatible with
the order 6, one may construct a flat degeneration of A.

As a motivating example for this setting one may see the standard monomial
theory on a multiset for the multicone over a flag variety constructed by the second
named author in [11]. This is described in details in Section 3. In the same Section
the multicone associated to fundamental weights for SL and a multicone for SL2 ×
SL2 are studied in great detail.

Now we recall which is the type of varieties we are interested in. A G–variety X
is wonderful of rank r if it satisfies the following conditions:

– X is smooth and projective;
– X possesses an open orbit whose complement is a union of r smooth prime
divisors, called the boundary divisors, with non-empty transversal intersec-
tions;
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– any orbit closure in X equals the intersection of the prime divisors which
contain it.

Examples of wonderful varieties are the flag varieties, which are the wonderful
varieties of rank zero, and the complete symmetric varieties. Wonderful varieties
are instances of spherical varieties ([28]): normal G–varieties with a dense orbit
under the action of a Borel subgroup of G. See [5] for a general introduction to
wonderful varieties.

If X is a wonderful G–variety, then the Picard group Pic(X) is freely generated
by the classes of the B–stable prime divisors of X which are not G–stable (see,
for example, Section 2.2 in [7]). These divisors are called the colors of X . Since
X contains an open B–orbit, the colors form a finite set ∆, so that Pic(X) is a
free lattice of finite rank. Given D ∈ Z∆, we denote by LD the corresponding line
bundle.

The direct sum

C(X)
.
=

⊕

L∈Pic(X)

Γ(X,L),

has a ring structure (see Section 4 below) and it is called the Cox ring of X .
Denote by σ1, . . . , σr the boundary divisors of X , and let si be a section of O(σi)

defining σi, for i = 1, . . . , r. As an algebra C(X) is generated by the sections of the
line bundles LD= O(D) with D ∈ ∆ together with the sections s1, . . . , sr.

By definition, X contains a unique closed G–orbit Y ≃ G/P for a suitable
parabolic subgroup P , and given D ∈ N∆ we denote by λD the highest weight of
the dual of the simple G–module Γ(Y,LD

∣∣
Y
), so that LD

∣∣
Y
≃ LλD

corresponds

to the equivariant line bundle on G/P associated to the dominant weight λD. By
taking into account the decomposition of Γ(X,LD) as a G–module (see Proposition
4.1), we lift Littelmann’s basis of Γ(Y,LλD

) to X , and we take as algebra generators
for C(X) this set of lifts together with the sections s1, . . . , sr.

Consider the coordinate ring C(Y ) = ⊕E∈N∆Γ(Y,LE
∣∣
Y
) of the multicone over

the flag variety Y associated to the dominant weights λD, with D ∈ ∆. In Section
4 we construct a standard monomial theory on a multiset for C(X) by extending,
in a natural way, that of C(Y ). Further an explicit example of our construction is
given.

As a consequence of our standard monomial theory, we obtain a flat deformation
which degenerates C(X) to the product k[s1, . . . , sr]⊗C(Y ). Since multicones over
flag varieties have rational singularities by [22] and, since the property of having
rational singularities is stable under deformation by [19], it follows that the Cox
ring C(X) has rational singularities as well. From this it follows at once that,
given D ∈ Z∆, also the ring CD(X) = ⊕n>0Γ(X,LnD) has rational singularities.
Both C(X) and CD(X), for any D ∈ Z∆, can be seen as coordinate rings of affine
spherical varieties, see Section 3.1 in [7], and the fact that affine spherical varieties
have rational singularities was already known, see [30] and [1].

2. Standard monomial theory on a multiset

In this section, as a first step, we introduce the notion of a standard monomial
theory on a multiset. This requires some technical machinery which we express in
a very abstract setting. In the next section we see the application to the multicone
over a flag variety and in Section 4 that to the Cox ring of a wonderful variety.

For further details the reader may see the various referenced papers as suggested
below. In particular, the standard monomial theory we are going to introduce is
modelled on the general definition of a standard monomial theory given in [14]; see
also [10] and [11] where such kind of standard monomial theory is developed in the
context of posets with bonds.
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We begin with a field k and a commutative k–algebra A. Let A1,A2, . . . ,An be
disjoint finite subsets of A and let A

.
= A1⊔A2⊔ · · · ⊔An, we call A a multiset . By

formal monomial we mean a monomial in the elements of A in the free associative
algebra generated by A. Define the shape of a ∈ Ai as the index i and extend the
notion of shape to formal monomials m

.
= a1a2 · · · aN of elements of A by declaring

that the shape of m is (i1, i2, . . . , iN ) if ah has shape ih for h = 1, 2, . . . , N .
Suppose we have a binary relation←− on A that is antisymmetric and transitive

when restricted to Ai for all i. We say that a formal monomial a1a2 · · · aN of
elements of A is weakly standard if a1 ←− a2 ←− · · · ←− aN . Given i, j, let φi,j be
a map from the set of weakly standard formal monomials of shape (i, j) to the set
of weakly standard formal monomials of shape (j, i). We assume that these maps
verify φi,i = Id and φi,jφj,i = Id, and we call them swap maps .

Now let m = a1a2 · · · aN be a weakly standard formal monomial. Since any pair
ajaj+1 is weakly standard, we may swap it and obtain a new monomial

m′ .
= a1 · · · aj−1a

′
ja

′
j+1aj+2 · · · aN ,

where a′ja
′
j+1 is the swap of ajaj+1. If also m′ is weakly standard, then we may

apply another swap, etc. If the shape of m is a non-decreasing sequence and if all
monomials obtained from m by swaps are weakly standard, then we say that m is
a standard formal monomial (notice that the number of swaps of m is surely finite
since A is a finite set).

We say that a (commutative) monomial in the symmetric algebra S(A) is weakly
standard, respectively, standard if it is the image of a weakly standard, respec-
tively, standard formal monomial of elements of A via the natural map from formal
monomials to monomials in S(A).

We say that the above datum (A, φi,j ,←−) is a standard monomial theory on
the multiset A for A if: the images of the standard monomials of S(A) in A via the
natural map S(A) −→ A are all distinct and, moreover, the set of these standard
monomials is a basis of A as a k–vector space.

A standard monomial theory usually has another feature, the straightening re-
lations. We express them by introducing an order 6 on (commutative) monomials
in A as elements of A with the following properties:

i) if m, m′, m′′ are monomials in A and if m′ 6 m′′, then mm′ 6 mm′′,
ii) for every monomial m the set of monomials m′ such that m 6 m′ is a finite

set.

Since the standard monomials are a k–basis of A, for every non-standard monomial
m′ of elements of A we have a relation

m′ =
∑

m

amm

in A, expressingm′ as a linear combination of the standard monomialsm. If we have
m′6m whenever am 6= 0 we say that the above relation is a straightening relation
for m′. If, further, we have straightening relations for all non-standard monomials
then we say that (A, φi,j ,←−,6) is a standard monomial theory on a multiset with
straightening relations for A.

