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Abstract

Cost-parity games are a fundamental tool in system design for the analysis of reactive and

distributed systems that recently have received a lot of attention from the formal methods

research community. They allow to reason about the time delay on the requests granted by

systems, with a bounded consumption of resources, in their executions.

In this paper, we contribute to research on cost-parity games by combining them with

hierarchical systems, a successful method for the succinct representation of models. We show

that determining the winner of a Hierarchical Cost-parity Game is Pspace-complete, thus

matching the complexity of the proper special case of Hierarchical Parity Games. This shows

that reasoning about temporal delay can be addressed at a free cost in terms of complexity.
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1. Introduction

Parity games and Parity games with costs. In formal system design and verification [1, 2, 3,

4], Parity Games represent a fundamental machinery for the automatic synthesis and verification

of concurrent and reactive systems [5, 6, 7, 8, 9]. The determinacy and the memorylessness of

parity games is crucial in various theoretical areas useful in formal verification, among which we

mention automata theory, temporal and modal logics, and monadic second-order logics. For

instance, the emptiness problem of alternating tree automata [10] as well as model checking and
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satisfiability in modal µ-calculus [11] can be reduced to deciding the winner of a parity game. In

particular, model checking µ-calculus is equivalent via linear time reduction to this problem [12].

As pointed out in [13, 14, 15], the parity winning condition corresponds to a qualitative

request-response condition [16]: Player 0 wins a play of infinite duration if all but finitely

many odd colors (which we think of as requests) are followed by larger even colors (which

we think of as responses). In this setting, there is no bound on the wait time, i.e., the

number of steps that elapse between a request and its first response in the play. On the

other hand, in many applications, it is important to bound the wait time. In the last decade,

many papers have focused on quantitative aspects, in particular boundedness requirements,

of formal verification [17, 18, 19], including parity games [19, 13, 14, 15]. In [18], the authors

introduce Prompt LTL, an extension of standard LTL [20] with the prompt-eventually operator

Fp: a finite system satisfies a Prompt LTL formula ϕ iff there is a bound on the wait time

for all the prompt-eventually subformulas of ϕ in all the computations of the system. The

automata-theoretic counterpart of the Fp operator has been investigated in [17]. Parity games

extended with promptness requirements, the so-called finitary parity games, have been studied

in [19]. The finitary parity condition [19] extends the parity condition by additionally requiring

the existence (along the given play) of a bound k such that almost every odd color is answered

within at most k steps. Surprisingly, finitary parity games are solvable in polynomial time, and

thus simpler than parity games (according to the state-of-the-art). A meaningful generalization

of finitary games is represented by the class of parity games with costs [13] (in the following,

referred as cost-parity games). In such games, transitions are labeled by non-negative integers

(costs). The cost of traversing a transition can be used to model resource consumption. The goal

of Player 0 consists then in ensuring the underlying parity condition by using bounded resources:

a play is winning for Player 0 if there is a bound k such that almost every odd color is followed

by a larger even color that is reached with cost at most k. On the other hand, Player 1’s goal is

to exhaust the resources by making the cost unbounded. Note that Player 1’s objective is not an

ω-regular property, and in general, Player 1 needs infinite memory to win such games. However,

cost-parity games enjoy some nice properties: Player 0 has memoryless winning strategies and

determining the winner lies in NP ∩ coNP. This upper bound has been recently improved

to UP ∩ coUP in [15], proving thus that the increased expressiveness with respect to parity

conditions comes at a free cost in terms of complexity.
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In the recent years, many other quantitative extensions of parity games have been introduced.

Among them we would like to mention Mean-Payoff Parity Games [21], whose winning condition

is a combination of a parity and a mean-payoff objective, and Energy Parity Games [22]. These

last ones are played over weighted arenas, and the winning condition extends the parity condition

by additionally requiring that the sum of the weights along a play (interpreted as level of energy,

or resource usage) remains always positive.

Hierarchical verification. A well-known issue in formal verification is that the translation of

a high-level description of a system into a formal model, typically given by a finite-state machine

(FSM), often involves an exponential blow-up in the size of the FSM, thus affecting the efficiency

of the analysis procedures both in theory and practice. Several sources of this blow-up have

been identified in the literature. A well-studied one is the ability of components in the system

to work in parallel and communicating with each other, possibly using variables. The impact

of the concurrent setting on analysis problems is well-known: it costs an exponential, leading

to the so called state-explosion problem. Another source of the blow-up in the translation of

systems into FSMs is that in high-level sequential programming, one can specify components only

once and then can reuse them in different contexts, leading to modularity and succinct system

representation. A smart way to represent such modularity is by means of hierarchical FSM,

where some of the states of the FSM are boxes (superstates) which correspond to nested FSMs

(the reused components). The naive approach to model checking such systems is to ‘flatten’

them by repeatedly substituting references to sub-structures with copies of them. This results in

a flat FSM whose size is exponential in the nesting depth of the hierarchical system. However,

differently from the concurrent setting, a wiser approach avoiding flattening, for the case of model

checking against temporal logics like LTL, CTL and the more expressive modal µ-calculus, is

beneficial in terms of complexity [23, 24, 25, 5, 26]. Parity games have also been investigated under

the hierarchical setting. In [5], Aminof et al. prove that deciding the winner in a Hierarchical

Parity Game (HPG) is a Pspace-complete problem. The technique used in [5] is based on the

observation that even though a sub-arena may appear in different contexts, it is possible to extract

information about the sub-arena that is independent of the context in which it appears.

Our contribution. In this paper, we further investigate the power of hierarchical representation

by introducing and studying Cost-parity Games over Hierarchical Systems (HCPG). As main
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result, we establish that the problem of solving HCPG is Pspace-complete, which matches

the complexity of the proper special case of hierarchical parity games (HPG). The proposed

approach for solving the considered problem generalizes in a non-trivial and sophisticated manner

the one exploited in [5] for solving HPG, and is based on the notion of summary function for

a memoryless strategy σ of Player 0 in a given sub-arena. Such a function records in a finite

and efficient way the overall behavior of all the finite plays of σ leading to exit states of the

sub-arena with respect to requests and responses, by finitely abstracting the set of associated

costs and delays. The algorithm for solving HCPG then solves a sequence of flat cost-parity

games obtained by replacing sub-arenas by simple gadgets (depending only on the set of colors

and exit states of the sub-arena) that implement the summary functions.

The sequel of the paper is structured as follows. In Section 2, we first recall the framework

of cost-parity games. Then, we introduce hierarchical cost-parity games and outline our solution

approach. In Sections 3–7 we illustrate in detail the proposed approach for solving HCPG by

providing full proofs of our results. Finally, we give few conclusions and future work directions

in Section 8.

2. Preliminaries

Let N be the set of natural numbers. For all i, j ∈ N, with i ≤ j, [i, j] denotes the set of

natural numbers h such that i ≤ h ≤ j. We fix a non-empty finite set C of natural numbers

of the form [0, j] for some j ∈ N, which represents the set of colors for the given cost-parity

winning condition. We denote by Ce and Co the sets of even and odd colors in C, respectively.

We assume that the maximal color j in C, denoted by Cmax
o , is odd.

For an alphabet Σ, and a non-empty finite or infinite word w over Σ, we denote by |w| the

length of w (we set |w| =∞ if w is infinite). Moreover, for all i, j ≥ 1, with i ≤ j, w(i) is the

i-th letter of w, while w[i, j] denotes the finite subword of w given by w(i) · · ·w(j), and wi the

suffix of w from position i, i.e., the word w(i)w(i+ 1) . . ..

2.1. Cost-Parity Games

We recall the framework of Cost-parity games [13] which are two-player turn-based games

played on finite graphs equipped with a Cost-parity winning condition. In such a setting, Player 0
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wins a play of infinite duration if there is a bound ` ∈ N such that almost all odd colors (which

we think of as requests) are followed by larger even colors (which we think of as responses) that

are reached with cost at most `.

A state-transition graph or FSM is a tuple 〈S,R, in〉 consisting of a finite set S of states,

a transition relation R ⊆ S × S, and an initial state in ∈ S. For a state s ∈ S, we write

R(s) = {s′ ∈ S | (s, s′) ∈ R} for the set of successors of s. A path in the FSM is a non-empty

finite or infinite word π over S such that π(i+ 1) ∈ R(π(i)) for all i ∈ [1, |π| − 1].

An arena is a tuple A = 〈S,S0,S1,R, in〉 consisting of an FSM 〈S,R, in〉 and a partition

{S0, S1} of S into the states of Player 0 (drawn as circles) and the states of Player 1 (drawn as

rectangles). The size |A| of A is |S|+ |R|. A play of a game over A proceeds by moving a token

on the states of A, starting at some state. If the token is placed on a state s ∈ S0 (resp., s ∈ S1),

then the play ends if s has no successors (we call such a state a terminal state); otherwise,

Player 0 (resp., Player 1) chooses a successor s′ of s and moves the token to s′. Formally, a play

of A is a maximal path of A, i.e., a path π in the underlying FSM such that either π is infinite,

or π is finite and ends at a terminal state.

Let p ∈ {0, 1} and SNp be the set of non-terminal states of Player p. A strategy for Player p is

a mapping σ : S∗ · SNp 7→ S assigning to each non-empty sequence of states w · s ∈ S∗ · SNp leading

to a non-terminal state s of Player p, a successor of s. A play π is consistent with the strategy

σ if for all k ∈ [1, |π| − 1] such that π(k) ∈ SNp , it holds that π(k + 1) = σ(π[1, k]). The strategy

σ is memoryless if its output does not depend on the whole prefix of the play, but only on the

last position, i.e, if for all w · s ∈ S∗ · SNp , σ(w · s) = σ(s). We can thus represent a memoryless

strategy as a mapping σ : SNp → S.

A (zero-sum) game is a pair 〈A,Win〉 consisting of an arena A = 〈S,S0,S1,R, in〉 and a

subset Win of infinite plays which are winning for Player 0. An infinite play π is winning for

Player 1 if it is not winning for Player 0. A finite play π is winning for Player p if π ends at a

state of the opponent Player 1− p. A strategy σ for Player p is winning from a state s if all the

plays π starting from s which are consistent with the strategy σ are winning for Player p. In

such a case, we say that state s is winning for Player p. A game is determined if for each state

s, s is winning for one of the players. Note that since for all strategies σ0 and σ1 of Player 0

and Player 1, respectively, there is a unique play starting from s which is consistent with both

σ0 and σ1, in (zero-sum) games, a state s cannot be winning for both the players. Solving a

5



game consists in checking whether the initial state is winning for Player 0.

Cost-parity winning conditions. We, now, recall the class of cost-parity winning conditions.

A cost-parity arena G = 〈A,Cost,Ω〉 over the set C of colors consists of an arena A =

〈S, S0, S1,R, in〉, a transition-labeling Cost : R 7→ {0, 1} (cost function), and a coloring mapping

Ω : S 7→ C assigning to each state a color in C. Note that according to [13], the definition of

transition-labeling only allows cost 0 or 1 on a transition. Having arbitrary costs in N would

not change our results, as we are interested in boundedness questions only. We extend the

cost function Cost to the set of paths π by counting the number of increment transitions (i.e.,

1-labeled transitions) traversed along the path, i.e., Cost(π) =
∑i=|π|
i=2 Cost(π(i − 1), π(i)) if

|π| > 1, and Cost(π) = 0 otherwise. Note that Cost(π) ∈ N ∪ {∞}.

The pair (Cost,Ω) induces a winning condition for Player 0, where the occurrence of an odd

color along a play π is interpreted as a request, for which there has to be a response later on

the play by a higher even color. Formally, let π be a finite or infinite path of A. A request

in π is a position k along π such that π(k) has odd color. For an odd color c, a c-request in

π is a request k in π such that Ω(π(k)) = c. Moreover, we define Ans(c) = {c′ ∈ Ce | c′ ≥ c},

i.e., the set of even colors that answer a request of color c. For a request k in π, let rk be the

smallest position k′ ≥ k that answers to request k, i.e., such that Ω(π(k′)) ∈ Ans(Ω(π(k))),

if such positions k′ exist, and let rk = |π| otherwise. In the first (resp., second) case, we

say that the request k is answered (resp., unanswered) in π. The delay of the request k in

π, denoted by dl(π, k), then is defined as the cost of the infix of π from the request k to

position rk, i.e., Cost(π[k, rk]) if rk 6= ∞, and Cost(πk) otherwise. The cost-parity winning

condition induced by (Cost,Ω), written CostParity(Cost,Ω), is then the set of infinite plays

π such that there is n ≥ 1 and a bound ` ∈ N so that for all requests k in π with k ≥ n,

dl(π, k) ≤ ` and the request k is answered in π. Thus, an infinite play π ∈ CostParity(Cost,Ω)

iff there is bound ` such that all but finitely many requests are answered with cost less than

`. Note that CostParity(Cost,Ω) is prefix-independent, i.e., for all infinite plays π and k ≥ 1,

π ∈ CostParity(Cost,Ω) iff πk ∈ CostParity(Cost,Ω). We recall the following known result.

Theorem 1 ([13]). Cost-parity games are determined and Player 0 has memoryless winning

strategies from the winning Player 0 states. Moreover, solving a cost-parity game G = 〈A,Cost,Ω〉

with k colors can be done in time |A|O(k·log k) and in polynomial space.
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For technical convenience, we also consider a generalization of cost-parity arenas, called

partial cost-parity arenas, where one considers as additional input a subset Exit of the set of

terminal states, called exit states. Finite plays ending at states in Exit are assumed to be

non-winning for either player and have an undefined value. In this setting, a non-losing strategy

for Player p from state s is a strategy σ for Player p such that each play starting from s which

is consistent with σ and does not lead to an exit state is winning for Player p. A non-losing

strategy is a non-losing strategy for Player 0 from the initial state in. For a strategy σ for

Player 0, an exit play of σ is a finite play starting from in and ending at an exit state which is

consistent with σ. For s ∈ Exit, an s-exit play of σ is an exit play of σ leading to s. Two partial

cost-parity arenas G = 〈A,Cost,Ω,Exit〉 and G′ = 〈A′,Cost′,Ω′,Exit′〉 have the same interface

if Exit = Exit′, G and G′ have the same initial state in, and for each s ∈ {in} ∪Exit, the players

of state s in G and G′ coincide. Note that we do not impose any constraint on the colors of the

states in {in} ∪ Exit.

2.2. Hierarchical Cost-Parity Games

A Hierarchical Cost-Parity Game is a cost-parity game played over a (flat) arena induced by

a hierarchical arena. The latter is a standard hierarchical FSM [24] in which the set of nodes of

each of the underlying FSMs is partitioned into nodes belonging to Player 0 and nodes belonging

to Player 1. We refer to the underlying FSMs as modular sub-arenas. Formally, a hierarchical

arena is a tuple V =〈V1, . . . ,Vn〉 of modular sub-arenas, where each Vi is in turn a tuple of the

form 〈Ni,N
0
i ,N

1
i ,Bi, ini,Exiti,Yi,Ei〉 consisting of the following components:

• A finite set Ni of nodes which is partitioned into a set N0
i of nodes of Player 0 and a set N1

i

of nodes of Player 1, and a finite set Bi of boxes. We assume that N1, . . . ,Nn,B1, . . . ,Bn

are pairwise disjoint.

• An initial node or entry ini ∈ Ni,
1 and a subset Exiti of Ni called exit-nodes. We assume

that Exit1 = ∅, i.e., the top-level sub-arena V1 has no exits.

• An indexing function Yi : Bi → {i + 1, . . . , n} that maps each box b of Vi to an index

Yi(b) > i. The box b represents a reference to the definition of the sub-arena VYi(b).

1We assume a single entry for each sub-arena. Multiple entries can be handled by duplicating sub-arenas.
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• An edge relation Ei. Each edge in Ei is a pair (u, v) such that: (i) the source u is either a

node of Vi or a pair (b, e), where b is a box of Vi and e is an exit-node of the sub-arena

that b refers to, and (ii) the target v is either a node or a box of Vi.

Define N =
⋃n
i=1 Ni (the set of V-nodes), E =

⋃n
i=1 Ei (the set of V-edges), and Exit =⋃n

i=1 Exiti (the set of V-exit-nodes). In a modular sub-arena, the edges connect nodes and

boxes with one another. Edges entering a box implicitly lead to the unique entry-node of the

sub-arena that the box refers to. On the other hand, an edge exiting a box needs to explicitly

specify the identity of the exit-node among the possible exit-nodes of the sub-arena associated

with that box. The size |Vi| of a modular sub-arena Vi is |Ni|+ |Bi|+ |Ei|. The size |V| of V is∑i=n
i=1 |Vi|. The nesting depth of V is the length of the longest chain i1, i2, . . . , ij of indices in

[1, n] such that a box of Vil is mapped to il+1 for all l ∈ [1, j − 1]. Note that the fact that boxes

of a sub-arena can only refer to sub-arenas with a greater index implies that the nesting depth

of V is finite. Such a restriction does not exist in the recursive setting [27].

A Hierarchical Cost-Parity Arena (HCPA, for short) over C is a tuple H = 〈V,Cost,Ω〉

consisting of a hierarchical arena V =〈V1, . . . ,Vn〉 equipped with a cost function Cost : E 7→ {0, 1}

for the set of V-edges, and a coloring mapping Ω : N 7→ C for the set of V-nodes. We can

associate to H an ordinary cost-parity arena (called its flat expansion) by recursively substituting

each box by a copy of the modular sub-arena it refers to. Since different boxes can refer to the

same sub-arena, nodes may appear in different contexts. In general, a state of the flat expansion

is a vector whose last component is a node, and the remaining components are boxes that specify

the context. Formally, for each modular sub-arena Vi, we inductively define its flat expansion as

the partial Cost-parity arena HFi = 〈Ai,Costi,Ωi,Exiti〉, with Ai = 〈Si, S0
i , S

1
i ,Ri, ini〉, defined

as follows:

• The set of states Si is inductively defined as follows: (i) if u is a node in Vi, then u ∈ Si,

and (ii) if b is a box of Vi and s ∈ SYi(b), then (b, s) ∈ Si.

