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NONABELIAN HIGHER DERIVED BRACKETS

RUGGERO BANDIERA

Abstract. Let M be a graded Lie algebra, together with graded Lie subalgebras L and A such
that as a graded space M is the direct sum of L and A, and A is abelian. Let D be a degree one
derivation of M squaring to zero and sending L into itself, then Voronov’s construction of higher
derived brackets associates to D a L∞ structure on A[−1]. It is known, and it follows from the
results of this paper, that the resulting L∞ algebra is a weak model for the homotopy fiber of
the inclusion of differential graded Lie algebras i : (L,D, [·, ·]) → (M,D, [·, ·]). We prove this fact
using homotopical transfer of L∞ structures, in this way we also extend Voronov’s construction
when the assumption A abelian is dropped: the resulting formulas involve Bernoulli numbers.
In the last section we consider some example and some further application.

1. Introduction

Let i : (L,D, [·, ·]) → (M,D, [·, ·]) be the inclusion of a differential graded Lie subalgebra, recall
that its homotopy fiber is the differential graded Lie algebra (dgla)

Ki = {(l,m(t, dt)) ∈ L×M [t, dt] s.t. m(t, dt)|t=0 = 0, m(t, dt)|t=1 = l},

where M [t, dt] is the dgla of polynomial forms on the line with coefficients in M . Let A ⊂ M
be a complement to L in M and P : M → A the projection with kernel L, then (A[−1],−PD)
is a homotopy retract of Ki: via homotopy transfer of L∞ structures there is an induced L∞

structure on A[−1], together with a homotopy fiber sequence A[−1] → L
i
−→ M of L∞ algebras. In

this paper we find explicit formulas under the additional assumption that A ⊂ M is a graded Lie
subalgebra of M , then the L∞ structure on A[−1] is given (after décalage) by the family of degree
one symmetric brackets Φ(D)i : A

⊙i → A, for i ≥ 1,

Φ(D)i(a1⊙· · ·⊙ai) =
∑

σ∈Si

ε(σ)

i∑

k=1

Bi−k

k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]

where Si is the symmetric group, ε(σ) = ε(σ; a1, . . . , ai) is the Koszul sign and the Bj are the
Bernoulli numbers. The L∞ morphism A[−1] → L, modeling the projection pL : Ki → L, is given
(after décalage) in Taylor coefficients by

(1.1) A⊙i → L[1] : a1 ⊙ · · · ⊙ ai →
1

i!

∑

σ∈Si

ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(i)], i ≥ 1,

where P⊥ := idM −P : M → L. Our first main result is that with these definitions

Theorem 1.1. If A is a graded Lie subalgebra of M then (A[−1],Φ(D)1 = PD, . . . ,Φ(D)i, . . .) is
a L∞ algebra and a weak model for the homotopy fiber Ki in the homotopy category of L∞ algebras.

Moreover, A[−1] → L
i
−→ M is a homotopy fiber sequence of L∞ algebras (more precisely, a weak

model for the sequence Ki
pL
−−→ L

i
−→ M).
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When A ⊂ M is an abelian Lie subalgebra, then Φ(D)i(a1 ⊙ · · · ⊙ ai) = P [· · · [Da1, a2] · · · , ai],
which are the higher derived brackets on A associated to D introduced by Th. Voronov in [35]: in
this case the first part of the above Theorem is proved in [35], Section 4.

Following [35], Section 4, we also construct a L∞ structure on M ×A[−1] and a diagram

M ×A[−1]

$$❏
❏❏

❏❏
❏❏

❏❏
❏

��

A[−1]

99rrrrrrrrrr

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

M

L

99ttttttttttt

OO

such that: the lower sequence is the one from the previous theorem and the upper sequence is a
L∞ extension (in the sense of [28], Definition 3.1) of base M and fibre A[−1], the vertical arrows
are quasi inverses L∞ quasi isomorphisms, and finally the right and left triangles are separately
commutative, and the right one can be regarded as the homotopy replacement of the inclusion i
by a fibration. It might be interesting to point out that we deduce Theorem 1.1 as a particular
case of a more general result: namely, if j : (N,D, [·, ·]) → (M,D, [·, ·]) is the inclusion of another
sub dgla, then the L∞ structure on M ×A[−1] restricts to one on N ×A[−1], which gives a weak
model for the homotopy fiber product N ×h

M L (Definition 3.1) along the inclusions j and i.

Let Φ(D) be the coderivation on the reduced symmetric coalgebra SA over A associated to the
brackets Φ(D)i (under the isomorphism Coder(SA) ∼= Hom(SA,A) =

∏
i≥1 Hom(A⊙i, A) given

by corestriction), then by definition of L∞ algebra Φ(D) induces a dg coalgebra structure on SA,
thus also on the (non reduced) symmetric coalgebra SA. According to the classification of L∞

extensions from [8, 31, 28], the L∞ extension A[−1] → M × A[−1] → M is classified by a L∞

morphism Φ : (M,D, [·, ·]) → (Coder(SA), [Φ(D), ·], [·, ·]), where the bracket on Coder(SA) is the
usual (Nijenhuis-Richardson) bracket of coderivations: we show that Φ is a strict morphism of
dglas, moreover, when A ⊂ M is a graded Lie subalgebra we obtain explicit formulas for the
Taylor coefficients Φ(m)i : A

⊙i → A, and these are again given by higher derived brackets

Φ(m)i(a1 ⊙ · · · ⊙ ai) =
∑

σ∈Si

ε(σ)

i∑

k=0

Bi−k

k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [m, aσ(1)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]

for i ≥ 1, with moreover the 0-th bracket Φ(m)0 : A⊙0 = K → A : 1 → Pm. In fact, when A ⊂ M
is an abelian Lie subalgebra these are the higher derived brackets on A associated to m introduced
by Voronov in [34].

This homotopical construction of higher derived brackets also implies the formal properties
proved by Voronov in [34, 35] by a direct computation.

Theorem 1.2. Let M be a graded Lie algebra, L and A graded Lie subalgebras such that M = L⊕A
as graded spaces: for m ∈ M (resp.: D ∈ Der(M/L), cf. the subsection on notations) we define the
higher derived brackets Φ(m)i : A

⊙i → A, i ≥ 0, (resp.: Φ(D)i : A
⊙i → A, i ≥ 1) on A associated

to m (resp.: D) by the above formulas, cf. Definition 5.1. We denote by Φ(m) ∈ Coder(SA) (resp.:
Φ(D) ∈ Coder(SA) ) the corresponding coderivation. For every D,Dk ∈ Der(M/L), m,mk ∈ M ,
k = 1, 2, the following identities hold:

(1.2) [Φ(m1),Φ(m2)] = Φ([m1,m2]),

(1.3) [Φ(D1),Φ(D2)] = Φ([D1, D2]),
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(1.4) [Φ(D),Φ(m)] = Φ(Dm),

where the bracket in the left hand side is the usual (Nijenhuis-Richardson) bracket of coderivations.

The first few brackets are given by

Φ(D)1(a) = PDa, Φ(m)1(a) = P [m, a]−
1

2
[Pm, a],

Φ(D)2(a1 ⊙ a2) =
∑

σ∈S2

ε(σ)

(
1

2
P [Daσ(1), aσ(2)]−

1

2
[PDaσ(1), aσ(2)]

)
,

Φ(m)2(a1⊙ a2) =
∑

σ∈S2

ε(σ)

(
1

2
P [[m, aσ(1)], aσ(2)]−

1

2
[P [m, aσ(1)], aσ(2)] +

1

12
[[Pm, aσ(1)], aσ(2)]

)
.

We remark that in general the brackets associated to m are not the same as those associated
to the inner derivation [m, ·] (even when [m, ·] ∈ Der(M/L), that is, m is in the normalizer of L
in M) unless m ∈ L, so the two constructions shouldn’t be confused. As for the appearance of
Bernoulli numbers this follows from the computations made by Fiorenza and Manetti in [9], of
which we make extensive use, cf. also the related computations in [4, 15, 30].

Both Theorem 1.1 and Theorem 1.2 will be proved in Section 5: the proofs will depend on the
construction, by Fiorenza, Manetti [9] and Iacono [17], of the L∞ mapping cocone and the L∞

mapping cocylinder of a morphism of dglas, which will be reviewed in Section 3, the classification
of L∞ extensions, which will be reviewed in Section 4, and finally homotopical transfer of L∞

structures, which will be reviewed in Section 2. In Remark 5.9 we discuss how both theorems
generalize when we further remove the hypothesis that A ⊂ M is a graded Lie subalgebra (then A
is just supposed to be a complement of the graded Lie subalgebra L in M).

A good source of motivation for the study of derived brackets and higher derived brackets
comes from physics and differential geometry, cf. [24, 34, 35, 4]. Another list of examples from
deformation theory [12, 13, 32, 6] can be better understood in light of our Theorem 1.1: in fact
homotopy fibers naturally occur when considering semitrivial deformation problems (cf. [29, 9]).
Consider for instance the case of deformations of a coisotropic submanifold of a Poisson manifold,
where the usual approach [32, 6, 12], using higher derived brackets, can be paralleled with the
more recent one in [2], using homotopy fibers, cf. Example 6.6.