A formal non-standard monomial m= a1a2 · · · aN is minimally non-standard if
for all proper subsequences 1 6 i1 < i2 < · · · < ik 6 N of indexes, the monomial
ai1ai2 · · · aik is a formal standard monomial. We say that a monomial in S(A)
is minimally non-standard if it is the image of a minimally non-standard formal
monomial.

Notice that the straightening relations generate the kernelR of the map S(A) −→
A, i.e. the ideal of relations in the generators A for A. But fewer relations can suffice
as we see in the following theorem.
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Theorem 2.1. If (A, φi,j ,←−,6) is a standard monomial theory with straightening
relations for A, then R is generated by the straightening relations of the minimally
non-standard monomials.

Proof. Let I be the ideal of S(A) generated by the straightening relations for min-
imally non-standard m. Since by definition I ⊆ R we have a surjective map
S(A)/I −→ S(A)/R. Moreover the set of standard monomials are a k–basis for
S(A)/R ≃ A, so if we show that the images of standard monomials generate S(A)/I
as a vector space we have I = R.

In order to prove that in S(A)/I any monomial m is a k–linear combination
of standard monomials we use induction on the order 6. In particular, if m is 6–
maximal then it is standard by the order requirement in the straightening relations.

So now suppose that m is non-standard and let m1, m2 be monomials such that
m = m1m2 with m1 minimally non-standard. In S(A)/I we have m1 =

∑
n
ann

where the sum runs over the standard monomials n with m1 < n. Hence

m = m1m2 ≡
∑

annm2 (mod I)

and m < nm2 for all n. Using the inductive hypothesis on 6, all nm2’s are sums of
standard monomials, hence also m is sum of standard monomials in S(A)/I. �

As a corollary we have the following result.

Corollary 2.2. If all weakly standard monomials are standard and the ideal R of
relations is homogeneous for the total degree of monomials, then R is generated in
degree two.

Proof. First of all we show that for a minimally non-standard monomial m =
a1a2 · · · aN we have N = 2. Indeed suppose N > 3, then aiai+1 is standard for
all i = 1, 2, . . . , N − 1. So a1 ←− a2 ←− · · · ←− aN and m is weakly standard,
hence it is standard.

We know thatR is generated by the straightening relations of the minimally non-
standard monomials by the previous theorem. We have just seen that minimally
non-standard monomials have degree 2, so R is generated by the straightening
relations of non-standard monomials of total degree 2. Let m be such a monomial,
let

R
.
= m−

∑

n

ann

be its straightening relations and finally let

R2
.
= m−

∑

n

ann

where the sum is over all standard monomials n of total degree 2. The ideal R
is homogeneous, hence R2 ∈ R; but then R′ .

= R2 − R ∈ R and R′ is a sum of
standard monomials. This is clearly possible only if R′ = 0 since the standard
monomials are linearly independent in A ≃ S(A)/R. This shows that R = R2 is an
homogeneous relation of total degree 2 and completes the proof. �

In the last part of this section we see how a degeneration forAmay be constructed
using the straightening relations (see also [10] for further details about this kind of
degeneration in the language of LS algebras). Suppose we have a valuation: a map
δ : A −→ N such that, when extended to monomials by δ(mn) = δ(m) + δ(n) for all
m, n, we have δ(m) 6 δ(n) if m6n.

For an integer n, let Kn be the ideal of A generated by those monomials m such
that δ(m) > n and consider the Rees algebra

A
.
= · · · ⊕At2 ⊕At⊕A⊕K1t

−1 ⊕K2t
−2 ⊕ · · ·
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as a subalgebra of k[t, t−1]⊗A. This algebra is a torsion-free k[t]–module, hence it
is a flat k[t]–algebra. For a ∈ k let Aa

.
= A/(t− a) be the fiber over a. Notice that

we have an action of k∗ on A given by λ · t = λt, for all λ ∈ k∗; hence isomorphisms
Aa −→ Aλ−1a between the fibers. In particular all generic fibers, i.e. Aa with
a 6= 0, are isomorphic to A1 ≃ A. On the other hand the special fiber A0 = A/(t)
is isomorphic to the associated graded algebra

A/K1 ⊕K1/K2 ⊕K2/K3 ⊕ · · ·

We may now state our deformation result.

Theorem 2.3. Let (A,ϕi,j ,←−,6) be a standard monomial theory with straight-
ening relations for the ring A and let δ be a valuation as above. Then there exists
a flat k∗–equivariant degeneration of A to A0 whose all generic fibers are isomor-
phic to A while the special fiber A0 is isomorphic to the quotient of the symmetric
algebra S(A) by the ideal generated by the relations

m′ −
∑

δ(m)=δ(m′)

amm

where m′ is a minimally non-standard monomial and m′ −
∑

m
amm is its straight-

ening relation.

Proof. We have only to prove the last part about A0. Consider the symmetric
algebra T

.
= S(A, t) with indeterminates the set of generators A and the parameter

t. Let B be the quotient of T by the ideal generated by the modified straightening
relations

m′ −
∑

m

ammtδ(m)−δ(m′)

for all m′ minimally non-standard. We may define a map T −→ k[t, t−1] ⊗ A by
A ∋ a 7−→ at−δ(a) and by t 7−→ t. It is clear that this map is well defined also on
B. Its image is A by definition of this last algebra. Moreover it is an injective map
since A has a standard monomial theory on a multiset defined in terms of that of
A with any monomial m replaced by mt−δ(m).

It is now clear that A0 ≃ B
∣∣
t=0

is as claimed in the statement of the theorem.
�

3. Standard monomial theory for multicones over flag varieties

In this section we apply the abstract construction of the previous section to the
multicone over a flag variety; this is the motivating example for the above general
setting of a standard monomial theory on a multiset.

Let G be a simply connected semisimple algebraic group over an algebraically
closed field k of characteristic 0 and let T ⊂ B ⊂ G be a maximal torus and a Borel
subgroup of G, respectively. Denote by W the Weyl group and by Λ ⊃ Λ+ the
lattice of integral weights and the monoid of dominant weights associated to the
choice of T and B. For a dominant weight λ denote by Wλ ⊆W its stabilizer and
by Wλ ⊆W the set of minimal length representatives of the cosets W/Wλ; denote,
moreover, by 6 the Bruhat order on W and on Wλ.

Now let P ⊇ B be a parabolic subgroup of G stabilizing the line generated by a
highest weight vector vλ in the irreducible G–module Vλ of highest weight λ. We
have a natural map G/P ∋ gP 7−→ [g ·vλ] ∈ P(Vλ) from the flag variety G/P to the
projective space over Vλ. We use this map to define the line bundle Lλ on G/P as
the pull-back of O(1) on P(Vλ); we denote the space of its sections by Γ(G/P,Lλ).
Notice that, as G–modules, we have Γ(G/P,Lλ) ≃ V ∗

λ , the dual of Vλ. In the sequel
we denote by λ∗ the unique dominant weight such that Vλ∗ ≃ V ∗

λ as G–modules.
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In [25] Littelmann associated to a fixed piece-wise linear path π : [0, 1]Q −→ Λ⊗Q
completely contained in the dominant Weyl chamber and ending in λ

.
= π(1) ∈ Λ+,

a set Bπ of piece-wise linear paths. The set Bπ gives the character of the irreducible
module Vλ:

charVλ =
∑

η∈Bπ

eη(1)

In particular, if we start with the path πλ : t 7−→ tλ we obtain the set Bλ of L-S
paths of shape λ; they may be combinatorially described in the following way.