• S0
i (resp., S1

i ) is the set of states in Si whose node-component belongs to Player 0 (resp.,

Player 1), and the coloring function Ωi assigns to each state s of Ai, the color Ω(u) of the

node-component u of s.

• The transition relation Ri and the cost function Costi are inductively defined as follows.
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– If (u, v) ∈ Ei and the target v is a node, then (u, v) ∈ Ri and Costi(u, v) =

Cost(u, v). If (u, b) ∈ Ei and the target b is a box, then (u, (b, inYi(b))) ∈ Ri

and Costi(u, (b, inYi(b))) = Cost(u, b).

– If b is a box of Vi and (s, s′) ∈ RYi(b), then ((b, s), (b, s′)) ∈ Ri and Costi((b, s), (b, s
′)) =

CostYi(b)(s, s
′).

Note that since Exit1 = ∅, HF1 is an ordinary Cost-parity arena (i.e., it is not partial), called

the flat expansion of H. Moreover, observe that each state of HF1 is a vector of length at most

the nesting depth d of V , and that the number of states in HF1 can be exponential in d. Solving

the game on the HCPA H consists in checking whether the initial state in1 of the cost-parity

arena HF1 is winning for Player 0.

To get familiar with the notion of HCPA, let us consider the following indexed family of

hierarchical arenas. For a fixed n ∈ N with n ≥ 2, let V =〈V1, . . . ,Vn〉 be the hierarchical arena

defined as follows:

• V1 = 〈N1,N
0
1,N

1
1,B1, in1,Exit1,Y1,E1〉 where N0

1 = {in1, s11, s21}, N1
1 = ∅, B1 = {b11, b21},

Exit1 = ∅, Y1(b11) = Y1(b21) = 2, and E1 = {(in1, s11), (in1, s
2
1), (s11, b

1
1), (s21, b

2
1), ((b11, ex2), in1),

((b21, ex2), in1)};

• Vi = 〈Ni,N
0
i ,N

1
i ,Bi, ini,Exiti,Yi,Ei〉 where N0

i = {ini, s1i , s2i , exi}, N1
i = ∅, Bi = {b1i , b2i },

Exiti = {exi}, Yi(b1i ) = Yi(b
2
i ) = i+1, and Ei = {(ini, s1i ), (ini, s2i ), (s1i , bi), (sii, bi), ((b1i , exi+1), exi),

((b2i , exi+1), exi)}, for every 1 < i < n;

• Vn = 〈Nn,N
0
n,N

1
n,Bn, inn,Exitn,Yn,En〉 where N0

n = {exn}, N1
n = {inn, s1n}, Bn = ∅,

Exitn = {exn}, Yn = ∅, and En = {(inn, s1n), (s1n, s
1
n), (s1n, exn)}.

in1

V1

b11

b21

s11

s21

ini

Vi

b1i

b2i

exi

s1i

s2i

inn

Vn

s1n exn

Figure 1: Graphical representation of the modular sub-arenas in V = 〈V1, . . . ,Vn〉. Circled nodes are controlled

by Player 0, rectangle nodes are controlled by Player 1, and grey-filled nodes are the boxes in every module.
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In Figure 1 we depict the graphical representations of the modular sub-arenas introduced

above. A game played on this hierarchical arena starts at the node in1 and enters every module

in the hierarchy. At every such level j, Player 0 chooses to move either to node s1j or to node s2j

before entering the lower level. When module Vn is reached, Player 1 takes over in the game. At

this point the game can either loop indefinitely in s1n or eventually move to the exit exn, which

brings the process back to the starting point to start all over again. Note that the arena has

4n− 2 nodes (four nodes for every level, except for levels 1 and n, that have three nodes) and

2(n− 1) boxes (two boxes for every level except for the bottom). On the other hand, due to the

branching feature at every level of the hierarchy, the flat expansion of V has the shape of a full

binary tree of height n. Therefore, the number of its states is exponential in n. In particular,

note that there are 2n instances of the module Vn occurring in the flat expansion of V.

Now, let us consider a HCPA over V . We need to specify both the cost and colour mappings,

respectively. Regarding the cost function Cost, we set it up as follows: Cost(s1n, s
1
n) = 1 and

Cost(e) = 0 for every other e ∈ E \ {(s1n, s1n)}. That is, the only transition with a non-zero cost

is the loop in the module Vn. Regarding the colour mapping Ω, we have the following:

• for the initial nodes of the modules: Ω(in1) = 2n; Ω(ini) = 0, for every 1 < i < n; and

Ω(inn) = 0.

• the exit nodes have color 0;

• for the other nodes of the modules: Ω(s1i ) = 2i− 1 for every 1 ≤ i < n; Ω(s2i ) = 2i+ 1, for

every 1 ≤ i < n; and Ω(s1n) = 0.

The game starts from in1, then it flows through the modules accumulating a number of odd

requests whose biggest is lower or equal to 2n− 1, when the game enters the module Vn. At this

point, the game can evolve in two different ways: it either stays in s1n forever, thus making 0 the

only colour occurring infinitely often, or exits the modules one by one and reaches the node

in1 again, thus starting a new iteration. Since the starting node is labelled with the colour 2n,

we have that all the odd requests occurred in the previous walk along the arena are answered

and so the parity condition is verified whatsoever. However, Player 1 can force the loop over

s1n to be longer every time the game enters Vn, thus making the request cost arbitrarily large.

Therefore, Player 1 has a winning strategy in the game.
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2.3. Outline of the main results

In this section we outline the proposed approach for solving hierarchical cost-parity games.

Note that the naive method for solving games on HCPA H consisting in applying Theorem 1

on the flat expansion of H would lead to an exponential space procedure. In this paper, we

show that solving hierarchical cost-parity games is Pspace-complete. Our approach is based

on the notion of summary function for a strategy σ of Player 0 in a partial cost-parity arena,

which records in a finite and efficient way the overall behavior of all the exit plays of σ with

respect to requests and responses. The proposed algorithm for solving the game on the given

HCPA H then solves a sequence of partial cost-parity games, obtained by replacing each box

b referring to a sub-arena Vi with simple partial-cost parity arenas (summary-gadget arenas)

having the same interface as the flat expansion HFi of Vi and depending only on the set of

colors and exit states. These gadgets represent the behavior of Player 0 as a choice among the

possible summary functions associated with the non-losing memoryless strategies in HFi , and

also take into account the possibility that the game will stay forever in the sub-arena Vi for the

given context b. The rest of the paper is organized as follows: in Section 3, we introduce the

notions of summary and summary-gadget arena, and in Section 4 we show how to check that a

summary is associated with non-losing memoryless strategies. Finally, in Section 5, we illustrate

the proposed algorithm for solving HCPA games, and in Sections 6 and 7, we demonstrate

completeness and correctness of the algorithm, respectively.

3. Summaries in partial cost-parity games

In this section, for a given partial cost-parity arena G, we show how to define a finite

abstraction of the set of non-losing strategies (of Player 0). Such an abstraction is based on the

notion of summary for a strategy σ of Player 0, which is a mapping assigning to each exit state s

a value ranging over a finite set (depending only on the set of colors). Such a value summarizes

the overall behavior of all the s-exit plays of σ with respect to requests and responses by finitely

abstracting the set of associated costs and delays. Then, we associate to each summary S of

G a simple partial-cost parity arena Gad(G,S) – exposing the same interface as G (the initial

state and the set of exit states) – which depends only on the set of colors and exit states, and is

independent of the set of ‘internal’ states in G. The set of summary-gadget arenas Gad(G,S)
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such that S is achieved by some non-losing memoryless strategy is ‘context-equivalent’ to G, i.e.,

for each memoryless strategy σ achieving some summary S, G can be equivalently replaced with

Gad(G,S) in any hierarchical context where G is exploited as a sub-arena and Player 0 chooses

strategy σ when entering G. 2

For ensuring correctness of our approach, we also need to select only summaries which are

associated with non-losing memoryless strategies (of Player 0). On the other hand, checking

whether a summary is associated with a non-losing memoryless strategy is not an easy task since

we have to check the fulfillment of unboundedness conditions. However, we can get around the

problem by introducing a binary relation between summaries which gives an indication whether

a summary is not worse than another one for Player 0 in order to achieve winning strategies in

arbitrary contexts. Then, it suffices to select only the summaries S which are relevant, i.e. such

that there is a non-losing memoryless strategy of Player 0 whose summary is not worse than S.

As we will see in Section 4, by exploiting monotonicity properties of the cost-parity winning

conditions, checking whether a summary is relevant can be done in polynomial space.

The rest of the section is organized as follows. In Subsection 3.1, we introduce the notion

of summary for a strategy σ of Player 0 in the given partial cost-parity arena G. Then, in

Subsection 3.2, we associate to each summary of G a gadget Gad(G,S) having the same interface

as G, and show that the unique strategy of Player 0 in the gadget has S as summary. Finally, in

Subsection 3.3, we introduce the notion of relevance of summaries.

In the following, we fix a partial cost-parity arena G = 〈A,Cost,Ω,Exit〉 over the set C of

colors, where A = 〈S,S0,S1,R, in〉 and Exit is the designated set of exit states.

In order to describe the relative merit of colors, we define an ordering �0 over the given set

C of colors by letting c �0 c
′ when c is better for Player 0 than c′. Formally, c �0 c

′ if: either

(i) c and c′ are even and c ≥ c′, or (ii) c and c′ are odd and c′ ≥ c, or (iii) c′ is odd and c is

even. Hence, �0 induces the following total ordering on the set of colors:

Cmax
o ≺0 C

max
o − 2 ≺0 . . . ≺0 1 ≺0 0 ≺0 2 ≺0 . . . ≺0 max(Ce)− 2 ≺0 max(Ce)

Define C̃ = C \ {Cmax
o } and C̃o = (Co \ {Cmax

o }) ∪ {0}.

2the formal proof of such a context-equivalence is postponed to Section 5.
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3.1. Exit values and summaries of Player 0 strategies

In this Subsection, for the given partial cost-parity arena G, we introduce the notion of

summary for a strategy σ of Player 0. Given an exit node s of G, the summary for σ represents

finite information about the delays and costs of requests and responses over the (possibly infinite)

set of s-exit plays of σ. Since the cost-parity winning condition is prefix-independent, this

information is, in particular, exploited for taking account of scenarios where σ is part, within a

context C (a sequence of boxes), of a winning ‘global’ strategy σg for Player 0 and there are

plays π consistent with σg which visit infinitely many times the global state (C, s) (hence, π

visits infinitely many times s-exit plays of σ in the context C). Since we can assume that σg is

memoryless (hence, σ is memoryless as well), all the s-exit plays of σ have a role for ensuring

that σg is winning. Indeed, each play obtained from π by replacing s-exit plays of σ occurring in

π in the context C with arbitrary s-exit plays of σ is still consistent with the global strategy σg.

In order to formalize the notion of summary for a strategy σ of Player 0, we consider various

cost measures with respect to the requests and the responses along the exit plays of σ. For this, we

extend the cost function Cost to (possibly infinite) sets Π of finite paths of G. Formally, Cost(Π)

is the least upper bound over the costs of the paths in Π, i.e., Cost(Π) = sup{Cost(ν) | ν ∈ Π}

where sup ∅ = 0. Note that Cost(Π) ∈ N ∪ {∞}. For a finite path ν of G and an even color

ce ∈ Ce, a ce-response in ν is a position k of ν such that ν(k) has color ce. For such a response

k, the cost of response k in ν is the cost of the prefix of ν leading to position k, i.e., Cost(ν[1, k]).

The ce-response cost of ν, denoted by ResCost(ν, ce), is the cost Cost(ν[1, k]) of the prefix of ν

up to the minimal c′e-response k in ν for some even color c′e ≥ ce if such c′e-responses exist, and

it is 0 otherwise. The maximal even color of the path ν is the maximal even color visited by ν

if ν visits some even color, and it is 0 otherwise (note that a 0-response cannot answer to any

request). We exploit the following cost measures for the (possibly infinite) set of exit plays of a

given strategy σ of Player 0 leading to a designated exit state.

Definition 1 (Cost measures of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0, Πs

the (possibly empty) set of exit plays of σ leading to s, and ce ∈ Ce an even color. We consider

the following cost measures:

• Cost of σ w.r.t. s, denoted Cost(σ, s): it is Cost(Πs).

• Request-cost of σ w.r.t. s, denoted ReqCost(σ, s): it is the least upper bound over the
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delays associated with the requests along the exit plays in Πs, i.e., sup{dl(ν, k) | ν ∈

Πs and k is a request in ν}.

• Even ce-cost of σ w.r.t. s, denoted Coste(σ, s, ce): it is Cost(Πce), where Πce is the (possibly

empty) set of exit plays in Πs whose maximal even color is at most ce.

• ce-response cost of σ w.r.t. s, denoted ResCost(σ, s, ce): it is the least upper bound over

the ce-response costs of the exit plays in Πs, i.e., sup{ResCost(ν, ce) | ν ∈ Πs}.

Note that Coste(σ, s,−) is monotonic in the third argument, i.e., Coste(σ, s, c′e) ≥ Coste(σ, s, ce)

for all ce, c
′
e ∈ Ce such that c′e ≥ ce. We, now, introduce the notion of summary for a (memoryless)

strategy σ of Player 0 which records for each exit state s, a value, called exit value, ranging over

a finite set depending only on the set of colors. This value summarizes the overall behavior of

the exit plays of σ leading to s. We distinguish three situations (recall that Cmax
o = max(C)

and Cmax
o is odd).

The best scenario for Player 0 is when there is no exit play of σ leading to s. We represent

this situation by exploiting the special symbol `.

On the opposite side, the worst scenario is when the request-cost of σ w.r.t. s is infinite,

or there is an s-exit play of σ having a Cmax
o -request. Indeed if σ is part, within a context C,

of a global memoryless strategy σg of Player 0 such that some play consistent with σg visits

infinitely many times the global state (C, s) (hence, π visits infinitely many times s-exit plays of

σ in the context C), then σg cannot be winning for Player 0 . We use the color Cmax
o to describe

the worst scenario.

If none of the two previous conditions is fulfilled, then the exit value is a sextuple of elements:

• the first element (cost value) finitely summarizes the cost of σ w.r.t. s. We exploit the

symbol bnd0 when the cost Cost(σ, s) is zero, the symbol bnd1 when such a cost is finite

but not zero, and the symbol unb when such a cost is infinite. We denote by �b the

ordering on {bnd0, bnd1, unb} defined as: bnd0 �b bnd1 and bnd1 �b unb. Intuitively,

bnd0 �b bnd1 and bnd1 �b unb express that bounded zero-cost is better for Player 0 then

non-zero bounded cost, the latter being in turn better than unbounded cost.

• The second element (parity value) keeps track of the worst color for Player 0 over the

maximal colors along the s-exit plays of σ.

• The third element (odd value) represents the maximal odd color, if any, associated with
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an unanswered request (note that being the considered scenario distinct from the worst

one, such a color is distinct from Cmax
o and the delays of the unanswered requests along

the s-exit plays of σ are bounded).

• The last three elements in the tuple summarize the overall response behavior of the s-exit

plays of σ. We keep track of the greatest even color ce, if any, whose response-cost is

bounded and such that each s-exit play visits an even color which is at least ce (even-left

value). Moreover, we also record the greatest color ce, if any, whose response-cost is

bounded and such that the cost over the s-exit plays visiting only even colors smaller than

ce is bounded (even-right value). Finally, we keep track of the smallest even color ce, if any,

less or equal to the right even-right value such that the cost over the s-exit plays visiting

only even colors smaller or equal to ce is bounded but not null (even-middle value).

Formally, the exit values for a strategy of Player 0 are defined as follows.

Definition 2 (Exit values of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0, and

Πs the set of exit plays of σ leading to s. The exit value value(σ, s) of strategy σ w.r.t. s

is defined as follows. If Πs = ∅, then value(σ, s) =`. If instead either ReqCost(σ, s) = ∞

or there is ν ∈ Πs having a Cmax
o -request, then value(σ, s) = Cmax

o . Otherwise, value(σ, s) =

(valueCost(σ, s), valuepr(σ, s), valueo(σ, s), valueLe (σ, s), valueMe (σ, s), valueRe (σ, s)) ∈ {bnd0,

bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥})× Ce, and the following holds:

• Cost value valueCost(σ, s): (i) valueCost(σ, s) = unb if Cost(Πs) =∞, (ii) valueCost(σ, s) =

bnd0 if Cost(Πs) = 0, and (iii) valueCost(σ, s) = bnd1 otherwise.

• Parity value valuepr(σ, s): it is min�0{c ∈ C | c is the maximal color of some ν ∈ Πs}.

• Odd value valueo(σ, s): it is the greatest odd color co ∈ Co such that for some ν ∈ Πs, ν

has an unanswered co-request if such an odd color co exists; otherwise, it is 0.

• Even-left value valueLe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce) 6=

∞ and for each ν ∈ Πs, the maximal even color in ν is at least ce, if such an even color

ce exists; otherwise, it is 0.

• Even-right value valueRe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce) 6=

∞ and for each c′e ∈ Ce with c′e < ce, Coste(σ, s, c
′
e) 6=∞, if such an even color ce exists;

otherwise, it is 0.

• Even-middle value valueMe (σ, s): it is the smallest even color ce ≤ valueRe (σ, s) such that
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Coste(σ, s, ce) ∈ N \ {0} if such a color ce exists, and valueMe (σ, s) = ⊥ otherwise (⊥ is

for ‘undefined’).

We now provide further intuitions on the meaning of the exit value value(σ, s) when

value(σ, s) /∈ {`, Cmax
o }. We also give some examples which illustrate that the information

recorded by value(σ, s) is necessary for distinguishing situations which behave differently in the

same context.

