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ABSTRACT

The motion of S-stars around the Galactic center implies that the central gravitational potential is dominated by a compact source,
Sagittarius A* (Sgr A*), which has a mass of about 4 × 106 M� and is traditionally assumed to be a massive black hole (BH). The
explanation of the multiyear accurate astrometric data of the S2 star around Sgr A*, including the relativistic redshift that has recently
been verified, is particularly important for this hypothesis and for any alternative model. Another relevant object is G2, whose most
recent observational data challenge the scenario of a massive BH: its post-pericenter radial velocity is lower than expected from a
Keplerian orbit around the putative massive BH. This scenario has traditionally been reconciled by introducing a drag force on G2 by
an accretion flow. As an alternative to the central BH scenario, we here demonstrate that the observed motion of both S2 and G2 is
explained in terms of the dense core – diluted halo fermionic dark matter (DM) profile, obtained from the fully relativistic Ruffini-
Argüelles-Rueda (RAR) model. It has previously been shown that for fermion masses 48−345 keV, the RAR-DM profile accurately
fits the rotation curves of the Milky Way halo. We here show that the solely gravitational potential of such a DM profile for a fermion
mass of 56 keV explains (1) all the available time-dependent data of the position (orbit) and line-of-sight radial velocity (redshift
function z) of S2, (2) the combination of the special and general relativistic redshift measured for S2, (3) the currently available data
on the orbit and z of G2, and (4) its post-pericenter passage deceleration without introducing a drag force. For both objects, we find
that the RAR model fits the data better than the BH scenario: the mean of reduced chi-squares of the time-dependent orbit and z data
are 〈χ̄2〉S2,RAR ≈ 3.1 and 〈χ̄2〉S2,BH ≈ 3.3 for S2 and 〈χ̄2〉G2,RAR ≈ 20 and 〈χ̄2〉G2,BH ≈ 41 for G2. The fit of the corresponding z data
shows that while for S2 we find comparable fits, that is, χ̄2

z,RAR ≈ 1.28 and χ̄2
z,BH ≈ 1.04, for G2 the RAR model alone can produce an

excellent fit of the data, that is, χ̄2
z,RAR ≈ 1.0 and χ̄2

z,BH ≈ 26. In addition, the critical mass for gravitational collapse of a degenerate
56 keV-fermion DM core into a BH is ∼108 M�. This result may provide the initial seed for the formation of the observed central
supermassive BH in active galaxies, such as M 87.
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1. Introduction

The monitoring of the motion of the so-called S-stars near the
Galactic center over the past decades has revealed that the gravi-
tational potential in which they move is dominated by a massive
compact source at the center, Sagittarius A* (Sgr A*; Gillessen
et al. 2009, 2017). The S-star dynamics implies a mass for
Sgr A* of ≈4.1×106 M�, which is traditionally associated in the
literature with a massive black hole (BH; Gravity Collaboration
2018a; Ghez et al. 2008; Genzel et al. 2010).

Of the objects that move near and around Sgr A*, S2 and
G2 are the most interesting. The star S2 describes an elliptical
orbit that is focused on Sgr A* and has a period of 16.05 yr
and the second closest pericenter of the S-stars, rp(S 2) ≈ 0.6 mpc
(Gillessen et al. 2009, 2017). The S2 orbit constrains the Sgr A*

mass best, but its pericenter at ∼ 1500 rSch from Sgr A* is too
far to univocally infer a putative massive BH of Schwarzschild
radius rSch = 2GMBH/c2, where MBH is its mass.

The most recent measurements of the motion of G2 after the
peripassage around Sgr A* represent a further challenge for the
hypothesis of a massive BH. The G2 radial velocity is lower than
that from a Keplerian motion around the massive BH, which has
been reconciled by introducing the action of a drag force exerted
by an accretion flow (Plewa et al. 2017; Gillessen et al. 2019).

Our aim here is to show that the dense core – diluted halo
DM density distribution of a general relativistic system of
56 keV fermions, following the extended Ruffini-Argüelles-
Rueda (RAR) model (Argüelles et al. 2018, 2019a) instead
explains the orbits of S2 and G2 without invoking the
massive BH or a drag force. We use the most complete data of
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the S2 orbit over the last 26 yr (Gillessen et al. 2017; Gravity
Collaboration 2018b), including the recent data released by Do
et al. (2019), and the four-year data of the G2 motion after its
pericenter passage (Gillessen et al. 2019).

2. Ruffini-Argüelles-Rueda model of dark matter

The Ruffini-Argüelles-Rueda (RAR) model equilibrium equa-
tions consist of the Einstein equations in spherical symmetry
for a perfect fluid energy-momentum tensor. Pressure and den-
sity are given by Fermi-Dirac statistics, and the closure rela-
tions are determined by the Klein and Tolman conditions of
thermodynamic equilibrium (Ruffini et al. 2015). The solution to
this system of equations leads to a continuous and novel dense
core – diluted halo DM profile from the center all the way to
the galactic halo (see Siutsou et al. 2015; Argüelles et al. 2016;
Mavromatos et al. 2017, for its applications). Similar core-halo
profiles with applications to fermionic DM were also obtained
in Bilic et al. (2002) and more recently in Chavanis et al. (2015)
from a statistical approach within Newtonian gravity.

The above corresponds to the original version of the RAR
model, with a unique family of density profile solutions that
behaves as ρ(r) ∝ r−2 at large radial distances from the cen-
ter. This treatment was extended in Argüelles et al. (2018), by
introducing a cutoff in momentum space in the distribution func-
tion (DF; i.e., accounting for particle-escape effects) that allows
defining the galaxy border (see Appendix A). This extension of
the RAR model was successfully applied to explain the Milky
Way rotation curve, as shown in Fig. 1, implying a more general
dense core – diluted halo behavior for the DM distribution as
follows:

– A DM core with radius rc (defined at the first maximum
of the twice-peaked rotation curve), whose value is shown to
be inversely proportional to the particle mass m, in which the
density is nearly uniform. This central core is supported against
gravity by the fermion degeneracy pressure, and general rela-
tivistic effects are appreciable.

– Then, there is an intermediate region characterized by a
sharply decreasing density where quantum corrections are still
important, followed by an extended and diluted plateau. This
region extends until the halo scale-length rh is achieved (defined
at the second maximum of the rotation curve).

– Finally, the DM density reaches a Boltzmann regime sup-
ported by thermal pressure with negligible general relativistic
effects, and shows a behavior ρ ∝ r−n with n > 2 that is due
to the phase-space distribution cutof. This leads to a DM halo
bounded in radius (i.e., ρ ≈ 0 occurs when the particle escape
energy approaches zero).

As was explicitly shown in Argüelles et al. (2019b,a, 2018),
this type of dense core – diluted halo density profile suggests that
the DM might explain the mass of the dark compact object in
Sgr A* as well as the halo mass. It applies not only to the Milky
Way, but also to other galactic structures from dwarfs and ellip-
ticals to galaxy clusters (Argüelles et al. 2019a). Specifically,
a Milky Way analysis (Argüelles et al. 2018) has shown that
this DM profile can indeed explain the dynamics of the closest
S-cluster stars (including S2) around Sgr A*, all the way to the
halo rotation curve without changing the baryonic bulge-disk
components. The analysis of the S-stars was made through a sim-
plified circular velocity analysis in general relativity, constrain-
ing the allowed fermion mass to mc2 ≈ 50−345 keV. We extend
this analysis by fully reconstructing the geodesic of the object in
full general relativity, and apply it to S2 and G2. Figure 1 shows
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Fig. 1. Milky Way rotation curve and DM density profile from the
extended RAR model with a core mass of Mc = M(rc) = 3.5 × 106 M�.
Top: DM (black) and baryonic (bulge + disk) contribution to the rota-
tion curve vrot (total in red). Bottom: DM density profile. The baryonic
model and the data are taken from Sofue (2013). The parameters of the
extended RAR model in this case are fermion mass mc2 = 56 keV,
temperature parameter β0 = 1.1977 × 10−5, degeneracy parameter
θ0 = 37.7656, and energy cutoff parameter W0 = 66.3407. For the RAR
model fitting of the Milky Way, we follow Argüelles et al. (2018); see
also Appendix A.

the DM density profile and its contribution to the rotation curve
for the Milky Way for 56 keV DM fermions.