Given a pair τ < sβτ of adjacent elements in Wλ, where sβ is the reflection
with respect to the positive root β, we define the positive integer fλ(τ, sβτ)

.
=

〈τ(λ), β̌〉. Further, we extend fλ to comparable pairs σ < τ in Wλ by choosing
a chain σ = τ1 < τ2 < · · · < τu = τ of adjacent elements in Wλ and defining
fλ(σ, τ)

.
= gcd{fλ(τ1, τ2), . . . , fλ(τu−1, τu)}; indeed such gcd is independent of the

chain used to compute it (see [17]).
A pair η

.
= (τ1, τ2, . . . , τr; a0, a1, . . . , ar), where τ1 < τ2 < · · · < τr is a sequence

of comparable elements of Wλ and 0 = a0 < a1 < · · · < ar = 1 are rational
numbers, is an L-S path if the integral condition aifλ(τi, τi+1) ∈ N holds for all
i = 1, 2, . . . , r − 1. The pair η is identified with the path

π(ar−ar−1)τr(λ) ∗ π(ar−1−ar−2)τr−1(λ) ∗ · · · ∗ π(a1−a0)τ1(λ)

where we denote concatenation of paths by ∗. The set supp η
.
= {τ1, τ2, . . . , τr} is

called the support of the path η.
Let W be the set of words in the alphabet W and denote by Nλ the least

common multiple of the image of fλ; we define the word w(η) of the L-S path

η = (τ1, τ2, . . . , τr; a0, a1, . . . , ar) as w(η)
.
= τ

Nλ(a1−a0)
1 · · · τ

Nλ(ar−ar−1)
r ; this will be

needed in the sequel to define an order on monomials.
The set Bλ not only describes the character of the irreducible G–module Vλ,

but also, in [27], Littelmann associates a section pπ in Γ(G/P,Lλ) to an L-S path
π ∈ Bλ. The set Aλ

.
= {pπ |π ∈ Bλ} of these sections, of shape λ, may be used to

construct a standard monomial theory as follows. For more details about the com-
binatorics of L-S paths and their application to the geometry of Schubert varieties
one may see [9].

Given two dominant weights λ, µ we lift the Bruhat order on Wλ and Wµ to
Wλ ⊔ Wµ by defining Wλ ∋ σ 6 τ ∈ Wµ if there exist σ′, τ ′ ∈ W such that
σ′Wλ = σWλ, τ

′Wµ = τWµ and σ′ 6 τ ′ with respect to the Bruhat order of W .
For details we refer to [11]. Notice that this lift is still the Bruhat order if λ and µ
have the same stabilizer in W . We use this order to define a relation ←−

λ,µ
on pairs

in Bλ × Bµ as follows: we set

π ←−
λ,µ

η if π ∈ Bλ, η ∈ Bµ, and max suppπ 6 min supp η

Notice that if λ = µ, then ←−
λ,λ

is a transitive and antisymmetric relation.

Recall that the set of pairs (π, η) ∈ Bλ × Bµ such that π ←−
λ,µ

η is in natural

bijection with the basis Bπλ∗πµ
as proved by Littelmann in Theorem 10.1 in [26].

Further the two bases Bπλ∗πµ
and Bπµ∗πλ

of the module Vλ+µ are in bijection by
a unique isomorphism of crystal graphs as follows at once by Theorem 6.3 in [25].
So we have the diagram

{π ∗ η |π ←−
λ,µ

η} −→ Bπλ∗πµ

↓
{η′ ∗ π′ | η′ ←−

µ,λ
π′} ←− Bπµ∗πλ
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and, for Bλ ∋ π←−
λ,µ

η ∈ Bµ, we define φλ,µ(pπpη)
.
= pη′pπ′ if (η′, π′) corresponds to

(π, η) under the composition of the above three bijections.
Finally let λ1, λ2, . . . , λn be dominant weights stabilized by the parabolic sub-

group P . As seen before for a pair of dominant weights, we define an order 6

on Wλ1 ⊔ Wλ2 ⊔ · · · ⊔ Wλn by: Wλi ∋ σ 6 τ ∈ Wλj if i 6 j and there exist
σ′, τ ′ ∈ W such that σ′Wλi

= σWλi
, τ ′Wλj

= τWλj
and σ′ 6 τ ′ with respect to

the Bruhat order on W . Further we refine this order to a total order 6t such that
Wλi ∋ σ 6t τ ∈ Wλj only for i 6 j.

Let 6t,lex be the lexicographic order on the set of words W defined as follows:
τ1 · · · τu 6t,lex σ1 · · ·σv if there exists i such that τj = σj for all j = 1, 2, . . . , i and
either i = v or i < u, v and τi+1 <t σi+1.

For an L-S path section pπ in A
.
= Aλ1

⊔ Aλ2
⊔ · · · ⊔ Aλn

let λ(pπ) = λi if
λi is the shape of π and extend the shape to monomials as λ(pπ1

pπ2
· · · pπu

) =
λ(π1) + λ(π2) + · · ·+ λ(πu).

On formal monomials in A we define the following order:

pη1
pη2
· · · pηu

6pǫ1pǫ2 · · · pǫv

if

- the shapes of the two monomials are equal, and
- w(η1)w(η2) · · ·w(ηu) 6t,lex w(ǫ1)w(ǫ2) · · ·w(ǫv).

Notice that this order, for our purpose, is equivalent to the one used in Section 7
of [23] (see Proposition 32 in [9] and Proposition 2.1 in [11]) since the relations we
are going to see are homogeneous with respect to the shape. Further this order
verifies the conditions in Section 2 for an order on monomials.

Finally notice that we may define a relation ←− on A by declaring pπ ←− pη if
π ∈ Bλi

, η ∈ Bλj
and π ←−

λi,λj

η.

Now consider the k–algebra

A(λ1, λ2, . . . , λn)
.
=

⊕
Γ(G/P,Lm1λ1+m2λ2+···+mnλn

)

where the sum runs over all n–tuples of non-negative integers m1,m2, . . . ,mn. This
algebra is the coordinate ring of the multicone over the partial flag variety G/P
mapped diagonally in P(Vλ1

)× · · · × P(Vλn
).

Now we need a result about the sections pπ in order to state our main theorem
about standard monomial theory.