The parity value valuepr(σ, s) intuitively represents the worst color for Player 0 offered by

an arbitrary infinite sequence of s-exit plays of σ in an arbitrary context. For parity winning

conditions, the parity value valuepr(σ, s) suffices for summarizing the s-exit behavior of strategy

σ [5]. For cost-parity winning conditions, we also need to keep track of the maximal odd color

valueo(σ, s) associated with unanswered requests. Note that valueo(σ, s) �0 valuepr(σ, s), and

valueo(σ, s) ≺0 valuepr(σ, s) entails that the maximal unanswered request is associated with

s-exit plays whose maximal color is even.

0

in

Gc0
0
ex

2
0

1

0

10 0

40 co
0

0

As an example, let us consider the

sub-arena Gco - parametric in the color co

- in the figure on the left. Note that all the

states are controlled by Player 1 (hence, there

is a unique strategy of Player 0). The exit

values of the instances G1 and G3 of Gco with

respect to the exit node ex differ only for the

odd value. In particular, G1 and G3 have parity value 1, and odd value 1 and 3, respectively.

While by using G1, all the plays starting from state in are winning for Player 0, the same does

not hold by using G3 since in this case, there are plays where the request 3 is answered in an

unbounded way.

0
in

0
ex

G′ρ

4
0

3
0

0

20 0

2
0

ρ

4
0

0

40

1

0

0
in

G′′ρ
0
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4

0
3

0

0

0

2ρ 0

21 4
0

0

1

For what concerns the even values, the even-left value valueLe (σ, s) represents, intuitively,
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the maximal even color that the s-exit plays of σ offer for answering – in a bounded way –

to previous requests in an arbitrary context. The even-right value valueRe (σ, s) is at least the

even-left value (by Proposition 1(1), valueRe (σ, s) ≥ valueLe (σ, s)) and is useful only when the

cost of the s-exit plays of σ is unbounded (in the other cases, valueRe (σ, s) is always the maximal

even color). Intuitively, it represents the greatest even color ce such that a ce-answer to a request

cannot unboundedly delayed by an arbitrary s-exit play of σ. As an example, let us consider

the sub-arena G′ρ – parametric in the cost ρ of the self-loop on the state with color 2 – in the

left part of the previous figure, where all the states are controlled by Player 1. The instances

G′0 and G′1 of G′ρ have even-left value 2, and even-right value 4 and 2, respectively (note that

the exit values of G′0 and G′1 differ only for the even-right value). While for G′0, all the plays

starting from state in are winning for Player 0, the same does not hold for G′1, since in this

case, there are plays where the external request 3 is answered in an unbounded way. Finally, in

order to illustrate the importance of the even-middle value, let us consider the sub-arena G′′ρ in

the right part of the previous figure, where again all the states are controlled by Player 1. The

instances G′′0 and G′′1 of G′′ρ have even-left value 2, right-even value 4, and even-middle value ⊥

and 2, respectively. While for G′′0 , all the plays starting from in are winning for Player 0, for G′′1 ,

there are plays where the external request 3 is answered in an unbounded way. We make the

following observations which easily follow from Definition 2.

Proposition 1. Let σ be a strategy of Player 0 in G and s ∈ Exit such that value(σ, s) =

(f, cpr, co, c
L
e , c

M
e , c

R
e ). Then:

1. co �o cpr, c
L
e ≤ cpr, cLe ≤ cRe , and cMe ∈ [cLe , c

R
e ] if cMe 6= ⊥.

2. cMe = ⊥ if f = bnd0, and cMe 6= ⊥ if f = bnd1.

3. cRe = max(Ce) if f 6= unb, and cRe < max(Ce) if f = unb and cMe = cRe .

4. if cpr ∈ Ce and either f 6= unb, or cLe < cRe , or cMe = cRe , then it holds that cLe = cpr.

Proof. Let Πs be the set of exit plays of strategy σ leading to s.

Proof of Property 1. For the inequality co �o cpr, we assume on the contrary that co �o cpr,

and derive a contradiction. Since co ∈ Co ∪ {0}, by definition of the ordering �0, we have that

cpr ∈ Co and cpr > co. By definition of parity value, there is an exit play ν ∈ Πs whose maximal

color is cpr. Since cpr is odd, there is an unanswered cpr-request along ν. By definition of odd

value, we obtain that co ≥ cpr, which is a contradiction. Hence, co �o cpr.

17



Now, we show that cLe ≤ cpr. By definition of parity value, there is an exit play ν ∈ Πs

whose maximal color is cpr. By definition of even-left value, the maximal even color along ν is

at least cLe . Hence, the result follows.

Next, let us prove that cLe ≤ cRe . If cLe = 0, the result is obvious. Otherwise, by definition of

even-left value, ResCost(σ, s, cLe ) 6= ∞ and for each exit play ν ∈ Πs, the maximal even color

in ν is at least cLe . Hence, for each even color ce with ce < cLe , Coste(σ, s, ce) = 0. Hence, by

definition of even-right value, the result follows.

For concluding the proof of Property 1, we need to show that cMe ∈ [cLe , c
R
e ] if cMe 6= ⊥.

Assume that cMe 6= ⊥. By Definition 2, cMe ≤ cRe and Coste(σ, s, cMe ) 6= 0. Hence, there is an exit

play ν ∈ Πs whose maximal color is at most cMe . Such a maximal color is at least the even-left

value cLe . Hence cLe ≤ cMe , and the result follows.

Proof of Property 2. If f = bnd0, then Cost(Πs) = 0. Hence, for each even color ce,

Coste(σ, s, ce) = 0. By definition of even-middle value, we obtain that cMe = ⊥. Now, assume

that f = bnd1. Hence, Cost(Πs) ∈ N \ {0}, cRe = max(Ce), and Coste(σ, s, c
R
e ) ∈ N \ {0}. It

follows that cMe 6= ⊥, which concludes the proof of Property 2.

Proof of Property 3. The first part is obvious (i.e., cRe = max(Ce) if f 6= unb). For the second

part, assume that f = unb and cMe = cRe . We need to show that cRe < max(Ce). We assume

that cRe = max(Ce) and derive a contradiction. Since no play in Πs visits the odd color Cmax
o ,

we have that Πs coincides with the set of exit plays of strategy σ leading to s whose maximal

even color is at most cRe . Since f = unb, we obtain that Coste(σ, s, c
R
e ) = ∞. On the other

hand, by hypothesis, cMe = cRe . By Definition 2, it follows that Coste(σ, s, c
R
e ) 6=∞, which is a

contradiction. Hence, cRe < max(Ce).

Proof of Property 4. Assume that cpr ∈ Ce. We need to show that cLe = cpr whenever either

f 6= unb, or cLe < cRe , or cMe = cRe .

• f 6= unb: since cpr is even, by definition of parity value, for each play ν ∈ Πs, the maximal

color of ν is even and is at least cpr. Since f 6= unb, by Definition 2, we obtain that

cLe ≥ cpr. By Property 1, cLe ≤ cpr. Hence, cLe = cpr, and the result holds.

• f = unb and cLe < cRe : since cLe < cRe , by definition of even-left and even-right value, the

set of even colors ce such that ce < cRe and there is an s-exit play of σ whose maximal even

18



color is ce is not empty, and cLe is the minimum over such colors. Hence, there exists a play

ν ∈ Πs whose maximal even color is cLe . Since cpr is even, by definition of parity value,

the maximal color of ν is at least cpr. Hence, cLe ≥ cpr. Thus, by applying Property 1, we

obtain that cLe = cpr.

• f = unb and cLe = cMe = cRe . By definition of even-middle value, there is a play ν ∈ Πs

whose maximal even color is cMe . Thus, since cLe = cMe , by proceeding as in the previous

case, the result follows.

This concludes the proof of Proposition 1.

Definition 3 (Summaries of Player 0 strategies). The set EC of exit values for the set C of

colors is the finite set {`, Cmax
o } ∪ E ′C , where E ′C is the set of tuples (f, cpr, co, c

L
e , c

M
e , c

R
e ) ∈

{bnd0, bnd1, unb}× C̃× C̃o×Ce× (Ce∪{⊥})×Ce satisfying Conditions (1)–(4) in Proposition 1.

A summary of G is a mapping S : Exit 7→ EC associating to each exit state an exit value.

The summary S(σ) of a strategy σ of Player 0 in G is the summary of G associating to each

s ∈ Exit, the exit value value(σ, s).

3.2. Summary gadgets

In this Subsection, for each summary S of the given partial cost-parity arena G, we define a

simple partial-cost parity game Gad(G,S), exposing the same interface as G and independent of

the set of ‘internal’ states in G, such that there is a unique strategy σS of Player 0 in Gad(G,S).

Moreover, σS is non-losing and the exit values of σS correspond to the exit values of any strategy

of Player 0 in G having S as summary (Proposition 2).

Definition 4 (Summary-Gadget Arena). Let S be a summary of G. Given ex ∈ Exit, we first

define the sub-gadget Gad(G,S, ex) of G for summary S and ex, which is the partial cost-parity

game with set of states Sex ∪ {S, ex} and set of edges Rex, where:

• All the states in Sex ∪ {S} are controlled by Player 1, S has color 0 and is the initial state,

ex is the unique exit state and has color 0, and the player of state ex is as in G.

Moreover, if S(ex) =`, then Sex = ∅, and Rex = ∅. On the opposite side, if S(ex) = Cmax
o ,

then Sex consists of a unique state s having color Cmax
o , and Rex consists of two edges, one from
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state S to state s with cost 0, and the other one from s to ex with cost 0 as well. Otherwise, let

S(ex) = (f, cpr, co, c
L
e , c

M
e , c

R
e ). Let do and de be the colors in C defined as follows:

do =

 cpr if co ∈ {0, cpr}

co otherwise

de =

 cLe if co ∈ {0, cpr}

max(Ce) otherwise

Then, we distinguish six cases, where in the figures illustrating the construction, we assume that

ex is controlled by Player 0.

Case f = bnd0.

0

S

0

ex

cLe0 cpr
0

0

de0 do
0

0

In this case, we have cMe = ⊥ and cRe = max(Ce).

The sub-gadget Gad(G,S, ex) for this case is a DAG

and is illustrated on the left. Note that the cost of any

path from state S to the exit state ex is 0.

Case f = bnd1.

0

S

0

ex

cMe
1 0

cLe0
cpr

ρ

0

de
0 do

0

0

In this case, we have that cMe ∈ Ce, c
M
e ∈ [cLe , c

R
e ],

and CRe = max(Ce). The associated sub-gadget is a

DAG and it is illustrated on the right, where ρ = 0 if

cLe < cMe , and ρ = 1 otherwise. Note that the overall

cost of all paths from state S to the exit state ex is 1.

Moreover, according to the definition of even-middle

value, cMe represents the smallest even color ce such that the overall cost of all exit plays leading

to ex and having maximal even color ce is finite and non-null. Additionally, if cLe < cMe , according

to the definition of even-left value, there are exit plays leading to ex whose maximal even color

is cLe , and the overall cost of such exit plays is 0.

Case f = unb, cMe = ⊥, and cLe = cRe .

0

S

0

ex

cRe0

1

cpr
0

0

de0 do
0

0

The sub-gadget Gad(G,S, ex) for this case is

illustrated on the left. When f = unb, the overall

cost of all exit plays leading to ex is infinite. This is

implemented by a self-loop with cost 1 on the state
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having color cRe . Note that for a strategy σ of Player 0

with valueCost(σ, ex) = unb and valueRe (σ, ex) = cRe , the

overall cost of all ex-exit plays having maximal even color at most cRe may be finite. However,

in this case, cRe < max(Ce) and ResCost(σ, ex, cRe + 2) =∞. Thus, the self-loop with cost 1 in

the sub-gadget above takes into account also these possible scenarios. Additionally, note that

by Proposition 1, this is the unique case where assuming that cpr is even, cLe may be strictly

smaller than cpr (in all the other case, if cpr is even then cLe = cpr). Thus, the self-loop with

cost 1 in the sub-gadget above also ensures that for the summarized strategies, the even-left

value and right-even value coincide with cLe .

Case f = unb, cMe = ⊥, and cLe < cRe .

0

S

0

ex
cRe

0 0
1

cLe0
cpr

0

0

de
0 do

0

0

This case is similar to the previous one. The unique

difference is that now cLe < cRe . Thus, the associated

sub-gadget – illustrated on the right – summarizes

strategies σ of Player 0 for which, in particular,

valueLe (σ, ex) = cLe and there are exit plays leading to

ex whose maximal even color is cLe , and the overall cost of such exit plays is 0.

Case f = unb, cMe ∈ Ce, and cMe < cRe . This case is similar to the previous one, but now

cMe ∈ Ce, hence, cMe ∈ [cLe , c
R
e ]. The associated sub-gadget is illustrated in the left part of the

figure below, where ρ = 0 if cLe < cMe , and ρ = 1 otherwise.

Case f = unb, cMe ∈ Ce, and cMe = cRe . We have that cMe ∈ [cLe , c
R
e ] and cRe < max(Ce).

The associated sub-gadget is illustrated on the right of the figure below, where cR+ = cRe + 2,

ρ = 0 if cLe < cMe , and ρ = 1 otherwise. In this case there is an even color, namely cR+, whose

response-cost with respect to ex is infinite. This is consistent with the fact that for all strategies

σ of Player 0 such that valueCost(σ, ex) = unb, valueRe (σ, ex) = cRe , and Coste(σ, ex, cRe ) 6=∞, it

holds that ResCoste(σ, ex, cRe + 2) =∞.

0

S

0

ex

cLe0 cpr
ρ

0

cMe1 0

cRe

0 0
1

de0 do
0

0

0

S

0

ex

cLe0 cpr
ρ

0

cRe1 0

cRe

0

cR+

0
0

1

de
0 do

0

0

We now define the gadget arena Gad(G,S) for the given summary S, which is intuitively
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obtained by merging the sub-gadgets Gad(G,S, ex) for the various exit states ex ∈ Exit and by

adding the state in. Formally, assuming that Sex ∩ Sex′ = ∅ (i.e., sub-gadgets associated with

distinct exit states share only state S), Gad(G,S) has the same interface as G and satisfies the

following: the set of states of Gad(G,S) is {in,S}∪Exit∪
⋃

ex∈Exit Sex and the set of transitions

is {(in,S)} ∪
⋃

ex∈Exit Rex, where transition (in,S) has cost 0.

Remark 1. Note that in a summary-gadget arena Gad(G,S), every state which is not in

{in} ∪ Exit is controlled by Player 1. In particular, there is exactly one strategy of Player 0,

and such a strategy is non-losing.

By construction, we deduce that the exit values of the unique strategy σS in the gadget

Gad(G,S) correspond to the exit values of any strategy of Player 0 in G having S as summary.

Proposition 2. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, S a summary of G,

σS the unique strategy of Player 0 in Gad(G,S), and s ∈ Exit. Then, value(σS , s) = S(s).

Proof. If S(s) ∈ {`, Cmax
o }, the result directly follows from Definition 4. Now assume that

S(s) = (f, cpr, co, c
L
e , c

M
e , c

R
e ). By construction, value(σS , s) /∈ {`, Cmax

o }. Let Πs be the

non-empty set of exit plays of σS leading to s. Moreover, let do and de be the colors exploited

in Definition 4. Recall that

do =

 cpr if co ∈ {0, cpr}

co otherwise

de =

 cLe if co ∈ {0, cpr}

max(Ce) otherwise

We need to prove that value(σS , s) = S(s).

Cost Value. By construction of the sub-gadget Gad(G,S, s) (Definition 4), we easily deduce that

valueCost(σS , s) = f .

Parity Value. Now we prove that valuepr(σS , s) = cpr. By construction of Gad(G,S, s), there

are three types of exit plays ν in Πs:

• cpr-plays, whose set of visited colors is {0, cLe , cpr}.

• do-plays, whose set of visited colors is {0, de, do}.

• even-plays, which visit only even colors and whose maximal even color is at least cLe .
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We distinguish two cases:

1. co ∈ {0, cpr}: hence, do = cpr and de = cLe , and the do-plays are cpr-plays. By

Proposition 1(1), cLe ≤ cpr. Thus, if cpr is odd or cpr = cLe , we obtain that valuepr(σS , s) =

cpr. Otherwise, cpr is even, cLe < cpr, and by Proposition 1(4), f = unb, cLe = ⊥, and

cLe = cRe . By construction of the sub-gadget Gad(G,S, s) for the case f = unb, cLe = ⊥,

and cLe = cRe , it holds that the maximal color in each exit play in Πs is cpr. Thus,

valuepr(σS , s) = cpr.

2. co /∈ {0, cpr}: hence, do = co and de = max(Ce). Since co < Cmax
o , we have that the

maximal color in the do-plays is the maximal even color max(Ce). This means that

the do-plays have no role in the calculation of the parity value valuepr(σS , s). Thus, by

proceeding as in the previous case, the result follows.

Odd Value. Next we show that valueo(σS , s) = co. By construction of Gad(G,S, s), we have

that valueo(σS , s) = min�0
{cpr, 0, do}. Thus, we need to prove that co = min�0

{cpr, 0, do}. We

distinguish three cases:

• co = 0. Hence, do = cpr. By Proposition 1(1), co �0 cpr. This means that cpr is even and

min�0{cpr, 0, do} = 0, and the result follows.

• co 6= 0 and co = cpr. Hence, do = cpr and cpr is odd. It follows that min�0
{cpr, 0, do} = cpr,

and the result holds in this case too.

• co /∈ {cpr, 0}: hence, do = co and co is odd. Since co �0 cpr (Proposition 1(1)), we obtain

that min�0{cpr, 0, do} = co as desired.

