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Abstract: The course of multiple sclerosis begins with a relapsing-remitting phase, which evolves
into a secondarily progressive form over an extremely variable period, depending on many factors,
each with a subtle influence. To date, no prognostic factors or risk score have been validated to
predict disease course in single individuals. This is increasingly frustrating, since several treatments
can prevent relapses and slow progression, even for a long time, although the possible adverse effects
are relevant, in particular for the more effective drugs. An early prediction of disease course would
allow differentiation of the treatment based on the expected aggressiveness of the disease, reserving
high-impact therapies for patients at greater risk. To increase prognostic capacity, approaches based
on machine learning (ML) algorithms are being attempted, given the failure of other approaches.
Here we review recent studies that have used clinical data, alone or with other types of data, to derive
prognostic models. Several algorithms that have been used and compared are described. Although
no study has proposed a clinically usable model, knowledge is building up and in the future strong
tools are likely to emerge.

Keywords: multiple sclerosis; machine learning; disease progression; prognostication

1. Introduction

In the last decade, artificial intelligence (AI) approaches—and in particular machine
learning (ML)—have been increasingly applied within the medical field, with the hope of
increasing diagnostic performance and efficacy of care. Currently, the leading fields appear
to be those dominated by image analysis, such as pathology and radiology [1,2]. Indeed,
images are readily digitized, thus becoming amenable to automated analysis. Deep neural
network algorithms attain performances similar to those of well-trained radiologists in
examining medical images, and AI algorithms are being approved by regulatory agencies
(see [3] for a recent meta-analysis). This general frame applies also to neurology, with
neuroradiology at the forefront of ML application [4].

Multiple sclerosis (MS) is among the ten neurological diseases for which ML tech-
niques are most actively investigated [5], along with neurodegenerative diseases (Alzheimer’s
and Parkinson’s diseases), emergency conditions (traumatic brain injury and stroke),
epilepsy and neuropsychiatric disorders (schizophrenia, depressive disorders, attention-
deficit hyperactivity disorder, autism spectrum disease). MS is also the autoimmune
disease mostly addressed by ML [6]. MS typically starts with a relapsing-remitting (RR)
phase that gradually turns into a secondary progressive (SP) form, during which relapse-
independent progression becomes more evident [7], disability increases and the patient’s
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health irreversibly declines. Relapses occur randomly [8] and the duration of the RR phase
is quite variable, with 50% of the patients converting to the SP form within about 30 years
of disease onset [9]. With a palette of at least 12 drugs approved as disease-modifying
treatments, it is nowadays possible to considerably delay the onset of the SP phase, but the
benefits must be weighed carefully against the risks, which are substantial, in particular for
the most effective drugs [10].

The challenge thus becomes the identification, at the disease onset, of the subjects
most likely to develop an aggressive, quickly progressing form of the disease in order to
start with high-impact treatments before severe disability builds up. At the same time,
patients with mild forms should avoid overtreatment, with substantial benefits in terms of
safety, quality of life and overall allocation of resources. To this aim, reliable early prognosis
would be extremely helpful. Clinical trials would also benefit from a more focused selection
of patients [11].

A long list of clinical, demographic or modifiable features associated with long-term
course of the disease has been compiled and recently reviewed [10,12–14]: older age at onset,
family history of MS, male sex, vitamin D deficiency, smoking and high body mass index are
associated with faster disability progression, impairment in walking speed and depression.
Among clinical features, high annualized relapse rate, particularly on-treatment relapse,
and a short interval between first and second relapses are important predictors of long-
term disability outcomes. Polysymptomatic or motor onset, early cerebellar involvement
and incomplete recovery from the first relapse have been related to poor prognosis. By
contrast, sensory onset and optic neuritis have been described as favorable prognostic
factors. Radiologic markers of worse prognosis include a higher number of T2 lesions
at baseline magnetic resonance imaging (MRI), whole-brain and grey matter atrophy
observed in the earliest stages, presence of spinal cord, cerebellar and brainstem lesions
and increased T2 lesion number or lesion volume within the first two years. The presence of
oligoclonal bands in the cerebrospinal fluid at diagnosis may also predict worse prognosis
with high disability.

Although correlation between these factors and the evolution of MS is established
at the population level, none of the prognostic factors or risk scores for early [15–17] or
late [18] disease course has been validated. Thus, prediction of the clinical course of MS in
individual subjects remains challenging.

In the last decade, ML approaches have been increasingly tested with regard to their
capacity to provide support to patient counseling, prognosis and therapy.