3. Orbit and radial velocity of S2 and G2

To obtain the S2 or G2 positions (orbit) and the correspond-
ing line-of-sight radial velocity (i.e., the redshift function; see
Appendix B) at each time, we solved the equations of motion
for a test particle (see Appendix C) in the gravitational field pro-
duced by two possible scenarii that we describe below.

1. A central Schwarzschild massive BH. Gravity
Collaboration (2018b) reported a BH mass of MBH =
4.1 × 106 M� from the fit of the most recent measurements
of the position and velocity of S2. The more recent analysis by
Do et al. (2019) reported a BH mass of 3.975 × 106 M�. These
works used a second-order post-Newtonian (2PN) model to
describe the object motion. In order to compare and contrast the
BH and the DM-RAR hypotheses on the same ground, that is,
using the same analysis method and treatment, we performed
our own fit of the data for the BH case using a full general
relativistic modeling by solving the equations of motion in the
Schwarzschild metric (see Appendix C). From our analysis of
S2, we obtain model parameters that are very similar (but not
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Table 1. Summary of the inferred best-fit values of the model and the (osculating) orbital parameters for S2 and G2 within the RAR model (fermion
mass 56 keV, DM core mass Mc = 3.5 × 106 M�) and the massive BH model (BH mass MBH = 4.075 × 106 M�).

Parameter S2 G2
RAR BH RAR BH

Semimajor axis, a (as) 0.1252 0.1252 1.0960 1.1941
Eccentricity, e 0.8866 0.8863 0.9823 0.9853
Distance to pericenter, rp (as) 0.0142 0.0143 0.0194 0.0180
Distance to apocenter, ra (as) 0.2361 0.2362 2.1725 2.3701
Argument of pericenter, ω (◦) 66.7724 66.4697 81.8391 82.0001
Inclination, i (◦) 134.3533 134.3505 121.8993 119.1000
Ascending node, Ω (◦) 228.0240 227.9681 50.8398 50.7782
X0 (mas) −0.1557 −0.0830 0.0248 0.0251
Y0 (mas) 2.5527 2.4893 −0.0160 −0.0140
Orbital period, P (yr) 16.0539 16.0506 416.3400 470.1610
χ̄2

X 1.5964 1.8004 33.3339 83.9950
χ̄2

Y 6.3411 7.2332 26.8419 11.2646
χ̄2

z 1.2799 1.0421 0.9960 26.3927
〈χ̄2〉 3.0725 3.3586 20.3906 40.5507

Notes. We refer to Appendix C for details of the definition of the parameters and the fitting procedure.

equal) to those that were presented in Gravity Collaboration
(2018b) and Do et al. (2019); see Table 1. In particular, we
obtain a BH mass of MBH = 4.075 × 106 M�.

2. A fermionic DM distribution obtained from the extended-
RAR model; see Appendix A. As was shown in Argüelles et al.
(2018), the fermion mass must be higher than 48 keV and lower
than 345 keV. We here present the results of the solution of the
equations of motion in the metric produced by the DM distribu-
tion of 56 keV fermions, with corresponding RAR model param-
eters as shown in Fig. 1. We obtain an excellent fit of the data for
a mass of the DM quantum-core, Mc ≡ M(rc) = 3.5 × 106 M�;
see Table 1.

It has previously been reported that the BH mass, MBH,
and the Galactic center distance, D�, show some correlation
(Gravity Collaboration 2018b; Do et al. 2019). We here adopted
the distance to the Galactic center as a fixed parameter, D� =
8 kpc. Instead, as we described, we seek a best-fit value for MBH
. It may therefore in principle have some effect on the inferred
values if D� and MBH are not considered together as adjustable
parameters. However, Table 1 shows that our inferred values for
the parameters of the BH model agree with those reported in pre-
vious analyses, including the BH mass, see, for instance, Gravity
Collaboration (2018b) and Do et al. (2019).

Because of the regular initial condition that is applied to
solve the equations of the extended RAR model, that is, ρ(r =
0) = const. (see Fig. 1 and Appendix A for details), the DM
quantum-core is not directly comparable with a BH, which
is characterized by a central singularity. However, it is pos-
sible to compare the mass that causes the innermost Keple-
rian behavior (i.e., the power law ∝r−1/2 in the velocity curve)
of orbiting objects in both scenarios. In the RAR model, the
Keplerian behavior arises just outside the core radius (see Fig. 1).
The corresponding “Keplerian mass”, MK , which describes the
Keplerian trend, is slightly higher than the DM core mass Mc
because of the slight mass contribution along the sharp density
drop. For larger radii, already in the diluted plateau density, the
mass contribution to MK is negligible, until the Keplerian trend
ends at about few 1 × 102 pc (curiously, this is at the peak of the
bulge velocity curve, see Fig. 1). For a quantum-core mass of
Mc = 3.5 × 106M�, we find the corresponding Keplerian mass

MK = 4.048 × 106 M�. This value is indeed very similar to the
value inferred for the BH scenario, MBH = 4.075 × 106 M�, and
should be kept in mind (in addition to Mc) when the two models
are compared regarding the (stellar) dynamics in the surround-
ings of Sgr A*.

We present the equations of motion for the general spher-
ically symmetric metric and the procedure we used to fit
the observational data of the apparent orbit and line-of-sight
radial velocity (i.e., the redshift function) in both scenarios in
Appendix C. Figure 2 shows the results of these two theoretical
scenarios and how they compare with the observational data of
the orbit (observed right ascension, X, and declination, Y) for
the case of S2. The comparison with the data of the line-of-
sight radial velocity is shown in Fig. 3. It is already noticeable
by visual inspection of the residuals that both theoretical mod-
els can explain the observational data for the orbit with similar
accuracy. The reduced-χ2 of the model data fit of the S2 radial
velocity (χ̄2

z ) and orbit (χ̄2
X and χ̄2

Y ) leads to a comparable mean
for both scenarios (with some preference for the RAR model):
〈χ̄2〉RAR ≈ 3.072, 〈χ̄2〉BH ≈ 3.359. We refer to Table 1 for the
model parameters and to Appendix C for details of the fitting
procedure.

The situation becomes even more interesting in the analo-
gous analysis made for G2. As shown in Plewa et al. (2017),
Gillessen et al. (2019), the radial velocity of the G2 orbit is
slower than the velocity predicted by the geodesic motion in the
gravitational field of the massive BH. We therefore propose that
G2 is slowed down by a drag force caused by an accretion flow
onto the massive BH over which G2 should move. The novel
major result is that a geodesic in the gravitational field of the
DM profile of the extended RAR model naturally predicts this
slowing down (see Figs. 4 and 5 and Table 1). The higher G2
deceleration arises because it moves in the gravitational field that
is produced by the spatially varying mass profile of the fermionic
DM. This deceleration effect is instead negligible in the case of
S2 because of the shape of the orbit, more precisely, because of
its size. From its pericenter at ∼0.6 mpc to apocenter at ∼10 mpc
(see Table 1), S2 moves only a short distance in which the
density of the fermionic DM varies considerably less than in
the G2 case. The orbit of G2, from its pericenter at ∼0.8 mpc
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Fig. 2. Theoretical and observed orbit of S2 around Sgr A*. Left panel: orbit (X vs. Y), right panel: X and Y position as a function of time and
the respective residuals of the best-fit for each model. The theoretical models are calculated by solving the equations of motion of a test particle in
the gravitational field of (1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue curves), and (2) the DM distribution obtained from the extended
RAR model for 56 keV fermions (red curves). The mass of the quantum core in the RAR model is 3.5 × 106 M�. Table 1 shows the parameters of
each model. We used the observational data reported in Do et al. (2019).

to its apocenter at ∼85 mpc, crosses a much larger region where
the DM density drastically drops off from ∼1 × 1015 M� pc3 to
∼1 M� pc3 (see Fig. 1).

4. S2 gravitational redshift

The instruments on the ESO Very Large Telescope (VLT)
SINFONI, NACO, and more recently, GRAVITY, have accumu-
lated exquisite data on the radial velocity (the redshift function)
and motion of S2 for about three decades (Gillessen et al. 2017;
Gravity Collaboration 2018b). This has allowed the recent obser-

vational detection of the combined gravitational redshift and rel-
ativistic transverse Doppler effect for S2 by the GRAVITY Col-
laboration (Gravity Collaboration 2018b).