Even-Left Value. We now show that valueLe (σS , s) = cLe . Recall that de ∈ {cLe ,max(Ce)} and

by Proposition 1, cLe ≤ cRe , cLe ≤ cpr, and cMe ∈ [cLe , c
R
e ] if cMe 6= ⊥. Thus, by construction of

Gad(G,S, s), the following holds:

(i) the maximal even color in each exit play ν ∈ Πs is at least cLe ;

(ii) for each exit play ν ∈ Πs, the cLe -response cost of ν is at most 1.

(iii) there is some exit play ν ∈ Πs whose set of visited colors is {0, cLe , cpr}.

Conditions (i) and (ii) imply that valueLe (σS , s) ≥ cLe . In order to show that valueLe (σS , s) ≤ cLe ,

we distinguish two cases:

• either f 6= unb, or cLe < cRe , or cMe = cRe : we show that there exists an exit play in Πs
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whose maximal even color is cLe , hence, the result follows. By Proposition 1(4), either cpr

is odd or cpr = cLe . Thus, by Condition (iii), the result follows.

• f = unb, cLe ≥ cRe , and cMe 6= cRe . By Proposition 1(1), we deduce that f = unb, cLe = cRe

and cMe = ⊥. If either cpr is odd or cpr ≤ cLe , then we proceed as in the previous case.

Otherwise, cpr is even and cpr > cLe . By construction of the sub-gadget Gad(G,S, s) for the

case where f = unb, cLe = cRe and cMe = ⊥, it holds that ResCost(σS , s, cpr) =∞ and the

set of even colors visited by the exit plays in Πs is {0, cLe , cpr, de}. Since de ∈ {cLe ,max(Ce)},

by Condition (iii) it follows that for each even color ce > cLe , either there is an exit play

whose maximal even color is strictly smaller than ce, or ResCost(σS , s, ce) = ∞. This

entails that valueLe (σS , s) ≤ cLe , and the result follows.

Even-Right Value. We need to prove that valueRe (σS , s) = cRe . If f 6= unb, then being

valueCost(σS , s) = f , by Proposition 1(3), we have that valueRe (σS , s) = cRe = max(Ce). Now

assume that f = unb. By construction of Gad(G,S, s) and Proposition 1(1), the following holds:

• for each even color ce < cRe , Coste(σ, s, ce) 6=∞;

• for each exit play ν ∈ Πs, the cRe -response cost of ν is at most 1.

The previous conditions entail that valueRe (σS , s) ≥ cRe . In order to show that valueRe (σS , s) ≤ cRe ,

we distinguish two cases (recall that f 6= unb):

• f = unb and either cLe < cRe , or cMe = cRe : by construction either (i) Coste(σ, s, c
R
e ) =∞,

or (ii) Coste(σ, s, c
R
+) = ∞ and ResCost(σS , s, c

R
+) = ∞, where cR+ = cRe + 2. Hence, the

result follows.

• f = unb, cLe ≥ cRe , and cMe 6= cRe . By Proposition 1(1), we deduce that f = unb, cLe = cRe

and cMe = ⊥. First assume that either cpr is odd or cpr ≤ cRe . In this case, by construction

of the sub-gadget Gad(G,S, s) for the case where f = unb, cLe = cRe and cMe = ⊥, it holds

that Coste(σ, s, c
R
e ) = ∞ and the result holds. Otherwise, cpr is even, cpr > cRe , and by

construction, (i) for each even color ce ∈ [cRe + 2, cpr], ResCost(σS , s, ce) =∞ and (ii) for

each even color ce ≥ cpr, Coste(σ, s, ce) =∞. Hence, the result holds in this case as well.

Even-Middle Value. Finally, we show that valueMe (σS , s) = cMe . We proceed according to the

cases exploited in the construction of Gad(G,S, s):
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• Case f = bnd0: in this case valueCost(σS , s) = bnd0, and by Proposition 1(2), valueMe (σS , s) =

cMe = ⊥.

• Case f = bnd1: by Proposition 1(4), cpr = cLe if cpr is even. Thus, by construction, we

have that Coste(σ, s, c
M
e ) = 1 and for each even color ce < cMe , Coste(σ, s, ce) = 0. This

entails that valueMe (σS , s) = cMe .

• Case f = unb, cMe = ⊥, and cLe = cRe : by construction for each even color ce < cRe ,

Coste(σ, s, ce) = 0, and either (i) Coste(σ, s, cRe ) = 0 (in case cpr is even and cpr > cRe ), or

(ii) Coste(σ, s, c
R
e ) =∞. Hence, valueMe (σS , s) = ⊥.

• Case f = unb, cMe = ⊥, and cLe < cRe : by Proposition 1(4), cpr = cLe if cpr is even. By

construction, it follows that for each even color ce < cRe , Coste(σ, s, ce) = 0. Moreover,

Coste(σ, s, c
R
e ) =∞. Hence, valueMe (σS , s) = ⊥.

• Case f = unb, cMe ∈ Ce, and cMe < cRe : this case is similar to the case f = bnd1.

• Case f = unb, cMe ∈ Ce, and cMe = cRe : this case is similar to the case f = bnd1.

This concludes the proof of Proposition 2.

By Proposition 2 and Definition 4, we deduce the following result (Proposition 3). Proposition 3

will be exploited in Section 5 to show that the existence of a winning memoryless strategy σg

for Player 0 in a hierarchical arena V where G is exploited as a sub-arena within a context C

ensures the existence of a winning memoryless strategy for Player 0 in the arena obtained form

V by replacing G in the context C with the gadget Gad(G,S) where S is the summary of the

non-losing strategy of G induced by the global strategy σg within the context C.

Proposition 3. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, σ a strategy of

Player 0, σS the unique strategy of Player 0 in Gad(G,S(σ)), and s ∈ Exit. Then, value(σ, s) =

value(σS , s). Moreover, if value(σ, s) /∈ {`, Cmax
o }, the following holds:

1. Let ν be an s-exit play of σS with maximal even color ce. Then, either (i) Coste(σ, s, ce) ≥

Coste(σS , s, ce), and there is an s-exit play ν′ of σ whose maximal even color is at most

ce, or (ii) Coste(σS , s, ce) = ∞ and ResCost(σ, s, c′e) = ∞ for some even color c′e ∈ Ce

such that c′e ≤ ce + 2.

2. For each ce ∈ Ce, ResCost(σS , s, ce) =∞ entails that ResCost(σ, s, ce) =∞.

Proof. By Proposition 2, value(σS , s) = S(σ)(s) = value(σ, s). Hence, the first part of the

proposition holds. For the second part, assume that value(σ, s) /∈ {`, Cmax
o }. Hence, value(σ, s)
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is of the form (f, cpr, co, c
L
e , c

M
e , c

R
e ). Let do and de be the colors exploited in Definition 4. Since

S(σ)(s) = (f, cpr, co, c
L
e , c

M
e , c

R
e ), we have that:

do =

 cpr if co ∈ {0, cpr}

co otherwise

de =

 cLe if co ∈ {0, cpr}

max(Ce) otherwise

Proof of Property 1. let ν be an s-exit play of σS with maximal even color ce. We need

to show that either Condition (i) or Condition (ii) of Property 1 holds. By construction of

the gadget Gad(G,S(σ)) in Definition 4 and since S(σ)(s) = (f, cpr, co, c
L
e , c

M
e , c

R
e ), one of the

following cases occur according to the set Col(ν) of colors visited by the exit play ν.

• Case Col(ν) = {0, cLe , cpr}: we first assume that either f 6= unb, or cLe < cRe or cMe = cRe .

By Proposition 1(4), either cpr is odd, or cpr = cLe . Hence, the maximal even color ce in

ν is cLe . Moreover, since either f 6= unb, or cLe < cRe or cMe = cRe , by definition of even

values, it easily follows that there is an s-exit play ν′ of σ whose maximal even color

is cLe . Moreover, by construction of the sub-gadget Gad(G,S(σ), s) for the cases where

either f 6= unb, or cLe < cRe or cMe = cRe , it holds that either (i) Coste(σS , s, c
L
e ) = 0, or

(ii) Coste(σS , s, c
L
e ) = 1 and cLe = cMe . Since ce = cLe , in the first case Condition (i) of

Property 1 trivially follows. In the second case, since cLe = cMe , by definition of even-middle

value, it holds that Coste(σ, s, c
L
e ) ≥ 1. Hence, Condition (i) of Property 1 holds in this

case as well.

Now assume that f = unb, cLe ≥ cRe and cMe 6= cRe . By Proposition 1(1), it follows that

cLe = cRe and cMe = ⊥. We distinguish two sub-cases:

– either cpr is odd or cpr ≤ cRe : hence, the maximal even color ce in ν is cRe . Moreover,

by construction of the sub-gadget Gad(G,S(σ), s) for the case where f = unb,

cMe = ⊥, and cLe = cRe (and being either cpr is odd or cpr ≤ cRe ), we obtain

that Coste(σS , s, c
R
e ) = ∞. Furthermore, by definition of even-right value, either

Coste(σ, s, c
R
e ) = ∞ (this entails that there are s-exit plays of σ whose maximal

color is at most cRe ) or ResCost(σ, s, cRe + 2) =∞. Hence, being ce = cRe , Property 1

follows.
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– cpr is even and cpr > cLe : hence, the maximal even color ce in ν is cpr. By construction

of the sub-gadget Gad(G,S(σ), s) for the case where f = unb, cMe = ⊥, and cLe = cRe

(and being cpr even and cpr > cRe ), we obtain that Coste(σS , s, cpr) = ∞. Since

valuepr(σ, s) = cpr, by definition of parity value, the maximal color of any s-exit play

of σ is even and it is at least cpr. Thus, for each even color c′e < cpr, it holds that

Coste(σ, s, c
′
e) = 0. Moreover, being cRe = valueRe (σ, s) and cpr > cRe , by definition of

even-right value, we deduce that ResCoste(σ, ex, cpr) = ∞. Hence, being ce = cpr,

Condition (ii) of Property 1 directly follows.

• Case Col(ν) = {0, cMe } with cMe 6= ⊥: hence ce = cMe and by construction of the

sub-gadget Gad(G,S(σ), s) for the cases where cMe 6= ⊥, it holds that Coste(σS , s, c
M
e ) = 1.

Since valueMe (σ, s) = cMe , by definition of even-middle value, Coste(σS , s, c
M
e ) ≥ 1 (in

particular, there is an s-exit play ν′ of σ whose maximal even color is at most cMe ). Since

ce = cMe , Condition (i) of Property 1 trivially follows.

• Case Col(ν) = {0, cRe } with f = unb and either cLe < cRe or cMe 6= ⊥: hence, ce = cRe .

Moreover, by Proposition 1(1), either cLe < cRe or cLe = cMe = cRe . It easily follow that there

is some s-exit play ν′ of σ whose maximal even color is at most cLe (hence, the maximal even

color in ν′ is at most cRe ). By construction of the sub-gadget Gad(G,S(σ), s) for the cases

where f = unb and either cLe < cRe or cMe 6= ⊥, it holds that either (i) Coste(σS , s, c
R
e ) =∞,

or (ii) Coste(σS , s, c
R
e ) = 1 and cMe = cRe . In the first case, if Coste(σ, s, c

R
e ) = ∞, then

Condition (i) of Property 1 holds with ce = cRe . Otherwise, by definition of even-right value

and since valueRe (σ, s) = cRe , we have that ResCost(σ, s, cRe + 2) =∞, and Condition (ii)

of Property 1 with ce = cRe directly follows. Now, assume that Coste(σS , s, c
R
e ) = 1 and

cMe = cRe . Since valueMe (σ, s) = cMe , by definition of even-middle value, it holds that

Coste(σS , s, c
M
e ) ≥ 1. Hence, being ce = cMe , Condition (i) of Property 1 holds.

• Case Col(ν) = {0, cRe , cR+} with f = unb, cR+ = cRe +2, and cMe = cRe : hence, ce = cRe +2.

By construction of the sub-gadget Gad(G,S(σ), s) for the case where f = unb and cMe = cRe ,

we have that Coste(σS , s, c
R
e + 2) = ∞. Since valueMe (σ, s) = cMe = cRe , by definition of

even-middle value, it holds that Coste(σ, s, c
R
e ) 6=∞. Moreover, since valueRe (σ, s) = cRe ,

by definition of even-right value, we deduce that ResCost(σ, s, cRe + 2) =∞. Hence, being

ce = cRe + 2, Condition (ii) of Property 1 holds.

• Case Col(ν) = {0, de, do}: hence, either (i) de = cLe and do = cpr, or (ii) de = max(Ce)
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and do = co. In the first case, we have that Col(ν) = {0, cLe , cpr} and this case has

already been examined. Otherwise, Col(ν) = {0,max(Ce), co}, and since Cmax
o never

occurs in the sub-gadget Gad(G,S(σ), s), we have that ce = max(Ce) and Coste(σS , s, ce)

coincides with the cost Cost(σS , s) of σS w.r.t. s. Moreover, by construction, either (i)

f = bnd0 and Cost(σS , s) = 0, or (ii) f = bnd1 and Cost(σS , s) = 1, or (iii) f = unb and

Cost(σS , s) =∞. Thus, since valueCost(σ, s) = f and the maximal color of each exit play

of σ leading to s is at most max(Ce), by definition of cost-value, the result easily follows.

Proof of Property 2. Let ce ∈ Ce such that ResCost(σS , s, ce) =∞. We need to show that

ResCost(σ, s, ce) =∞. By construction of the gadget Gad(G,S(σ)) (Definition 4), one of the

following two conditions holds:

• f = unb, cMe = ⊥, cLe = cRe , cpr is even, cRe < cpr, and ce ∈ [cRe +2, cpr]: since valuepr(σ, s) =

cpr, by definition of parity value, the maximal color of any s-exit play of σ is even and

it is at least cpr. Thus, for each even color c′e < cpr, it holds that Coste(σ, s, c
′
e) = 0.

Since ce ∈ [cRe + 2, cpr], then Coste(σ, s, c
′
e) = 0 for each even color c′e < ce. Moreover,

being cRe = valueRe (σ, s) and ce > cRe , by definition of even-right value, we deduce that

ResCoste(σ, ex, ce) =∞, and Property 2 holds.

• f = unb, cMe = cRe , and ce = cRe + 2: hence, valueRe (σ, s) = valueMe (σ, s) = cRe . By

definition of even-middle value, we deduce that cRe < max(Ce) and Coste(σ, ex, cRe ) 6=∞.

Thus, by definition of even-right value, it follows that ResCoste(σ, ex, cRe + 2) =∞, and

Property 2 holds.

This concludes the proof of Proposition 3.

3.3. Relevant summaries

Not all the summaries of the given partial cost-parity arena G are associated with non-losing

(memoryless) strategies (of Player 0). On the other hand, checking whether a summary is

associated with a non-losing memoryless strategy is not an easy task since we have to check the

fulfillment of unboundedness conditions. However, we can get around the problem by exploiting

monotonicity properties of the cost-parity winning conditions. In this section, we define a

reflexive and transitive relation w over the set of summaries. Intuitively, S w S ′ when S is not

worse than S ′ for Player 0. A summary S is then relevant if S(σ) w S for some non-losing

28



memoryless strategy σ. As we will see in Section 4, checking whether a summary is relevant can

be done in polynomial space.

Definition 5 (Relevant summaries). Let w be a binary relation over EC defined as follows:

• `w ev for all ev ∈ EC ;

• ev w Cmax
o for all ev ∈ EC ;

• (f, cpr, co, c
L
e , c

M
e , c

R
e ) w (f̃ , ˜cpr, c̃o, c̃Le ,

˜cMe , c̃
R
e ) if f �b f̃ , cpr �0 ˜cpr, co �0 c̃o, cLe ≥ c̃Le ,

cRe ≥ c̃Re , and the following holds:

– if cMe 6= ⊥, then either ˜cMe 6= ⊥ and cMe ≥ ˜cMe , or ˜cMe = ⊥ and cMe ≥ c̃Re .

Given two summaries S and S ′ of G, we say that S is not worse than S ′ for Player 0, written

S w S ′, if S(s) w S ′(s) for all s ∈ Exit. A summary S of G is relevant iff there is a memoryless

non-losing strategy σ in G such that S(σ) w S.

Remark 2. The binary relation w over the set of summaries is reflexive and transitive.

Note that if G has no exits, then the unique summary is the empty set, and such a summary

is relevant iff there is a memoryless winning strategy of Player 0 from in. By construction, we

obtain the following result, which represents the converse of Proposition 3. Proposition 4 will be

exploited in Section 5 to show that in a hierarchical arena V where G is exploited as a sub-arena

in a context C, the existence of winning memoryless strategies for Player 0 in the arena obtained

from V by replacing G in the context C with the gadget Gad(G,S) for some relevant summary S

of G implies the existence of winning strategies for Player 0 in the original arena.

Proposition 4. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, S a summary of G, σ

a strategy of Player 0 such that S(σ) w S, σS the unique strategy of Player 0 in Gad(G,S), and

s ∈ Exit. Then value(σ, s) w value(σS , s). Moreover, if S(s) /∈ {`, Cmax
o }, the following holds:

1. Let ν be an s-exit play of σ, ce the maximal even color of ν, and Coste(σ, s, ce) = m ∈

N ∪ {∞}. Then, either (i) Coste(σS , s, ce) = m′ where m′ > 0 if m > 0, and m′ =∞ if

m = ∞, and there is a s-exit play ν′ of σS whose maximal even color is at most ce, or

(ii) Coste(σ, s, ce) =∞ and ResCost(σS , s, c
′
e) =∞ for some even color c′e ∈ Ce such that

c′e ≤ ce + 2.

2. For each ce ∈ Ce \ {0}, if ResCost(σ, s, ce) =∞, one of the following holds:

• either ResCost(σS , s, c
′
e) =∞ for some even color c′e ≤ ce,
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• or there is an even color c′e ≤ valueRe (σ, s) < ce such that Coste(σS , s, c
′
e) =∞.