2. What Can Be Gained from Machine Learning

Machine learning is a data-driven approach which covers a very broad set of methods.
Indeed, learning machines aim to extract possibly complex relations among available data
and generate predictions for an event, yielding (or not, depending on the approach used)
information on the underlying processes, or on the features most relevant to the result
obtained [19]. Some commonly used ML methods are explained in Section 5. Depending on
the quantity and nature of available data and on the relative human-to-machine decision-
making effort, ML techniques have different nuances of interpretability. The spectrum
ranges from easily interpretable models, such as linear or logistic regression, linear support
vector machines (SVMs) and decision trees, to fully machine-guided (obscure) nonlinear
models, such as those obtained by neural networks, nonlinear SVMs, or random forest and
even more complex algorithms. In these last cases, ML methods allow for an examination of
the data that does not require human-derived hypotheses on how input variables combine
to produce the output and a model can be constructed using a fully data-driven approach.
This approach is particularly useful in the presence of complex, nonlinear interactions
among the data, when nonparametric classifiers are preferable. However, even when the
important features are disclosed, their significance in the natural process investigated is
not always automatically explained and humans remain in charge in understanding what
the features really mean.
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Machine learning techniques can be classified in three main branches: unsupervised,
supervised and reinforcement learning (Figure 1).
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Figure 1. Main types of machine learning (ML) techniques and their applications.

Unsupervised learning involves a dataset made up of unlabeled vectors of features
and it is used to extract patterns from data and/or group them, by some notion of shared
commonality, when there is no a priori knowledge on the underlying structure of the data.
This technique is most commonly used to detect clusters within groups or inspect the
structural relations between data.

In reinforcement learning the algorithm tries to solve an assigned problem by a trial
and error procedure, using not only fixed data but also by interacting with the environment
and receiving feedback, measured by rewards or penalties, for the actions it performs. It
is mainly used to make an agent learn to interact with a dynamic system (e.g., a robot
balancing its weight while walking).

Finally, in supervised learning, machines are trained on a collection of labeled exam-
ples where the outcome is known and is used in the form of labels to drive the training
procedure. The learning algorithm seeks a mapping from the input features to label outputs
that can generalize to new examples. Supervised learning is typically used to obtain predic-
tions for classification problems, e.g., for binary outcomes, such as “healthy vs. diseased”,
or, for regression problems, to get predictions on continuous outcomes. The pipeline used
is summarized in Figure 2.

Machines are first trained on the training set, and then tuned on a validation set to
assess the quality of the selected model and to detect the occurrence of the overfitting
phenomenon during the training phase. Overfitting means that the machine constructs a
very complex model that performs very well on the training set but has poor performance
on new data and thus is useless. Finally, the reliability of the predictions (generalization
performance) is assessed on a third set of data, the test set, comprising data that are not
passed to the training algorithm and thus representing data never seen before, which
implies that the model must be able to generalize. The performance of the model is
defined by comparing outcomes predicted by the ML classifier to the outcome determined
by clinical gold standard procedures, using indicators that depend on the type of task
(classification or regression). These steps may need to be iterated before a model is ready
for deployment.

When the available data are not enough to be divided into training, validation and
test sets of adequate sizes, a k-fold cross-validation procedure is adopted, which does not
require the definition of a static validation set but dynamically defines it, splitting the
training set into k subsets and iteratively using k-1 subsets to train the model and the k-th
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subset for validation. This process leads to a complex double-phase procedure for defining
the definitive ML model [20,21].
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Figure 2. Typical steps used in supervised learning. The model tuning consists in adjusting hyperparameters according to
the ML model used.

To evaluate the performance of the model, different indicators are used, depending on
the aims of the study. For regression problems, three metrics are among the most popular
performance indicators: mean square error (MSE) or root MSE (RMSE), mean absolute
error (MAE) and mean absolute percentage error (MAPE). In classification tasks, instead,
several indicators are calculated starting from the confusion matrix, in which correct and
erroneous predictions are stated by reporting the actual values by row and the predicted
ones by column (Figure 3).
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NPV: negative predictive value, PPV: positive predictive value (also called precision). Sensitivity is also termed recall.

Most of the datasets used in ML applications for clinical problems include a number
of patients (or “records”), with several clinical or instrumental parameters (“features”)
considered for each one of them. ML classifiers are designed to work on large sets of
data in which, according to several authors, for instance [22–24], the number of records
should be at least 5 to 20 times the number of features. If there is not enough data the
learning algorithms might either develop overly simple models, unable to capture the
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complexity of the process (underfitting) or solely learn the patterns specific to the few
records in the training set (overfitting). In both cases ML models do not generalize to new
data, thus leading to large errors on the test set, limiting the usefulness of the study. Further
explanations of these terms have been recently provided, with examples, in the field of
neurology [25], while some widely-used methods are explained in Section 5.

3. Machine Learning and Multiple Sclerosis

In the specific case of MS, many factors, modifiable or not, subtly influence disease
development and progression, and even large correlative studies have yielded to weak
results [10]. Since good prognostic indicators have remained elusive for decades, it is time
to explore the potentiality of a data-driven ML analysis.