The total Doppler shift z(r) is a combination of the gravi-
tational redshift and the relativistic Doppler shift. The GRAV-
ITY Collaboration (Gravity Collaboration 2018b) uses the 2PN
expansion of the redshift function for the case of a test particle
around a Schwarzschild BH. We now summarize their treatment
and refer to Zucker et al. (2006), Do et al. (2019) for its details,
and we refer to Appendix B for details on the full general rela-
tivistic treatment and a derivation of the 2PN approximation. At
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Fig. 3. Theoretical and observed line-
of-sight radial velocity (i.e., the redshift
function z; see Appendix B) of S2. The
theoretical models are calculated by
solving the equations of motion of a test
particle in the gravitational field of (1)
a Schwarzschild BH of 4.075 × 106 M�
(dashed blue curves), and (2) the DM
distribution obtained from the extended
RAR model for 56 keV fermions (red
curves). The mass of the quantum core
in the RAR model is 3.5 × 106 M�.
Table 1 shows the parameters of each
model. We used the observational data
reported in Do et al. (2019).

2PN order, the redshift function is z(r) ≈ zg(r) + zD(r) +O(1/c2).
The first term zg is the 2PN expression of the pure gravitational
redshift zg(r) =

√
g00(R)/g00(r)−1 ≈ MBH/r, where r is the posi-

tion of the emitted photon (emitter, or source), R is the position
of the receiver, and g00 is the 0-0 component of the spacetime
metric. Because R = D� = 8 kpc is the distance of the Sun to the
Galactic center, r � R, so that we safely approximated r/R→ 0.
The second term zD of the 2PN redshift can be split into the
Keplerian (Newtonian) contribution, zK(r), and the purely rela-
tivistic transverse Doppler shift, ztD, that is, zD(r) ≈ zK(r)+ztD(r).
Here, zK(r) = u · n, where n is the unity vector in the direc-
tion of the line of sight, and ztD(r) = v(r)2/2 (see Appendix B).
To summarize, at 2PN order, z(r) = zK(r) + zGR(r), where
zGR(r) = ztD(r) + zg(r) is the total general relativistic correction.
Therefore the deviation from a purely Newtonian behavior can
be measured by the general relativistic excess of the radial veloc-
ity, ∆z(r) ≡ z(r)− zK(r) = zGR(r) (Gravity Collaboration 2018b).
Because the extended-RAR model is fully general relativistic,
we used the full general relativistic expression of the redshift
function and the corresponding general relativistic excess (see
Appendix B for details).

Figures 3 and 5 show the redshift function z computed in
full general relativity for the massive BH and the extended RAR

model for S2 and G2, respectively. In the top panel of Fig. 6,
we show the redshift function z together with the corresponding
Keplerian contribution zK for S2 in the two models. The bottom
panels show the corresponding general relativistic excess, ∆z.
All these plots show that both models fit the data with compara-
ble accuracy. The reduced χ2 for the redshift function for this set
of parameters is χ̄2

z,RAR ≈ 1.28 and χ̄2
z,BH ≈ 1.04; see Appendix C

for details of the calculation of χ̄2. It is important to mention that
both models contain sets of parameters with slightly different
values than those that we presented in Table 1, which produce
χ̄2

z,RAR ≈ χ̄
2
z,BH ≈ 1. However, these models slightly increase the

χ̄2
X and χ̄2

Y and therefore increase the mean 〈χ̄2〉.

5. Discussion and conclusions

The vast amount of high-precision data (position and veloc-
ity) collected in the past decade of objects orbiting Sgr A*,
such as S2 and G2, offers an unprecedented opportunity to
test alternative scenarios to the central BH in our Galaxy. In
the work here, this motivation is twofold. First, it has recently
been shown (Argüelles et al. 2019b,a, 2018) that fermionic
DM, which self-consistently accounts for the Pauli principle and
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Fig. 4. Theoretical and observed orbit of G2 around Sgr A*. Left panel: orbit (X vs. Y), right panel: X and Y position as a function of time and
the respective residuals of the best-fit for each model. The theoretical models are calculated by solving the equations of motion of a test particle in
the gravitational field of (1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue curves), and (2) the DM distribution obtained from the extended
RAR model for 56 keV fermions (red curves). The mass of the quantum core in the RAR model is 3.5 × 106 M�. Table 1 shows the parameters of
each model. The observational data are taken from Phifer et al. (2013), Plewa et al. (2017), and Gillessen et al. (2019).

particle escape effects in the underlying phase-space DF at DM
halo formation, leads to novel dense core – diluted halo pro-
files where the degenerate core can produce analogous grav-
itational effects of a central BH. Second, the post-pericenter
passage of G2 challenges the BH scenario because in order to
explain the G2 data within this picture, Gillessen et al. (2019)
had to introduce an ad hoc drag force acting onto G2, caused

by its motion through an accretion flow. In addition, for this
drag-force hypothesis to work, it is necessary that G2 be a gas
cloud. This scenario contrasts with the observations and results
of Witzel et al. (2014), who ruled out the gas cloud composi-
tion in favor of a stellar nature. Moreover, even if G2 is assumed
to be a gas cloud, and if a radiatively inefficient accretion flow
(RIAF) is also assumed (as done in Gillessen et al. 2019), the
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Fig. 5. Theoretical and observed line-
of-sight radial velocity (i.e., the red-
shift function z; see Appendix B) of G2.
The theoretical models are calculated by
solving the equations of motion of a test
particle in the gravitational field of (1)
a Schwarzschild BH of 4.075 × 106 M�
(dashed blue curves), and (2) the DM
distribution obtained from the extended
RAR model for 56 keV fermions (red
curves). The mass of the quantum core
in the RAR model is 3.5 × 106 M�.
Table 1 shows the parameters of each
model. The observational data are taken
from Phifer et al. (2013), Plewa et al.
(2017), and Gillessen et al. (2019).

strength of the drag force onto G2 that is required to explain
the post-pericenter observations implies an ambient density
n0 ∼ few 103 cm−3 at ∼103 rSch. However, a density value like
this at these pericenter scales exceeds the upper bound found in
recent high-resolution numerical simulations by nearly one order
of magnitude1 (Steinberg et al. 2018). An upper bound like this
has been obtained from the constraint that G2 is not tidally dis-
rupted at its pericenter passage.

For the core-halo DM profiles, formation scenarios in which
the quantum nature of the particle is considered (i.e., either
bosonic or fermionic) are still an open field of research, and our
aim here is to provide a further (precision) test for fermionic
models. Joint observational tests based on additional physics,
for example, strong lensing (Gómez et al. 2016) or DM-active
neutrino interactions (Penacchioni et al. 2020), can help in
unambiguously probing the existence of a central fermionic
DM concentration in the allowed region of the extended RAR
model parameter space. The results shown here imply that this
free parameter space is slightly reduced with respect to the
space described in Argüelles et al. (2018). For fermion masses

1 There are systematic uncertainties in the estimation of n0 in Gillessen
et al. (2019) mainly due to the unknown size of the putative gas cloud,
the density profile, and the physics of the accretion process.

below 56 keV, the size of the DM core increases, and there is
also orbital precession. Data of the orbital precession of S2
(Gravity Collaboration 2020) might therefore further constrain
the allowed range of the fermion mass. The other free parame-
ters are well within the allowed range as broadly constrained in
Argüelles et al. (2019a) for each galaxy type.

We have used the existing observational data of S2, includ-
ing the total Doppler shift, which has both special and gen-
eral relativistic contributions, and the orbit in the plane of sky
and its radial velocity. We solved the equations of motion for a
test particle (S2 and G2) in the gravitational field produced by
two cases of interest: (1) the central massive BH hypothesis, for
which we used the Schwarzschild metric, and (2) the fermionic
DM hypothesis within the extended-RAR model, which leads to
a DM core-halo profile that in turn leads to a metric obtained
from the extended RAR model equilibrium equations follow-
ing the treatment in Argüelles et al. (2018) and summarized in
Appendix A. We refer to Appendix C for details of the equations
of motion and the procedure to obtain the model parameters from
the fitting of the observational data. For S2, the massive BH
model and the RAR model can both explain all the observational
data (orbit and velocity) with comparable accuracy, but the RAR
model is preferable with a lower 〈χ̄2〉; see Table 1, Figs. 2, and 3,
including the general relativistic redshift, see Fig. 6. In the case

A34, page 7 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935990&pdf_id=5


A&A 641, A34 (2020)

z (RAR)

zK (RAR)

z (BH)

zK (BH)

-2000

-1000

0

1000

2000

3000

4000

z
(k
m
/s
)

-50

0

50

100

150

200

250

300

Δ
z
=
z
-
z K

(k
m
/s
)

2017.5 2018.0 2018.5
-50

0

50

100

150

200

250

300

Epoch (yr)

Δ
z
=
z
-
z K

(k
m
/s
)

Fig. 6. Redshift function z (top panel)
and redshift function “excess” (middle
panel for the RAR model and lower
panel for the central massive BH model)
with respect to the Keplerian (Newto-
nian) contribution, i.e., ∆z = z − zK
(see Appendix B), for the S2 motion at
about its pericenter passage. The theo-
retical models are calculated by solving
the equations of motion of a test par-
ticle in the gravitational field of (1) a
Schwarzschild BH of 4.075 × 106 M�
(dashed blue curves), and (2) the DM
distribution obtained from the extended
RAR model for 56 keV fermions (red
curves). The mass of the quantum core
in the RAR model is 3.5 × 106 M�.
Table 1 shows the parameters of each
model.

of G2, only the RAR model can explain both the orbit and veloc-
ity, see Table 1, Fig. 4, and 5.