Proposition 3.1 (See Proposition 7.3 in [23]). If π1, π2 . . . , πN are L-S paths
in Bλ1

⊔ Bλ2
⊔ · · ·Bλn

, then pπ1
pπ2
· · · pπN

=
∑

aη1,η2,...,ηN
pη1

pη2
· · · pηN

, where
pη1

pη2
· · · pηN

is standard and aη1,η2,...,ηN
6= 0 only if pπ1

pπ2
· · · pπN

6pη1
pη2
· · · pηN

.

In [23], this proposition is stated and proved only for N = 2 and n = 1 (i.e.
for products of two sections of the same shape). However the proof there may be
verbatim generalized.

We finally have all we need to state the main result of standard monomial theory
for the multicone.

Theorem 3.2 (Proposition 4.1 in [11]). The set of generators A, the swap maps
φλi,λj

and the relation ←− define a standard monomial theory for the algebra
A(λ1, λ2, . . . , λn) on the multiset A. With respect to the order 6, any non-standard
monomial in the pπ’s has a straightening relation.

We stress that for this standard monomial theory we cannot apply Corollary
2.2 since the notion of weakly standard and standard do not coincide. Indeed, in
general, there exist minimally non-standard monomials of degree 3 (see Example
3.1 below). However, as proved in Proposition 2 in [22], the ideal of relations is still
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generated in degree two. In particular, it is generated by the straightening relations
for the non-standard monomials of degree 2.

We point out that in the proof of Proposition 4.1 in [11] there is a slight inac-
curacy. Only the proof that the relations of degree 2 are straightening relations
is correct as given there; indeed, in [11], Proposition 7.3 in [23] is used while one
needs its generalization in Proposition 3.1.

3.1. Example of multicones for type A. We see an example of a standard
monomial theory on a multiset. We develop first some combinatorics about rows
and tableaux and then we apply these to the multicones over partial flag varieties
for SLℓ+1. More details and all proofs about the combinatorics may be found
in [8], while one may see [11] about the application to the multicones. For the
particular type of multicones we are going to discuss, our standard monomial theory
is completely explicit.

We fix a positive integer ℓ and denote by T(k) the set of increasing sequences
1 6 i1 < i2 < · · · < ik 6 ℓ+ 1 of integers; we call such a sequence a row while k is
its shape.

We define a (partial) order ←− on the set of rows in the following way: if
R = i1i2 · · · ik ∈ T(k) and S = j1j2 · · · jh ∈ T(h) then R ←− S if either (i) k > h
and i1 6 j1, i2 6 j2, . . ., ih 6 jh or (ii) k 6 h and i1 6 jh−k+1, i2 6 jh−k+2, . . .,
ik 6 jh. This order may simply be described as follows. Align the two rows R, S to
the left if R has shape greater than or equal to that of S or to the right otherwise,
then compare the numbers in the columns: if these numbers are non-decreasing
then R←− S. For example 135←− 14 while 45 6←− 135.

Suppose we are given two rows R, S, with R←− S, of shapes k 6 h, respectively.
One can prove that the set of subrows S′ of S of shape k such that R ←− S′ has
a minimum S0 for the order ←−. In the same way, there exists a maximum R0

for ←− in the set of rows R′, of shape h, containing R and such that R′ ←− S.
Further R0 ←− S0 and R0 ∪ S0 = R ∪ S counting entries with multiplicities.

Analogously, if the two rows R, S have shapes k > h, respectively, we define R0

as the ←−–maximal subrow of R, of shape h, which is ←−–less or equal to S, and
S0 as the minimum of the rows containing S, of shape k, and ←−–greater or equal
to R. Also in this case we have R0 ←− S0 and R0 ∪S0 = R∪S with multiplicities.

So we have defined a swap map φk,h for pairs of comparable rows by defining:
φk,h(R,S) = (R0, S0). We have φk,k = Id and φh,kφk,h = Id. For example φ2,4 :
(25, 1346) 7−→ (1245, 36).

A sequence T = R1, R2, . . . , RN of rows is called a (skew) tableau; we think to
its rows as aligned by the above recipe, each one with respect to the following one.
The shape of T is the sequence (k1, k2, . . . , kN ) of the shapes of its rows and we
denote by T(k1, k2, . . . , kN ) the set of all tableaux of a given shape. The tableau T
is weakly standard if R1 ←− R2 ←− · · · ←− RN , i.e. if the numbers in its columns
are non-decreasing. For example 24, 134, 2 is a weakly standard tableau.

Suppose in the above tableau T we have Ri ←− Ri+1, we may then define
a new tableau τi(T )

.
= R1, . . . , Ri−1, R

0
i , R

0
i+1, Ri+2, . . . , RN where (R0

i , R
0
i+1) =

φki,ki+1
(Ri, Ri+1); the tableau τi(T ) has shape (k1, . . . , ki−1, ki+1, ki, ki+2, . . . , kN ).

In particular τi(T ) is defined if T is weakly standard.
Now suppose that T is weakly standard and that also τi(T ) is weakly standard,

then we may define τj(τi(T )) by swapping two other rows. If all tableaux that
we obtain by applying the τi’s to T are weakly standard, then we say that T is a
standard tableau. For example 24, 134, 3 is a standard tableau while 24, 134, 2 is not
a standard tableau, indeed if we swap its first two rows we have 124, 34, 2 which is
not weakly standard.
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We denote by ST(k1, k2, . . . , kN ) the set of standard tableaux of shape (k1, k2, . . . , kN ).
Further let

ST{k1, k2, . . . , kN}
.
=

⋃
ST(kτ(1), kτ(2), . . . , kτ(N))

where τ runs over all permutations in the symmetric group SN . The maps τi’s are
defined on ST{k1, k2, . . . , kN} and they give an action of SN on this set.

Let us fix for the sequel a shape k = (k̄1, k̄2, . . . , k̄n), called the reference shape.
We say that a shape (k1, k2, . . . , kN ) is adapted to the reference shape k if: (i) for
all 1 6 i 6 N there exists ji such that ki = k̄ji and (ii) j1 6 j2 6 · · · 6 jN . In the
same way, we say that a tableau has adapted shape if its shape is adapted to k.

Given two tableaux T = R1, R2, . . . , RN and T ′ = R′
1, R

′
2, . . . , R

′
N with adapted

shapes we define T6T ′ if:

- T and T ′ have the same shape, and
- either T = T ′ or there exists an index j such that

i) R1 = R′
1, R2 = R′

2, . . . , Rj = R′
j , Rj+1 6= R′

j+1 and
ii) Rj+1 ←− R′

j+1.

Now we see how the combinatorial data seen above is linked to the standard
monomial theory. Let G = SLℓ+1(C), B its Borel subgroup of upper triangular
matrices, let ω1, ω2, . . . , ωℓ be the fundamental weights numbered as in [3] and
let P ⊇ B be a parabolic subgroup stabilizing the fundamental weights ωk̄i

for

i = 1, 2, . . . , n, where k = (k̄1, k̄2, . . . , k̄n) is the above fixed reference shape.
We want to describe a standard monomial theory for the C–algebra

A
.
=

⊕
Γ(G/P,Lm1ωk̄1

+m2ωk̄2
+···+mnωk̄n

)

where the sum runs over all n–tuples of non-negative integers m1,m2, . . . ,mn. This
is the same algebra previously studied in this section once we choose λ1 = ωk̄1

, λ2 =
ωk̄2

, . . . , λn = ωk̄n
.