In Section 6 we consider some example and some further application, these include: a theorem
of Chuang and Lazarev [7], stating that every L∞ algebra (V [−1], Q) (that is, by definition,

Q ∈ Coder1(SV ) and [Q,Q] = 0) is weakly equivalent to the homotopy fiber of the inclusion of
dglas

i : (Coder(SV ), [Q, ·], [·, ·]) → (Coder(SV ), [Q, ·], [·, ·]),

which also implies a simple necessary and sufficient condition for a L∞ algebra to be homotopy
abelian (a non trivial application of this last result is given in [1]); the construction, via higher
derived brackets, of a L∞ structure on the suspension of the negatively graded part of any dgla,
already due to Getzler [15], generalizing the well known case of quantum type dglas; the construc-
tion of a hierarchy of higher brackets (conjecturally the same as the one introduced by Bering [4])
associated to an operator over a unital associative graded algebra A, reducing to the usual higher
Koszul brackets [25] when A is commutative; homotopy abelianity of the L∞ algebras associated to
commutative BV∞ algebras satisfying the degeneration property (the author is grateful to Marco
Manetti for pointing out and carefully explaining to him this example), which has been proved
with different methods by Braun and Lazarev [5]; the extension of the results of the author and
Manetti [2] to the study of coisotropic deformations in the differentiable setting.
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1.1. Notations and conventions. We work over a field K of characteristic zero, graded means
Z-graded, differentials raise the degree by one. If V = ⊕i∈ZV

i is a graded space and k ∈ Z then
V [k] is the graded space defined by V [k]i = V i+k, we use a particular notation for the desuspension
s−1V := V [1] of V . We denote by S(V ) = ⊕i≥0V

⊙i (resp.: S(V ) = ⊕i≥1V
⊙i) the (resp.: reduced)

symmetric coalgebra over V (where V ⊙n is the n-th symmetric tensor power of V , i.e., the space
of coinvariants of V ⊗n under the natural action of the symmetric group Sn, with the usual Koszul
rule for twisting signs, V ⊙0 = K ) and by ⊙ the symmetric tensor product; sometimes we simplify
the notations to SV and SV . For the rest of our conventions we refer the reader to [9], Section 1.

For a graded Lie algebra M and a graded Lie subalgebra L ⊂ M we denote by Der(M) the
graded Lie algebra of derivations of M and by Der(M/L) ⊂ Der(M) the graded Lie subalgebra of
derivations D such that D(L) ⊂ L.

We will work in the category of L∞[1] algebras and L∞[1] morphisms between them: this is
isomorphic to the usual category of L∞ algebras from [27, 14] via the so called décalage isomor-
phisms, cf. for instance [9] (we recall that in this way L∞ algebra structures on a graded space V
correspond to L∞[1] algebra structures on the desuspension s−1V ).

2. Review of L∞[1] algebras

Let p : SV −→ V ⊙1 = V (resp.: p : SV −→ V ) denote the natural projection, then corestriction
induces isomorphisms of graded spaces from the the graded Lie algebras of coderivations

Coder(SV )
∼=
−→ Hom(SV, V ) =

∏

i≥0

Hom(V ⊙i, V ) : Q −−−→ pQ

Coder(SV )
∼=
−→ Hom(SV , V ) =

∏

i≥1

Hom(V ⊙i, V ) : Q −−−→ pQ

If Q ∈ Coder(SV ) and pQ = q = (q0, . . . , qi, . . .) we call qi : V
⊙i → V the i-th Taylor coefficient of

Q, similarly if Q ∈ Coder(SV ). The inverse of the first isomorphism sends (q0, . . . , qi, . . .) to the
coderivation given by Q(1) = q0(1) ∈ V ⊂ SV and

Q(v1⊙· · ·⊙vi) = q0(1)⊙v1⊙· · ·⊙vi+
i∑

k=1

∑

σ∈S(k,i−k)

ε(σ)qk(vσ(1)⊙· · ·⊙vσ(k))⊙vσ(k+1)⊙· · ·⊙vσ(i)

where S(i, j) is the set of (i, j)-unshuffles, i.e., permutations σ ∈ Si+j such that σ(1) < · · · < σ(i)
and σ(i + 1) < · · · < σ(i + j), and ε(σ) = ε(σ; v1, . . . , vi) is the Koszul sign. The inverse of the
second isomorphism is given by the above formula minus the term q0(1)⊙v1⊙· · ·⊙vi. Coderivations
such that qi = 0 for i 6= 1 are called linear.

Remark 2.1. There is a natural embedding i : Coder(SV ) → Coder(SV ), given in Taylor coef-
ficients by (q1, . . . , qi, . . .) −→ (0, q1, . . . , qi, . . .), which identifies Coder(SV ) with the graded Lie
subalgebra of coderivations Q ∈ Coder(SV ) such that Q(1) = 0. It fits into an exact sequence of
graded spaces

(2.1) 0 −→ Coder(SV )
i

−→ Coder(SV )
e

−−→ V −→ 0,

where e is the evaluation morphism Q −→ Q(1) = q0(1).
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The usual commutator Lie bracket on Coder(SV ) is induced from a right pre-Lie product,
which we call the Nijenhuis-Richardson product and denote by •: namely, Q•R is the coderivation
which corestricts to pQR. In Taylor coefficients

(Q •R)i(v1 ⊙ · · · ⊙ vi) =

i∑

k=0

∑

σ∈S(k,i−k)

ε(σ)qi−k+1(rk(vσ(1) ⊙ · · · ⊙ vσ(k))⊙ vσ(k+1) ⊙ · · · ⊙ vσ(i))

with the convention r0(∅) := r0(1). The bracket on Coder(SV ) and the Nijenhuis-Richardson
product are related by [Q,R] = (Q •R)− (−1)|Q||R|(R •Q).

Remark 2.2. Given v ∈ V , let σv ∈ Coder(SV ) be the coderivation defined by

σv(1) = v, σv(v1 ⊙ · · · ⊙ vi) = v ⊙ v1 ⊙ · · · ⊙ vi.

In Taylor coefficients pσv = (jv, 0, . . . , 0, . . .), where jv : V ⊙0 → V : 1 → v. Then the section
σ : V → Coder(SV ) : v → σv splits the exact sequence (2.1), and the image is an abelian Lie
subalgebra of Coder(SV ). More in general, for every v ∈ V and Q ∈ Coder(SA) it is plain to see
that in Taylor cofficients [Q, σv]i(v1 ⊙ · · · ⊙ vi) = qi+1(v ⊙ v1 ⊙ · · · ⊙ vi), for every i ≥ 0.

Given graded spaces V and W , then corestriction F → pF = (f1, . . . , fi, . . .) induces a bi-
jective correspondence between the set of morphisms of coalgebras F : SV −→ SW and the set
Hom0(SV ,W ) ∼=

∏
i≥1 Hom

0(V ⊙i,W ) of morphisms of graded spaces from SV to W . We can
reconstruct F from its corestriction via the formula

F k
i (v1 ⊙ · · · ⊙ vi) =

1

k!

∑

j1+···+jk=i

∑

σ∈S(j1,...,jk)

ε(σ)fj1 (vσ(1) ⊙ · · · )⊙ · · · ⊙ fjk(· · · ⊙ vσ(i)),

where F k
i is the composition V ⊙i −→ SV

F
−→ SW −→ W⊙k, and F k

i = 0 if k > i. Recall ([23]) that
F is an isomorphism (resp.: monomorphism, epimorphism) of coalgebras if and only if its linear
part f1 is an isomorphism (resp.: monomorphism, epimorphism) of graded spaces. A morphism F
such that fi = 0 for i ≥ 2 is called linear.

Definition 2.3. A L∞[1] algebra structure (V,Q) = (V, q1, . . . , qi, . . .) on a graded space V is the
datum of a differential graded (dg) coalgebra structure on SV , that is a degree one coderivation

Q ∈ Coder1(SV ), pQ = (q1, . . . , qi, . . .), such that Q2 = Q • Q = 1
2 [Q,Q] = 0. In particular

(q1)
2 = 0: the dg space (V, q1) is called the tangent complex of the L∞[1] algebra (V,Q).

Remark 2.4. Given a L∞[1] structure Q on V , the exact sequence (2.1) enriches to an exact
sequence of dg spaces

(2.2) 0 −→ (Coder(SV ), [Q, ·])
i

−→ (Coder(SV ), [Q, ·])
e

−−→ (V, q1) −→ 0

Definition 2.5. Given L∞[1] algebras (V,Q) and (W,R) a L∞[1] morphism between them is a
morphism of dg coalgebras F : (SV ,Q) −→ (SW,R), i.e., a morphism of coalgebras such that
FQ−RF = 0. We denote by L∞[1] the category of L∞[1] algebras and L∞[1] morphisms between
them.

A linear L∞[1] morphism is also called strict. A morphism of L∞[1] algebras is a weak equiva-
lence if its linear part is a quasi isomorphism between the tangent complexes.

Definition 2.6. A L∞[1] algebra (V,Q) is abelian if Q is a linear coderivation (that is qi = 0 for
i ≥ 2). It is homotopy abelian if it is weakly equivalent to an abelian L∞[1] algebra.

Remark 2.7. To give the Taylor coefficients of a L∞[1] structure on the direct product V ×W of
graded spaces V andW , or of a L∞[1] morphism with domain V ×W , it is convenient to decompose

the symmetric powers of V ×W into types (V ×W )⊙i ∼=
⊕i

j=0 V
⊙i−j⊗W⊙j . For any graded space

X we see that Hom(S(V ×W ), X) =
∏

i≥1 Hom((V ×W )⊙i, X) =
∏

j+k≥1 Hom(V ⊙j ⊗W⊙k, X) .
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Example 2.8. Given a differential graded Lie algebra (dgla) (L, d, [·, ·]), it is defined a L∞[1]
structure Q on s−1L = L[1] by q1(s

−1l) = −s−1dl, q2(s
−1l1 ⊙ s−1l2) = (−1)|l1|s−1[l1, l2] and

qi = 0 for i ≥ 3: we denote this L∞[1] algebra (s−1L,Q) by Σ−1L, or sometimes Σ−1(L, d, [·, ·]).
This defines a functor Σ−1 : DGLA → L∞[1], by sending a morphism f : L → M of dglas
to the strict L∞[1] morphism Σ−1(f) : Σ−1L → Σ−1M given by Σ−1(f)1(s

−1l) = s−1f(l) and
Σ−1(f)i = 0 for i ≥ 2.