This remarkable result of the extended-RAR fermion-DM
model is further complemented with the successful applicabil-
ity of its ensuing dense core – diluted halo profile to other
galaxy types, from dwarfs to ellipticals (Argüelles et al. 2019a).
Moreover, it can be directly linked with the DM-halo for-
mation processes because the RAR model quantum-statistical
phase-space distribution (see Eq. (A.1)) is not given ad hoc,
but can be obtained as a (quasi-) stationary solution of a gen-
eralized thermodynamic Fokker-Planck equation for fermions
(Chavanis 2004). This includes the physics of collisionless
(violent) relaxation and evaporation, which is appropriate for
nonlinear structure formation. These phase-space distributions
have been shown to fulfill a maximization (coarse-grained)
entropy principle (second law of thermodynamics) during the
(collisionless) relaxation process until the halo reaches the cur-
rently observed steady state.

Our results provide strong observational support to the
quantum-core hypothesis as an alternative to the massive BH
hypothesis in Sgr A* (Argüelles et al. 2019b, 2018), and also to the
fermionic nature of DM. In this line, it is desirable to further test

the presence of fermionic DM concentrations in our galactic core
from existing luminosity constraints on the variability of the com-
pact radio source Sgr A*, in addition to the dynamical constraints.
A study like this goes beyond the scope of our work, which is
devoted to the orbital dynamics of some of the closest objects
to Sgr A* and with accurate astrometric data. We would like to
recall, however, that the gravitational potentials produced by a BH
and by a mmost compact (stable) DM quantum core for a fermion
mass of about 100 keV practically coincide at distances r & 10rSch
(see Gómez et al. 2016, for details). The dynamics of baryonic
matter and its emission associated with its motion at these scales
is thus not expected to differ much between the two pictures.
Differences might occur in the innermost regions owing to the
transparency of the DM core, which might lead to differences in
the lensing properties (Gómez et al. 2016) and possibly to any
accretion process at these small scales. Moreover, although the
emission around Sgr A* is often univocally associated with a par-
ticular accretion flow (extremely underluminous when compared
to typical accretion expectations), this is not confirmed by the
observational data, and indeed, alternative mechanisms or expla-
nations for the observed radiation exist (see, e.g., Yuan & Narayan
2014, for a review on this subject). As of today, the most reliable
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observational data that allow us to prove and test the validity of
alternative models for Sgr A*, such as we presented here, are the
precision measurements of the orbital dynamics, together with the
validity and demonstrated precision of general relativity. We look
forward to the public release of the latest data by the GRAVITY
Collaboration on S2 and G2 (e.g., Gillessen et al. 2019), which
will serve to further test our theoretical prediction (e.g., Fig. 5).
We have shown the results for a fermion mass of 56 keV, a value
that is safely higher than the lower limit of 48 keV estimated in
Argüelles et al. (2018), by equating the DM core radius to the up-
to-then reported pericenter distance of S2. The lower the fermion
mass, the larger the size of the DM core, and vice versa. It is there-
fore worthwhile to explore whether the data of S2 and G2 together
might further constrain the allowed range of fermion masses. This
investigation, however, goes beyond the scope of this work, and
might be a topic of joint collaboration.

The DM fermion mass of 56 keV inferred in this work would
produce (down to megaparsec scales) the same standard ΛCDM
power spectrum, hence providing the expected large-scale struc-
ture (Boyarsky et al. 2009a). Because the fermion mass is higher
than >5 keV, it does not contradict constraints from the Lyman-
α forest (Boyarsky et al. 2009b; Viel et al. 2013; Irsic et al.
2017) and the number of Milky Way satellites (Tollerud et al.
2008). Furthermore, for the present fermion mass mc2 = 56 keV,
the critical mass for gravitational collapse of the DM quan-
tum core (Mcr

c ∼ m3
Pl/m

2, with mPl the Planck mass) into a
BH is about 108 M�, providing a viable formation scenario for
the observed central supermassive BH in active galaxies such
as M87. A supermassive BH of ∼109 M� can form starting
from a ∼108 M� BH seed and accrete .1% of the (baryonic
and/or DM) galactic environment of ∼1012 M�. Over cosmologi-
cal timescales, this would be achieved without unrealistic super-
Eddington accretion rates, while providing a new framework for
studying the poorly understood formation and growth scenar-
ios of supermassive BH seeds in the cosmological high-redshift
Universe.

Acknowledgements. We thank the Referee and the Editor for their helpful sug-
gestions which have improved the presentation of our results. E.A.B-V. thanks
financial and research support from COLCIENCIAS under the program Becas
Doctorados Nacionales 727, the International Center for Relativistic Astro-
physics Network (ICRANet), Universidad Industrial de Santander (UIS) and
the International Relativistic Astrophysics Ph.D Program (IRAP-PhD). C.R.A
has been supported by CONICET and Secretary of Science and Technology of
FCAG.

References
Argüelles, C. R., Mavromatos, N. E., Rueda, J. A., & Ruffini, R. 2016, J. Cosmol.

Astropart. Phys., 4, 038
Argüelles, C. R., Krut, A., Rueda, J. A., & Ruffini, R. 2018, Phys. Dark Universe,

21, 82
Argüelles, C. R., Krut, A., Rueda, J. A., & Ruffini, R. 2019a, Phys. Dark

Universe, 24, 100278
Argüelles, C. R., Krut, A., Rueda, J. A., & Ruffini, R. 2019b, Int. J. Mod. Phys.

D, 28, 1943003
Bilic, N., Munyaneza, F., Tupper, G. B., & Viollier, R. D. 2002, Prog. Part. Nucl.

Phys., 48, 291
Boyarsky, A., Ruchayskiy, O., & Shaposhnikov, M. 2009a, Annu. Rev. Nucl.

Part. S., 59, 191
Boyarsky, A., Lesgourgues, J., Ruchayskiy, O., & Viel, M. 2009b, Phys. Rev.

Lett., 102, 201304
Chavanis, P.-H. 2004, Phys. A, 332, 89
Chavanis, P.-H., Lemou, M., & Méhats, F. 2015, Phys. Rev. D, 92, 123527
Chu, D. S., Do, T., Hees, A., et al. 2018, ApJ, 854, 12
de Vega, H. J., Salucci, P., & Sanchez, N. G. 2014, MNRAS, 442, 2717
Do, T., Hees, A., Ghez, A., et al. 2019, Science, 365, 664
Fehlberg, E. 1970, Computing, 6, 61
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044
Gibbons, S. L. J., Belokurov, V., & Evans, N. W. 2014, MNRAS, 445, 3788
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009, ApJ, 707, L114
Gillessen, S., Plewa, P. M., Eisenhauer, F., et al. 2017, ApJ, 837, 30
Gillessen, S., Plewa, P. M., Widmann, F., et al. 2019, ApJ, 871, 126
Gómez, L. G., Argüelles, C. R., Perlick, V., Rueda, J. A., & Ruffini, R. 2016,

Phys. Rev. D, 94, 123004
Gravity Collaboration (Abuter, R., et al.) 2018a, A&A, 618, L10
Gravity Collaboration (Abuter, R., et al.) 2018b, A&A, 615, L15
Gravity Collaboration (Abuter, R., et al.) 2020, A&A, 636, L5
Irsic, V., Viel, M., Haehnelt, M. G., et al. 2017, Phys. Rev. D, 96, 023522
Klein, O. 1949, Rev. Mod. Phys., 21, 531
Mavromatos, N. E., Argüelles, C. R., Ruffini, R., & Rueda, J. A. 2017, Int. J.