The set of rows T(k) is in bijection with the L-S paths of shape ωk, so we have
a map T(k) ∋ R 7−→ pR ∈ Γ(G/P,Lωk

). These sections pR’s are nothing else but
the classical Plücker coordinates for the Grassmannian of k–dimensional subspaces
in Cℓ+1 pulled back to G/P .

The order←− for rows is the same order defined in the general part in this section
by lifting the Bruhat order. The swap maps φh,k correspond to the general swap
maps (for L-S path sections) and may be defined on sections by: φωk,ωk

(pR, pS) =
(pR0 , pS0) if T(k) ∋ R←− S ∈ T(h) and φk,h(R,S) = (R0, S0).

Notice that if the reference shape is decreasing then a tableau is standard if and
only if it is weakly standard. This is clear since the set of weakly standard tableaux
of decreasing shape are a particular instance of a path model. So, in order to check
that a weakly standard tableau T is standard one may use the swap maps and
make its shape decreasing, obtaining a new tableau T ′, and then check that T ′ is
(weakly) standard, i.e. check whether the entries of T ′ are not decreasing in the
columns. Further, if T ′ is standard, then it is uniquely determined by T since the
swap maps give an action of the symmetric group. Of course all of this is true also
for increasing reference shapes.

If pR1
pR2
· · · pRN

is a (commutative) monomial in A, we may always assume that
the shape of the tableau R1, R2, . . . , RN is adapted to k; so we compare monomials
in the pR’s via the order 6 on the corresponding adapted tableaux. This order cor-
responds to the order defined via the lexicographic order 6t,lex on words associated
to L-S paths in our situation.

So the standard monomial theory for A may be seen in terms of rows and
tableaux. But also its straightening relations are quite explicit. In the sequel
we give a set of generators for the ideal R of relations among the generators pR’s,
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i.e. R is the kernel of the natural map from the polynomial algebra

S[pR |R a row of shape in k]

to A.
We need a slight generalization of these generators: let R = i1i2 · · · ik be any

sequence of integers in {1, 2, . . . , ℓ+ 1}, we define [R] either as 0 if the entries of R
are not distinct, or as (−1)σpR′ if σ is the unique permutation of 1, 2, . . . , k such
that R′ = iσ(1), iσ(2), . . . , iσ(k) is a row.

Now suppose that (k, h), with k > h, is a shape adapted to the reference shape
and suppose we have two rows

R = i1 i2 . . . it−1 ut+1 ut+2 · · · · · · · · · uk+1

S = u1 u2 . . . ut−1 ut j1 j2 · · · jh−t

with shapes k, h, respectively, such that i1 < u1, i2 < u2, . . . , it−1 < ut−1 but
ut+1 > ut so that T

.
= R,S is not a standard tableau; we say that t is the index of

violation of standardness in T . Then the polynomial
∑

(−1)σ[i1, . . . , it−1, uσ(t+1), . . . , uσ(k+1)][uσ(1), . . . , uσ(t), j1, . . . , jh−k]

where the sum runs over a set of representatives for the quotient Sk+1/St×Sk+1−t,
is inR. Such a relation is called a shuffling relation. The case of decreasing adapted
shape k < h results in similar shuffling relations.

Notice that a shuffling relation may not be a straightening relation; indeed other
non-standard tableaux besides T (corresponding to σ = the identity permutation)
may appear. But any other non-standard tableau appearing in this relation has
index of violation greater than t. So we may use a finite number of shuffling
relations and reach eventually a straightening relation for T .

Finally, since standard and weakly standard coincide for tableaux with two rows,
and since, by [22], we know that R is generated in degree 2, we conclude that the
shuffling relations generate R.

Let us see an example with ℓ = 3 and reference shape k = (2, 3, 1). The tableau
T

.
= 24, 134, 2 is weakly standard but not standard (as already seen above). So

[24][134][2] = p24p134p2 is a linear combination of sections associated to standard
tableaux.

We have the following shuffling relations (in particular they are also straightening
relations):

[234][14] − [134][24] + [124][34] = 0

[34][2] − [24][3] + [23][4] = 0

If we multiply the first one by [2], use the second and move T to the left hand side,
we have

T = [14][234][2] + [24][124][3] − [23][124][4]

As one can easily check, the three tableaux in the right hand side are all standard;
hence we have obtained the straightening relation for T .

Now letR0 be the ideal of S[pR] generated by pR1
pR2
· · · pRN

for all non-standard
tableaux R1, R2, . . . , RN . The quotient A0 = S[pR]/R0 is called the discrete algebra
for the multicone with reference shape k. Notice that it is possible to define a
certain valuation and, using Theorem 2.3, degenerate A to A0. In particular, in
our example above with ℓ = 3 and k = (2, 3, 1), the ideal R0 is no more generated
in degree 2 since the tableau T , for example, is weakly standard but not standard.
The same is true for any non-decreasing or non-increasing reference shape.
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3.2. A multicone for type A1×A1. Now we see a very simple example of multi-
cone which will be used in the next Section. Let G

.
= SL2(C)× SL2(C), a group of

type A1×A1, let ω, ω
′ be the two fundamental weights and take λ1

.
= ω, λ2 = ω+ω′

and λ3 = ω′ (we are using the symbols λ1, λ2, λ3 with the same meaning as in the
main part of this Section). The multicone for this example is SL2(C)/B×SL2(C)/B,
which is clearly isomorphic to P1×P1. We will describe the combinatorics and the
straightening relations using tableaux with rows made of two boxes with some boxes
filled with the integers 1 and 2.

In particular here is the correspondence between rows and L-S paths for Bλi
:

1 7−→ πω ∈ Bλ1

2 7−→ π−ω ∈ Bλ1

1 1 7−→ πω+ω′ ∈ Bλ2

2 1 7−→ π−ω+ω′ ∈ Bλ2

1 2 7−→ πω−ω′ ∈ Bλ2

2 2 7−→ π−ω−ω′ ∈ Bλ2

1 7−→ πω′ ∈ Bλ3

2 7−→ π−ω′ ∈ Bλ3

In the sequel we write i where i may be 1, 2 or nothing and we denote pairs of
rows and tableaux as stacked rows of two boxes. Notice that by i j we mean one
of the rows in the above list, so that the row is not allowed in our context.

We define the following relation on boxes:

i 6 j

for all pairs (i, j) with i, j equal to 1,2 or nothing, but the pair i = 2 and j = 1.
The relation ←−, defined by lifting the Bruhat order, corresponds to the following
relation via the above bijection from rows to paths:

i j ←− h k if and only if i 6 h and j 6 k

Hence a tableau

T =

i1 j1
i2 j2
· ·
· ·
· ·
iN jN

is weakly standard if and only if: in each column, consecutive integers do not
decrease.