In the field of MS, ML approaches have often focused on automatic examination of
MRI images to classify disease at the time of onset or to predict evolution of clinically
isolated forms, following the flourishing stream of image analysis. Recent reviews have
summarized the state of the art [26,27] and huge efforts to identify the MRI determinants
of progression are ongoing (for instance, the collaborative network awards offered by the
International Progressive MS Alliance). However, although studies on automatic analysis
of brain MRI scans in MS date back to 1998 [28], the approach still remains outside clinical
practice. Moreover, consistent use of MRI data in studies using real-world data may require
centralized analysis of images at specialized sites [29].

Nonetheless, as in most other diseases, scans of the central nervous system provide
only a part of the clinical information on MS patients and must be placed into a context.
Being a complex disease, MS outcome depends on diverse factors, such as genome, micro-
biota, lifestyle and living place. Gene expression has been analyzed using machine learning
approaches in at least two studies [30,31]. In line with the idea that polygenic scores are
important to understand complex diseases [32], a genetic model of MS severity has been
obtained that identifies linear and complex nonlinear effects between alleles by means of a
random forest ML technique [31]. It will be interesting to see how predictions from gene
expression match or complement those derived from other types of data. ML analysis of
evoked motor potentials also shows the potential to predict disease outcome [33].

3.1. Clinical Data

Clinical data, stored in health records, are commonly available, often in digital form
and suitable for automated analysis, and a large amount of longitudinal data can be derived
from clinical registers, which are being actively implemented for MS [34,35]. This represents
important added value for the formulation of predictions on a condition evolving over
decades. Practical experience shows that clinical data have a good predictive value with
regard to long-term (over 15 years) outcomes in MS [36]. In studies on ML applications,
when the relative importance of clinical and imaging data was evaluated, the former
performed well. Here we summarize published ML studies that have used clinical data
for prediction. Inspection of the results of a PubMed search with keywords “multiple
sclerosis” AND (“machine learning” OR “artificial intelligence” OR “neural network”)
retrieved 286 studies, of which eight used clinical data to derive predictions on the course
of MS in individual patients. The papers are listed in Table 1, together with one work
identified among the references cited by another review [25]. No additional studies were
found among the first 100 results (ranked by relevance) of an identical search performed
on Google Scholar, which yielded 3980 results.
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Table 1. Summary of the studies dealing with prognostication of multiple sclerosis (MS) course.

Reference Subjects
(Records)

Endpoint. Data
Used

Model (Best
Performing in

Bold)

Most Informative
Features for the Best
Performing Model

Metrics for the Best
Model

Bejarano,
2011 [37]

71 + 96
(1/patient)

∆EDSS > 1 + EDSS
range 2 years later

+ relapse
occurrence.

Clinical, MRI,
MEPs

Naïve Bayes,
DT,

LogR,
NN

EDSS, MEPs

EDSS range:
Acc = 80%, Sens = 92%,
Spec = 61% AUC = 76 %

∆EDSS > 1:
Acc = 75%, Sens = 87%,
Spec = 52%, AUC = 74

Relapses:
Acc = 67%, Sens = 53%,
Spec = 77%, AUC = 65%

Wottschel,
2015 [38]

74
(1/patient)

CIS converts to MS
in 1 or 3 years.
Clinical, MRI

L-SVM

CIS to MS at 1 year:
lesion load, type of

presentation, gender
CIS to MS at 3 years: age,

EDSS at onset; lesion
characteristics: count,

average proton density,
average distance from
brain center, shortest

horizontal distance from
the vertical axis

CIS to MS in 1 y:
Sens = 77%, Spec = 66%

CIS to MS in 3 y:
Sens = 60%, Spec = 66%

Yoo, 2017 [39] 140
(1/patient)

CIS converts to MS
in 2 years.

Clinical, MRI

LogR,
RF,

CNN
Not assessed

Spec = 70.4%,
Sens = 78.7%,
Acc = 75.0%,
AUC = 74.6%

Zhao, 2017
[40]

up to 1693
(1/patient)

∆EDSS ≥ 1.5 at
5 years.

Clinical, ±MRI

LogR,
L-SVM

Non progressive cases:
EDSS at 0, 6, 12 months;
disease activity at 0, 6, 12
months; race, ethnicity,

family history, brain
parenchymal fraction

Progressive cases: ∆EDSS;
disease activity;

pyramidal function and
change at 1 y; disease
active at baseline, T2

lesion volume

Spec = 59%, Sens = 81%,
Acc = 67%

Law, 2019
[41] 485 (1/patient)

∆EDSS ≥ 1 at
2 years in SP MS.