Proof. By Proposition 2, value(σS , s) = S(s). Thus, since S(σ) w S, we obtain that value(σ, s) w

value(σS , s), and the first part of the proposition holds. For the second part, assume that

S(s) /∈ {`, Cmax
o }. Hence, S(s) is of the form (f, cpr, co, c

L
e , c

M
e , c

R
e ).

Proof of Property 1. let ν be an s-exit play of σ with maximal even color ce and such that

Coste(σ, s, ce) = m ∈ N∪{∞}. Note that by definition of even-left value, the maximal even color

of ν is at least valueLe (σ, s). Hence, ce ≥ valueLe (σ, s). We need to show that either Condition (i)

or Condition (ii) of Property 1 holds. We distinguish the following cases according to whether

the even ce-cost Coste(σ, s, ce) is zero, finite and non-null, or infinite.

• Coste(σ, s, ce) = 0: since S(σ) w S, we have that ce ≥ valueLe (σ, s) ≥ cLe . By construction

of the gadget Gad(G,S) (Definition 4), there exists an exit play ν′ of σS whose set of

visited colors is {0, cLe , cpr}. If the maximal even color of ν′ is cLe , then being ce ≥ cLe ,

Condition (i) of Property 1 directly follows. Otherwise, cpr is even and the maximal even

color of ν′ is cpr. In this case, being S(σ) w S and cpr even, we have that valuepr(σ, s) �o

valuepr(σS , s) = cpr and valuepr(σ, s) is even. Being valuepr(σ, s) even and ce be the

maximal even color of the s-exit play ν of σ, by definition of parity value, we deduce that

ce ≥ valuepr(σ, s). Hence, ce ≥ cpr, and Condition (i) of Property 1 holds in this case as

well.

• Coste(σ, s, ce) ∈ N\{0}: hence, by definition of even-middle value, either valueMe (σ, s) 6= ⊥

and ce ≥ valueMe (σ, s), or valueMe (σ, s) = ⊥ and ce > valueRe (σ, s). Since S(σ) w S, it

follows that either (*) cMe 6= ⊥ and ce ≥ cMe , or (**) cMe = ⊥ and ce ≥ cRe . If Condition (*)

holds, by construction of the gadget Gad(G,S), there is an a s-exit play ν′ of σS whose

maximal even color is cMe and Coste(σS , s, c
M
e ) ≥ 1. Hence, being cMe ≤ ce, Condition (i)

of Property 1 directly follows. Now, assume that Condition (**) holds. Since cMe = ⊥,

Coste(σ, s, ce) 6= 0, and S(σ) w S, we deduce that f = unb. Let c′e be the even color

given by cRe if cpr is either odd or cpr ≤ cRe , and by cpr otherwise. By construction

of the sub-gadgets Gad(G,S, s) for the cases where f = unb and cMe = ⊥, it follows

that Coste(σS , s, c
′
e) = ∞ (in particular, there exists an s-exit play ν′ of σS whose

maximal even color is at most c′e). If c′e = cRe , being ce ≥ cRe , then Condition (i) of

Property 1 holds. Otherwise, c′e = cpr and cpr is even. Being cpr even and valuepr(σ, s) �o

30



valuepr(σS , s) = cpr, by definition of parity value, we deduce that valuepr(σ, s) is even and

ce ≥ valuepr(σ, s) ≥ cpr (recall that ce is the maximal even color in the s-exit play ν of σ).

Hence, being c′e = cpr, Condition (i) of Property 1 holds in this case too.

• Coste(σ, s, ce) =∞: hence, ce ≥ valueRe (σ, s). Since S(σ) w S, it holds that valueRe (σ, s) ≥

cRe and f = unb. By construction of the sub-gadget Gad(G,S, s) for the cases where f =

unb, we deduce that either Coste(σS , s, c
R
e ) =∞, or cRe + 2 ∈ Ce and ResCost(σS , s, c

R
e +

2) =∞. In the first case, being ce ≥ cRe , Condition (i) of Property 1 directly follows. In

the second case, we set c′e = cRe + 2, and being c′e ≤ ce + 2, Condition (ii) of Property 1

follows.

Proof of Property 2. Let ce ∈ Ce such that ce 6= 0 and ResCost(σ, s, ce) =∞. By definition

of right-even value, we deduce that valueRe (σ, s) < ce. Moreover, since S(σ) w S, we have

that f = unb and cRe ≤ valueRe (σ, s). By construction of the sub-gadget Gad(G,S, s) for

the cases where f = unb, it follows that either Coste(σS , s, c
R
e ) = ∞ or cRe + 2 ∈ Ce and

ResCost(σS , s, c
R
e + 2) =∞. In the first case, we set c′e = cRe and being cRe ≤ valueRe (σ, s) < ce,

we get c′e ≤ valueRe (σ, s) < ce and Coste(σS , s, c
′
e) = ∞. Hence, Property 2 follows. In the

second case, we set c′e = cRe + 2 and being cRe < ce, we get c′e ≤ ce and ResCost(σS , s, c
′
e) =∞,

and the result follows.

Note that the set of relevant summaries in G is empty iff there does not exist a memoryless

non-losing strategy in G. By Theorem 1, checking this condition can be done in polynomial

space. In this case, we associate with G a simple partial cost-parity arena (bad gadget), where

Player 0 always loses.

Definition 6 (Bad-Gadget Arena). The bad-gadget arena BadGad(G) of a partial cost-parity

arena G is the partial cost-parity game having the same interface as G and defined as follows:

BadGad(G) has a unique ‘internal’ state s /∈ {in} ∪ Exit, which is controlled by Player 0, and a

unique transition, namely (in, s), which has cost 0. Moreover, each state has color 0.

4. Checking relevance of summaries

We reduce the problem of checking summary relevance in partial cost-parity arenas to verifying

the existence of memoryless strategies in cost-parity arenas under a simple imperfect-information
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setting. Formally, an observation-based cost-parity arena (OCPA) is a cost-parity arena G =

〈A,Cost,Ω,Obs〉 equipped with an observability equivalence relation Obs ⊆ S× S over the set

of states. An observation-based memoryless strategy of Player 0 is a memoryless strategy σ of

Player 0 such that, for all non-terminal states s and s′ controlled by Player 0, (s, s′) ∈ Obs ⇒

(σ(s), σ(s′)) ∈ Obs. First, we observe the following.

Theorem 2. Let G = 〈A,Cost,Ω,Obs〉 be an OCPA. Checking the existence of a winning

observation-based memoryless strategy of Player 0 from the initial state can be done in polynomial

space.

Proof. Let ObsWin be the set of OCPA such that there is a winning observation-based memoryless

strategy of Player 0 from the initial state. We show that ObsWin ∈ NP. Hence, being

NP ⊆ Pspace, the result follows. The following is a nondeterministic polynomial-time algorithm

for deciding ObsWin: given an OCPA G, (i) guess an observation-based memoryless strategy σ

of G, and (ii) check whether σ is winning for Player 0 from the initial state. We need to show

that the second step can be done in polynomial time. The strategy σ can be represented as a

subgraph Gσ of G. This subgraph coincides with G except that all the transitions (s, s′) where

s is a state controlled by Player 0 and s′ 6= σ(s) are removed (i.e., for a non-terminal state

controlled by Player 0, we only keep the outgoing transitions referred to by σ). Given Gσ, we

need to check that the following conditions do not hold:

1. there exists a finite path of Gσ starting from the initial state and leading to a terminal

state controlled by Player 0.

2. there exists an infinite path of Gσ starting from the initial state which does not satisfy

the parity-cost condition associated with G. Since Gσ is finite, one can easily check that

this condition is satisfied if and only if there exists a cycle in Gσ reachable from the initial

state which falls into one of the following two types:

• unanswered cycle: i.e., a cycle having an unanswered request;

• unbounded cycle: i.e., a cycle ρ starting and leading to a state with an odd color co

such that ρ has a prefix of the form ρ1 · ρ2, where ρ2 is a cycle of non-null cost and

the odd color co is unanswered in the prefix ρ1 · ρ2 (by pumping the subcycle ρ2 an

arbitrary number of times and by concatenating the resulting cycles, one obtains an
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infinite path which does not satisfy the parity-cost condition).

It is not difficult to show that checking the existence of unanswered cycles or unbounded cycles

can be done in polynomial time. Hence, the result follows.

Theorem 3 (Checking summary relevance). Let G = 〈A,Cost,Ω,Exit〉 be a partial cost-parity

arena over C with A = 〈S,S0,S1,R, in〉 and S a summary of G. Then, one can check in

polynomial space whether S is relevant.

Proof. We build in polynomial time an OCPA GS such that there is a winning observation-based

memoryless strategy of Player 0 in GS from the initial state iff S is relevant in G. We first

construct a partial OCPA G′ obtained from G by extending every state of G with additional

information which keeps tracks of the maximal even color and the maximal unanswered odd

color visited in the current play-prefix from in and a flag indicating whether such a prefix has

cost zero. Formally, G′ = 〈A′,Cost′,Ω′,Exit ′,Obs〉 where A = 〈S′,S′0,S′1,R′, in′〉 and:

• S′ = S×Ce×C̃o×{0, 1}, Exit ′ = Exit×Ce×C̃o×{0, 1}, in′ = (in, 0, 0, 0), Ω′((s, ce, co, d)) =

Ω(s), and ((s, ce, co, d), (s′, c′e, c
′
o, d
′)) ∈ Obs iff s = s′. Moreover, the player of each state

(s, ce, co, d) is the player of s in G if s /∈ Exit, Player 0 if s ∈ Exit and S(s) =`, and Player 1

otherwise.

• ((s, ce, co, d), (s′, c′e, c
′
o, d
′) ∈ E′ iff (i) (s, s′) ∈ E, (ii) c′e = max�0({ce,Ω(s)}), (iii) c′o = 0

if Ω(s′) ∈ Ce and Ω(s′) ≥ co, and c′o = min�0
({co,Ω(s)}) otherwise, and (iv) d′ = 0 if

d = 0 and Cost(s, s′) = 0, and d′ = 1 otherwise;

• Cost′((s, ce, co, d), (s′, c′e, c
′
o, d
′)) = Cost(s, s′).

Note that by construction, there is a bijection, denoted by Obs, between the memoryless

strategies σ of Player 0 in G, and the observation-based memoryless strategies of Player 0 in G′.

Formally, for each non-terminal state (s, ce, co, d) of G′ controlled by Player 0, Obs(σ)((s, ce, co, d))

is the unique successor of (s, ce, co, d) having as S-component σ(s).

For each ex ∈ Exit, let Exit ′ex be the set of exit states of G′ having ex as S-component. GS
is obtained from G′ by adding for each exit state ex ∈ Exit such that S(ex) /∈ {`, Cmax

o }, a

gadget (subgraph) consisting of states controlled by Player 1 that connect the exit states of G′

in Exit ′ex with the initial state in′ = (in, 0, 0, 0), and an additional terminal state 2 which is

controlled by Player 0. If S(ex) = {`}, then for every strategy σ of Player 0 in G, S(σ)(ex) =`
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if S(σ) w S, and our choice (states in Exit ′ex are controlled by Player 0) allows to capture only

the non-losing strategies σ of G for which there is no exit play leading to ex. On the other hand,

if S(ex) = Cmax
o , then for each strategy σ of Player 0 in G, it holds that S(σ)(ex) w Cmax

o , and

accordingly, states in Exit ′ex are controlled by Player 1.

Now, we describe the construction of the gadget for ex when S(ex) /∈ {`, Cmax
o }, i.e. S(ex)

is of the form (f, cpr, co, c
L
e , c

M
e , c

R
e ) ∈ {bnd0, bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥})× Ce. We

distinguish the following cases:

Case f = unb and co > cRe . Note that for each strategy σ of Player 0, it holds that

valueCost(σ, ex) �b unb. The gadget for this case is obtained by adding 2 new states controlled

by Player 1, namely exe and exRo , an additional terminal state 2 controlled by Player 0, and new

transitions. State 2 has color 0, state exe has the even color co + 1, and state exRo has color 0 if

cRe = 0, and the odd color cRe − 1 otherwise. The new transitions have cost 0 and are as follows:

• for each s = (ex, c′e, c
′
o, d) ∈ Exit ′ex such that one of the following bad conditions is satisfied,

we add the transition (s,2).

– Bad conditions: either (i) max({c′o, c′e}) ≺o cpr, or (ii) c′e < cLe , or (iii) d = 1, cMe = ⊥,

and c′e < cRe , or (iv) d = 1, cMe 6= ⊥, and c′e < cMe .

• the transitions (exe, exRo ) and (exRo , in
′), and for each s ∈ Exit ′ex, the transition (s, exe).

The transitions having as target state 2 are exploited to capture the strategies σ of Player 0

in G satisfying the following: (i) valuepr(σ, ex) �o cpr, (ii) in each exit play ν of σ leading to ex,

the maximal even color of ν is at least cLe and (iii) if valueMe (σ, ex) 6= ⊥, then either cMe = ⊥

and valueMe (σ, ex) ≥ cRe , or cMe 6= ⊥ and valueMe (σ, ex) ≥ cMe .

Moreover, given a memoryless strategy σ of Player 0 in G, the chains of transitions (s, exe),

(exe, exRo ) and (exRo , in
′) entering the initial state in′, where s ∈ Exit ′ex, are responsible of cycles

consistent with Obs(σ) of the form ν · exe · exRo · in′, where ν is an arbitrary exit play of Obs(σ)

leading to some exit state s ∈ Exit ′ex. By concatenating these cycles, one obtains infinite plays

consistent with Obs(σ) which are winning for Player 0 iff value(σ, ex) 6= Cmax
o (the request cost

of σ w.r.t. 0 is finite), valueo(σ, ex) �0 co, and valueRe (σ, ex) ≥ cRe .

Case f = unb and co ≤ cRe . The construction is similar to the previous case, but we replace

the even color co + 1 assigned to the new state exe in the previous case with the even color cRe .

Moreover, for each state s = (ex, c′e, c
′
o, c, d) ∈ Exit ′ex satisfying the bad condition c′o > co, we
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add the transition (s,2). In this way, we capture the strategies σ of Player 0 in G such that

valueo(σ, ex) �0 co.

Case f = bnd0. Hence, cMe = ⊥ and cRe = max(Ce). In this case, the gadget consists of a

unique new terminal state 2 having color 0 and controlled by Player 0. Moreover, for each

s = (ex, c′e, c
′
o, d) ∈ Exit ′ex such that one of the following bad conditions is satisfied, we add the

transition (s,2) with cost 0.

• Bad conditions: either (i) max({c′o, c′e}) ≺o cpr, or (ii) c′o > co, or (iii) c′e < cLe , or (iv)

d = 1.

These transitions are exploited to capture the strategies σ of Player 0 in G satisfying the

following: (i) valuepr(σ, ex) �o cpr, (ii) valueo(σ, ex) �0 co, (iii) valueLe (σ, ex) ≥ cLe , and (iv)

valueCost(σ, ex) = bnd0 (i.e., each exit play of σ leading to ex has cost 0). Note that for each

strategy σ of Player 0 such that valueCost(σ, ex) = bnd0, it holds that valueMe (σ, ex) = ⊥ and

valueRe (σ, ex) = max(Ce). Hence, correctness of the construction easily follows.

Case f = bnd1. Hence, cMe 6= ⊥ and cRe = max(Ce). The gadget for this case is obtained

by adding 2 new states controlled by Player 1, namely exmax
e and exmax

o , the terminal state 2

controlled by Player 0, and new transitions. State 2 has color 0, state exmax
o has the maximal

color Cmax
o , and state exmax

e has the even color Cmax
o + 1 (i.e., the smaller even color which

answers to a Cmax
o -request). The new transitions have cost 0 and are as follows:

• the transitions (exmax
e , exmax

o ) and (exmax
o , in′), and for each s ∈ Exit ′ex, the transition

(s, exmax
e ).

• for each s = (ex, c′e, c
′
o, d) ∈ Exit ′ex such that one of the following bad conditions is satisfied,

we add the transition (s,2).

– Bad conditions: either (i) max({c′o, c′e}) ≺o cpr, or (ii) c′o > co, or (iii) c′e < cLe , or

(iv) d = 1 and c′e < cMe .

Given a memoryless strategy σ of Player 0 in G, the chains of transitions (s, exmax
e ), (exe, exmax

o )

and (exmax
o , in′) entering the initial state in′, where s ∈ Exit ′ex, are responsible of cycles consistent

with Obs(σ) of the form ν · exmax
e · exmax

o · in′, where ν is an arbitrary exit play of Obs(σ) leading

to some exit state s ∈ Exit ′ex. By concatenating these cycles, one obtains infinite plays consistent

with Obs(σ). Being Cmax
o + 1 (resp., Cmax

o ) the color of exmax
e (resp., exmax

o ), it follows that

these additional infinite plays are winning for Player 0 iff the cost value of σ w.r.t. ex is in
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Algorithm 1 CheckRel

Input: H = 〈〈V1, . . . ,Vn〉,Cost,Ω〉 Input: H, Vi, S (S is summary of HF
i )

return CheckRel(H,V1,∅) for each substitution g of Vi

f ← true

for each box b of Vi with g(b) 6= bad

f ← f ∧ CheckRel(H, VYi(b), g(b))

if f = true and S is relevant in Simplify(Vi, g)

return true

return false

Figure 2: Pspace procedure

{bnd0, bnd1}.

Moreover, the transitions to 2 are exploited to capture the strategies σ of Player 0 in G

satisfying the following: (i) valuepr(σ, ex) �o cpr, (ii) valueo(σ, ex) �0 co, (iii) valueLe (σ, ex) ≥ cLe ,

and (iv) either valueMe = ⊥, or valueMe ≥ cMe . Note that for each strategy σ of Player 0 such

that valueCost(σ, ex) 6= unb, it holds that valueRe (σ, ex) = max(Ce), and valueMe (σ, ex) = ⊥ iff

valueCost(σ, ex) = bnd0.