Mod. Phys. D, 26, 1730007
Merafina, M., & Ruffini, R. 1989, A&A, 221, 4
Penacchioni, A. V., Civitarese, O., & Argüelles, C. R. 2020, Eur. Phys. J. C, 80,

183
Phifer, K., Do, T., Meyer, L., et al. 2013, ApJ, 773, L13
Plewa, P. M., Gillessen, S., Pfuhl, O., et al. 2017, ApJ, 840, 50
Randall, L., Scholtz, J., & Unwin, J. 2017, MNRAS, 467, 1515
Ruffini, R., Argüelles, C. R., & Rueda, J. A. 2015, MNRAS, 451, 622
Siutsou, I., Argüelles, C. R., & Ruffini, R. 2015, Astron. Rep., 59, 656
Sofue, Y. 2013, PASJ, 65, 118
Steinberg, E., Sari, R., Gnat, O., et al. 2018, MNRAS, 473, 1841
Tollerud, E. J., Bullock, J. S., Strigari, L. E., & Willman, B. 2008, ApJ, 688, 277
Tolman, R. C. 1930, Phys. Rev., 35, 904
Viel, M., Becker, G. D., Bolton, J. S., & Haehnelt, M. G. 2013, Phys. Rev. D, 88,

043502
Witzel, G., Ghez, A. M., Morris, M. R., et al. 2014, ApJ, 796, L8
Yuan, F., & Narayan, R. 2014, ARA&A, 52, 529
Zucker, S., Alexander, T., Gillessen, S., Eisenhauer, F., & Genzel, R. 2006, ApJ,

639, L21

A34, page 9 of 14

http://linker.aanda.org/10.1051/0004-6361/201935990/1
http://linker.aanda.org/10.1051/0004-6361/201935990/1
http://linker.aanda.org/10.1051/0004-6361/201935990/2
http://linker.aanda.org/10.1051/0004-6361/201935990/2
http://linker.aanda.org/10.1051/0004-6361/201935990/3
http://linker.aanda.org/10.1051/0004-6361/201935990/3
http://linker.aanda.org/10.1051/0004-6361/201935990/4
http://linker.aanda.org/10.1051/0004-6361/201935990/4
http://linker.aanda.org/10.1051/0004-6361/201935990/5
http://linker.aanda.org/10.1051/0004-6361/201935990/5
http://linker.aanda.org/10.1051/0004-6361/201935990/6
http://linker.aanda.org/10.1051/0004-6361/201935990/6
http://linker.aanda.org/10.1051/0004-6361/201935990/7
http://linker.aanda.org/10.1051/0004-6361/201935990/7
http://linker.aanda.org/10.1051/0004-6361/201935990/8
http://linker.aanda.org/10.1051/0004-6361/201935990/9
http://linker.aanda.org/10.1051/0004-6361/201935990/10
http://linker.aanda.org/10.1051/0004-6361/201935990/11
http://linker.aanda.org/10.1051/0004-6361/201935990/12
http://linker.aanda.org/10.1051/0004-6361/201935990/13
http://linker.aanda.org/10.1051/0004-6361/201935990/14
http://linker.aanda.org/10.1051/0004-6361/201935990/15
http://linker.aanda.org/10.1051/0004-6361/201935990/16
http://linker.aanda.org/10.1051/0004-6361/201935990/17
http://linker.aanda.org/10.1051/0004-6361/201935990/18
http://linker.aanda.org/10.1051/0004-6361/201935990/19
http://linker.aanda.org/10.1051/0004-6361/201935990/20
http://linker.aanda.org/10.1051/0004-6361/201935990/21
http://linker.aanda.org/10.1051/0004-6361/201935990/22
http://linker.aanda.org/10.1051/0004-6361/201935990/23
http://linker.aanda.org/10.1051/0004-6361/201935990/24
http://linker.aanda.org/10.1051/0004-6361/201935990/25
http://linker.aanda.org/10.1051/0004-6361/201935990/26
http://linker.aanda.org/10.1051/0004-6361/201935990/26
http://linker.aanda.org/10.1051/0004-6361/201935990/27
http://linker.aanda.org/10.1051/0004-6361/201935990/28
http://linker.aanda.org/10.1051/0004-6361/201935990/28
http://linker.aanda.org/10.1051/0004-6361/201935990/29
http://linker.aanda.org/10.1051/0004-6361/201935990/30
http://linker.aanda.org/10.1051/0004-6361/201935990/31
http://linker.aanda.org/10.1051/0004-6361/201935990/32
http://linker.aanda.org/10.1051/0004-6361/201935990/33
http://linker.aanda.org/10.1051/0004-6361/201935990/34
http://linker.aanda.org/10.1051/0004-6361/201935990/35
http://linker.aanda.org/10.1051/0004-6361/201935990/36
http://linker.aanda.org/10.1051/0004-6361/201935990/37
http://linker.aanda.org/10.1051/0004-6361/201935990/38
http://linker.aanda.org/10.1051/0004-6361/201935990/38
http://linker.aanda.org/10.1051/0004-6361/201935990/39
http://linker.aanda.org/10.1051/0004-6361/201935990/40
http://linker.aanda.org/10.1051/0004-6361/201935990/41
http://linker.aanda.org/10.1051/0004-6361/201935990/41


A&A 641, A34 (2020)

Appendix A: Extended Ruffini-Argüelles-Rueda
model

The extended RAR model conceives the DM in galaxies as a
general relativistic self-gravitating system of massive fermions
(spin 1/2) in hydrostatic and thermodynamic equilibrium. It uses
an equation of state (EOS) that takes into account (i) relativis-
tic effects of the fermionic constituents, (ii) finite temperature
effects, and (iii) particle escape effects at large momentum (p)
through a cutoff in the Fermi-Dirac distribution fc,

fc(ε ≤ εc) =
1 − e(ε−εc)/kT

e(ε−µ)/kT + 1
, fc(ε > εc) = 0 , (A.1)

which differs from the original RAR model version (see Sect. 2)
only in condition (iii). Where ε =

√
c2 p2 + m2c4−mc2 is the par-

ticle kinetic energy, µ is the chemical potential from which the
particle rest-energy is subtracted, T is the temperature, k is the
Boltzmann constant, c is the speed of light, and m is the fermion
mass. The stress-energy tensor is that of a perfect fluid whose
density and pressure are associated with this distribution func-
tion,

ρ = m
2
h3

∫ εc

0
fc(p)

(
1 +

ε(p)
mc2

)
d3 p , (A.2)

P =
1
3

4
h3

∫ εc

0
fc(p) ε

1 + ε(p)/2mc2

1 + ε(p)/mc2 d3 p. (A.3)

For the spherically symmetric spacetime metric,

ds2 = g00(r)dt2 − g11(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (A.4)

where (r,θ,φ) are the spherical coordinates. Using g00(r) = eν(r),
the Tolman (Tolman 1930), Klein (Klein 1949), and the cutoff
(Merafina & Ruffini 1989) conditions of thermodynamic equi-
librium and energy conservation are

eν/2T = constant, (A.5)

eν/2(µ + mc2) = constant, (A.6)

eν/2(ε + mc2) = constant. (A.7)

The Einstein equations together with the conditions given by
Eqs. (A.5)–(A.7) form a coupled system of integro-differential
equations,

dM̂
dr̂

= 4πr̂2ρ̂, (A.8)

dθ
dr̂

= −
1 − β0(θ − θ0)

β0

M̂ + 4πP̂r̂3

r̂2(1 − 2M̂/r̂)
, (A.9)

dν
dr̂

=
2(M̂ + 4πP̂r̂3)
r̂2(1 − 2M̂/r̂)

, (A.10)

β(r̂) = β0e
ν0−ν(r̂)

2 , (A.11)
W(r̂) = W0 + θ(r̂) − θ0 , (A.12)

where the subscript “0” stands for variable evaluated at r = 0,
and we have introduced dimensionless quantities: β = kT/(mc2),
θ = µ/(kT ), W = εc/(kT ), r̂ = r/χ, M̂ = GM/(c2χ), ρ̂ =
Gχ2ρ/c2, P̂ = Gχ2P/c4, where χ = 2π3/2(~/mc)(mPl/m), being
mPl =

√
~c/G the Planck mass.