Recall [14] that the curvature of a L∞[1] algebra (V,Q) = (V, q1, . . . , qn, . . .) is the function

R : V 0 → V 1 : x →
∑

i≥1

1

i!
qi(x

⊙i)

Usually, to make sense of the above infinite sum one adds some assumption on (V,Q), for instance
that it is nilpotent or that it is complete with respect to some filtration compatible with the L∞[1]
structure. We will adopt a less restrictive point of view in Remark 2.11, for the moment we will
just ignore any convergence issue.

Definition 2.9. MC(V ) := {x ∈ V 0 s.t. R(x) = 0} is called the Maurer-Cartan set of the L∞[1]
algebra (V,Q), its elements the Maurer-Cartan elements of (V,Q).

It is well known [14] that given a L∞[1] algebra (V,Q) and a Maurer-Cartan element x ∈ MC(V ),
we can twist Q by x to obtain a new L∞[1] structure Qx on V , given in Taylor coefficients
pQx = (qx,1, . . . , qx,i, . . .) by

(2.3) qx,i(v1 ⊙ · · · ⊙ vi) =
∑

j≥0

1

j!
qi+j(x

⊙j ⊙ v1 ⊙ · · · ⊙ vi).

We are going to need a relative version of this result, which can be found, for instance, in [36].
Let F : (V,Q) → (W,R) be a L∞[1] morphism of L∞[1] algebras, pF = (f1, . . . , fi, . . .). Let
x ∈ MC(V ), there is an induced Maurer-Cartan element MC(F )(x) ∈ MC(W ): this is given by
MC(F )(x) =

∑
i≥1

1
i!fi(x

⊙i). We can twist the L∞[1] structures Q and R by x and MC(F )(x)

respectively, as in (2.3). Finally, we can twist F by x to obtain a new morphism of coalgebras
Fx : SV → SW , given in Taylor coefficients pFx = (fx,1, . . . , fx,i, . . .) by

(2.4) fx,i(v1 ⊙ · · · ⊙ vi) =
∑

j≥0

1

j!
fi+j(x

⊙j ⊙ v1 ⊙ · · · ⊙ vi).

A proof of the following theorem can be found in [36].

Theorem 2.10. Fx : (V,Qx) → (W,RMC(F )(x)) is a L∞[1] morphism of L∞[1] algebras.

Remark 2.11. As already remarked some hypothesis is needed to ensure convergence of the above
infinite sums. For our purposes it is more convenient to impose such a hypothesis on x rather than
on V . Suppose that for a particular choice of x ∈ V 0 all of the above infinite sums become finite
(so that we can make sense of Qx, RMC(F )(x) and Fx) and R(x) = 0: then Theorem 2.10 holds.

We close this section by recalling the theorem on homotopical transfer of L∞[1] structures: this
says that L∞[1] structures (unlike, for instance, dgla structures) can be transferred along homotopy
retractions. It is a major result in the theory of L∞[1] algebras, implying for instance the existence
of the minimal model [23]. The version we give here is taken from [9], Theorem 4.1, for a nice
proof the reader is referred to the arXiv version of the paper.

Definition 2.12. Given a pair of dg spaces (V, q1) and (W, r1) we call homotopy retraction data
from V to W the data of a pair of dg morphisms π : V −→ W , f1 : W −→ V and a contracting
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homotopy K ∈ Hom−1(V, V ) such that

πf1 = idW

Kq1 + q1K = f1π − idV

Theorem 2.13. Let (V,Q) be a L∞[1] algebra, (W, r1) a dg space and π, f1, K homotopy retraction
data from (V, q1) to (W, r1) as in the previous definition. Let q = pQ, q+ = q − q1, then there
exists an unique morphism of coalgebras F : SW −→ SV such that pF = f1 +Kq+F . Moreover,
if R ∈ Coder1(SW ) is the coderivation wich corestricts to pR = r1 + πq+F , then R is a L∞[1]
structure on W and F : (W,R) −→ (V,Q) is a L∞[1] morphism.

Remark 2.14. Notice that homotopical transfer of structure produces a weakly equivalent L∞[1]
algebra, with F : (W,R) → (V,Q) an explicit weak equivalence. Using a more refined version of
the above theorem [3] it is also possible to construct a L∞[1] right inverse G : (V,Q) → (W,R) to
F , with linear part g1 = π.

3. Mapping cocone and mapping cocylinder of a dgla morphism

Given a dgla (L, dL, [·, ·]) and a commutative differential graded algebra (dga) (A, dA, ·) there is a
natural dgla structure on the tensor product A⊗L, with differential dA⊗idL + idA ⊗dL and bracket
[a1⊗l1, a2⊗l2] = (−1)|l1||a2|a1a2⊗[l1, l2]. When A = K [t, dt] is the commutative dga of polynomial
forms on the line (that is the graded commutative K -algebra freely generated by t in degree zero
and dt in degree one, and with differential d(t) = dt and d(dt) = 0) then the corresponding dgla
will be denoted by L[t, dt]. Every s ∈ K induces a a quasi isomorphism given by the evaluation

es : L[t, dt]
t=s,dt=0
−−−−−−→ L, which is left inverse to the natural inclusion L −→ L[t, dt] : l −→ 1 ⊗ l.

There are degree minus one operators
∫ t

0
: L[t, dt] −→ L[t] and

∫ 1

0
: L[t, dt] −→ L induced by formal

integration in dt.

Definition 3.1. Given a pair of morphisms of dglas f : L −→ M and g : N −→ M the homotopy
fiber product of L and N along f and g is the dgla

L×h
M N = {(l, n,m(t, dt)) ∈ L×N ×M [t, dt] s.t. e0(m(t, dt)) = f(l), e1(m(t, dt)) = g(n)}

Given a morphism f : L −→ M of dglas we denote by

Kf = 0×h
M L the homotopy fiber product along 0 and f .

We call Kf the homotopy fiber of f .

Definition 3.2. A short sequence of L∞[1] algebras and L∞[1] morphisms which is weakly equiv-

alent to one of the form Σ−1Kf
Σ−1(pL)
−−−−−→ Σ−1L

Σ−1(f)
−−−−−→ Σ−1M (cf. Example 2.8), for some

morphism f : L → M of dglas, is called a homotopy fiber sequence of L∞[1] algebras.

The next theorem, due to M. Manetti, gives a sufficient condition for a homotopy fiber to be
homotopy abelian. The reader is referred to [19, 20] for a proof and some nice applications in
deformation theory.

Theorem 3.3. Let i : L → M be the inclusion of a sub dgla: if H(i) : H(L) → H(M) is injective,
then the homotopy fiber Ki is homotopy abelian.

We denote by {Bi}i∈N the sequence of Bernoulli numbers, i.e., the sequence of (rational) num-
bers defined by the power series expansion t

et−1 =
∑

i≥0
Bi

i! t
i = 1− 1

2 t+
1
2!

1
6 t

2 + 1
4! (−

1
30 )t

4 + · · · .
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This is sometimes called the first sequence of Bernoulli numbers, occasionally we will use the no-
tation Bi(0) := Bi to distinguish it from the second sequence of Bernoulli numbers, defined by
Bi(1) := (−1)iBi. Recall that B2i+1(0) = B2i+1(1) = 0 for i ≥ 1.

We recall a construction, due to D. Fiorenza and M. Manetti [9] in the case of a homotopy
fiber, and which has been further elaborated by D. Iacono [17], of a L∞[1] model of the homotopy
fiber product of a pair of morphisms of dglas. This will play a central role in the computations in
Section 5.

Let g : N → M and f : L → M be a pair of morphisms of dglas. Let N ×h
M L be the homotopy

fiber product along g and f and let Σ−1(N ×h
M L)) = (s−1N × s−1L × s−1M [t, dt], Q) be the

corresponding L∞[1] algebra, as in Example 2.8. Let (s−1 Cg,f , r1) be the dg space

s−1 Cg,f = s−1N × s−1L×M, r1(s
−1n, s−1l,m) =

(
−s−1dNn,−s−1dLl, dMm+ g(n)− f(l)

)

We can define homotopy retraction data, as in Definition 2.12, from (s−1N×s−1L×s−1M [t, dt], q1)
to (s−1 Cg,f , r1) as follows

(3.1) f1(s
−1n, s−1l,m) =

(
s−1n, s−1l, s−1 ((1 − t) · g(n) + t · f(l) + dt ·m)

)
,

(3.2) π(s−1n, s−1l, s−1m(t, dt)) =

(
s−1n, s−1l,

∫ 1

0

m(t, dt)

)
,

(3.3) K(s−1n, s−1l, s−1m(t, dt)) =

(
0, 0, s−1

(∫ t

0

m(t, dt)− t ·

∫ 1

0

m(t, dt)

))
.

Theorem 3.4. ([17]) The L∞[1] structure R on (s−1 Cg,f , r1), induced via homotopy transfer
according to Theorem 2.13, is given in Taylor coefficients pR = (r1, . . . , ri, . . .) by (cf. Remark 2.7)

r2(s
−1n1 ⊙ s−1n2) = (−1)|n1|s−1[n1, n2], r2(s

−1l1 ⊙ s−1l2) = (−1)|l1|s−1[l1, l2],

ri+1(s
−1n⊗m1 ⊙ · · · ⊙mi) =

Bi(1)

i!

∑

σ∈Si

ε(σ)[· · · [g(n),mσ(1)] · · · ,mσ(i)], i ≥ 1,

ri+1(s
−1l⊗m1 ⊙ · · · ⊙mi) = −

Bi(0)

i!