By construction, it easily follows that for each memoryless strategy σ of Player 0 in G, σ

is non-losing and S(σ) w S iff Obs(σ) is winning for Player 0 from state in′. Thus, since Obs

is a bijection between the memoryless strategies of Player 0 in G and the observation-based

memoryless strategies of Player 0 in GS , by Theorem 2, Theorem 3 follows.

5. Algorithm for solving games on HCPA

In this section, by exploiting the summary-gadget arena construction of Section 3, we derive

a polynomial space procedure for solving hierarchical cost-parity games. The outline of the

procedure, called Algorithm 1, is given in Fig. 2.

Given an HCPA H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,Vn〉, Algorithm 1 checks that the unique

summary (the empty one) in the flat expansion HF1 of the highest level sub-arena V1 (recall that

V1 has no exits) is relevant for HF1 . For this, it exploits the auxiliary procedure CheckRel that

takes as input a modular sub-arena Vi of H and a summary S in the flat expansion HFi of Vi
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(note that the summaries of HFi can be constructed directly from Vi without constructing the

flat expansion HFi ). The procedure CheckRel(H,Vi,S) examines the substitution mappings of Vi,

i.e., mappings g assigning to each box b of Vi either a summary in the flat expansion of the lower

level sub-arena VYi(b), or the special symbol bad. For the currently precessed substitution g, the

procedure recursively checks by nested calls on the lower level modular sub-arenas associated

with the boxes b of Vi (recall that Yi(b) > i) that the mapping g is relevant, i.e., for each box

b of Vi such that g(b) 6= bad, g(b) is a relevant summary in the flat expansion of VYi(b). If

the check is positive, then the procedure verifies that S is a relevant summary of the partial

cost-parity arena obtained by applying the operation Simplify (simplification) to the modular

sub-arena Vi and the relevant substitution g. If this second check is positive, the procedure

returns true. The essence of the operation Simplify is to replace each box b of Vi with a copy

of the summary-gadget arena associated with the flat expansion HFYi(b)
and the summary g(b)

if g(b) 6= bad, and a copy of the bad-gadget arena BadGad(HFYi(b)
) if g(b) = bad. Note that

if i = n, g is empty (Vn has no box) and Simplify(Vn, g) coincides with HFn . As we will show

(Corollary 1), the relevant summaries in the flat expansion HFi can be obtained by applying the

simplification operation to Vi and the relevant substitutions g for Vi. Hence, CheckRel(H,Vi,S)

returns true if and only if S is a relevant summary of HFi . Note that the symbol bad is used

for taking into account situations where the set of relevant summaries associated to the flat

expansion of a modular sub-arena is empty. We now formally define the simplification operation.

Definition 7 (Simplification). Let H = 〈V,Cost,Ω〉 be an HCPA with V = 〈V1, . . . ,Vn〉,

i ∈ [1, n], and b a box of Vi with Yi(b) = k. For a summary S of the flat expansion HFk of Vk,

we denote by Gadb(HFk ,S) the copy of the summary-gadget arena Gad(HFk ,S) associated with

HFk and S obtained by replacing each state s in Gad(HFk ,S) with the copy (b, s). The b-copy

BadGadb(HFk ) of the bad-gadget arena BadGad(HFk ) for HFk is defined in a similar way. Note

that the copies of the states in {ink} ∪ Exitk are states in the flat expansion HFi of Vi.

Let g be a substitution mapping for Vi. The simplification Simplify(Vi, g, b) of Vi w.r.t. the

substitution g and the box b is the partial cost-parity arena obtained from the flat expansion

HFi of Vi as follows, where G is the gadget BadGadb(HFk ) if g(b) = bad, and G is the gadget

Gadb(HFk , g(b)) otherwise:

• all the states in HFi of the form (b, s) such that s /∈ {ink}∪Exitk are removed together with
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the associated transitions, and all the states in G are added together with the associated

transitions. Moreover, the states (b, s) such that s ∈ {ink} ∪ Exitk have color 0, i.e., the

same color of such states in G.

The simplification Simplify(Vi, g) of Vi w.r.t. the substitution g is the partial cost-parity arena

obtained from HFi by applying for each box b of Vi, the simplification operation w.r.t. g and b.

Note that the arena Simplify(Vi, g) has the same interface as HFi (hence, initial state ini and

set of exit states Exiti) and can be constructed directly from Vi without constructing the flat

expansion HFi . By Propositions 3 and 4, we deduce that the Simplify operation preserves the

set of relevant summaries. In particular, we establish the following result, where for a partial

cost-parity arena G, RS(G) is the set of relevant summaries in G.

Theorem 4 (Correctness and completeness of simplification). Let H = 〈V,Cost,Ω〉 with

V =〈V1, . . . ,Vn〉 be an HCPA, i ∈ [1, n], and b a box of Vi with Yi(b) = k. Then:

1. for each S ∈ RS(HFi ), S ∈ RS(Simplify(Vi, g, b)) for some relevant substitution g for Vi
(completeness);

2. for each relevant substitution g for Vi, RS(Simplify(Vi, g, b)) ⊆ RS(HFi ) (correctness).

The proof of Property 1 (resp., Property 2) in Theorem 4 is postponed to Section 6 (resp.,

Section 7). By Theorem 4, we easily obtain the following corollary.

Corollary 1. Let H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,Vn〉 be an HCPA and i ∈ [1, n]. Then, for

each summary S of HFi , S ∈ RS(HFi ) if and only if S ∈ RS(Simplify(Vi, g)) for some relevant

substitution g for Vi.

Proof. By a straightforward induction on the number of boxes b of Vi, the result easily follows

from Theorem 4 and the fact that the simplification Simplify(Vi, g, b) corresponds to the flat

expansion of a modular sub-arena V ′i in an HCPA of the form H = 〈V ′,Cost′,Ω′〉, where

V =〈V1, . . . ,Vi−1,V ′i,Vi+1, . . . ,Vn〉 and the boxes of V ′i consist of the boxes of Vi distinct from

b.

By Corollary 1, we deduce the main result of this paper.

Theorem 5. Solving hierarchical cost-parity games is Pspace-complete.
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Proof. Pspace-hardness directly follows from Pspace-hardness of solving hierarchical parity

games [5]. For the matching upper bound, we show that Algorithm 1 solves the considered

problem in polynomial space. Let H = 〈V,Cost,Ω〉 be an HCPA with V =〈V1, . . . ,Vn〉. First,

we show that Algorithm 1 is correct, i.e. it accepts the input H iff Player 0 wins in HF1 . For

this, we prove that for all i ∈ [1, n] and summaries S in the flat expansion HFi of Vi, the

procedure CheckRel with input Vi and S returns true if and only if S is a relevant summary

of HFi . Hence, the result follows. The proof is by induction on n− i. For the base case where

i = n, Vn has no box and the unique substitution mapping for Vn is the empty one. Hence,

Simplify(Vn, ∅) coincides with HFn and by construction, CheckRel(H,Vn,S) returns true iff S

is a relevant summary of Simplify(Vn, ∅). Now, assume that i < n. By construction and the

induction hypothesis, CheckRel(H,Vi,S) return true iff there is a relevant substitution g for Vi
such that S is a relevant summary of Simplify(Vi, g) iff (by Corollary 1) S is a relevant summary

of HFi .

Finally, we show that Algorithm 1 can be implemented in polynomial space. Recall that for

the given inputH, an index 1 ≤ i ≤ n, and a summary S ofHFi , the procedure CheckRel(H,Vi,S)

goes over all the substitutions g for Vi. We can assume that the set of substitutions for Vi is

lexicographically ordered and there is a polynomial space procedure that given an order index i

(encoded in binary) returns the ith substitution. For each such substitution g, the procedure

checks that g is relevant. This check is done by recursive calls to CheckRel(H,VYi(b), g(b)) for

each box b of Vi such that g(b) 6= bad. If the check is positive, the procedure additionally

verifies that S is a relevant summary of the simplification Simplify(Vi, g). Thus, the procedure

CheckRel(H,Vi,S) needs to remember the current substitution g which requires space O(|H|).

Moreover, since the simplification Simplify(Vi, g) has size O(|H|) (recall that the gadget arena

for a specific summary has size linear in the number of exits), by Theorem 3, the memory

required for checking that S is relevant in Simplify(Vi, g) is polynomial in |H|. Hence, since the

depth of the recursive calls to CheckRel is at the most the nesting depth of the hierarchical

system, membership in Pspace of solving hierarchical cost-parity games follows. This concludes

the proof of Theorem 5.
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6. Completeness of simplification

In this section, we provide a proof of the following result which corresponds to Property 1 of

Theorem 4.

Theorem 6. [Completeness of simplification] Let H = 〈V,Cost,Ω〉 be an HCPA with V =

〈V1, . . . ,VN 〉, i ∈ [1, N ], b a box of Vi, and S a relevant summary of HFi . Then, there exists a

relevant substitution mapping g for Vi such that S is a relevant summary of the simplification

Simplify(Vi, g, b).

In the rest of this section, by exploiting Proposition 3, we provide a proof of Theorem 6. We

fix an HCPA H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,VN 〉, i ∈ [1, N ], a box b of Vi with Yi(b) = k,

and a relevant summary S of HFi .

Since S is a relevant summary of HFi , there exists a non-losing memoryless strategy σ in

HFi such that S(σ) w S. The strategy σ induces a memoryless strategy σb of Player 0 in HFk .

Formally, for each non-terminal state s of Player 0 in HFk , σb(s) = σ((b, s)).

We first consider the case where σb is not a non-losing strategy for Player 0 in HFk (from

state ink).

Lemma 1. If the strategy σb is not a non-losing strategy in HFk , then for each relevant

substitution mapping g for Vi such that g(b) = bad, S is a relevant summary of the simplification

Simplify(Vi, g, b).

Proof. Assume that σb is not a non-losing strategy for Player 0 in HFk . Being σ non-losing and

memoryless, it easily follows that every play of HFi starting from ini which is consistent with σ

cannot visit states of the form (b, s). In particular, every exit play of σ cannot visit states of the

form (b, s). By Definition 6, there is a unique strategy of Player 0 in BadGadb(HFk ). Hence, the

strategy σ induces a unique memoryless strategy σsimp in Simplify(Vi, g, b) which coincides with

σ on the states which are not of the form (b, s). By the above observations, σsimp is a non-losing

strategy (of Player 0) in Simplify(Vi, g, b) and S(σsimp) = S(σ). Hence, being S(σ) w S, we

obtain that S is a relevant summary of Simplify(Vi, g, b), and the result follows.

By Lemma 1, we can assume that the memoryless strategy σb of Player 0 in HFk is non-losing.

In the following, we denote by Sb the relevant summary associated with σb, i.e. Sb = S(σb),
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and by g any relevant substitution mapping for Vi such that g(b) = Sb. By construction, in the

gadget arena Gad(HFk ,Sb), there is exactly one strategy of Player 0. Hence, the strategy σ and

the summary Sb uniquely induce a memoryless strategy σsimp of Player 0 in Simplify(Vi, g, b),

defined as follows for each non-terminal state s of Simplify(Vi, g, b) controlled by Player 0:

• if s is a state of the form (b, s′) and s′ is not an exit state of HFk , then σsimp((b, s′)) = (b, s′′),

where s′′ is the unique successor of s′ in Gad(HFk ,Sb);

• otherwise, σsimp(s) = σ(s).

We demonstrate in Lemmata 2 and 3 below that σsimp is a non-losing strategy of Simplify(Vi, g, b)

such that S(σsimp) w S(σ). Hence, since S(σ) w S, we obtain that S is a relevant summary of

the simplification Simplify(Vi, g, b). This result together with Lemma 1 completes the proof of

Theorem 6.

In the following, in order to simplify the notation, we use some shorthands: Hb is for

HFk , HF is for HFi , HFsimp is for Simplify(Vi, g, b), Gad(Sb) is for Gad(HFk ,Sb), Gadb(Sb) is for

Gadb(HFk ,Sb), in is for ini, and inb is for ink. Moreover, we identify Gad(Sb) (resp., Gadb(Sb))

with the unique strategy of Player 0 in Gad(Sb) (resp., in Gadb(Sb)). Moreover, we exploit the

following definitions:

• A state s of HFsimp is called b-state if it is of the form (b, s′) (i.e., it is a state in Gadb(Sb)),

and is called context-state otherwise.

• A b-segment is an exit play of Gadb(Sb).

• A b-play of σ is a finite play ν of HF consistent with σ visiting only b-states, starting from

(b, inb), and leading to a state of the form (b, s) for some exit state s of Hb. Note that if

we remove the b-component to every state occurring in ν, we obtain an exit play of σb.

Lemma 2. σsimp is a non-losing strategy of HFsimp.

Proof. Let π be a play of HFsimp from in which is consistent with the strategy σsimp such that π

is not a finite play leading to an exit state (i.e., an exit node in Exiti). We need to show that π

is winning for Player 0. First, assume that π is finite. Then, by construction of Gad(Sb), either

π leads to context-state, or π leads to a state in Gadb(Sb) which is controlled by Player 1, or

π leads to an exit state of Gadb(Sb). Since Sb = S(σb), for each b-segment ρ in π, there is a

b-play of σ leading to the last state of ρ. Thus, by definition of σsimp and since σ is non-losing,

we obtain that π is winning for Player 0. Now, assume that π is infinite. If there is a suffix of
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π which visits only context-states, then by construction, such a suffix is consistent with the

non-losing strategy σ. Hence, π is evidently winning for Player 0. On the other hand, if π gets

trapped in the gadget arena Gadb(Sb), there is a suffix of π which is consistent with the unique

non-losing strategy of Player 0 in Gadb(Sb). Hence, also in this case, π is winning for Player 0.

It remains to consider the most difficult case, when π visits infinitely often b-segments. Hence,

π can be factorized in the form:

π = π′0 · π0 · π′1 · π1 . . .

such that for all n ≥ 0, π′n visits only context-states, while πn is a b-segment. Moreover, since

the cost-parity winning condition is prefix-independent, without loss of generality, we can assume

that for each exit state (b, s) of Gadb(Sb) occurring in π, there are infinitely many occurrences

of (b, s) in π (in other terms, if for some ` ≥ 0, the b-segment π` leads to (b, s), then there are

infinitely many n such that πn lead to (b, s)). First, we observe that for each of such states

(b, s), Sb(s) 6= Cmax
o . Otherwise, since Sb = S(σb), we can construct, starting from π, an infinite

play of HF from in which is consistent with σ and is losing for Player 0. We need to show that

π is winning for Player 0. We assume the contrary and derive a contradiction. Hence, one of

the following two conditions is fulfilled:

(1) There are infinitely many unanswered requests along π.

(2) There are infinitely many answered requests along π whose set of associated delays is

unbounded.

First, let us examine case (1). Hence, there is a state so with odd color co such that for infinitely

many positions n, n is an unanswered co-request along π associated with state so. We show

that there exists a play consistent with σ which is losing for Player 0. Fix a b-segment π` of

π leading to an exit state (b, s), and let c` be the maximal color in π`. Since Sb = S(σb) and

Sb(s) 6= Cmax
o , by Proposition 3, valuepr(σb, s) = valuepr(σS , s), where σS is the unique strategy

of Player 0 in Gad(Sb). Hence, there exists a b-play ν` of σ leading to (b, s) whose maximal

color c′` satisfies: c′` �0 c`. Note that if π` visits state s0 (s0 is a b-state), then c′` is an odd

color such that c′` ≥ co. Otherwise, if c′` is even, then c′` cannot answer to the odd color co (i.e.,

c′` < co). Hence, by replacing each b-segment π` in π with ν`, we obtain a play consistent with

σ which contains infinitely many unanswered requests, and the result follows.
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Now, let us examine case (2). By hypothesis, there must exist an infinite set {[qn, rn]}n≥0 of

non-overlapping position-intervals such that for all n ≥ 0:

• the cost of π[qn, rn] is at least n;

• qn < qn+1;

• qn (resp., rn) is a request (resp., response) along π, and rn is the smallest response

answering the request qn along π.

We show that it is possible to replace each b-segment π` in π by a b-play of σ leading to the

last state of π` in such a way that the resulting infinite sequence is a play consistent with σ

which is losing for Player 0. Let us consider a b-segment π` along π, and let (b, s) be the last

state of π`. We distinguish the following cases:

• π` does not overlap any segment π[qn, rn]: we replace π` with an arbitrary b-play of σ

leading to (b, s) (note that such a b-play exists).

• there is a segment π[qn, rn] for some n ≥ 0 such that qn corresponds to a request in π`

with odd color co: by construction of Gad(Sb), π[qn+ 1] = (b, s) and each edge in Gadb(Sb)

leading to (b, s) has zero-cost. Since Sb = S(σb) and S(σb)(s) 6= Cmax
o , by Proposition 3,

the odd value of σb w.r.t. s coincides with the odd value of Gad(Sb) w.r.t. s. Hence, there

is a b-play ν of σ leading to (b, s) having a c′o-unanswered request for some c′o ≥ co. We

replace the b-segment π` with ν.

• there is a segment π[qn, rn] for some n ≥ 0 which strictly contains π`. Let ce be the

maximal even color in π`. Note that ce is strictly smaller than the even color associated

with the response rn. By Proposition 3(1), there exists a b-play ν of σ leading to (b, s)

such that either (i) the maximal even color in ν is at most ce and the cost of ν is at

least the cost of π`, or (ii) there is an even color c′e ∈ Ce such that c′e ≤ ce + 2 and the

c′e-response cost of ν is at least the cost of π[qn, rn]. We replace the b-segment π` with ν.

• there is a segment π[qn, rn] for some n ≥ 0 such that rn corresponds to a response in π` and

π[qn, rn] is not a sub-path of π`. Let ce (resp., co) be the color associated with the response

rn (resp., the request qn) and cmin
e be the smallest even color answering to the request qn.