This system is solved for appropriate boundary conditions,
[M(0) = 0, θ(0) = θ0, β(0) = β0, ν(0) = 0,W(0) = W0], for dif-
ferent DM particle masses m to find a solution consistent with

the DM halo observables of a given galaxy. The RAR model
equations are solved for positive central degeneracy parameters
(i.e., θ0 > 10) in order to ensure that the Pauli principle is ful-
filled within the central core, as demonstrated in Ruffini et al.
(2015) and Argüelles et al. (2018). This property implies as
a consequence RAR DM profiles that develop a dense core –
diluted halo morphology, where the central core is governed by
Fermi-degeneracy pressure, while the outer halo holds against
gravity by thermal pressure (resembling the Burkert or King pro-
files, as shown in Argüelles et al. 2018, 2019a). The extended
RAR model is the more general of its kind because it does
not work under the full Fermi-degeneracy approximation as in
Randall et al. (2017), nor in the diluted-Fermi regime (de Vega
et al. 2014).

The case of the Milky Way has recently been analyzed in
Argüelles et al. (2018). We adopted a similar boundary condition
problem as solved in Argüelles et al. (2018), with the only differ-
ence that we now allowed the dense DM core Mc to vary until the
mean reduced-χ2 of the S2 data fit (see Appendix C) achieved
the minimum. That is, we considered (i) a DM halo mass with
observationally inferred values at two different radial locations
in the Galaxy: a DM halo mass M(r = 40 kpc) = 2 × 1011 M�
(Gibbons et al. 2014) and M(r = 12 kpc) = 5 × 1010 M�
(Sofue 2013); and (ii) a DM dense quantum core to have a mass
M(r = rc) ≡ Mc = 3.5 × 106 M� with rc smaller than the peri-
center of star S2, resulting in rc ≈ 0.4 mpc by the extended RAR
model free parameters given in Fig. 1. While the halo condition
(i) exactly follows the method that was used in Argüelles et al.
(2018), the latter condition (ii) explicitly request the quantum
DM core to substitute the massive BH scenario while minimiz-
ing the mean reduced-χ2 for the S2 data fit (see Appendix C).
We thus have three boundary conditions for three free RAR-
model parameters (β0, θ0, and W0) for a given particle mass of
mc2 = 56 keV. It is of interest to explore whether the data of
S2 and G2 together can further constrain the allowed range of
fermion masses. This investigation, however, goes beyond the
scope of the present work. The application of the extended RAR
model to other galaxy types from dwarfs and ellipticals to galaxy
clusters can be found in Argüelles et al. (2019a).

Appendix B: Total orbital Doppler shift

The redshift is defined by the ratio between the measured wave-
length of a spectral line at emission and reception:

1 + z ≡
E(em)

E(obs)
=
λ(obs)

λ(em)
. (B.1)

We denote the four-momentum of photons measured by an
observer comoving with the emitter, kµ(em), and the one mea-
sured by an observer comoving with the receiver, kµ(obs). The
observer comoving with the emitter has four-velocity uµ(em), so

they measure a photon energy E(em) = k(em)
µ uµ(em). Analogously,

the observer comoving with the receiver measures a photon
energy E(obs) = k(obs)

µ uµ(obs). Therefore, theoretically, we can write
Eq. (B.1) as

1 + z =
k(em)
µ uµ(em)

k(obs)
µ uµ(obs)

=
k(em)

0

k(obs)
0

u0
(em) + ui

(em)n
(em)
i

u0
(obs) + ui

(obs)n
(obs)
i

, (B.2)

where ni = ki/k0 are the normalized spatial components of the
photon four-momentum. Defining the components of the three-
velocity, vi ≡ ui/u0, and the Lorentz factor (where the right-hand
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side of the equation below is obtained from the normalization
condition uµuµ = 1),

γ = u0 =
dt
dτ

=
1√

g00 − v2
, v2 = −vivi = −g11(vr)2 + (rvφ)2,

(B.3)

Eq. (B.2) becomes

1 + z =
γ(em)

γ(obs)

1 + vi
(em)n

(em)
i

1 + vi
(obs)n

(obs)
i

, (B.4)

where we used the fact that along the photon geodesic, k0 is con-
served.

For the present purpose, we can neglect the motion of the
observer reference frame with respect to the one of the cen-
ter of the gravitational field with sufficient accuracy, that is,
vi

(obs) = 0, and the gravitational field at the observation point,

g(obs)
00 = 1 (see, e.g., Do et al. 2019), then γ(obs) = 1, and Eq. (B.4)

becomes

1 + z = γ (1 + u · n), (B.5)

where u · n = vini is the three-dimensional velocity of the emit-
ter projected onto the direction of the line of sight; this is often
called the observed “radial velocity” in the experimental litera-
ture, and we relaxed the notation of emitter and receiver because
only the emitter is considered to be in motion.

It is important to clarify that the redshift function z is often
referred to in the literature as “radial velocity”, the velocity in the
direction of the line of sight. The latter is actually u · n, therefore,
as can be seen from Eq. (B.5), the relation between it and z is in
general nonlinear.

In general, it is not possible to separate the contributions to
z of the gravitational field and of the relative motion of the emit-
ter or receiver, that is, they are combined or mixed in Eq. (B.5).
However, this equation already explicitly shows that in the non-
relativistic limit (γ → 1), the redshift is given only by the
so-called Keplerian (Newtonian) contribution, z → zK ,
where

zK ≡ u · n. (B.6)

The gravitational and relative motion contributions become
clearly visible when a post-Newtonian expansion of the red-
shift is performed. For instance, when the gravitational field is
produced by a Schwarzschild BH of mass MBH, that is, g00 =
−1/g11 = 1 − 2MBH/r, the Lorentz factor, up to order 1/c2

(i.e., 2PN order), is

γ ≈
(
1 +

MBH

r

) (
1 +

v2/2
1 − 2MBH/r

)
≈

(
1 +

MBH

r

) [
1 +

1
2

v2
(
1 +

2MBH

r

)]
≈

(
1 +

MBH

r

) (
1 +

1
2

v2
)
≈ 1 +

1
2

v2 +
MBH

r
+ O(1/c2), (B.7)

which, replaced into Eq. (B.5), leads to the 2PN redshift func-
tion:

z ≈ zK +
1
2

v2 +
MBH

r
+ O(1/c2). (B.8)

Equation (B.8) is the expression presented in Zucker et al. (2006)
(see Eq. (1) therein), and it is the radial velocity Eq. (S24) in

Do et al. (2019), setting vz0 = 0 there, and consistent with our
assumption of neglecting the relative motion of the gravitational
center of mass with respect to the center of the observer’s refer-
ence frame. The approximate Eq. (B.8) has been used in those
works for the analysis of the gravitational contribution to the red-
shift function in the case of the S2 star.

The GRAVITY Collaboration (Gravity Collaboration 2018b)
has claimed the detection of the gravitational redshift in the orbit
of the star S2. In practice, they verified the consistency of the
data of the redshift function of S2 with the presence of what
they call the “general relativistic excess of the radial velocity”
(Gravity Collaboration 2018b),

∆z ≡ z − zK , (B.9)

Equation (B.9) tells that the theoretical excess predicted by gen-
eral relativity at 2PN order is

∆z ≈
1
2

v2 +
MBH

r
, (B.10)

which has been shown to be consistent with the data of star S2
(Gravity Collaboration 2018b).

The present RAR model is a fully general relativistic treat-
ment, therefore we used the full redshift function (B.5) in the fit
of the observational data (see Appendix C). In this case, the gen-
eral relativistic excess in the redshift, as defined by Eq. (B.9),
reads

∆z = (γ − 1)(1 + zK). (B.11)

It is manifest in the fully general expression Eq. (B.11) that in the
nonrelativistic (Newtonian) limit, γ → 1, the excess vanishes,
that is, ∆z → 0. It is also easy to verify that Eq. (B.11) reduces
to Eq. (B.10) at 2PN order, with the aid of Eq. (B.7).