Clinical, MRI

Individual and
ensemble LogR,

L-SVM,
DT, RF, ADB

EDSS, 9-Hole Peg Test,
Timed 25-Foot Walk

Spec = 61% (RF),
Sens = 59%,

PPV = 32.1%,
NPV = 82.8

Seccia, 2020
[42]

up to 1515 (up
to 14,923)

RR converts to SP
at 0.5 to 2 years.
Clinical, ±MRI

NL-SVM,
RF,

ADB,
KNN,
CNN

Not assessed

RR to SP at 2 y (RF):
Spec = 86.2%,
Sens = 84.1%,

Acc = 86.2%, PPV = 8.9%
RR to SP at 2 y (NN):

Spec = 98.5%,
Sens = 67.3%, Acc = 98%,

PPV =42.7%

Brichetto,
2020 [43]

810 (up to
3398)

RR converts to SP
within 4 months.
Clinical, patient

reported outcomes

LogR,
L-SVM,
KNN

and other linear
classifiers

Not reported Acc = 82.6%
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Table 1. Cont.

Reference Subjects
(Records)

Endpoint. Data
Used

Model (Best
Performing in

Bold)

Most Informative
Features for the Best
Performing Model

Metrics for the Best
Model

Zhao, 2020
[44]

724 (CLIMB
dataset) + 400
(EPIC dataset)

(1/patient)

∆EDSS ≥ at
5 years.

Clinical, MRI

LogR,
L-SVM,

ensemble models
(RF, boosting

methods)

Value at a given time or
change in 2 years of:

EDSS, pyramidal
function, disease

category (RR, SP etc.),
MRI lesions, ambulatory

index, cerebellar
function

CLIMB dataset, XGBoost
Spec = 69%, Sens = 79%,
Acc = 71%, AUC = 78%

Pinto, 2020
[45] up to 187

RR to SP @ 5 years
and EDSS > 3 at 6

or 10 years.
Clinical, MRI

KNN,
DT,

LogR,
L-SVM

SP development:
EDSS, FS scores (sensory,

brainstem, cerebellar
and mental), CNS

involvement in relapses
(pyramidal tract,

neuropsychological and
brainstem), age at onset.
Disease severity:EDSS, FS
scores and CNS affected

functions during
relapses

RR to SP:
Spec = 77%, Sens = 76%,
AUC = 86%, EDSS > 3 @

6 y: Spec = 81%,
Sens = 84%, AUC = 89%

EDSS > 3 at 10 y:
Spec = 79%, Sens = 77%,

AUC = 85%

Abbreviations used: ADB: Adaboost; Acc: accuracy; AUC: area under the receiver-operated curve; CNN: convolutional neural network;
CNS: central nervous system; DT: decision tree; EDSS: Expanded Disability Status Scale; FS: functional system; KNN: k-nearest neighbors;
LogR: logistic regression; MEP: motor-evoked potential; NN: neural network; RF: random forest; Sens: sensitivity; Spec: specificity; (L-,
NL-)SVM: (linear, nonlinear) support vector machine; y: year(s); ±MRI: MRI data not always used; ∆EDSS: change of EDSS.

We can divide published works into two main groups: those in which MRI data are
included in all records (typically prospective studies), and those in which only a subset of
records contains imaging data. This occurs in retrospective studies using data collected
in the routine clinical practice, as usually patients undergo more clinical assessments
than MRI scanning, so that more clinical than imaging data exist. Studies from the first
group [38,39] indicate that clinical data have discriminative values for prognosis, even
when used together with the results of MRI images analyzed by convolutional neural
networks to identify latent lesion pattern features [39]. Examples from the second group
of studies show that adding features related to results of MRI exams can even lead to a
decreased model performance, due to the reduction in the number of records used and
thus in the records/feature ratio [40,42]. So, basically, the relevance of clinical vs. imaging
data is determined by the amount of data available.

Another point highlighted by the abovementioned studies is the value of historical
data series to predict future worsening. All the papers listed in Table 1 used data collected
at baseline to predict future outcome. Two studies [42,43] included in the database data
collected at multiple visits and used the data related to one visit at a time. This “visit-
oriented” approach is valuable if one thinks that the primary goal of the whole field of
study is the identification of people at risk of rapid disease progression as soon as possible
after the first clinical episode.

However, some studies [40,42,44,45] have used as input for the classifiers the changes
of clinical values over various time intervals, with effects on prediction outcome. In
particular, analyzing patient clinical history using recurrent neural networks, such as
long short-term memory (LSTM) networks [42], improved reliability for predictions over
long time intervals. There was a substantial decrease in the amount of data available for
this approach, since all the records related to a patient were collated into a single time
series. Nevertheless, the positive predictive value markedly increased, unfortunately at
the expense of a reduced sensitivity; that is, the rate of correct identification of worsening
patients. This is not unexpected as, in unbalanced datasets, misclassification is high for
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the less-represented class [46] and, in the population considered, very few records were
related to worsening patients but no corrective procedure to mitigate class imbalance was
applied [42]. In other instances, including the “visit-oriented” approach in the same study,
the imbalance problem was addressed, as discussed in Section 4.2.