∑

σ∈Si

ε(σ)[· · · [f(l),mσ(1)] · · · ,mσ(i)], i ≥ 1,

and R = 0 otherwise.

We distinguish two particular cases of the above construction.

Definition 3.5. Let f : L → M be a morphism of dglas, then:

(1) the desuspended mapping cocylinder of f is the L∞[1] algebra s−1 Cylf = s−1 CidM ,f , with
the L∞[1] structure from Theorem 3.4 (in the case N = M and g = idM : M → M);

(2) the desuspended mapping cocone of f is the L∞[1] algebra s−1 Cf = s−1 C0,f , with the
L∞[1] structure from Theorem 3.4 (in the case N = 0).

4. L∞[1] extensions

In this section we review the classification of L∞[1] extensions from [8, 31, 28]. Recall that a
L∞[1] ideal of a L∞[1] algebra (V, q1, . . . , qi, . . .) is a subspace I ⊂ V such that qi(I ⊗ V ⊙i−1) ⊂ I
for every i ≥ 1: then the quotient V/I inherits a L∞[1] structure. The following definition rigidify
the one in [28], Definition 3.1.
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Definition 4.1. Let (V,Q) and (W,R) be L∞[1] algebras. Let Θ be a L∞[1] structure on V ×W

such that (W,R)
0×idW−−−−→ (V × W,Θ) is the inclusion of a L∞[1] ideal, and the induced L∞[1]

structure on V ×W/{0}×W ∼= V is Q. We call (W,R) → (V ×W,Θ) → (V,Q) a L∞[1] extension
of base (V,Q) and fibre (W,R).

A proof of the following result can be found in [8], Corollary 3.6, or [31], Proposition 6.1.

Proposition 4.2. There is a bijective correspondence between the set of L∞[1] extensions of base
(V,Q) and fiber (W,R) and the set of L∞[1] morphisms (V,Q) → Σ−1(Coder(SW ), [R, ·], [·, ·]) (cf.
Example 2.8). The corresponding L∞[1] morphism pF = (f1, . . . , fi, . . .) and the L∞[1] structure
pΘ = (θ1, . . . , θi, . . .) on V ×W determine each other via the formulas (cf. Remark 2.7)

θi(v1 ⊙ · · · ⊙ vi) = (qi(v1 ⊙ · · · ⊙ vi), sfi(v1 ⊙ · · · ⊙ vi)0(1)),

θj(w1 ⊙ · · · ⊙ wj) = (0, rj(w1 ⊙ · · · ⊙ wj)) and

θi+j(v1 ⊙ · · · ⊙ vi ⊗ w1 ⊙ · · · ⊙ wj) = (0, sfi(v1 ⊙ · · · ⊙ vi)j(w1 ⊙ · · · ⊙ wj)) for i, j ≥ 1.

Remark 4.3. By sfi(· · · ) we mean the composition V ⊙i fi
−→ s−1 Coder(SW )

s
−→ Coder(SW ), where

s is the shift map, while sfi(· · · )j means that we take the j-th Taylor coefficient.

The next lemma will be needed, in combination with Proposition 4.2, in the proof of Proposi-
tion 5.4.

Lemma 4.4. Let i : L → M be the inclusion of a graded Lie subalgebra (seen as a morphism of
dglas with trivial differentials) and let (s−1 Cyli, R) be the desuspended mapping cocylinder of i, as
in Definition 3.5. Then Ψ : (Der(M/L), 0, [·, ·]) → (Coder(S(s−1 Cyli)), [R, ·], [·, ·]), given by

Ψ(D)1(s
−1l, s−1m,n) = ((−1)|D|s−1Dl, (−1)|D|s−1Dm,Dn) and Ψ(D)i = 0 for i ≥ 2,

is a morphism of dglas.

Proof. The only non trivial thing to prove is [R,Ψ(D)] = 0 for allD ∈ Der(M/L): this is equivalent
to [ri,Ψ(D)1] = 0 for every i ≥ 1, which can be checked directly, since D is a derivation and the
formula for ri involves nested brackets. We sketch a different approach: let Hi be the homotopy
fiber product M ×h

M L along idM and i, seen as morphisms of dglas with trivial differentials. We
have an obvious inclusion Der(M/L) → Der(Hi), so that we can form the semidirect product
Der(M/L) ⋊ Hi. The homotopy retraction data from s−1Hi to s−1 Cyli in (3.1)-(3.3) induces
homotopy retraction data from Σ−1(Der(M/L)⋊Hi) to s−1 Der(M/L)×s−1Cyli. The transferred
L∞[1] structure can be computed explicitly, along the lines of [9] and [17], and one verifies that this
is a L∞[1] extension of base Σ−1(Der(M/L), 0, [·, ·]) and fibre (s−1 Cyli, R): finally, the classifying
L∞[1] morphism, as in Proposition 4.2, is exactly Σ−1(Ψ), thus Ψ is a morphism of dglas. We will
use an analogous argument in the proof of Theorem 1.2. �

5. Nonabelian higher derived brackets

Let M be a graded Lie algebra, together with a projection P : M → M (i.e., P 2 = P ) such that
both L = Ker P and A = Im P are graded Lie subalgebras of M ; let P⊥ = idM −P . We denote by
Der(M/L) ⊂ Der(M) the Lie subalgebra of derivations D ∈ Der(M) such that D(L) ⊂ L, which
is equivalent to PDP⊥ = 0, that is,

(5.1) PDP = PD.

We are going to extend to this setting Voronov’s constructions of higher derived brackets [34, 35].
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Definition 5.1. For m ∈ M the higher derived brackets on A associated to m are the multilinear
graded symmetric maps Φ(m)i : A

⊙i −→ A, i ≥ 0, defined by

Φ(m)i(a1 ⊙ · · · ⊙ ai) =
∑

σ∈Si

ε(σ)
i∑

k=0

Bi−k

k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [m, aσ(1)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]

for i ≥ 1, and Φ(m)0(1) = Pm. We denote by (Φ(m)0, . . . ,Φ(m)i, . . .) = Φ(m) ∈ Coder(SA) the
corresponding coderivation.

For D ∈ Der(M/L) the higher derived brackets on A associated to D are the multilinear graded
symmetric maps Φ(D)i : A

⊙i → A, i ≥ 1, defined by

Φ(D)i(a1⊙· · ·⊙ai) =
∑

σ∈Si

ε(σ)

i∑

k=1

Bi−k

k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]

We denote by (Φ(D)1, . . . ,Φ(D)i, . . .) = Φ(D) ∈ Coder(SA) the corresponding coderivation.

Remark 5.2. If l ∈ L, then the inner derivation [l, ·] is in Der(M/L), and in this case the two
constructions coincide: we can (and will) identify Φ([l, ·]) = Φ(l). However, if [m, ·] ∈ Der(M/L),
that is, m is in the normalizer of L in M , but m 6∈ L, then in general Φ([m, ·]) 6= Φ(m), as the two
differ by the terms involving Pm.

If A ⊂ M is an abelian Lie subalgebra only the k = i term in the summation for the brackets
remains. Moreover, it can be proved with a simple induction, as in [35], that for any derivation
D ∈ Der(M) the maps A⊗i → M : a1 ⊗ · · · ⊗ ai → [· · · [Da1, a2] · · · , ai] are graded symmetric.
From this the following proposition follows straightforwardly.

Proposition 5.3. If A is an abelian Lie subalgebra of M , then for m ∈ M the brackets in
Definition 5.1 reduce to Φ(m)i(a1 ⊙ · · · ⊙ ai) = P [· · · [m, a1] · · · , ai], i ≥ 1, Φ(m)0(1) = Pm, while
they reduce to Φ(D)i(a1 ⊙ · · · ⊙ ai) = P [· · · [Da1, a2] · · · , ai], i ≥ 1, for D ∈ Der(M/L): i.e., they
are the same as those introduced by Th. Voronov in [34, 35].

The aim of this section is to prove Theorem 1.1 and Theorem 1.2 from the introduction. Both
will follow from the next proposition, where we imitate a construction in [35], Theorem 2.

Proposition 5.4. There is a L∞[1] structure pR = (r1, . . . , rn, . . .) on s−1 Der(M/L)×s−1M×A,
given in Taylor coefficients by (cf. Remark 2.7)

r1(s
−1D, s−1m, a) = (0, 0, Pm)

r2(s
−1m1 ⊙ s−1m2) = (−1)|m1|s−1[m1,m2]

r2(s
−1D1 ⊙ s−1D2) = (−1)|D1|s−1[D1, D2]

r2(s
−1D ⊗ s−1m) = (−1)|D|s−1Dm

ri+1(s
−1D ⊗ a1 ⊙ · · · ⊙ ai) = Φ(D)i(a1 ⊙ · · · ⊙ ai)

ri+1(s
−1m⊗ a1 ⊙ · · · ⊙ ai) = Φ(m)i(a1 ⊙ · · · ⊙ ai)

for i ≥ 1, and R = 0 otherwise.

Proof. Let s−1 Cyli be the desuspended mapping cocylinder for the inclusion i, with the L∞[1]
structure defined in Theorem 3.4 (in the case dL = dM = 0). By combining Proposition 4.2
and Lemma 4.4 (cf. also the proof of the latter), it is defined a L∞[1] structure Q on the space
s−1 Der(M/L) × s−1 Cyli = s−1 Der(M/L) × (s−1M × s−1L × M): explicitly formulas can be
derived from those in 3.4, 4.2 and 4.4.