Moreover, let Πs be the set of b-segments π`′ leading to state (b, s) satisfying the same

condition as π`, i.e. such that there is a segment π[qn′ , rn′ ] so that rn′ corresponds to a

response in π`′ , π[qn′ , rn′ ] is not a sub-path of π`′ , and ce (resp., co) is the color associated

with the response rn′ (resp., the request rn′). Let Costce := {ResCost(π`′ , ce) | π`′ ∈ Πs},
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i.e., the set of ce-response costs of the b-segments in Πs. If Costce is finite, we can safely

replace the b-segment π` with an arbitrary b-play of σ leading to (b, s) (note that such

a b-play exists). Now, assume that Costce =∞. By construction, for each π`′ ∈ Πs, the

smaller response k in π`′ answering the odd color co has color ce. Thus, since Costce =∞,

it follows that ResCoste(σS , s, c
min
e ) = ∞, where σS is the unique strategy of Player 0

in Gad(Sb). Since Sb = S(σb) and S(σb)(s) /∈ {`, Cmax
o }, by applying Proposition 3(2),

it holds that ResCost(σb, s, c
min
e ) = ∞. Hence, there exists a b-play ν of σ leading to

(b, s) such that the cmin
e -response cost in ν is at least the cost of π[qn, rn]. We replace the

b-segment π` with ν.

Thus, we obtain a play consistent with σ which is losing for Player 0, which is a contradiction.

This concludes the proof of Lemma 2.

It remains to show that S(σsimp) w S(σ).

Lemma 3. Let ex be an exit state of HF . Then S(σsimp)(ex) w S(σ)(ex).

Proof. If either S(σ)(ex) = Cmax
o or S(σsimp)(ex) =`, the result trivially follows. Moreover,

note that since Sb = S(σb), for each b-segment leading to (b, s), there is a b-play of σ leading

to (b, s). Hence, if S(σ)(ex) =`, then S(σsimp)(ex) =` as well. Hence, we can assume that

S(σ)(ex) /∈ {`, Cmax
o } and S(σsimp)(ex) 6=`. First, we show that S(σsimp)(ex) 6= Cmax

o as well.

We assume on the contrary that S(σsimp)(ex) = Cmax
o , and derive a contradiction. We exploit

the fact that since S(σ)(ex) 6= Cmax
o and Sb = S(σb), for each exit play ν of σsimp leading

to ex, there is no exit state (b, s) of Gadb(Sb) occurring in ν such that Sb(s) = Cmax
o . Since

S(σsimp)(ex) = Cmax
o , one of the following two conditions is fulfilled.

(1) either there is an exit play ν of σsimp leading to ex having a Cmax
o -request,

(2) or there must exist an infinite set of exit plays {νn}n≥0 of σsimp leading to ex and an

infinite set {[qn, rn]}n≥0 of position-intervals such that for all n ≥ 0:

• either (i) qn is an unanswered request in νn and rn is the last position of νn, or (ii)

qn (resp., rn) is a request (resp., response) along νn, and rn is the smallest response

answering the request qn along νn.

• the cost of νn[qn, rn] is at least n.

First, let us examine case (1). Since there is no exit state (b, s) of Gadb(Sb) occurring in ν such

that Sb(s) = Cmax
o , we deduce that the Cmax

o -request in ν is associated with a context-state. It
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follows that there exists an exit play of σ leading to ex having a Cmax
o -request, which contradicts

the hypothesis S(σ)(ex) 6= Cmax
o . Now, let us examine case (2). Since for each exit state (b, s)

of Gadb(Sb) along νn, Sb(s) 6= Cmax
o , by proceeding as in the part of the proof of Lemma 2

concerning the treatment of Condition (2), we deduce the following.

• For each n ≥ 0, it is possible to replace each b-segment ρ in νn by a b-play of σ leading to

the last state of ρ in such a way that the resulting sequence ν′n is an exit play of σ leading

to ex, and the following holds: there are two positions q′n and r′n in νn with q′n < r′n such

that

– the cost of ν′n[q′n, r
′
n] is at least n;

– either (i) q′n is an unanswered request in ν′n and r′n is the last position of ν′n, or (ii)

q′n (resp., r′n) is a request (resp., response) along ν′n, and r′n is the smallest response

answering the request q′n along ν′n.

Hence, we obtain that S(σ)(ex) = Cmax
o , which contradicts the hypothesis. Therefore, in the rest

of the proof, we can assume that S(σ)(ex) /∈ {`, Cmax
o } and S(σsimp)(ex) /∈ {`, Cmax

o }. Then,

the result directly follows from Claims 1–6 below.

Claim 1. valueCost(σsimp, ex) �b valueCost(σ, ex).

Proof of Claim 1. Since S(σsimp)(ex) 6= Cmax
o , for each exit play ν of σsimp leading to ex, there

is no exit state (b, s) of Gadb(Sb) occurring in ν such that Sb(s) = Cmax
o . Being Sb = S(σb), by

Proposition 3(1), it holds that for each b-segment ρ leading to (b, s) such that Sb(s) 6= Cmax
o ,

there is a b-play of σ leading to (b, s) whose cost is at least the cost of ρ. Hence, the result

trivially follows.

Claim 2. valuepr(σsimp, ex) �0 valuepr(σ, ex).

Proof of Claim 2. Since Sb = S(σb), by Proposition 3, for each b-segment ρ leading to (b, s) such

that Sb(s) 6= Cmax
o , the parity value of σb w.r.t. s coincides with the parity value of Gad(Sb)

w.r.t. s. It follows that for each b-segment ρ leading to (b, s) such that Sb(s) 6= Cmax
o , there is a

b-play of σ leading to (b, s) whose maximal color c′ satisfies c′ �0 c. Hence, the result easily

follows.

Claim 3. valueo(σsimp, ex) ≤ valueo(σ, ex).

Proof of Claim 3. If valueo(σsimp, ex) = 0, the result is obvious. Otherwise, valueo(σsimp, ex) = co
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for some odd color co. We assume that co > valueo(σ, ex), and derive a contradiction. Thus,

since valueo(σsimp, ex) = co, there must exist an exit play ν of σsimp leading to ex having an

unanswered co-request. Assume that the maximal co-request of ν is inside a b-segment ρco of

ν (the other case, where the maximal co-request of ν is associated with a context-state, being

simpler). Since S(σsimp)(ex) 6= Cmax
o , there is no exit state (b, s) of Gadb(Sb) along ν such that

Sb(s) = Cmax
o . We show how to construct, starting from ν, an exit play ν′ of σ leading to ex

having an unanswered c′o-request with c′o ≥ co. Let us consider a b-segment ρ along ν leading to

a state (b, s). We distinguish the following cases:

• ρ strictly precedes the b-segment ρco : we replace ρ with any b-play of σ leading to (b, s)

(note that such a b-play exists).

• ρ corresponds to ρco : we replace ρ with any b-play of σ leading to (b, s) having an

unanswered c′o-request for some c′o ≥ co. Since Sb(s) 6= Cmax
o and Sb = S(σb), the

existence of such a b-play in ensured by Proposition 3.

• ρ strictly follows the b-segment ρco : let ce be the maximal even color occurring in ρ. Since

Sb(s) 6= Cmax
o and Sb = S(σb), by Proposition 3(1), the following holds: either (i) there

exists a b-play of σ leading to s whose maximal even color is ce, or (ii) for some even color

c′e ≤ ce + 2, ResCost(σb, s, c
′
e) = ∞. Condition (ii) cannot hold. Otherwise, we deduce

that the request-cost of σ with respect to ex is ∞, which would contradict our assumption

that S(σ)(ex) 6= Cmax
o . Hence, we replace ρ with any b-play of σ satisfying Condition (i).

Therefore, we obtain an exit play ν′ of σ leading to ex having an unanswered c′o-request for

some c′o ≥ co. This is a contradiction since we have assumed that co > valueo(σ, ex).

Claim 4. valueLe (σsimp, ex) ≥ valueLe (σ, ex).

Proof of Claim 4. We assume that valueLe (σsimp, ex) < valueLe (σ, ex), and derive a contradiction.

Let cLe = valueLe (σ, ex). By hypothesis, one of the following two conditions holds.

1. either there is an exit play ν of σsimp leading to ex such that the maximal even color in ν

is strictly smaller than cLe ,

2. or there is a family {νn}n≥0 of exit plays of σsimp leading to ex and an infinite sequence

of natural numbers {rn}n≥0 such that: (i) rn is the smaller response in νn associated with

an even color ce ≥ cLe , and (ii) the response-cost of rn in νn is at least n.

First, let us examine case (1). By hypothesis, for each b-segment νb along ν, the maximal
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even color in ν is strictly smaller than cLe . Since S(σsimp)(ex) 6= Cmax
o , for each exit state (b, s)

of Gadb(Sb) occurring in ν, Sb(s) 6= Cmax
o . Thus, since S(σb) = Sb, by applying Proposition 3,

it holds that for each exit state (b, s) of Gadb(Sb) occurring in ν, valueLe (σb, s) < cLe . Hence, we

easily obtain that valueLe (σ, ex) < cLe , which is a contradiction.

Now, let us examine case (2). Fix n ≥ 0. It suffices to show that it is possible to replace each

b-segment ρ in νn by a b-play of σ leading to the last state of ρ in such a way that the resulting

sequence ν′n is an exit play of σ leading to ex satisfying the following: either (i) the maximal

even color in ν′n is strictly smaller than cLe , or (ii) the response-cost of any ce-response in ν′n

with ce ≥ cLe is at least n. Since for each exit state (b, s) of Gadb(Sb) along νn, Sb(s) 6= Cmax
o ,

we proceed as in the part of the proof of Lemma 2 concerning the third and fourth case in the

treatment of Condition (2).

Claim 5. If valueMe (σsimp, ex) 6= ⊥, then the following holds:

• either valueMe (σ, ex) 6= ⊥ and valueMe (σsimp, ex) ≥ valueMe (σ, ex),

• or valueMe (σ, ex) = ⊥ and valueMe (σsimp, ex) ≥ valueRe (σ, ex).

Proof of Claim 8. Let valueMe (σsimp, ex) = ce ∈ Ce. Hence, Coste(σsimp, ex, ce) ∈ N \ {0} and

there is an exit play of σsimp leading to ex having a non-null cost and whose maximal even

color is ce. Let ν be any exit play of σsimp leading to ex whose maximal even color is ce.

Since S(σsimp)(ex) 6= Cmax
o , for each exit state (b, s) of Gadb(Sb) occurring in ν, Sb(s) 6= Cmax

o .

Moreover, for each b-segment ρ occurring in ν and leading to a state (b, s), it holds that

Coste(σS , s, c
′
e) 6= ∞, where σS is the unique strategy of Player 0 in Gad(Sb) and c′e is the

maximal even color in ρ. Since Sb = S(σb), by applying Proposition 3(1), for such a b-segment ρ,

there exists a b-play ρ′ of σ leading to (b, s) whose maximal color is at most c′e and whose cost is at

least the cost of ρ. Hence, there exists an exit play ν′ of σ leading to ex whose maximal even color

is at most ce and such that Cost(ν′) ≥ Cost(ν). If follows that Coste(σ, ex, ce) ∈ (N\{0})∪{∞}.

If valueMe (σ, ex) 6= ⊥ then valueMe (σ, ex) ≤ ce. Otherwise, we have that ce ≥ valueRe (σ, ex), and

the result follows.

Claim 6. valueRe (σsimp, ex) ≥ valueRe (σ, ex).

Proof of Claim 6. Let cRe = valueRe (σ, ex) and KFsimp (resp., KF ) be the partial cost-parity arena

obtained from HFsimp (resp., HF ) by replacing the color of the exit state ex with cRe . Evidently,

the even-left value of σ w.r.t. ex′ in KF is cRe . Thus, it suffices to show that the even-left value
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of strategy σsimp w.r.t. ex in KFsimp is at least the even-left value of σ w.r.t. ex in KF . The proof

of this is similar to the proof of Claim 4.

This concludes the proof of Lemma 3.

7. Correctness of simplification

In this section, we provide a proof of the following result which corresponds to Property 2 of

Theorem 4.

Theorem 7. [Correctness of simplification] Let H = 〈V,Cost,Ω〉 be an HCPA with V =

〈V1, . . . ,VN 〉, i ∈ [1, N ], b a box of Vi, g a relevant substitution mapping for Vi, and S a relevant

summary of the simplification Simplify(Vi, g, b). Then, S is a relevant summary of HFi .

In the rest of this section, by exploiting Proposition 4, we provide a proof of Theorem 7. We

fix an HCPA H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,VN 〉, i ∈ [1, N ], a box b of Vi with Yi(b) = k,

a relevant substitution mapping g for Vi, and a relevant summary S of the simplification

Simplify(Vi, g, b). We first consider the case where g(b) = bad.

Lemma 4. If g(b) = bad, then S is a relevant summary of HFi .

Proof. Let g(b) = bad and S be a relevant summary of Simplify(Vi, g, b). Therefore, there

exists a non-losing memoryless strategy σsimp of Simplify(Vi, g, b) such that S(σsimp) w S. By

Definition 6, the bad-gadget arena BadGadb(HFk ) has a unique internal state which is controlled

by Player 0, and a unique transition: this transition has as source state ink and as target state

the internal state. Hence, being σsimp non-losing, each play starting from ini and consistent

with σsimp cannot visit states of BadGadb(HFk ). In particular, every exit play of σsimp cannot

visit states of BadGadb(HFk ). It follows that any memoryless strategy σ of Player 0 in HFi which

coincides with σsimp on the states which are not of the form (b, s) is non-losing and satisfies

S(σ) = S(σsimp). Hence, S is a relevant summary of HFi , and the result follows.

By Lemma 4, we can assume that g(b) = Sb for some relevant summary Sb of HFk . Since S

is a relevant summary of Simplify(Vi, g, b), there exist a non-losing memoryless strategy σsimp of

Simplify(Vi, g, b) such that S(σsimp) w S, and a non-losing memoryless strategy σb of HFk such

that S(σb) w Sb. The strategies σsimp and σb induce a memoryless strategy σ in HFi , defined as

follows for each non-terminal state s of HFi controlled by Player 0:
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• if s is state of the form (b, s′) such that s′ is not an exit state of HFk , then σ((b, s′)) =

(b, σb(s
′));

• otherwise, σ(s) = σsimp(s).

We demonstrate in Lemmata 5 and 6 below that σ is a non-losing strategy of HFi such that

S(σ) w S(σsimp). Since S(σsimp) w S, this result together with Lemma 4 completes the proof

of Theorem 7.

In the following, in order to simplify the notation, we use some shorthands: Hb is for

HFk , HF is for HFi , HFsimp is for Simplify(Vi, g, b), Gad(Sb) is for Gad(HFk ,Sb), Gadb(Sb) is for

Gadb(HFk ,Sb), in is for ini, and inb is for ink. Recall that in the gadget arena Gadb(Sb), there

is exactly one strategy of Player 0. Thus, in the following, we identify Gadb(Sb) with such a

strategy.

Moreover, we exploit the following definitions:

• A state s of HFi is called b-state if it is of the form (b, s′), and is called context-state

otherwise.

• A b-segment is a finite play ν of HF consistent with σ visiting only b-states, starting from

(b, inb), and leading to a state of the form (b, s) for some exit state s of Hb. Note that if

we remove the b-component to every state occurring in ν, we obtain an exit play of σb.
3

Lemma 5. σ is a non-losing strategy of HF .

Proof. Let π be a play of HF from in which is consistent with the strategy σ such that π is not

a finite play leading to an exit state (i.e., an exit node in Exiti). We need to show that π is

winning for Player 0. First, assume that π is finite. Then, since σb and σsimp are non-losing,

by construction of σ, it easily follows that π leads to a state controlled by Player 1. Hence, π

is winning for Player 0. Now, assume that π is infinite. If there is a suffix of π which visits

only context-states, then such a suffix πs is consistent with the non-losing strategy σsimp. Since

S(σb) w Sb, for each b-segment leading to a state (b, s), there is an exit play of Gadb(Sn) leading

to (b, s). Hence, there exists an infinite play of HFsimp starting from the initial state in which is

consistent with σsimp and has πs as suffix. Hence, π is winning for Player 0. On the other hand,

if π gets trapped in Hb, there is a suffix of π corresponding to an infinite play of Hb starting

3Note that we have inverted the terminology with respect to the proof of Theorem 6.
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from the initial state inb which is consistent with the non-losing strategy σb. Thus, also in this

case, π is winning for Player 0. It remains to consider the most difficult case, when π visits

infinitely often b-segments. Hence, π can be factorized in the form:

π = π′0 · π0 · π′1 · π1 . . .

such that for all n ≥ 0, π′n visits only context-states, while πn is a b-segment. Moreover, without

loss of generality, we can assume that for each exit state (b, s) of Gadb(Sb) occurring in π, there

are infinitely many occurrences of (b, s) in π (in other terms, if for some ` ≥ 0, the b-segment π`

leads to (b, s), then there are infinitely many n such that πn lead to (b, s)). We assume that π is

not winning for Player 0, and derive a contradiction. Hence, one of the following two conditions

is fulfilled:

1. There are infinitely many unanswered requests along π.

2. There are infinitely many answered requests along π whose set of associated delays is

unbounded.

First, we observe that for each exit state (b, s) of Gadb(Sb) occurring in π, Sb(s) 6= Cmax
o ;

otherwise, by construction of Gadb(Sb), we can construct from π an infinite play of HFsimp from

in which is consistent with σsimp and is not winning for Player 0, a contradiction.