Appendix C: Equations of motion and orbital
parameters of the real and apparent orbits

C.1. Orbital dynamics

The equations of motion of the test particle (S2 or G2) in the
spherically symmetric metric given by Eq. (A.4), assuming with-
out loss of generality θ = π/2, are

ṫ =
E

g00(r)
, (C.1a)

r̈ =
1

2 g11(r)

[
dg00(r)

dr
ṫ2 −

dg11(r)
dr

ṙ2 − 2 r φ̇2
]
, (C.1b)

φ̇ =
L
r2 , (C.1c)

where E and L are the conserved energy and the angular momen-
tum of the particle per-unit-mass, so E is dimensionless and L
has units of mass, and the overdot stands for derivative with
respect to the proper time, τ. In terms of Cartesian coordinates,
we denote the position and velocity components of the real orbit
as x, y, z, and vx, vy, vz. In our present case, θ = π/2, these are
obtained using the transformation from spherical Schwarzschild
coordinates to Cartesian coordinates:

x = r cos φ, (C.2)
y = r sin φ, (C.3)
z = 0, (C.4)
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Fig. C.1. Projection of the real orbit onto the plane of the sky. The axes
originate at Sgr A* (the focus of the ellipse). The picture illustrates the
orbital parameters: φ is the azimuth angle of the spherical system of
coordinates associated with the x, y, z Cartesian coordinates, i.e., for an
elliptic motion in the x-y plane, it is the true anomaly, i is the angle of
inclination between the real orbit and the observation plane, Ω is the
angle of the ascending node, and ω is the argument of pericenter. It is
worth noting that the Z-axis of the coordinate system is defined by the
vector pointing from the Solar System to the Galactic center.

and the corresponding three-velocities are

vx = vr cos φ − rvφ sin φ, (C.5)
vy = vr sin φ + rvφ cos φ, (C.6)
vz = 0, (C.7)

where vr ≡ ur/u0 = dr/dt and vφ ≡ uφ/u0 = dφ/dt, where
uµ = dxµ/dτ is the four-velocity of the particle.

The solution of Eqs. (C.1a)–(C.1c) allows us to trace the stel-
lar orbit, but to compare this with the observational data, it is
necessary to determine the apparent orbit on the plane of the
sky. Namely, we have to project the real orbit onto the observa-
tion plane, as shown in Fig. C.1. On the plane of the sky, the star
traces an orbit with Cartesian positions Xobs and Yobs, defined by
the observed angular positions, that is, the declination δ and the
right ascension α (see, e.g., Ghez et al. 2008; Chu et al. 2018;
Do et al. 2019):

Xobs = D�(α − αSgrA∗), Yobs = D�(δ − δSgrA∗), (C.8)

centering the coordinate system on Sgr A*. We adopted D� =
8 kpc (see, e.g., Gravity Collaboration 2018b; Do et al. 2019).

We introduce the same notation as in Do et al. (2019) for the
classic Thiele-Innes constants, that is, A, B, C, F, G, and H. The
theoretical apparent orbit (i.e., the position in coordinates X, Y ,
and Z) can then be obtained from the real orbit positions x and y
by (see Fig. C.1)

X = x B + y G, (C.9a)
Y = x A + y F, (C.9b)
Z = x C + y H, (C.9c)

and the corresponding components of the apparent coordinate
velocity are

VX =
dX
dt

= vxB + vyG, (C.10a)

VY =
dY
dt

= vxA + vyF, (C.10b)

VZ =
dZ
dt

= vxC + vyH, (C.10c)

where

A = cos Ω cosω − sin Ω sinω cos i, (C.11a)
B = sin Ω cosω + cos Ω sinω cos i, (C.11b)
C = sinω sin i, (C.11c)
F = − cos Ω sinω − sin Ω cosω cos i, (C.11d)
G = − sin Ω sinω + cos Ω cosω cos i, (C.11e)
H = cosω sin i, (C.11f)

where ω, i, and Ω are the osculating orbital elements: the argu-
ment of pericenter, the inclination between the real orbit and
the observation plane, and the ascending node angle, respec-
tively. These orbital elements are strictly defined (fixed con-
stants) only for a Keplerian (Newtonian) elliptic orbit. In this
case, the radial position is simply given by r = a(1 − e cos E),
where a is the semimajor axis of the ellipse, e its eccentricity,
and E is its eccentric anomaly. The latter is related to the true
anomaly, which is the azimuthal angle φ, by cos φ = (cos E − e)/
(1 − e cos E). In this case, Eqs. (C.9) and (C.10) reduces to
Eqs. (S8)–(S10) of Do et al. (2019). However, in the full gen-
eral relativistic case, it is not possible (in general) to determine
a closed form in which an analytic function r(φ) describes the
orbit. For the simpler case of a test particle that moves around a
Schwarzschild BH, r(φ) can be written in terms of Jacobi elliptic
functions. In the RAR model, we obtain r(τ) and φ(τ), or for the
sake of comparison with observations, r(t) and φ(t), by numer-
ical integration of the equations of motion, Eq. (C.1a). Clearly,
we can then obtain r(φ) numerically.

C.2. Fitting procedure of the observational data

To fit the observed positions, Do et al. (2019) introduced time-
varying offsets of the position of the gravitational center of mass
with respect to the center of the reference frame, adopting a lin-
ear drift. For our purpose, it is sufficient to introduce the constant
offsets X0 and Y0,

Xobs(tobs) = X[r(t), φ(t);ω, i,Ω] + X0, (C.12a)
Yobs(tobs) = Y[r(t), φ(t);ω, i,Ω] + Y0, (C.12b)

where X and Y are given by Eq. (C.9), tobs is the time measured
at the observer point, and t = tem is the time at emission.

In general, tobs and t are not equal: a time delay exists in the
observations that is caused by light-propagation effects along the
line of sight. An obvious cause of the time delay is the fact that
the speed of light is finite. Along the line of sight (i.e., the Z-
direction), this is called Rømer delay (see, e.g., Do et al. 2019),

tobs = tem +
Z(tem)

c
, (C.13)

where Z is given by Eq. (C.9c). Equation (C.13) is an implicit
nonlinear equation for tem , but it can be inverted at first order as
(see, e.g., Do et al. 2019)

tem ≈ tobs −
Z(tobs)

c
· (C.14)

We neglected any photon delay time in our fitting procedure,
therefore we adopted

tem = tobs, (C.15)

which is sufficiently accurate for the purposes of this work.
The model parameters we inferred (see Table 1) of S2 in the
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Fig. C.2. Ratio tobs/tem as given by Eq. (C.14), calculating Z(tobs) with
Eq. (C.9c), for the best-fit model parameters of the BH model Table 1,
derived assuming Eq. (C.15).

case of a Schwarzschild BH are similar to those that were
previously presented in the literature, see, for instance,
Gravity Collaboration (2018b) and Do et al. (2019) for a com-
parison. Figure C.2 shows that tobs ≈ tem with high accuracy
(≈0.001% error). Our estimate shown in Fig. C.2 agrees with the
estimate in Do et al. (2019), who reported that this delay modu-
lates the light-propagation time by ∆t = tobs − tem ≈ −0.5 days at
pericenter and ∆t ≈ 7.5 days at apocenter.

The assumption of zero relative motion of the center of mass
and the center of the observer’s frame introduces only a differ-
ence of order vz0/vZ ∼ 0.1% in the radial velocity, being z the
redshift function (see Appendix B for details).

In general, the four-velocity component uZ is not directly
accessible from the observations as it is the redshift function z
given by Eq. (B.5). Therefore we obtained the parameters that
best fit the equation

zobs(tobs) = z[r(t), φ(t), ṙ(t), φ̇(t);ω, i], (C.16)

where in terms of the orbital parameters,

z = γ − 1 + uZ , (C.17a)

uZ = γVZ =
[
ṙ sin(φ + ω) + rφ̇ cos(φ + ω)

]
sin i. (C.17b)

Here we introduced the notation VZ ≡ u · n, where n is the unit
vector pointing from the emitter to the observer (i.e., the unit
vector in the direction of the line of sight), and we recall that
ṙ = dr/dτ, φ̇ = dφ/dτ, and γ is given by Eq. (B.3).

It is now clear that at every time, the possible available obser-
vational data are the coordinates of the apparent orbit in the sky
plane, that is, Xobs and Yobs, and the measured redshift function,
zobs. The real orbit at every time is obtained by solving the equa-
tions of motion, Eq. (C.1a), which give the coordinate positions
r(t), φ(t), and the corresponding velocities ṙ(t) and φ̇(t).