NONABELIAN HIGHER DERIVED BRACKETS 11

We consider the following homotopy retraction data from (s−1 Der(M/L) × s−1 Cyli, q1) to
(s−1 Der(M/L)× s−1M ×A, r1), with r1 as in the claim of the proposition:

(5.2) π : s−1 Der(M/L)× s−1 Cyli −→ s−1Der(M/L)× s−1M ×A :

:
(
s−1D, (s−1m, s−1l, n)

)
−−−→

(
s−1D, s−1m, Pn

)

(5.3) f1 : s−1 Der(M/L)× s−1M ×A −→ s−1 Der(M/L)× s−1 Cyli :

: (s−1D, s−1m, a) −−−→
(
s−1D, (s−1m, s−1P⊥m, , a)

)

(5.4) K : s−1 Der(M/L)× s−1Cyli −→ s−1 Der(M/L)× s−1 Cyli :

:
(
s−1D, (s−1m, s−1l, n)

)
−−−→

(
0, (0, s−1P⊥n, 0)

)

We leave to the reader to check that this is in fact homotopy retraction data as in Definition 2.12.
We are going to prove that R is the L∞[1] structure on s−1 Der(M/L)× s−1M ×A induced from
Q via homotopical transfer of L∞[1] structures, as in Theorem 2.13.

Let F : S(s−1 Der(M/L) × s−1M × A) → S(s−1 Der(M/L) × s−1 Cyli) be the morphism of
coalgebras in the claim of Theorem 2.13: recall that its Taylor coefficients are defined inductively
so that the linear one is f1, and for i ≥ 2 we have fi =

∑2
j=2 KqjF

j
i , where F j

i (cf. Section 2) is
given by the formula

F j
i (· · · ) =

1

j!

∑

k1+···+kj=i

∑

σ∈S(k1,...,kj)

ε(σ)fk1
(· · · )⊙ · · · ⊙ fkj

(· · · ).

As K factors through the inclusion s−1L → s−1 Cyli → s−1 Der(M/L) × s−1Cyli, so does fi for
every i ≥ 2. By looking at the explicit formulas for qj , j ≥ 2, we see that

F j
i (· · · ) =

1

(j − 1)!

∑

σ∈S(i−j+1,1,...,1)

ε(σ)fi−j+1(· · · )⊙f1(· · · )⊙· · ·⊙f1(· · · )+{terms in Ker(Kqj)} .

An inductive analysis of the several possibilities implies that fi+1, for i ≥ 1, vanishes everywhere
but on mixed terms of type (cf. Remark 2.7) s−1D ⊗ a1 ⊙ · · · ⊙ ai and s−1m⊗ a1 ⊙ · · · ⊙ ai.

Remark 5.5. The reader will notice that up to now everything works fine without the assumption
that A ⊂ M is a graded Lie subalgebra (this, however, will be essential in the sequent computation).

We show that fi+1, for i ≥ 1, is explicitly given by

(5.5) fi+1(s
−1D⊗ a1 ⊙ · · · ⊙ ai) =

(
0,

(
0, s−1 1

i!

∑

σ∈Si

ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(i)], 0

))
,

(5.6) fi+1(s
−1m⊗ a1 ⊙ · · · ⊙ ai) =

(
0,

(
0, s−1 1

i!

∑

σ∈Si

ε(σ)P⊥[· · · [m, aσ(1)] · · · , aσ(i)], 0

))
,

and fi+1 = 0 otherwise.

The reader will check directly (recall (5.1)) that f2 = Kq2f
⊙2
1 , so we suppose i ≥ 2. We have to

prove fi+1 =
∑i+1

j=2 KqjF
j
i+1. To simplify the computation we notice that we are only interested in

keeping track of pMqjF
j
i+1, where we denote by pM the natural projection s−1 Cyli → M : in fact

KqjF
j
i+1 =

(
0,
(
0, s−1P⊥(pMqjF

j
i+1), 0

))
. The considerations which preceded Remark 5.5 imply

that for 2 ≤ j ≤ i

pMqjF
j
i+1(s

−1D ⊗ a1 ⊙ · · · ⊙ ai) =
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=
∑

σ∈S(i−j+1,j−1)

ε(σ)pM qj
(
fi−j+2(s

−1D ⊗ aσ(1) ⊙ · · · ⊙ aσ(i−j+1))⊗ aσ(i−j+2) ⊙ · · · ⊙ aσ(i)
)
=

= −
Bj−1

(j − 1)!(i − j + 1)!

∑

σ∈Si

ε(σ)

j−1︷︸︸︷
[· · · [P⊥([· · · [Daσ(1), aσ(2)] · · · ]), aσ(i−j+2)] · · · , aσ(i)]

In the first identity we used symmetry of fi−j+2 and qj to deduce that
1

(j−1)!

∑
σ∈S(i−j+1,1,...,1) · · · =

1
(j−1)!(i−j+1)!

∑
σ∈Si

· · · =
∑

σ∈S(i−j+1,j−1) · · · , where the suspension points must be filled as in

the second term of the identity. In the same way, for 2 ≤ j ≤ i

pMqjF
j
i+1(s

−1m⊗ a1 ⊙ · · · ⊙ ai) =

= −
Bj−1

(j − 1)!(i− j + 1)!

∑

σ∈Si

ε(σ)

j−1︷︸︸︷
[· · · [P⊥([· · · [m, aσ(1)] · · · ]), aσ(i−j+2)] · · · , aσ(i)]

The remaining terms to consider are

pMqi+1F
i+1
i+1 (s

−1D ⊗ a1 ⊙ · · · ⊙ ai) = 0,

for i ≥ 2, and

pMqi+1F
i+1
i+1 (s

−1m⊗a1⊙· · ·⊙ai) = pMqi+1(s
−1m⊗a1⊙· · ·⊙ai)+pMqi+1(s

−1P⊥m⊗a1⊙· · ·⊙ai) =

=
Bi

i!

∑

σ∈Si

ε(σ)[· · · [m− P⊥m, aσ(1)] · · · , aσ(i)] =
Bi

i!

∑

σ∈Si

ε(σ)[· · · [Pm, aσ(1)] · · · , aσ(i)]

Finally, after a change of variable k = i− j + 1, we see that

i+1∑

j=2

pMqjF
j
i+1(s

−1D ⊗ a1 ⊙ · · · ⊙ ai) =

(
−

i−1∑

k=1

Bi−k

k!(i− k)!

)
∑

σ∈Si

ε(σ)[· · · [Daσ(1), aσ(2)] · · · , aσ(i)]+

+

i−1∑

k=1

Bi−k

k!(i− k)!

∑

σ∈Si

ε(σ)

i−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · ]), aσ(k+1)] · · · , aσ(i)]

We use the well known identity
∑i−1

k=0 Bk

(
i
k

)
= 0, for i ≥ 2, in order to conclude

(5.7)

i+1∑

j=2

pMqjF
j
i+1(s

−1D ⊗ a1 ⊙ · · · ⊙ ai) =
1

i!

∑

σ∈Si

ε(σ)[· · · [Daσ(1), aσ(2)] · · · , aσ(i)]+

+

i−1∑

k=1

Bi−k

k!(i− k)!

∑

σ∈Si

ε(σ)

i−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · ]), aσ(k+1)] · · · , aσ(i)]

In a similar way

(5.8)

i+1∑

j=2

pMqjF
j
i+1(s

−1m⊗ a1 ⊙ · · · ⊙ ai) =
1

i!

∑

σ∈Si

ε(σ)[· · · [m, aσ(1)] · · · , aσ(i)]+

+

i−1∑

k=0

Bi−k

k!(i− k)!

∑

σ∈Si

ε(σ)

i−k︷︸︸︷
[· · · [P ([· · · [m, aσ(1)] · · · ]), aσ(k+1)] · · · , aσ(i)]

Since A is [·, ·]-closed, in both identities the bottom line lies in A = Ker P⊥: this implies, as

desired, fi+1 =
∑i+1

j=2 KqjF
j
i+1.
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In order to complete the proof we have to show ri+1 =
∑i+1

j=2 πqjF
j
i+1 for i ≥ 1, where ri+1

is defined as in the claim of the proposition: the reader will check directly that r2 = πq2f
⊙2
1 ,

so we suppose i ≥ 2. We already computed pMqjF
j
i+1, on the other hand ps−1 Der(M/L)qjF

j
i+1 =

ps−1MqjF
j
i+1 = 0 for i ≥ 2 and 2 ≤ j ≤ i + 1: let’s prove for instance that for ps−1MqjF

j
i+1 = 0,

for j > 2 this follows from ps−1Mqj = 0, in the remaining case from the fact that ps−1M :
(s−1 Der(M/L)× s−1 Cyli, R) → Σ−1(M, 0, [·, ·]) is a strict morphism of L∞[1] algebras and from

p⊙2
s−1MF 2

i+1 = 0 for i ≥ 2, since ps−1Mfj = 0 for j ≥ 2. Similarly we see that ps−1 Der(M/L)qjF
j
i+1 = 0

for i ≥ 2 and 2 ≤ j ≤ i+1: thus, for i ≥ 2, πqjF
j
i+1 =

(
0, 0, P (pMqjF

j
i+1)

)
. A comparison between

Definition 5.1 and the previous equations (5.7)-(5.8) shows ri+1 =
∑i+1

j=2 πqjF
j
i+1 and proves the

proposition. �

Theorem 1.2 follows directly from the previous proposition and Proposition 4.2.