The most widely used ML models were logistic regression [37,39–41,43–45],
linear [38,40,41,43–45] and nonlinear [42] Support vector machines, decision trees [37,41,45],
random forest [39,41,42,44], boosting methods [41,42,44] and various types of neural net-
works [37,39,42] (see Section 5 for an explanation). Almost all studies used more than one
ML model for their prediction and some compared their performances [37,39–42,44,45].
Logistic regression (LogR) was tested in seven out of the nine papers and it never appeared
as the best performing method. Linear support vector machines (L-SVMs) appeared in
six papers, obtaining the best performance in three of them, when compared with LogR,
k-nearest neighbors (KNN) or decision trees (DTs). Neural networks (NNs) or convolu-
tional neural networks (CNNs) performed fairly well: for instance, in [39] the values found
for accuracy, sensitivity and area under the receiver-operated curve (AUC) (Table 1) were
9%, 17% and 9% larger than found with LogR. When used [41,42,44], ensemble models
(e.g., random forest) and neural networks [37] performed better than the others. This result
is reasonable, given the greater capability of these models to capture complex, nonlinear
relations among data and thus to generalize. Altogether, these papers show that ML
approaches can be used to address the prediction of MS in individual patients.

Last but not least, some studies [37–41,44,45] have tried to extract the most informative
features for each ML model, with both clinical and computational aims. For the former,
there is the hope of shedding light on the contributions of different clinical features to
the disease course. For the latter, it is known that ML performs better when the number
of features is adequate to the number of records available for the study [22–24], and
that elimination of noninformative features can reduce the effect of noise and the risk
of obtaining complex models that overfit data. The results about feature extraction are
quite scattered (Table 1). Indeed, even within a single study, the most relevant features
depend on the ML model used, the source of the database, and whether the focus is to
identify “worsening” or “non-worsening” patients, i.e., whether to maximize positive or
negative predictive value, respectively. Although presently not really informative, this
type of analysis is nevertheless extremely important and one can hope that in the future
it will yield valuable information [47]. As a matter of fact, ML approaches applied to
neuroimaging already provide good insight into latent features contained in images [4].

3.2. Patient-Derived Data

In addition to the well-established use of imaging and clinical data, other types of
information have been considered to predict MS course. One interesting approach is the
use of patient reported outcomes or of data collected via smartphones or wearable devices
(see, for example, [43,48]; for review, see also [35]). In this way, large quantities of data can
be gathered, while accesses to the outpatient facility can be reduced, with considerable
savings in time and effort for the most disabled patients. These studies are mostly aimed
at assessing the feasibility of the approach, yet they are valuable as they pave the way
for massive use of patient-derived data that can eventually lead to defining how lifestyle
impacts on disease course.

4. Problems and Future Hope

Data represent the heart of ML methods. As underlined by the paradigm “garbage in
garbage out”, the quality of the data heavily affects the performance of ML models, with
reliable models obtained only with reliable data. The quality of a dataset can be assessed
according to different parameters, which range from the quantity of data to the reliability
of them. When ML is applied to the MS field, data are usually characterized by some of the
most challenging aspects, hindering the performance of ML methods and preventing their
applications as supporting tools for physicians in defining prognosis and choosing therapy.



Life 2021, 11, 122 9 of 18

4.1. Amount of Data

In studies using “real-world” data, the number of patients involved and the amount of
information gathered for each patient are often insufficient to adequately train ML models.
The scarcity of data is typical of prospective studies, in which a limited number of people
(diseased and/or healthy controls) are enrolled. In retrospective studies, more records are
available, but they can be incomplete (see below). In both settings, data must be handled
in such a way as to preserve patients’ privacy, as mandated by the Declaration of Helsinki
and other rules, such as the European General Data Protection Regulation (GDPR, valid in
the European Union), or their counterparts in non-EU countries (for comparisons, see [49]).
Apart from obvious precautions, such as patient names replaced by unrelated identifiers or
date of birth replaced by age at disease onset, other issues must be addressed. For instance,
in a database from a single center, rare pediatric cases can be readily identified from the
low age at disease onset, so that anyone knowing the subjects will have access to their
clinical data. Along the same line of reasoning, the place of origin or ethnicity (important
pieces of information in MS) might lead to identification of patients from abroad/minority
groups (see [50]). Thus, privacy protection requires that some potentially useful data are
eliminated; a trade-off between formal guarantees of patients’ privacy and accuracy of
results is necessary.

As indicated in Table 1, the number of records used in the ML procedure rarely exceeds
2000. The scarcity of data is particularly cogent in the case of supervised learning, as it
requires data to be split into train and test sets, and possibly a validation set. In this respect,
all these splitting procedures stick to a stringent requirement: when more records relate to
the same patient, they must be included in one set only (the so-called “leave one group
out” cross-validation). In fact, the relatively small size of the datasets leads ML models
to identify specific patients rather than patterns in the global population. This lack of
information represents a bottleneck in the development of reliable models, which need
large amounts of data to properly extract patterns from them.