First, to solve Eq. (C.1a), we must set the value of E and
L. From the definition of the Lorentz factor, Eq. (B.3), and the
equation of motion for t(τ), Eq. (C.1a), we obtain the first inte-
gral:

−g00(r)g11(r)ṙ2 = E2 − U2
eff(r), (C.18)

where

U2
eff(r) ≡ g00(r)

(
1 +

L2

r2

)
, (C.19)

is the well-known effective potential governing the radial
motion. The relevance of this equation is that it allows us to
perform a turning-point analysis, analogously to the classical
Kepler problem. Equation (C.18) shows that the request of hav-
ing a bound, closed orbit within two known turning points, that
is, the pericenter (rp) and the apocenter (ra), where ṙ = 0, implies
a unique solution for E and L; see Fig. C.3. The value of Ueff at
the turning points has to be the same, so that we obtain L by
solving the algebraic equation

Ueff(L, rp) = Ueff(L, ra), (C.20)

and with the knowledge of L, we obtain the energy by

E = Ueff(L, rp), or E = Ueff(L, ra). (C.21)

The metric functions g00(r) and g11(r) in the BH case are set
by the mass of the BH, MBH. In the extended RAR model, the
parameters θ0, β0, W0, and the fermion mass m are well con-
strained by the rotation curves of the Galaxy (see Appendix A
and Argüelles et al. 2018, 2019a, for details). Each possible set
of parameters gives a mass of the quantum core, Mc (or alter-
natively, of the central density; see Argüelles et al. 2019a for
details), therefore the metric functions are known when we chose
a value of Mc for given halo boundary conditions in agreement
with observables (see Appendix A).

After setting the metric functions (i.e., given Mc in the
extended-RAR model or MBH in the BH model), calculating the
values of E and L with given pericenter rp and apocenter ra dis-
tances (or alternatively, the semimajor axis a and the eccentricity
e), we can integrate the equations of motion (C.1a)–(C.1c) giving
appropriate initial conditions at initial proper time τ0. We give
them at the apocenter, that is, we set t0 ≡ t(τ0) = 0, r0 ≡ r(t0) =
ra, φ0 ≡ φ(t0) = π, and ṙ(t0) = 0. We numerically integrate
the equations of motion through an adaptive integrator based on
the fourth-order Runge-Kutta (RKF45) method (Fehlberg 1970).
We thus obtain t(τ), r(t) = r[τ(t)], φ(t) = φ[τ(t)]. We recall that
t is the coordinate time at emission point, which is within our
adopted approximation of zero time-delay of the photons; see
Eq. (C.15).

When the variables of the dynamics of the real orbit were
calculated, we proceeded to obtain the orbital elements i, ω, Ω,
and the constant offsets X0 and Y0 from the request that the pre-
dicted orbit, that is, X(t) and Y(t), Eq. (C.9), and the predicted
redshift function z fit the observational values, that is, Xobs, Yobs,
and zobs, respectively.

In order to quantify the goodness of fit, we computed the
reduced-χ2 for each of the observables,

χ̄2
X =

1
NX − p

NX∑
j=1

[
Xobs, j − (X + X0)

]2

∆X2
obs, j

, (C.22a)

χ̄2
Y =

1
NY − p

NY∑
j=1

[
Yobs, j − (Y + Y0)

]2

∆Y2
obs, j

, (C.22b)

χ̄2
z =

1
Nz − p

Nz∑
j=1

(
zobs, j − z

)2

∆z2
obs, j

, (C.22c)

where the subscript j indicates the jth data element of
the observable {Xobs, j,Yobs, j, zobs, j}, {∆Xobs, j,∆Yobs, j,∆zobs, j} is
the associated standard deviation of the j-th measurement,
{NX ,NY ,Nz} are the number of data elements of the observable,
and p is the number of model parameters.
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Fig. C.3. Effective potential Ueff given by Eq. (C.19) for selected values of the conserved angular momentum L. Left: massive BH case, i.e.,
Schwarzschild solution, g00 = 1− 2M/r. Right: DM case; g00 obtained from numerical integration of the general relativistic equilibrium equations
of the extended RAR model for a fermion mass mc2 = 56 keV, see Appendix A for details. Imposing a bound orbit within given values of the
pericenter and apocenter (vertical dashed lines), in this example, rp/M = 2.976 × 103 and ra/M = 4.714 × 104, respectively, implies a unique
solution of E (dashed horizontal value) and L (value associated with the blue curve). In this example, the adopted mass of the massive BH for the
Schwarzschild solution is MBH ≡ M = 4.075 × 106 M�, and for the mass of the DM RAR core, it was set to Mc = 3.5 × 106 M�.

For the best match with the observational data at the observa-
tional times, which are presented in J2000 convention, we per-
formed a time shift of the theoretical data, ∆t. To do this, we
introduce the new time t′ ≡ t − ∆t, that is, we must calculate
r(t′) = r(t − ∆t), φ(t′) = φ(t − ∆t), etc. Thus, the time shift ∆t
becomes one of the parameters of the fitting process. With this,
Eqs. (C.12a)–(C.12b) and Eqs. (C.16) are solved in iterative fash-
ion by varying ∆t and calculating the orbital parameters that min-
imize χ̄2

X , χ̄2
Y , and χ̄2

z for each value of ∆t. In general, we find that
the fit of the redshift function is better than the position fits. This
holds for S2 and G2 because the observational data of the posi-
tion are somewhat scattered at times. In any case, in addition to
the individual χ2 values, we evaluated the overall performance of
every set of parameters by computing the mean of the χ2,

〈χ2〉 ≡
1
3

(
χ̄2

X + χ̄2
Y + χ̄2

z

)
. (C.23)

The values of the model parameters reported in Table 1 corre-
spond to those that generate the smallest mean 〈χ2〉 for the range
of parameters explored. We also report the individual χ̄2

X , χ̄2
Y ,

and χ̄2
z . It is important to note that for different values of the

parameters we were able to obtain a better fit of a specific single
observable, for example, zobs. For instance, we found some set of
parameters for S2 that yield for χ̄2

z a value as low as 1.03, with
respect to the value χ̄2

z ≈ 1.28 of the set of parameters that leads
to the smallest 〈χ2〉 (see Table 1).

To summarize, our fitting procedure for a given core mass
Mc of the RAR model or for a BH mass MBH in the massive BH
model performs the following steps:
1. Set a value for the eccentricity e.
2. Set a value for the semimajor axis a.
3. Calculate the pericenter rp and apocenter ra for the chosen e

and a.

4. Using Eqs. (C.20) and (C.21), calculate L and E to integrate
the equations of motion (C.1a)–(C.1c) with initial conditions
at apocenter: t0 = 0, r0 = ra, φ0 = π and ṙ(t0) = 0;

5. Set a value for the constant time shift ∆t;
6. Calculate all quantities of the real orbit at the shifted time

t′ = t − ∆t, that is, r(t′), φ(t′), ṙ(t′), and φ̇(t′).
7. At this stage, the redshift function depends only on the

orbital elements ω and i, see Eq. (C.16), so that we obtain
them by minimizing χ̄2

z , Eq. (C.22c).
8. We iterate the above steps 5–7 in an appropriate range of ∆t,

calculate the sets {∆t, ω, i} that lead to each minimum χ̄2
z , and

identify the set leading to the infimum χ̄2
z , that is, the smallest

χ̄2
z .

9. Set a value of Ω.
10. At this stage, the X position only depends on the offset X0,

see Eq. (C.12a), so that we obtain it by minimizing χ̄2
X ,

Eq. (C.22a).
11. Likewise, the Y position only depends on the offset Y0,

see Eq. (C.12b), so that we obtain it by minimizing χ̄2
Y ,

Eq. (C.22b).
12. We iterate the above steps 9–11 in an appropriate range of

Ω, calculate the sets {Ω, X0,Y0} that lead to each minimum
of χ̄2

X and χ̄2
Y , and identify the set leading to the infimum of

χ̄2
X and of χ̄2

Y , that is, the smallest χ̄2
X and χ̄2

Y .
13. Based on the lowest values of χ̄2

X , χ̄2
Y , and χ̄2

z , calculate the
mean 〈χ2〉 given by Eq. (C.23).

14. Steps 1–13 are iterated for different values of e and a in some
appropriate range.

15. Identify the best-fit parameters as those that lead to the small-
est 〈χ2〉.

16. Steps 1–15 can be repeated for different values of the mass
of the DM core Mc in the extended RAR model, or of the BH
mass MBH in the central massive BH model.
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