Proof. (of Theorem 1.2) Let Der(M/L) ⋊ M be the obvious semidirect product, Theorem 1.2 is
equivalent to say that Φ : Der(M/L)⋊M → Coder(SA) : (D,m) → Φ(D)+Φ(m) is a morphism of
graded Lie algebras. The L∞[1] structure from the previous proposition fits into a L∞[1] extension
of base Σ−1(Der(M/L)⋊M, 0, [·, ·]) (cf. Example 2.8) and fibre (A, 0), which is classified by a L∞[1]
morphism Σ−1(Der(M/L) ⋊ M, 0, [·, ·]) → Σ−1(Coder(SA), 0, [·, ·]), according to Proposition 4.2.
Finally, the explicit form of the correspondence in Proposition 4.2 implies that the classifying
morphism is exactly Σ−1(Φ), thus Φ is a morphism of graded Lie algebras. �

Theorem 1.1 will follow as a particular case of a more general result. We consider the L∞[1]
structure Q on s−1 Der(M/L)× s−1 Cyli as in the first paragraph of the proof of Proposition 5.4:
then in the same proof we constructed a L∞[1] morphism

F : (s−1 Der(M/L)× s−1M ×A,R) → (s−1 Der(M/L)× s−1 Cyli, Q),

in fact a weak equivalence, cf. Equations (5.5) and (5.6). At this point we remark that if D ∈
Der1(M/L) satisfies [D,D] = 0 then (s−1D, 0, 0) ∈ (s−1 Der(M/L) × s−1M × A)0 satisfies the
assumptions in Remark 2.11, so it makes sense to twist everything by D to get a new L∞[1]
morphism

FD : (s−1 Der(M/L)× s−1M ×A,RD) → (s−1 Der(M/L)× s−1 Cyli, QD).

Let j : (N,D, [·, ·]) → (M,D, [·, ·]) be the inclusion of a sub dgla, then RD restricts to a L∞[1]
structure on s−1N ×A, still denoted by RD, explicitly given by

(5.9) rD,1(s
−1n, a) =

(
−s−1Dn,P (Da+ n)

)
, rD,2(s

−1n1 ⊙ s−1n2) = (−1)|n1|s−1[n1, n2],

(5.10) rD,i+1(s
−1n⊗ a1 ⊙ · · · ⊙ ai) = Φ(n)i(a1 ⊙ · · · ⊙ a1), i ≥ 1,

(5.11) rD,i(a1 ⊙ · · · ⊙ ai) = Φ(D)i(a1 ⊙ · · · ⊙ ai), i ≥ 2,

and RD = 0 otherwise. SimilarlyQD restricts on s−1 Cj,i = s−1N×s−1L×M ⊂ s−1 Cyli to a L∞[1]
structure, still denoted by QD, which is exactly Iacono’s model (Theorem 3.4) for the homotopy
fiber product N ×h

M L along j : (N,D, [·, ·]) → (M,D, [·, ·]) and i : (L,D, [·, ·]) → (M,D, [·, ·]).
The L∞[1] morphism FD restricts to a L∞[1] morphism FD : (s−1N × A,RD) → (s−1 Cj,i, QD),
explicilty given by

(5.12) fD,1(s
−1n, a) =

(
s−1n, s−1P⊥(n+Da), a

)
,

(5.13) fD,i+1(s
−1n⊗a1⊙· · ·⊙ai) =

(
0, s−1 1

i!

∑

σ∈Si

ε(σ)P⊥[· · · [n, aσ(1)] · · · , aσ(i)], 0

)
, i ≥ 1,
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(5.14) fD,i(a1 ⊙ · · · ⊙ ai) =

(
0, s−1 1

i!

∑

σ∈Si

ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(i)], 0

)
, i ≥ 2,

and FD = 0 otherwise. Finally, we notice that FD is a weak equivalence of L∞[1] algebras: in fact
π : (s−1 Cj,i, q1,D) → (s−1N×A, r1,D) : (s−1n, s−1l,m) → (s−1n, Pm) is a dg right inverse to fD,1,
and K(s−1n, s−1l,m) = (0, s−1P⊥m, 0) is a homotopy between fD,1π and ids−1 Cj,i

(recall (5.1)).
This proves the following Theorem.

Theorem 5.6. The L∞[1] algebra (s−1N×A,RD), where RD is defined by equations (5.9)-(5.11),
is a weak model for the homotopy fiber product N ×h

M L along j : (N,D, [·, ·]) → (M,D, [·, ·]) and
i : (L,D, [·, ·]) → (M,D, [·, ·]).

Remark 5.7. In fact, with the previous notations, it can be proved that RD is the L∞[1] structure
induced from QD via homotopy transfer along the homotopy retraction data fD,1, π, K: this can
be done by adapting the computations in Proposition 5.4.

We now proceed to the proof of Theorem 1.1.

Proof. (of Theorem 1.1) The fact that Φ(D) is a L∞[1] structure is an obvious consequence of
Theorem 1.2, the fact that (A,Φ(D)) is a weak model for the homotopy fiber Ki is the particular
case of the previous theorem when N = 0. In fact in (5.12)-(5.14) we constructed an explicit L∞[1]
weak equivalence FD : A → s−1 Ci between (A,Φ(D)) and Fiorenza-Manetti’s L∞[1] mapping
cocone of i. The composition of FD and the strict L∞[1] morphism ps−1L : s−1Ci → Σ−1L is
given in Taylor coefficients as in equations (1.1). Finally we have a commutative diagram

A //

FD

��

Σ−1L
Σ−1(i) // Σ−1M

s−1 Ci

p
s−1L // Σ−1L

Σ−1(i) // Σ−1M

By the results of Fiorenza and Manetti [9] the bottom sequence is a homotopy fiber sequence, in

fact a model for Σ−1Kf
Σ−1(pL)
−−−−−→ Σ−1L

Σ−1(f)
−−−−−→ Σ−1M , and so we are done. �

Remark 5.8. As for the diagram in the introduction, after décalage the L∞[1] structure on s−1M×A
is RD in Theorem 5.6. The vertical pair of quasi inverses L∞[1] quasi isomorphisms are the

composition (s−1M × A,RD)
FD−−→ (s−1 Cyli, QD)

p
s−1L−−−−→ Σ−1(L,D, [·, ·]), FD as in (5.12)-(5.14),

and the strict L∞[1] morphism Σ−1(L,D, [·, ·]) → (s−1M ×A,RD) : s−1l → (s−1l, 0).

Remark 5.9. In this remark we address the problem of how to generalize Theorem 1.1 and The-
orem 1.2 when we remove the assumption that A ⊂ M is a graded Lie subalgebra. We sketch a
proof that in this case one can still construct a correspondence Φ : Der(M/L)⋊M → Coder(SA)
such that both theorems hold. To construct Φ it is sufficient to construct the corresponding L∞[1]
extension and this can be done using homotopy transfer, following the proof of Proposition 5.4
up to Remark 5.5. We obtain a L∞[1] structure R on s−1 Der(M/L) × s−1M × A: r1 is as in
Proposition 5.4, while a direct computation shows that r2 is almost as in Proposition 5.4, except
that one should put Φ(m)1(a) = P [m, a] − 1

2P [Pm, a]. An analysis of the several possibilities

implies that ri+1, for i ≥ 2, vanishes everywhere but on mixed terms of type s−1D⊗ a1 ⊙ · · · ⊙ ai
and s−1m ⊗ a1 ⊙ · · · ⊙ ai: moreover, A ⊂ s−1 Der(M/L) × s−1M × A is a L∞[1] ideal. Finally,
putting all these things together, we see that we have in fact constructed a L∞[1] extension of base
Σ−1(Der(M/L) ⋊ M, 0, [·, ·]) and fibre (A, 0), classified by a strict L∞[1] morphism which is the
desired Σ−1(Φ) (it is also easy to check that the restriction of Φ to Der(M/L) factors through the



NONABELIAN HIGHER DERIVED BRACKETS 15

inclusion Coder(SA) → Coder(SA)). Explicit formulas for Φ will have to be more involved than
those in Definition 5.1: for instance one can notice that if A is not [·, ·]-closed, then there is no
guarantee that it will be closed with respect to the brackets from Definition 5.1, alternatively one
could try to compute the first brackets directly along the previous lines. The proof of Theorem 5.6
can be repeated verbatim, except that the explicit formulas for FD do not longer hold (the formula
for fD,1, however, does), thus by defining the morphism A → Σ−1L as the composition of FD and
ps−1L (this is no longer given by Equation (1.1)), also the proof of Theorem 1.1 can be repeated
verbatim.

We close this section with two observations. The first one is an immediate corollary of Theo-
rem 1.1 and Theorem 3.3. The second one should be confronted with the results of [6].

Corollary 5.10. In the hypotheses of Theorem 1.1, if H(i) : H(L,D) → H(M,D) is injective
(equivalently, if H(P ) : H(M,D) → H(A,PD) is surjective), then the L∞[1] algebra (A,Φ(D)) is
homotopy abelian.

Proposition 5.11. Let i : (L,D, [·, ·]) → (M,D, [·, ·]) be the inclusion of a sub dgla and let Ak,
k = 1, 2, be a complement to L in M , with the L∞[1] structure Φk(D) from Theorem 1.1 (or from
Remark 5.9 if we do not wish to assume Ak ⊂ M a graded Lie subalgebra). Then (A1,Φ1(D)) and
(A2,Φ2(D)) are isomorphic L∞[1] algebras.