4.2. Class Imbalance

When dealing with classification problems, databases that contain very different
numbers of records for the positive and negative classes (such as “healthy” vs. diseased”
or “worsening vs. non-worsening” in the case of MS patients) pose a problem. In fact, if
ML algorithms are trained on highly unbalanced datasets, the ML model can be biased
towards the majority class. This is a typical problem in MS research, as disease progression
has a slow course and, therefore, datasets often contain many more records related to the
“non worsening” than to the “worsening” class. If the problem is not correctly addressed,
the resulting biased models tend to overlook “worsening” patients, missing altogether
the final goal of the study. To reduce this biasing effect, balanced training sets are built
using only a subsample of the majority class, then bootstrap aggregation (or ”bagging”) or
balanced-ensemble methods are usually applied (see Section 5.5). Several approaches are
used to construct adequate training sets, such as resampling techniques like the Synthetic
Minority Oversampling Technique (SMOTE; [51]). In the studies discussed above, class
imbalance was addressed by training the machines on datasets with the same number of
records for the worsening and non worsening classes [38,40–42] or using cost-sensitive
learning [44].

4.3. Missing or Incorrect Data

In clinical databases, data are usually inserted manually by an operator. This operation
can be easily affected by clerical errors [52] that lead to bugs in the data (for instance,
different sex indications in subsequent records related to the same patient). Moreover,
fields relating to nonrelevant information are often skipped, leading to the presence of
missing values. These issues further hinder the effectiveness of ML techniques, which are
affected by the presence of misleading information. Data preprocessing techniques must
be implemented to reduce the noise introduced by errors and impute the missing data. It



Life 2021, 11, 122 10 of 18

is important to note that these approaches are useful to eliminate subsets of poor-quality
data from otherwise "good" databases. No present or future technique, however advanced,
will ever be able to increase the quality of a poor database: the primary data must be
properly recorded in order to be useful. Thus, clinicians creating datasets must be strongly
committed to prepare data adequate for ML applications.

4.4. Generalizability

The clinical status of the patient is rated also on the basis of subjective considerations
by the visiting neurologist, leading to inter-rater (but also intra-rater) variability that
adds a further source of noise and misinformation in the data. The Expanded Disability
Status Scale (EDSS) itself is assigned by attending neurologists and is subject to personal
opinion, although variability is minimized in large MS centers, where experienced clinicians
adhere to internationally recognized standards. The physical status of the patients can
be assessed by more objective parameters, such as the Timed 25-Foot Walk test or the
Two-Minute Walk Test, or compound scales [17,18]. However, these indicators do not
provide a comprehensive picture, given that MS affects not only motor performance but
also sensory and cognitive functions, often comprising fatigue and pain, which are by
definition subjective experiences. Several MS experts suggest the use of indicators based
on the evaluation of cognitive functions, which are potentially very interesting in the ML
context as cognitive performance can be assessed in an automatic and quite objective
manner, and this has shown predictive value in preliminary studies [53–55].

As a final aspect, the generalizability of ML models to different settings from the one
where they were trained is a further limiting factor [56]. This is well-exemplified by the
case of MRI imaging. Usually, ML models are trained on a dataset obtained by means of a
specific instrument and generalize poorly to images collected using other equipment. A
clear example of reduced classification accuracy upon generalization was recently provided
in a study aimed at predicting the one-year outcome of Clinically Isolated Syndrome
using images collected in several European centers [57]. However, efforts to solve this
problem are underway (see, for instance, [58]). Similarly, clinical or patient-reported
features considered for developing a ML model might reflect local cultural influences
and therefore encode some “hidden” patient characteristics. When applying the same
model on patients from different regions (and thus with a different culture), the same
feature might not encode the same characteristic and the model performance can decrease
as well. Thus, the development at a wide scale of ML models for MS data (and, more
generally, for healthcare data) follows a difficult path. Two alternative approaches are
possible to improve generalization: the definition of very large and comprehensive datasets
that include individual variability and the development of computational frameworks that
are then trained on regional datasets, taking into account local variability [56].

4.5. Data Fusion

The development and course of MS depend on so many factors that it is difficult to
envisage a single model capturing all the complexities of the condition. We can therefore
reasonably suppose that a successful approach will be one that puts the pieces together,
fusing data obtained via different approaches. There are several ways of fusing data to-
gether, as recently rigorously reviewed for deep learning [59], and we wish to comment
on some perspectives offered by some of these methods. Several studies related to MS
have attempted data fusion. Some [38–41,44,60] represent examples of “early fusion”,
intermediate between type I and type II fusion (as defined in [59], meaning that some
original features, such as clinical data (type I fusion) are joined with extracted features,
for instance MRI results, (type II fusion) in the records used for ML analysis. This fusion
paradigm has the advantage of being flexible and implementable at any level of specializa-
tion of the center providing the data, thus favoring the spread of ML applications to “real
world” settings. The “late fusion” modality, in which different types of data are processed
separately and their outputs aggregated (as done, for instance, by [37]) offers interesting
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opportunities. Each model acts as an independent agent that captures specific aspects
of the problem, embedded in different sets of data. The aggregation of predictions by
independent agents often enhances their global validity (see [61] and references therein). A
further point of interest is related to the confidence of the rater in making the predictions.
The correctness of human medical predictions correlates well with the confidence of the
predictor and influences the outcome of aggregation of independent predictions [62]. An
index of confidence can be introduced for ML models too [42] and it will be interesting to
see how it works in fusing the predictions of ML models.