The crystal graph isomorphisms are very easy to compute and, denoting by i, j, k
integers in {1, 2} (so that i , j and k are not empty boxes), the resulting swap
maps are:

i j
k ←→

i
k j

i
j k ←→

j i
k

i
j ←→

j
i

The swap maps may be summarized in words as: vertically exchange the empty
boxes with the filled ones. Hence a tableau T as above is standard if in each column
the integer entries, read out by skipping the empty boxes, are non-decreasing. In
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particular, if in a tableau the empty boxes are only j1, j2, . . . , jh and ik, ik+1, . . . , iN
for certain h, k, then it is standard if and only if it is weakly standard.

The coordinate ring of the multicone is

A
.
=

⊕

n1,n2,n3

Γ(SL2(C)/B × SL2(C)/B,L(n1+n2)ω+(n2+n3)ω′)

and we have a surjective map from the polynomial algebra S( i j ) with inde-

terminates indexed by the rows i j , to A whose kernel R is generated by the
polynomials

2
1 i −

1
2 i

2 1
1 2 −

1 1
2 2

i 2
1 −

i 1
2

where i ∈ {1, 2}.

4. Standard monomial theory for the Cox ring of a wonderful
variety

Let X be a wonderful G–variety with (unique) closed G–orbit Y , and let P ⊇ B
be the parabolic subgroup such that Y ≃ G/P . By [28], X is spherical, i.e. it
possesses an open B–orbit, say B · x0 ⊂ X . Since B · x0 is affine, G · x0 r B · x0

is a union of finitely many B–stable divisors and we denote by ∆ the set of their
closures in X :

∆
.
= {D ⊂ X : D is a B–stable prime divisor, D ∩G · x0 6= ∅}.

The elements of ∆ are called the colors of X .
Denote by B− the opposite Borel subgroup of B and let y0 ∈ Y be the unique

B−–fixed point ofX . The normal space Ty0
X/Ty0

Y of Y inX at y0 is a multiplicity-
free T –module. The elements of the set

Σ
.
= {T –weights of Ty0

X/Ty0
Y }

are called the spherical roots of X . If σ ∈ Σ, there exists a unique G–stable divisor
Xσ of X such that the weight of T on Ty0

X/Ty0
Xσ is σ. This gives a natural

correspondence between the set Σ and the irreducible boundary divisors of X .
Recall that every line bundle on X and on Y has a unique G–linearization.

As a group, Pic(X) is freely generated by the equivalence classes of line bundles
LD

.
= O(D), for D ∈ ∆ (see [6, Proposition 2.2]). For all E ∈ Z∆, the associated

line bundle LE
.
= O(E) is globally generated, respectively ample, if and only if E

is a non-negative, respectively positive, combination of colors. Notice that ZΣ is a
sublattice of Z∆.

The restriction of line bundles to the closed orbit induces a map λ : Pic(X) −→
Λ; given E ∈ Z∆ we set λE

.
= λ(LE) in such a way that Γ(Y,LE

∣∣
Y
) ≃ V ∗

λE

and, moreover, we set VE
.
= V ∗

λE
for short. (Hence LE

∣∣
Y
≃ LλE

where this last

line bundle is defined in the previous section.) Moreover, in particular, Γ(X,LE)
contains a copy of VE and, since X is spherical the decomposition of the G–module
Γ(X,LE) is multiplicity-free.

If γ
.
=

∑
aσσ ∈ NΣ, we denote by sγ ∈ Γ(X,LXγ ) a section whose divisor is

equal to Xγ
.
=

∑
aσXσ; notice that this section is G–invariant. If E,F ∈ Z∆ are

such that F − E ∈ NΣ, then we write E 6Σ F . If E ∈ N∆, F ∈ Z∆ and E 6Σ F



14 P. BRAVI, R. CHIRIVÌ, J. GANDINI AND A. MAFFEI

the multiplication by sF−E induces a G–equivariant map from the sections of LE
to the sections of LF , in particular we have sF−EVE ⊆ Γ(X,LF ). Moreover

Proposition 4.1 ([6, Proposition 2.4]). Let F ∈ Z∆, then

Γ(X,LF ) =
⊕

E∈N∆:E6ΣF

sF−EVE .

Since Pic(X) ≃ Z∆ is a free lattice, the space

C(X)
.
=

⊕

D∈Z∆

Γ(X,LD)

is a ring; in analogy with the toric case C(X) is called the Cox ring of X . The
ring C(X) was studied in [13] and [12] in the case of a wonderful symmetric variety
(where it is called respectively the ring of sections of X and the coordinate ring
of X), and in [7] in the case of a wonderful variety (where it is called the total
coordinate ring of X).

Since X is irreducible, by Proposition 4.1, C(X) is generated as a k–algebra by
the sections sσ, for σ ∈ Σ, and by the modules VD ⊆ Γ(X,LD) for D ∈ ∆. It
follows that C(X) is a quotient of the symmetric algebra

S(X)
.
= k[s1, . . . , sr]⊗ S

( ⊕

D∈∆

VD

)

where we fix an ordering Σ = {σ1, . . . , σr} and we set si
.
= sσi for short. Further,

notice that the quotient of C(X) by the ideal generated by the sections s1, . . . , sr
is isomorphic to the coordinate ring of a multicone over the flag variety Y ≃ G/P ,
that is

C(Y )
.
= A(λD1

, λD2
, . . . , λDq

) =
⊕

D∈N∆

Γ(Y,LD
∣∣
Y
) ≃

⊕

D∈N∆

VD.

where ∆ = {D1, . . . , Dq} is any fixed ordering of ∆. Therefore we have surjective
maps

S(X) −→ C(X) −→ C(Y ),

The rings S(X), C(X) and C(Y ) all have natural Z∆–gradings, and the previous
maps are morphisms of Z∆–graded G–algebras.

By Theorem 3.2 we have a standard monomial theory with straightening relations
for C(Y ). Our aim is to extend it to a standard monomial theory for the Cox ring
C(X), and deduce a degeneration result for such a ring. A description of the ideal
IX defining C(X) as a quotient of S(X) is given in terms of straightening relations
of our standard monomial theory.

Given D ∈ ∆ we denote by BD
.
= BλD

the set of L-S paths of shape λD for short.
Given π ∈ BD, let xπ ∈ VD ⊂ Γ(X,LD) be the unique section such that xπ

∣∣
Y
= pπ

and let
AD

.
= {xπ : π ∈ BD} ⊂ VD.

Then AD is a basis of VD ⊆ Γ(X,LD). Further, define

AΣ
.
= {si : i = 1, . . . , r}, A∆

.
=

⊔

D∈∆

AD and AX
.
= AΣ⊔A∆.