Proof. Let Pk : M → Ak be the projection with kernel L. Let (s−1 Ci, QD) be the desuspended
mapping cocone of the inclusion i: there is a L∞[1] morphism (A1,Φ1(D)) → (s−1 Ci, QD), with
linear Taylor coefficient a → (s−1P⊥

1 Da, a), and a L∞[1] morphism (s−1 Ci, QD) → (A2,Φ2(D)),
with linear Taylor coefficient (s−1l,m) → P2m (cf. Remark 2.14 and Remark 5.7). The composite
(A1,Φ1(D)) → (A2,Φ2(D)) has linear Taylor coefficient a → P2a, which is a dg isomorphism,
thus it is a L∞[1] isomorphism. �

6. Examples and applications

Example 6.1. Recall (cf. [34, 13]) that every L∞[1] structure can be obtained via higher derived
brackets. Let V be a graded space, and identify it with an abelian Lie subalgebra of Coder(SV ) via
the section v → σv from Remark 2.2, splitting the exact sequence from Remark 2.1. Evaluation
at 1 is then identified with a projection P : Coder(SV ) → V : R → R(1) = r0(1), whose
kernel is Coder(SV ): thus we are in the hypotheses of Voronov’s construction of higher derived
brackets. We claim that the morphism Φ : Coder(SV ) → Coder(SV ) : R → Φ(R) of graded Lie
algebras, as in Theorem 1.2, coincides with the identity. In fact we see from Remark 2.2 that
Φ(R)0(1) = PR = r0(1) and Φ(R)n(v1 ⊙ · · · ⊙ vn) = P [· · · [R, σv1 ] · · · , σvn ] = rn(v1 ⊙ · · · ⊙ vn),
that is, Φ(R) = R as claimed. If Q is a L∞[1] structure on V , by the above Q = Φ(Q) = Φ([Q, ·]):
then Theorem 1.1 implies the following result, already proved in [7].

Theorem 6.2. A L∞[1] algebra (V,Q) is weakly equivalent to Σ−1Ki, where Ki is the homotopy
fiber of the inclusion of dglas

i : (Coder(SV ), [Q, ·], [·, ·]) −→ (Coder(SV ), [Q, ·], [·, ·])

Remark 6.3. The L∞[1] morphism Ad : (V,Q) → Σ−1(Coder(SV ), [Q, ·], [·, ·]) from Theorem 1.1
is given in Taylor coefficients pAd = (Ad1, . . . ,Adi, . . .) by

Adi : V
⊙i → s−1Coder(SV ) : v1 ⊙ · · · ⊙ vi → s−1([· · · [Q, σv1 ] · · · , σvi ]− σqi(v1⊙···⊙vi))

(more explicitly sAdi(v1⊙· · ·⊙vi)k(vi+1⊙· · ·⊙vi+k) = qi+k(v1⊙· · ·⊙vi+k) for every k ≥ 1, where
we denote by s : s−1 Coder(SA) → Coder(SA) the shift map). This is the L∞[1] generalization of
the adjoint morphism of a dgla introduced by Chuang and Lazarev in [7].
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As a consequence of Corollary 5.10 and some elementary homological algebra, we obtain the
following proposition, which could also be deduced by the results in [7].

Proposition 6.4. Let (V,Q) be a L∞[1] algebra. If the evaluation morphism

e : (Coder(SV ), [Q, ·]) → (V, q1) : R → R(1) = r0(1)

admits a dg right inverse, then the L∞[1] algebra (V,Q) is homotopy abelian.

Remark 6.5. The converse of the above proposition is also true, so the hypothesis is a necessary
and sufficient condition for a L∞[1] algebra (V,Q) to be homotopy abelian, cf. Theorem 3.6 in [1].
We notice that among the other equivalent conditions stated there, one could add the vanishing of
the map induced by the adjoint H(Ad1) : H(V, q1) → HCE(V, V )[1] from the tangent cohomology
to the reduced Chevalley-Eilenberg cohomology of (V,Q) with coefficients in itself, where the L∞[1]
adjoint morphism Ad is defined as in the previous remark.

Example 6.6. Higher derived brackets have been applied in the study of coisotropic deformations,
cf. [32, 6, 12]. Let X be a differentiable manifold, and let TX be the tangent bundle: we denote by
V∗
X = Γ(

∧∗ TX) the Gerstenhaber algebra of polyvector fields on X , equipped with the Schouten-

Nijenhuis bracket [·, ·]SN : V i
X ⊗Vj

X → V i+j−1
X . Recall that a Poisson structure on X is the datum

of a bivector π ∈ V2
X such that [π, π]SN = 0: as well known (cf. for instance [2], Section 3) this

induces a Poisson bracket {·, ·}π on the algebra A(X) of smooth functions on X , a dgla structure
(s−1V∗

X , [π, ·]SN , [·, ·]SN ) on the desuspension s−1V∗
X , and finally an anchor map π# : T ∗X → TX

given by contraction with π.

Let Z ⊂ X be a closed smooth submanifold, recall that Z is coisotropic if the vanishing
ideal I(Z) ⊂ A(X) is {·, ·}π-closed, equivalently, if π#(N∗Z) ⊂ TZ, where N∗Z ⊂ T ∗X is the
annihilator of TZ. Let NZ be the normal bundle of Z in X , N ∗

Z|X = Γ(
∧∗

NZ). Restriction to Z

followed by projection induces an algebra epimorphism V∗
X → N ∗

Z|X : let L∗
Z ⊂ V∗

X be defined by

the exact sequence

(6.1) 0 → L∗
Z → V∗

X → N ∗
Z|X → 0.

As in [2], Proposition 5.2, L∗
Z is a Gerstenhaber subalgebra of V∗

X , and Z is coisotropic if and only
if π ∈ L2

Z . When X is the total space of a vector bundle on Z (and Z is embedded as the zero
section) the above sequence admits a natural splitting, whose desuspension sends s−1N ∗

Z|X onto the

abelian Lie subalgebra of s−1V∗
X consisting of vertical polyvector fields constant along the fibers,

cf. for instance [6, 32]: in general one reduces to this situation via the choice of an embedding
of NZ onto a tubular neighborhood of Z in X . For a coisotropic Z the higher derived brackets
Φ(π) = Φ([π, ·]SN ) induce a L∞[1] structure on s−1N ∗

Z|X : moreover, it follows from Proposition

5.11 that the resulting L∞[1] algebra is independent from the involved choices up to isomorphism,
obtaining a result already proved in [6].

It is known [32] that the L∞[1] algebra (s−1N ∗
Z|X ,Φ(π)) governs the functor of infinitesimal

coisotropic deformations of Z in X (via the associated deformation functor, cf. [29, 9, 2]): as
weakly equivalent L∞[1] algebras determine the same deformation functor, Theorem 1.1 implies
the following

Theorem 6.7. Let (X, π) be a differentiable Poisson manifold, Z ⊂ X a coisotropic submanifold,
then the homotopy fiber of the inclusion of dglas

i : (s−1L∗
Z , [π, ·]SN , [·, ·]SN ) → (s−1V∗

X , [π, ·]SN , [·, ·]SN )

governs the functor of infinitesimal coisotropic deformations of Z in X.

The same result could have been proved by the methods of [2].
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Example 6.8. Let (V, d) be a dg space and let W ⊂ V be a dg subspace, let A ⊂ V be a
complement to W in V , thus V = W ⊕A as graded space; we denote by P : V → A the projection

with kernelW and by P⊥ := idV −P . The map P̃ : End(V ) → End(V ) : f → PfP⊥ is a projection
with kernel End(V/W ), the graded Lie subalgebra of End(V ) consisting of those f : V → V such

that f(W ) ⊂ W , and image canonically isomorphic to Hom(W,A): we notice that f lies in Im P̃

if and only if f = Pf = fP⊥ = PfP⊥, thus if f, g ∈ Im P̃ , then fg = fP⊥Pg = 0 and we see

that Im P̃ is an abelian Lie subalgebra of End(V ). By hypotheses d is a Maurer Cartan element
of End(V/W ), hence it induces via higher derived brackets a L∞[1] structure Φ(d) = Φ([d, ·]) on
Hom(W,A). The linear bracket is Φ(d)1(f)(w) = Pdf(w) − (−1)|f |f(dw), which is the induced

differential on Hom((W,d), (A,Pd)). Next we observe that if f, g ∈ Im P̃ then

[[d, f ], g] = (−1)|f |+1
(
fdg − (−1)(|f |+1)(|g|+1)gdf

)
= (−1)|f |+1P

(
fdg − (−1)(|f |+1)(|g|+1)gdf

)
P⊥

thus [[d, f ], g] ∈ Im P̃ , which implies Φ(d)i = 0 for i ≥ 3. Finally the above computation shows

Φ(d)2(f ⊙ g)(w) = (−1)|f |+1
(
f(P⊥dg(w)) − (−1)(|f |+1)(|g|+1)g(P⊥df(w))

)

Via décalage, it is defined a dgla structure on Hom(W,A)[−1], weakly equivalent to the homotopy
fiber of the inclusion of dglas (End(V/W ), [d, ·], [·, ·]) → (End(V ), [d, ·], [·, ·]): by homotopy invari-
ance and results of Fiorenza and Manetti ([10], cf. also the related [11]), the associated deformation
functor is the dg Grassmann functor controlling the infinitesimal embedded deformations of the
subcomplex (W,d) in (V, d) (modulo an opportune Gauge equivalence relation, cf. [10] for details).
Finally, in this case the L∞ morphism (1.1) is a strict morphism of dglas

Hom(W,A)[−1] → End(V/W ) : f → [d, f ]− P [d, f ]P⊥ = [P⊥dP, f ].

Example 6.9. Let A be a unital associative graded algebra, we denote by AL the corresponding
graded Lie algebra with the commutator bracket, and by AJ the corresponding graded Jordan alge-
bra with Jordan product a◦b = 1

2 (ab+(−1)|a||b|ba). We identify AL with a Lie subalgebra of End(A)
via the embedding l : AL → End(A) : a → la, where la is the operator of left multiplication by a.
There is a projection P : End(A) → AL : f → lf(1), whose kernel L = {f ∈ End(A) s.t. f(1) = 0}
is a graded Lie subalgebra of End(A). We are in the set up of Section 5, so higher derived brackets
define a morphism of graded Lie algebras Φ : End(A) → Coder(SA) : f → Φ(f). When A is
graded commutative the brackets defined in this way are the usual higher Koszul brackets K(f)i
on A associated to f [25, 34], in the non commutative case we expect to recover the hierarchy of
nonabelian higher Koszul brackets introduced by Bering in [4], Section 3.