Let us examine case (1). Hence, there is a state so with odd color co such that for infinitely

many positions n, n is an unanswered co-request along π associated with state so. We show

that there exists a play consistent with σsimp which is losing for Player 0. Fix a b-segment π`

of π leading to an exit state (b, s), and let c` be the maximal color in π`. Since S(σb) w Sb
and for each exit state (b, s) of Gadb(Sb) occurring in π, Sb(s) 6= Cmax

o , by Proposition 4,

valuepr(σb, s) �o valuepr(σS , s), where σS is the unique strategy of Player 0 in Gad(Sb). Hence,

there exists an exit play ν` of Gadb(Sb) leading to (b, s) whose maximal color c′` satisfies:

c′` �0 c`. Note that if π` visits state s0 (s0 is a b-state), then c′` is an odd color such that c′` ≥ co.

Otherwise, if c′` is even, then c′` cannot answer to the odd color co (i.e., c′` < co). Hence, by

replacing each b-segment π` in π with ν`, we obtain a play consistent with σsimp which contains

infinitely many unanswered requests, and the result follows.

Now, let us examine case (2). Recall that for each exit state (b, s) of Gadb(Sb) occurring in

π, Sb(s) 6= Cmax
o , hence S(σb)(s) 6= Cmax

o as well (being S(σb) w Sb). Thus, by hypothesis there
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must exist an infinite set {[qn, rn]}n≥0 of non-overlapping position-intervals such that for all

n ≥ 0;

• the cost of π[qn, rn] is at least n;

• qn < qn+1;

• qn (resp., rn) is a request (resp., response) along π, and rn is the smallest response

answering the request qn along π.

• there is no b-segment π` such that π[qn, rn] is a sub-path of π`.

We show that it is possible to replace each b-segment π` in π, by an exit play of Gadb(Sb) leading

to the last state of π` in such a way that the resulting infinite sequence is a play consistent with

σsimp which is losing for Player 0. Let us consider a b-segment π` along π leading to a state

(b, s). We distinguish the following cases:

1. π` does not overlap any segment π[qn, rn]: we replace π` with an arbitrary exit play of

Gadb(Sb) leading to (b, s) (note that since S(σb) w Sb, such an exit play exists).

2. There is a segment π[qn, rn] for some n ≥ 0 such that qn corresponds to a request in π`

with odd color co: since π[qn, rn] is not a sub-path of π`, qn is an unanswered request in

π`. Since S(σb) w Sb and Sb(s) 6= Cmax
o , by Proposition 4, the request cost of σb w.r.t. s is

bounded and there is an exit play ν of Gadb(Sb) leading to (b, s) having a c′o-unanswered

request, with c′o ≥ co. We replace the b-segment π` with ν.

3. there is a segment π[qn, rn] for some n ≥ 1 which strictly contains π`. Let ce be the

maximal even color in π`. Note that ce is strictly smaller than the color associated with

response rn, Since S(σb) w Sb and Sb(s) 6= Cmax
o , by Proposition 4(1), one of the following

conditions is satisfied:

(a) there exists an exit play ν of Gadb(Sb) leading to (b, s) whose cost is at least the cost

of π` and whose maximal even color in ν is at most ce. We replace the b-segment π`

with ν.

(b) Coste(σb, s, ce) ∈ N \ {0} and Coste(σS , s, ce) > 0, where σS is the unique strategy

of Player 0 in Gadb(Sb): in this case, since Coste(σb, s, ce) is finite, it suffices to

show that one can replace π` with an exit play ν of Gadb(Sb) leading to (b, s) having

a non-zero cost and such that the maximal even color in ν is at most ce. Since,

Coste(σS , s, ce) > 0, the result trivially follows.

(c) there exists an exit play ν of Gadb(Sb) leading to (b, s) and an even color c′e with
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c′e ≤ ce + 2 such that the c′e-response cost in ν is at least the cost of π[qn, rn]. We

replace the b-segment π` with ν.

4. There is a segment π[qn, rn] for some n ≥ 1 such that rn corresponds to a response in

π`. Let ce (resp., co) be the color associated with the response rn (resp., the request qn)

and cmin
e be the smallest even color answering to the request qn. Note that ce ≥ cmin

e > 0.

Moreover, let Πs be the set of b-segments π`′ leading to state (b, s) satisfying the same

condition as π`, i.e. such that there is a segment π[qn′ , rn′ ] so that rn′ corresponds to a

response in π`′ and ce (resp., co) is the color associated with the response rn′ (resp., the

request rn′). Let Costce := {ResCost(π`′ , ce) | π`′ ∈ Πs}, i.e., the set of ce-response costs

of the b-segments in Πs. If Costce is finite, we can safely replace the b-segment π` with an

arbitrary exit play of Gadb(Sb) leading to (b, s). Now, assume that Costce =∞. Since the

segments π[qn′ , rn′ ] cannot be sub-paths of the b-segments along π, for each π`′ ∈ Πs, the

smaller response k in π`′ answering the odd color co has color ce. Thus, since Costce =∞,

it follows that ResCoste(σb, s, c
min
e ) =∞. Being S(σb) w Sb, Sb(s) 6= Cmax

o , and cmin
e > 0,

by Proposition 4(2), one of the following two conditions is satisfied:

(a) There exists an exit play ν of Gadb(Sb) leading to (b, s) and an even color c′e with

c′e ≤ cmin
e such that the c′e-response cost in ν is at least the cost of π[qn, rn]. We

replace the b-segment π` with ν.

(b) there exists an exit play ν of Gadb(Sb) leading to (b, s) whose cost is at least the cost

of π[qn, rn] and whose maximal even color cSe satisfies cSe < cmin
e . Since cSe does not

answer to request qn, we can safely replace π` with ν.

Thus, we obtain a play consistent with σsimp which is losing for Player 0. This concludes the

proof of Lemma 5.

It remains to show that S(σ) w S(σsimp).

Lemma 6. Let ex be an exit state of HF . Then S(σ)(ex) w S(σsimp)(ex).

Proof. If either S(σsimp) = Cmax
o or S(σ)(ex) =`, the result trivially follows. Moreover, note

that since S(σb) w Sb, for each b-segment ρ, there is an exit play of Gadb(Sb) leading to the

last state of ρ. Hence, if S(σsimp)(ex) =`, then S(σ)(ex) =` as well. Hence, we can assume

that S(σsimp)(ex) /∈ {`, Cmax
o } and S(σ)(ex) 6=`. First, we show that S(σ)(ex) 6= Cmax

o as well.
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We assume on the contrary that S(σ)(ex) = Cmax
o , and derive a contradiction. We exploit the

fact that since S(σb) w Sb and S(σsimp)(ex) 6= Cmax
o , for each exit play ν of σ leading to ex

and for each exit state (b, s) of Gad(Sb) occurring in ν, it holds that Sb(s) 6= Cmax
o (hence,

S(σb)(s) 6= Cmax
o as well). Since S(σ)(ex) = Cmax

o , one of the following two conditions is fulfilled.

1. either there is an exit play ν of σ leading to ex having a Cmax
o -request,

2. or there exists an infinite set of exit plays {νn}n≥0 of σ leading to ex and a infinite set

{[qn, rn]}n≥0 of position-intervals such that for all n ≥ 0;

• either (i) qn is an unanswered request in νn and rn is the last position of νn, or (ii)

qn (resp., rn) is a request (resp., response) along νn, and rn is the smallest response

answering the request qn along νn.

• the cost of νn[qn, rn] is at least n;

• there is no b-segment νb in νn such that νn[qn, rn] is a sub-path of νb.

First, let us examine case (1). Since for each exit state (b, s) of Gadb(Sb) along ν it holds

that S(σb)(s) 6= Cmax
o , we deduce that the Cmax

o -request in ν is associated with a context-state.

It follows that there exists an exit play of σsimp leading to ex having a Cmax
o -request, which

contradicts our assumption that S(σsimp)(ex) 6= Cmax
o . Now, let us examine case (2). Since for

each exit state (b, s) of Gadb(Sb) along νn, Sb(s) 6= Cmax
o , by proceeding as in the part of the

proof of Lemma 5 concerning the treatment of Condition (2), we deduce the following.

• For each n ≥ 0, it is possible to replace each b-segment ρ in νn by an exit play of Gadb(Sb)

leading to the last state of ρ in such a way that the resulting sequence ν′n is an exit play

of σsimp leading to ex, and the following holds: there are two positions q′n and r′n in ν′n,

and a bound mn ≥ 0 such that

– the cost of ν′n[q′n, r
′
n] is at least mn;

– either (i) q′n is an unanswered request in ν′n and r′n is the last position of ν′n, or (ii)

q′n (resp., r′n) is a request (resp., response) along ν′n, and r′n is the smallest response

answering the request q′n along ν′n.

Moreover, and, more importantly, the set of the bounds mn with n ≥ 0 is infinite.

Hence, we obtain that S(σsimp)(ex) = Cmax
o , which contradicts the hypothesis. Therefore, in

the rest of the proof, we can assume that S(σ)(ex) /∈ {`, Cmax
o } and S(σsimp)(ex) /∈ {`, Cmax

o }.

Then, the result directly follows from Claims 1–6 below.
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Claim 1. valueCost(σ, ex) �b valueCost(σsimp, ex).

Proof of Claim 1. Since S(σsimp)(ex) 6= Cmax
o and S(σb) w Sb, for each exit play ν of σ

leading to ex, and for each exit state (b, s) of Gadb(S) along ν, condition Sb(s) 6= Cmax
o

holds. By Proposition 4, for such exit state (b, s) of Gadb(S), it holds that valueCost(σb, s) �b
valueCost(σS , s), where σS is the unique strategy of Player 0 in Gad(Sb). Hence, the result easily

follows.

Claim 2. valuepr(σ, ex) �0 valuepr(σsimp, ex).

Proof of Claim 2. Recall that since S(σsimp)(ex) 6= Cmax
o and S(σb) w Sb, for each exit play ν

of σ leading to ex, there is no exit state (b, s) of Gadb(S) along ν such that Sb(s) = Cmax
o . By

Proposition 4, for such exit state (b, s) of Gadb(S), it holds that valuepr(σb, s) �0 valuepr(σS , s),

where σS is the unique strategy of Player 0 in Gad(Sb). Hence, for each b-segment ρ leading to

(b, s) such that Sb(s) 6= Cmax
o and whose maximal color is c, there is an exit play of Gadb(Sb)

leading to (b, s) whose maximal color c′ satisfies c′ �0 c. Therefore, the result trivially follows.

Claim 3. valueo(σ, ex) ≤ valueo(σsimp, ex).

Proof of Claim 3. If valueo(σ, ex) = 0, the result is obvious. Otherwise, valueo(σ, ex) = co for

some odd color co. We assume that co > valueo(σsimp, ex), and derive a contradiction. Since

valueo(σ, ex) = co, there must exist an exit play ν of σ leading to ex having an unanswered

co-request. Assume that the maximal co-request of ν is inside a b-segment ρco of ν (the other

case, where the maximal co-request of ν is associated with a context-state being simpler). Since

S(σsimp)(ex) 6= Cmax
o and S(σb) w Sb, there is no exit state (b, s) of Gadb(S) along ν such that

Sb(s) = Cmax
o . We show how to construct, starting from ν, an exit play ν′ of σsimp leading to

ex having an unanswered c′o-request with c′o ≥ co. Let us consider a b-segment ρ along ν leading

to a state (b, s). We distinguish the following cases:

• ρ strictly precedes the b-segment ρco : we replace ρ with any exit play of Gadb(Sb) leading

to (b, s) (note that such an exit play exists).

• ρ corresponds to ρco : we replace ρ with any exit play of Gadb(Sb) leading to (b, s) having

an unanswered c′o-request for some c′o ≥ co. Since Sb(s) 6= Cmax
o and S(σb) w Sb, the

existence of such an exit play in ensured by Proposition 4.

• ρ strictly follows the b-segment ρco : let ce be the maximal even color of ρ. Since Sb(s) 6=
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Cmax
o and S(σb) w Sb, by Proposition 4(1): either (i) there exists an exit play ν of Gadb(Sb)

leading to s whose maximal even color is ce, or (ii) there is an even color c′e ∈ Ce such that

c′e ≤ ce + 2 and ResCost(σS , s, c
′
e) = ∞, where σS is the unique strategy of Player 0 in

Gadb(Sb). Condition (ii) cannot hold. Otherwise, we deduce that the request-cost of σsimp

with respect to ex is∞, which would contradict our assumption that S(σsimp)(ex) 6= Cmax
o .

Hence, we replace ρ with any exit play of Gadb(Sb) satisfying Condition (i).

Thus, we obtain an exit play ν′ of σsimp leading to ex having an unanswered c′o-request for

some c′o ≥ co. This is a contradiction since we have assumed that co > valueo(σsimp, ex).

Claim 4. valueLe (σ, ex) ≥ valueLe (σsimp, ex).

Proof of Claim 4. We assume that valueLe (σ, ex) < valueLe (σsimp, ex), and derive a contradiction.

Let cLe = valueLe (σsimp, ex). By hypothesis, one of the following two conditions holds.

1. either there is an exit play ν of σ leading to ex such that the maximal even color in ν is

strictly smaller than cLe ,

2. or there is a family {νn}n≥0 of exit plays of σ leading to ex and an infinite sequence of

natural numbers {rn}n≥0 such that: (i) rn is the smaller response in νn associated with

an even color ce ≥ cLe , and (ii) the response-cost of rn in νn is at least n.

First, let us examine case (1). By hypothesis, for each b-segment νb along ν, the maximal

even color in ν is strictly smaller than cLe . Moreover, since S(σsimp)(ex) 6= Cmax
o and S(σb) w Sb,

we deduce that for the last state (b, s) of such a b-segment νb, Sb(s) 6= Cmax
o . Thus, by

applying Proposition 4, we deduce that for each exit state (b, s) of Gadb(Sb) occurring in ν,

valueLe (σS , s) < cLe , where σS is the unique strategy of Player 0 in Gadb(Sb). Hence, we easily

obtain that valueLe (σsimp, ex) < cLe , which is a contradiction.

Now, let us examine case (2). Fix n ≥ 0. We show that it is possible to replace each

b-segment νb in νn by an exit play of Gadb(Sb) leading to the last state of νb in such a way that

the resulting sequence ν′n is an exit play of σsimp leading to ex , and the following holds: either

(i) for some n ≥ 0, the maximal even color in ν′n is strictly smaller than cLe , or (ii) for infinitely

many n, the response-cost of any ce-response in ν′n with ce ≥ cLe is mn, and the set of such costs

mn is infinite. Since for each exit state (b, s) of Gadb(Sb) occurring in νn, Sb(s) 6= Cmax
o , we

proceed as in the part of the proof of Lemma 5 concerning the cases 3 and 4 in the treatment of

Condition (2).
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Claim 5. If valueMe (σ, ex) 6= ⊥, then the following holds:

• either valueMe (σsimp, ex) 6= ⊥ and valueMe (σ, ex) ≥ valueMe (σsimp, ex),

• or valueMe (σsimp, ex) = ⊥ and valueMe (σ, ex) ≥ valueRe (σsimp, ex).

Proof of Claim 5. Let valueMe (σ, ex) = ce ∈ Ce. Hence, Coste(σ, ex, ce) ∈ N \ {0} and there is an

exit play of σ leading to ex having a non-null cost and whose maximal even color is ce. Let ν

be any exit play of σ leading to ex whose maximal even color is ce. Since S(σsimp)(ex) 6= Cmax
o

and S(σb) w Sb, for each b-segment ρ occurring in ν leading to a state (b, s), Sb(s) 6= Cmax
o .

Moreover, since Coste(σ, ex, ce) is finite, for each b-segment ρ occurring in ν leading to a state

(b, s), it holds that Coste(σb, ex, c′e) 6= ∞, where c′e ≤ ce is the maximal even color in ρ. By

applying Proposition 4, for such a b-segment ρ, there exists an exit play ρ′ of Gadb(Sb) leading

to the last state of ρ such that Cost(ρ′) > 0 if Cost(ρ) > 0, and the maximal even color in ρ′ is

at most the maximal even color in ρ. Hence, there exists an exit play ν′ of σsimp leading to ex

whose maximal even color is at most ce and such that Cost(ν′) > 0 if Cost(ν) > 0. It follows that

Coste(σsimp, ex, ce) ∈ (N \ {0}) ∪ {∞}. If valueMe (σsimp, ex) 6= ⊥ then valueMe (σsimp, ex) ≤ ce.

Otherwise, we have that ce ≥ valueRe (σsimp, ex), and the result follows.

Claim 6. valueRe (σ, ex) ≥ valueRe (σsimp, ex).

Proof of Claim 6. Let cRe = valueRe (σsimp, ex) and KFsimp (resp., KF ) be the partial cost-parity

arena obtained from HFsimp (resp., HF ) by replacing the color of the exit state ex with cRe .

Evidently, the even-left value of σsimp w.r.t. ex in KFsimp is cRe . Thus, it suffices to show that the

even-left value of strategy σ w.r.t. ex in KF is at least the even-left value of σsimp w.r.t. ex in

KFsimp. The proof of this is similar to the proof of Claim 4.

This concludes the proof of Lemma 6.

8. Conclusion

Cost-parity games represent a powerful machinery for the verification of temporal requirements

that are bounded in time. As in many settings, the representation of systems by means of

cost-parity games is affected by an exponential blow-up in the size of the resulting game. To

overcome this, many techniques exploiting system regularities have been successfully applied.

Among them, hierarchical systems deserve a special mention. In this paper, we have introduced

and investigated the problem of solving cost-parity games over hierarchical FSMs, showing that
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the problem is Pspace-complete, thus not harder than solving parity games over hierarchical

models. As future work, we aim to adapt the proposed approach to all the other winning bounded

conditions introduced in [15]. Moreover, it would be interesting to investigate cost-parity

conditions over concurrent game structures, the last one being a suitable formalism for modelling

strategic environments where there is simultaneous interaction between multiple players [9, 28].

Other relevant research directions include the study of cost-parity games in the imperfect

information setting as well as for infinite-state systems.
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