In particular, S(X) is the symmetric algebra in the indeterminates AX . The mul-
tiset of our standard monomial theory is AX = AΣ ⊔

⊔
D∈∆AD so that if xπ ∈ A∆,

its shape is the unique D ∈ ∆ such that xπ ∈ AD and the shape of si is Σ. Recall
that in the definition of a standard monomial theory, in order to define a stan-
dard monomial theory we have to fix an order on the possible shapes. Here we
have already fixed a total order on ∆ and we extend it by declaring Σ < D for all
D ∈ ∆.
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Let B∆
.
=

⊔
D∈∆BD and set

AY
.
= {pπ : π ∈ B∆},

which is naturally identified with the subset A∆ ⊂ AX via the bijection xπ 7−→
pπ = xπ

∣∣
Y
.

By Theorem 3.2 we have a standard monomial theory for C(Y ). We denote
by M(Y ) ⊂ S(AY ) ≃ S(A∆) the set of monomials in the coordinates AY , and
by SM(Y ) ⊂ M(Y ) the subset of standard monomials. In particular, using the
bijections AD ≃ AλD

, for all D,D′ ∈ ∆ we have swap maps φD,D′ , a relation ←−
on A∆ and an order 6 on M(Y ) as defined in the previous section.

First we extend the relation ←− to AX by declaring s1 ←− s2 ←− · · · ←− sr
and si ←− xπ , xπ ←− si for all i = 1, 2, . . . , r and all π ∈ B∆. Next we extend the
swap maps by

φΣ,D(si, xπ)
.
= (xπ , si) φD,Σ(xπ , si)

.
= (si, xπ)

for all i = 1, 2, . . . , r and all π ∈ B∆.
Let m

.
= sγxπ1

· · · xπN
be a monomial; then ν(m)

.
= γ is called the vanishing of

m . Further if Di ∈ ∆ is the shape of xπi
∈ A∆, we define the Picard weight of m

as

γ +

N∑

i=1

Di,

namely the degree of m with respect to the Z∆–grading.
Finally, we extend the order 6 to monomials in AX : if m1,m2 are two monomials

in S(A∆) ≃ S(AY ) and if γ1, γ2 ∈ N∆, then we set sγ1m16sγ2m2 if:

- the Picard weights of sγ1m1 and of sγ2m2 are equal, and
- either γ1 <Σ γ2 or γ1 = γ2 and m1

∣∣
Y
6m2

∣∣
Y

(with respect to the order 6

defined in Section 3).

We denote by M(X) ⊂ S(X) the set of the monomials in the indeterminates AX ,
endowed with the order 6.

The inclusion AY −֒→ AX defines a shape-preserving bijection between M(Y )
and the subset of M(X) of the monomials m such that ν(m) = 0. Given n ∈ M(Y )
we denote by ñ ∈ M(X) the corresponding monomial, so we have ñ

∣∣
Y

= n and,

in particular, p̃π = xπ. Conversely, given a monomial m ∈ M(X) we may define
a monomial m ∈ M(X) with ν(m) = 0 by setting m

.
= s−ν(m)m. Notice that m ∈

M(X) is a standard monomial if and only if m ∈ M(X) is a standard monomial, if
and only if m

∣∣
Y
∈ M(Y ) is a standard monomial. We denote by SM(X) ⊂ M(X) the

set of standard monomials in AX , and if E ∈ Z∆ we denote by SME(X) ⊂ ME(X)
the set of standard monomials and the set of all monomials of Picard weight E,
respectively.

Following [13, Theorem 3], we are now able to construct a standard monomial
theory for the Cox ring C(X) of a wonderful variety X .

Theorem 4.2. i) Given E ∈ Z∆, the images of the standard monomials of
Picard weight E form a basis of Γ(X,LE).

ii) Given a non-standard monomial m′ the equality

m′ =
∑

m∈SM(X)

amm

guaranteed by i) is a straightening relation in C(X); that is, we have m′6m

whenever am 6= 0. Moreover,

m′ =
∑

m∈SM(X),ν(m)=ν(m′)

amm
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is a straightening relation in C(Y ).
iii) The defining ideal IX ⊂ S(X) is generated by the straightening relations

for the non-standard monomials of degree two.
In particular, the set of generators AX together with the above defined swap

maps, relation and order define a standard monomial theory on the multiset AX

with straightening relations for the Cox ring C(X).

Proof. We prove the first two statements together. Let π1, . . . , πN ∈ B∆ be such
that xπ1

· · · xπN
is not standard. In A(Y ), by Theorem 3.2, we have a straightening

relation
pπ1
· · · pπN

=
∑

n∈SM(Y )

ann,

where pπ1
· · · pπN

6n for all n such that an 6= 0.
Since XrG·x0 is a normal crossing divisor with smooth irreducible components,

a section in C(X) vanishes on the closed orbit Y if and only if it is in the ideal
generated by the sections s1, . . . , sr. By construction the difference xπ1

· · · xπN
−∑

n
anñ is homogeneous w.r.t. the Z∆–grading, and it vanishes on Y . Hence we

have
xπ1
· · · xπN

=
∑

n∈SM(Y )

anñ+
∑

m∈ME(X) : ν(m) 6=0

amm,

where xπ1
· · · xπN

6ñ for all n ∈ SM(Y ) with an 6= 0.
Proceeding inductively on the partial order 6Σ, the previous equality implies

that in C(X) the image of every monomial m′ ∈ ME(X) may be written as the
image of a sum of standard monomials m ∈ SME(X) with m′6m.

Therefore the image of the standard monomials of SME(X) in C(X) is a set of
generators for Γ(X,LE) as a vector space. On the other hand, by Theorem 3.2,
the images of the standard monomials n ∈ SM(Y ) form a basis for C(Y ); hence for
all F ∈ N∆ the images of the standard monomials n ∈ SM(Y ) of Picard weight F
form a basis for the graded component C(Y )F = VF . So using Proposition 4.1, we
have

dimΓ(X,LE) =
∑

F∈N∆ :F6ΣE dimVF

=
∑

F∈N∆ :F6ΣE |SMF (Y )|

= |SME(X)|,

and this finishes the proof of i) and ii).
Now, in order to prove iii), let J be the ideal of S(X) generated by the straight-

ening relations for the non-standard monomials of degree two. Clearly J ⊆ IX and
we want to show that these two ideals are equal.

The quotient S(X)/〈J, s1, . . . , sr〉 is isomorphic to C(Y ) since the relations for
this last ring are generated by the quadratic straightening relations; indeed it is
generated in degree 2 by [22, Proposition 2]. So, if m′ is a non-standard monomial
m′ + 〈s1, . . . , sr〉 is a sum of standard monomials modulo J . Hence in S(X)/J the
monomial m′ is a sum of standard monomials m with ν(m) = 0 plus s1y1+ · · ·+sryr
for some homogeneous elements y1, . . . , yr whose Picard weights are <Σ of that of
m′.

Proceeding again by induction on the Picard weight of a non-standard monomial
we see that any straightening relation is an element of J . So J = IX and the last
statement of the Theorem is proved.