4.6. Explainable Machine Learning

As we mentioned, the spectrum of data-driven machines ranges from fully human-
guided models to fully machine-guided ones. When speaking about ML, one is usually
referring to a predictive modeling perspective that uses general-purpose learning algo-
rithms, such as deep networks and nonlinear support vector machines. Although powerful
and effective in detecting relations between input and output, these approaches are still
regarded as black-box models, in which the mechanism linking the input to the output is
difficult to understand. This aspect is particularly disliked by physicians, who are often
interested in explanatory or descriptive models [63]. This might represent a limiting factor
for the adoption of more complex ML models. Until physicians are able to understand why
models return specific outcomes, they will not use them as decision support systems [64].
Thus, unraveling the mechanisms that make a model opt for a specific outcome would be a
milestone step to encourage the adoption of these methods.

In recent years, many steps have been taken in order to unravel the black-box approach
of many complex machine learning approaches. Several techniques have been developed
to determine the importance of features and how they contribute to specific predictions,
such as Local Interpretable Model-agnostic Explanations (LIME) [65], DeepLift [66] and,
recently, the novel Shapley additive explanations method (SHAP) [67]. To the best of the
authors’ knowledge, however, these explainable ML techniques have not been investigated
in-depth to analyze the influence of features in deep models for MS applications. Thus,
an interesting field of research remains open for future development and interesting
collaboration between clinicians and computer scientists.

5. Brief Description of Commonly Used Models
5.1. Linear and Logistic Models for Regression/Classification

Linear regression (LR) is an approach used in regression problems to model a lin-
ear relation between inputs and a scalar output. The estimation of the weights in an
LR model is a well-known optimization problem for which several techniques have
been developed, including for large datasets by following statistical and optimization
approaches (Figure 4A, left) [68].

Logistic regression belongs to the class of generalized linear models and is used when
the output has a binary distribution (i.e., binary classification problems) [69]. LogR follows
an approach similar to LR, but the linear function is then squashed to obtain output within
the range [0,1]. An instance is then classified as belonging to one class or the other if the
value returned by the LogR is above or below a certain threshold value (usually set at 0.5).
Thus, LogR naturally provides a confidence level for its predictions (Figure 4A, right).

LR and LogR are among the simplest predictive models and their simplicity and
interpretability are the main reasons why they are still used in practice, in spite of their
limited range of application. Moreover, the models can be easily extended by including
automatic feature selection (see, e.g., the Least Absolute Shrinkage and Selection Operator
(LASSO) method [70]).
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5.2. k-Nearest Neighbors

The k-nearest neighbors algorithm is a nonparametric method used for both classifica-
tion and regression tasks [71]. The main idea behind the working process of KNN is that
similar instances should be “close” in the feature space. Thus, KNN predicts the output of
a new sample by identifying the k points in the training data whose features are closest
according to some metric distance (e.g., Euclidean distance). The output is computed as
the mean of the labels of the neighbors (in the case of regression problems) or as the most
frequent class (in the case of classification problems) (Figure 4B).

KNN is a simple, easy-to-implement predictive model but it is too simple and naïve to
catch highly nonlinear relations among inputs and outputs and thus has an unsatisfactory
performance if compared to more sophisticated ML models. Moreover, when applied
to large training sets, KNN becomes inefficient, requiring a lot of computational time to
compute the k-nearest neighbors for each entry.

5.3. Support Vector Machine

Support vector machines were first introduced to solve classification problems [72]
and later extended to regression problems as well [73]. In classification problems, given
a set of linearly separable data, namely a set of points that can be divided into classes,
there exist infinite hyperplanes (lines in a 2D space) separating these points. SVMs look
for the hyperplane that maximizes the distance from the closest points in each of the two
classes (Figure 4C).

SVMs have been extended to also consider nonlinear classification problems, using
kernels, and to allow the presence of misclassified samples [74]. Overall, when dealing with
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classification tasks, SVMs are considered robust learners and a go-to method. The main
advantage of SVMs is that mathematically they return the “best” separating hyperplanes
both in the original space (linear SVM) and in a transformed space (nonlinear SVM)
and there are many fast and memory-efficient algorithms to solve them [75]. The main
drawback is that SVMs are not easy to interpret and are considered a black-box method
by several authors, although for linear SVMs some research has been devoted to safe
interpretation (for instance [76] and references therein). Moreover, they do not directly
provide a probabilistic interpretation of the outcomes, although approaches to obtain
confidence levels of the predictions have been proposed [77].