To get a taste of how do the just defined brackets look like in the non commutative case, one
can easily verify that Φ(f)1(a) = f(a) − 1

2 (f(1)a + (−1)|a||f |af(1)) = f(a) − f(1) ◦ a for every
a ∈ A; as another example suppose f ∈ End(A) is such that f(1) = 0, then it can be checked that
Φ(f)2(a⊙ b) = f(a ◦ b)− f(a) ◦ b− (−1)|a||f |a ◦ f(b).

Remark 6.10. We could define a family of subspacesDk = {f ∈ End(A) s.t. Φ(f)i = 0, ∀ i > k} for
k ≥ 0: since Φ is a morphism of Lie algebras the identity [Di, Dj ] ⊂ Di+j−1 follows immediately,
in particular

⋃
k≥0 Dk is a graded Lie subalgebra of End(A). When A is graded commutative

Dk = Diffk(A) ⊂ End(A) is the subspace of differential operators of order ≤ k on A: it is not clear
to the author whether the Dk define interesting classes of operators in the non commutative case
as well, perhaps a more meaningful construction could be made along the lines of the next remark.

Remark 6.11. It should be possible to construct higher derived operations in different operadic
contexts using homotopy transfer along the lines of this paper. For instance, let B be a graded
associative algebra with a splitting, as a graded space, in the direct sum B = A⊕C of graded sub-
algebras A and C, then for every D ∈ Der1(B/A) such that D2 = 0 it is induced, via homotopical
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transfer of structure from the homotopy fiber of i : (A,D, ·) → (B,D, ·), an A∞[1] structure on
C, that is, a squaring to zero degree one coderivation on the reduced tensor coalgebra TC over C:
then we could define the higher derived products Φ(D)i : C

⊗i → C on C associated to D as the
Taylor coefficients of this structure. A case of interest should be when A ⊂ B is a left ideal (this
is the situation considered in [22]), for instance in the setting of the previous example.

Example 6.12. The author is grateful to M. Manetti for pointing out and carefully explaining to
him the following example.

Definition 6.13. Let k be a fixed odd integer, a commutative BV∞ algebra (A,∆0,∆1, . . . ,∆i, . . .)
of degree k consists of the following data ([26], cf. also [5]):

(1) a commutative dga (A,∆0) with 1, and

(2) for every i ≥ 1 a differential operator ∆i ∈ Diff
1−n(k+1)
i+1 (A) on A of degree 1 − n(k + 1)

and order ≤ i+ 1 (cf. remark 6.10), such that
(3) ∆i(1) = 0 for every i ≥ 0, and
(4) if we denote by t a central variable of (even) degree k + 1 then the degree one operator

∆ = ∆0 + t∆1 + · · ·+ ti∆i + · · ·

on the algebra of formal power series A[[t]] (that is ∆(
∑

j aj · t
j) :=

∑
i,j ∆i(aj) · ti+j)

squares to zero.

There is an associated L∞[1] structure on A[k + 1] as we now describe. Consider the algebra
of formal Laurent series A((t)) =

⋃
j∈Z

tjA[[t]], we denote by p+ : A((t)) → A[[t]] the natural

projection, by A((t))− its kernel and by p− = idA((t)) −p+ : A((t)) → A((t))− . The graded
Lie algebra M = End(A((t))) splits as M = L ⊕ B, where L = {f ∈ M s.t. f(1) ∈ A[[t]]} and
B ⊂ M is the abelian Lie subalgebra of operators of left multiplication by elements in A((t))−.
Obviously L ⊂ M is a Lie subalgebra, moreover, ∆ : A[[t]] → A[[t]] extends by K ((t))-linearity to
∆ : A((t)) → A((t)), which is a Maurer-Cartan element in L: we are in the set up of Voronov’s
construction of higher derived brackets, so Φ(∆) defines a L∞[1] structure on B.

Proposition 6.14. Let i : A[k + 1] → B be the linear embedding sending a to the operator of left
multiplication by a · t−1, then i(A[k + 1]) is a L∞[1] subalgebra of (B,Φ(∆)). The induced L∞[1]
algebra structure on A[k+1] is (A[k+1],∆0,K(∆1)2, . . . ,K(∆i−1)i, . . .), where K(f)i denotes the
i-th Koszul bracket on A associated to f ∈ End(A) (cf. Example 6.9).

Proof. A straightforward computation shows

[· · · [∆, i(a1)] · · · , i(ai)](1) = [[∆0 + t∆1 + · · ·+ tj∆j + · · · , la1·t−1 ] · · · , lai·t−1 ](1) =

=
∑

j≥0

[· · · [∆j , la1
] · · · , lai

](1) · tj−i =
∑

j≥0

K(∆j)i(a1 ⊙ · · · ⊙ ai) · t
j−i

by definition of the Koszul brackets, thus Φ(∆)i(i(a1) ⊙ · · · ⊙ i(ai)) is left multiplication with∑i−1
j=0 K(∆j)i(a1 ⊙ · · ·⊙ ai) · t

j−i. Assumption (2) in the definition of a commutative BV∞ algebra

implies that K(∆j)i = 0 if j < i− 1, so we see that

Φ(∆)i(i(a1)⊙ · · · ⊙ i(ai)) = i(K(∆i−1)i(a1 ⊙ · · · ⊙ ai))

. �

Definition 6.15. A commutative BV∞ algebra has the degeneration property if the projection
(A[[t]],∆) → (A,∆0) : a(t) → a(0) is surjective in homology.
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The following theorem, which was proved with different methods by Braun and Lazarev in [5],
generalizes the formality theorem from [33]. We follow the proof of this last result given in [18],
Theorem 6.6.

Theorem 6.16. If a commutative BV∞ algebra (A,∆0,∆1, . . . ,∆i, . . .) of (odd) degree k has the
degeneration property, then the L∞[1] algebra (A[k+1],∆0,K(∆1)2, . . . ,K(∆i−1)i, . . .) is homotopy
abelian.

Proof. Consider the decreasing filtration A((t)) =
⋃

j∈Z
F j =

⋃
j∈Z

tjA[[t]] by ∆-closed subspaces:

then the degeneration property is equivalent to injectivity in homology of F 1 ⊂ F 0, which readily
implies injectivity in homology of F j ⊂ F j−1 (by K ((t))-linearity of ∆) and also of F j ⊂ F k for
every j > k. In particular A[[t]] → A((t)) is injective in homology, so p− : A((t)) → A((t))− is
surjective in homology: in turn this also implies that the projection P : M → B induced by the
splitting M = L⊕B is surjective in homology, this follows by looking at the commutative diagram
of dg spaces

(M, [∆, ·])
P //

ev1

��

(B,P [∆, ·])

ev1

��
(A((t)),∆)

p
− // (A((t))−, p−∆)

Since we are working over a field H(ev1) = ev[1] : H(M) = End(H(A((t)))) → H(A((t))) is

surjective, while ev1 : B → A((t))− is an isomorphism. Thus the L∞[1] structure Φ(∆) = Φ([∆, ·])
on B is homotopy abelian by Corollary 5.10.

The thesis follows from [21], Proposition 4.11, if we show that the embedding i : A[k + 1] → B
from the previous proposition is injective in homology. We look at the commutative diagram

0 // F 0 // F−1

��

// F−1/F 0

��

// 0

0 // A[[t]] // A((t)) // A((t))− // 0

The rows are split exact and the middle vertical arrow is injective in homology, then so must be
the right one: but this is isomorphic to i : A[k + 1] → B. �

Example 6.17. Let (L,D, [·, ·]) be a dgla, then L = L≥0 ⊕ L<0, where L≥0 = ⊕i≥0L
i and

L<0 = ⊕i<0L
i: we notice that both L≥0 and L<0 are Lie subalgebras of L and D ∈ Der(L/L≥0),

thus we are in the set up of Section 5 and the higher derived bracket associated to D induce a
L∞[1] structure Φ(D) on L<0. The brackets are explicitly given, for i ≥ 2, by

Φ(D)i(l1 ⊙ · · · ⊙ li) =
∑

σ∈Si

ε(σ)

i∑

k=1

Bi−k

k!(i − k)!

i−k︷︸︸︷
[· · · [P ([· · · [Dlσ(1), lσ(2)] · · · ]), lσ(k+1)] · · · , lσ(i)] =

=
∑

σ∈Si

ε(σ)

(
Bi−1

(i − 1)!
[· · · [PDlσ(1), lσ(2)] · · · , lσ(i)] +

(
i∑

k=2

Bi−k

k!(i− k)!

)
[· · · [Dlσ(1), lσ(2)] · · · , lσ(i)]

)
=

= −
Bi−1

(i− 1)!

∑

σ∈Si

ε(σ)[· · · [P⊥Dlσ(1), lσ(2)] · · · , lσ(i)]

where in the second identity we used the fact that for k > 1 the P becomes irrelevant, since it

applies to an element already in L<0, and in the third one we used the identity
∑i−1

k=0 Bk

(
i
k

)
= 0
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for i ≥ 2. We notice that P⊥D acts on L<0 as D on L−1 and 0 elsewhere. The linear bracket is
Φ(D)1 = PD, which is 0 on L−1 and D on L<−1. These are essentially the same brackets as those
introduced by Getzler in [15]. Finally, by Theorem 1.1 we see that the strict L∞[1] morphism
L<0 → Σ−1L≥0 : l → s−1P⊥Dl fits into a homotopy fiber sequence L<0 → Σ−1L≥0 → Σ−1L of
L∞[1] algebras.
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