�

Remark 4.3. The results stated in the above Theorem overlap with Proposition 3.3.1
in [7]. In that Proposition a description of the quadratic relations of the ring C(X) is
given. However in [7] the standard monomial structure is not considered explicitly.
Notice that even if the relations of the ring C(X) are generated in degree two, the
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relations of degree two are not enough to construct a standard monomial theory as
we have already noticed in the final part of Example 3.1.

The standard monomial theory constructed in the previous theorem is compati-
ble with the G–orbit closures in X in the following sense. Recall that the subsets
I ⊆ Σ parametrize the G–orbits in X ; that is, for every x ∈ X there is a unique
I ⊆ Σ such that G · x =

⋂
σ∈ΣrI X

σ .
= XI .

The G–stable subvariety XI is again a wonderful variety; its set of spherical
roots coincides with I. Given I ⊆ Σ, we say that a standard monomial m ∈ SM(X)
is I–standard if ν(m) ∈ 〈Σ r I〉Z. We denote by SMI(X) the set of I–standard
monomials, and by SMI

E(X) the set of the I–standard monomials of Picard weight
E ∈ Z∆.

Corollary 4.4. Given E ∈ Z∆, the images of the I–standard monomials SMI
E(X)

are a basis for Γ(XI ,LE
∣∣
XI

).

Proof. Let J
.
= ΣrI. Then the restriction of sections ρ : Γ(X,L) −→ Γ(XI ,LE

∣∣
XI

)

is a surjective map, and we have

ker ρ =
⊕

F∈N∆ :F6JE

sE−FVF ,

where we write F 6J E if and only if E − F ∈ NJ . It follows that the images of
the J–standard monomials of Picard weight E give a basis for kerρ, whereas the
restrictions of the images of the I–standard monomials of Picard weight E give a
basis for Γ(XI ,LE

∣∣
XI

). �

When X is the wonderful compactification of a semisimple adjoint group re-
garded as a homogeneous G×G–variety, the above constructed standard monomial
theory is even compatible with the B ×B–orbit closures (see [2]).

4.1. An example of the Cox ring for a wonderful variety. We illustrate
our theory in a simple example. We will make use of the results and conventions
introduced in Section 3.2. Let V = C2 and define

X = {([ϕ], [A], [v]) ∈ P(V ∗)× P(End(V ))× P(V ) : ϕ(Av) = 0}.

X is a wonderful variety for the groupG = SL(V )×SL(V ) acting by (g, h)(ϕ,A, v) =
(g · ϕ, gAh−1, h · v). We choose the maximal torus given by the diagonal matrices
and the Borel subgroup given by the upper triangular matrices. We denote by α
the simple root of the first factor of G and by α′ the simple root of the second
factor.

The Picard group is generated by the pull-backs of the three line bundlesOP(V ∗)(1),
OP(End(V ))(1) and OP(V )(1) and we denote by D1, D2, D3 the associated colors, re-
spectively. We have two spherical roots

σ1 = α = D1 +D2 −D3 and σ2 = α′ = D2 +D3 −D1.

The closed orbit Y in this case is P1 × P1 and the ring C(Y ) is the one studied in
Section 3.2.

The ring C(X) is generated by the eight generators xπ that we denote with rows
of length two as in Section 3.2, together with s1 and s2. The standard monomials
are the monomials of the form sa1s

b
2m̃, where m̃ is a standard monomial for the ring

C(Y ). In particular we have the same minimally non-standard monomials as in the
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ring C(Y ), and the straightening relations are given by

2
1 i =

1
2 i + s1 i

2 1
1 2 =

1 1
2 2 + s1s2

i 2
1 =

i 1
2 + s2 i

where i ∈ {1, 2}.

5. Degeneration and rational singularities

Any straightening relation involves monomials with higher power of the sections
s1, . . . , sr. This allows us to degenerate SpecC(X) to the product of the affine
space kr with a multicone over the flag variety G/P ≃ Y . Let us see the details for
such a degeneration.

Corollary 5.1. There exists a flat G× k∗–equivariant degeneration C of C(X) to
the ring k[s1, . . . , sr]⊗C(Y ); further all generic fibers of C are isomorphic to C(X).

Proof. We define a map δ : AX −→ N by δ(xπ) = 0 for all π ∈ B∆ and δ(si) = 1
for all i = 1, 2, . . . , r. This map is a valuation for the standard monomial theory
of C(X) by Theorem 4.2. Hence we may apply Theorem 2.3. The special fiber is
isomorphic to the ring in the statement of the theorem again by Theorem 4.2.

Moreover, for this valuation map the Rees algebra is

C = · · · ⊕ C(X)t2 ⊕ C(X)t⊕ C(X)⊕Kt−1 ⊕K2t−1 ⊕ · · ·

with K the ideal of C(X) generated by the sections s1, s2, . . . , sr. So, being K
generated by G–invariants, the action of G on C(X) induces an action on C by
letting G act trivially on t. In particular G acts on each fiber and it is clear that
this G–action commutes with the isomorphisms Ca −→ Cλ−1a for any a ∈ k and
λ ∈ k∗. So the deformation is also G–equivariant. �

We now apply this degeneration result to the study of the singularities of the
algebra C(X). A variety X is said to have rational singularities if there exists a
resolution of singularities π : Y −→ X of X such that Riπ∗OY = 0 for i > 0
and π∗OY = OX . If such a property holds for a resolution then it holds for all
resolutions. Finally a ring A is said to have rational singularities if SpecA has
rational singularities.

We have the following properties:

(a) a multicone over a flag variety has rational singularities (see [22], Theo-
rem 2)

(b) if X is an affine G–variety with rational singularities and G is a reductive
group then X//G has rational singularities (see [4])

(c) if (X , X) −→ (S, s0) is a flat deformation of a variety with rational singu-
larities X then there exists a neighbourhood U of s0 such that for s ∈ U
the fiber over s has also rational singularities (see [19], Théorème 4).

Given D ∈ Z∆ consider the subalgebra of C(X) defined as follows

CD(X)
.
=

⊕

n>0

Γ(X,LnD).

This is the projective coordinate ring of a spherical variety, namely the image of
X in the projective space P(Γ(X,LD)∗). It is known that these rings have rational
singularities (see [30], or also [1, Remark 2.5] for another proof which is closer to
the constructions of this paper).
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Proposition 5.2. Let X be a wonderful variety and let D ∈ Z∆. Then C(X) and
CD(X) have rational singularities.

Proof. By Corollary 5.1 we have that C(X) is a deformation of a multicone over
a flag variety, which has rational singularities by (a), hence C(X) has rational
singularities as well by (c).

In order to show the second claim, let D̃ ∈ Z∆ be such that QD ∩ Z∆ = ZD̃.

Then the inclusions ZD ⊂ ZD̃ ⊂ Z∆ define a torus S
.
= Hom(Z∆/ZD̃,C∗) and

a finite group Γ
.
= Hom(ZD̃/ZD,C∗). Moreover, we have natural actions of S on

C(X) and of Γ on C(X)S , and CD(X) = (C(X)S)Γ. Therefore, by (b) it follows
that CD(X) has rational singularities as well. �
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