5.4. Decision Trees

Decision trees can be considered as rule-based classifiers. Given a training set, DTs
define a sequence of binary rules that make it possible to correctly classify most of the
samples in the training set [78]. Thus, given an instance, a DT sequentially checks whether
various rules are satisfied or not and returns an outcome accordingly (Figure 4D).

Decision trees are simple and useful for interpretation. However, they typically are
not competitive with more advanced supervised learning approaches in generalization
performance and can easily overfit if no constraints on the maximum number of rules are
considered (i.e., a maximum depth of the tree). Even though these methods are not very
effective on their own, they are at the basis of many ensemble methods (such as random
forests) that have proved to be very effective learning models.

5.5. Ensemble Methods

Ensemble methods are machine learning approaches that combine several learning
models (usually DTs) in order to define a learner with a better performance. Although
ensemble methods have proved to be very effective in many estimation problems, their
main drawback is the lack of interpretability of the model obtained. For more details on
the topic, we refer the reader to [79]. We briefly recall two main ensemble approaches:
bootstrap aggregating (bagging) and boosting.

5.5.1. Bagging

In bagging, B subsets are extracted from the initial training set and each subset is used
to train a strong ML model (e.g., a decision tree with several rules). The final output is
then obtained by averaging out the predictions returned by the B models (Figure 5, left).
Random forests are bagged DTs where each DT is obtained by considering only part of the
whole set of features [80]. Each DT is a strong learner, meaning it is a deep DT with many
rules and thus is able to perform very well on the training set at the risk of overfitting.
Random forests, by averaging several deep DTs, reduce the variance of these estimators and
achieve a more robust estimator with better generalization properties. Currently, random
forests represent one of the most successful examples of ensemble bagging methods.
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5.5.2. Boosting

In boosting, a predictive model is achieved by incrementally training a set of weak
classifiers, where a weak classifier is a classifier that obtains performances slightly better
than random guessing [81]. The starting weak classifier is trained on the entire dataset and
the following classifiers are trained on modified versions of the starting dataset, where
more importance is given to the instances misclassified by the previous models. Then, the
final predictions are obtained as a weighted average of these weak learners (Figure 5, right).

Differently from bagging approaches, where models are trained in parallel on boot-
strapped subsets, in boosting approaches the models need to be trained in sequence on
differently weighted versions of the entire dataset. Boosting methods can easily overfit if
too many classifiers are sequentially built [79]. The most famous examples of boosting meth-
ods are AdaBoost [82] (which was the first boosting method proposed) and XGBoost [83]
(which is a fast boosting algorithm).

5.6. Neural Networks

Neural networks are inspired by the mechanisms of the human brain [84]. In a neural
unit inputs are collected, weighted, summed up, nonlinearly transformed and passed to
the next neuron (Figure 6, left). In NNs, a set of neural units is organized in layers where
the outputs of some neurons become the inputs of neurons in the following layers (Figure 6,
right). The transformation applied within each neuron and the rules according to which
neurons communicate determine the type of NN model. Application-specific neural units
can be implemented, such as in the image processing setting where convolutional neural
networks are mostly developed, thanks to their translation invariance characteristic [85].
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Deep neural networks (DNNs), NNs with several layers, are at the basis of deep
learning, a branch of machine learning based on the idea of the nested hierarchy of concepts.
Given a complex task, it can learn by incrementally learning more abstract representations
computed in terms of less abstract ones [86]. By leveraging their layered structure, DNNs
can extract more abstract features as the model becomes deeper and have proved to be
effective in solving many challenging problems (see, e.g., the ImageNet competition [87]).
For more information on this topic, we refer the reader to [21].

6. Conclusions

In conclusion, given the increasing availability of large electronic health records, the
growing interest in personalized approaches to therapy, and the use of portable devices for
remote diagnostics and follow-up of patients, the use of ML in healthcare is becoming unavoid-
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able [1,34,88]. Application of AI approaches in healthcare is so widespread that a consensus
statement with guidelines for correct use of AI in clinical trials has been published [89].

However, in spite of the huge number of published studies, most applications still fail
to enter routine practice, even if they perform well in experiments and clinical trials (see
reviews in [2,90] and, specifically with regard to neurology, in [47]). No study has identified
methods pertaining to predicting the course of MS with performances usable in the clinics.
Hopefully, use of more potent ML techniques and larger collections comprising several
types of data will yield usable tools for clinical practice in the near future. However, the use
of these resources will be boosted only once the end-users, i.e., clinicians, acquire familiarity
with the tools. Adding courses on AI to the curriculum of medical students would help
promote this cultural change in the future [91,92]. Such change would be further supported
if it were possible to adapt ML methods to local clinical needs and routines, and for this
purpose good collaboration between clinicians and computer scientists is required.
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