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Weakly Supervised Fruit Counting for Yield
Estimation using Spatial Consistency

Enrico Bellocchio†, Thomas A. Ciarfuglia†, Gabriele Costante†, and Paolo Valigi

Abstract—Fruit counting is a fundamental component for
yield estimation applications. Most of the existing approaches
address this problem by relying on fruit models (i.e., by using
object detectors) or by explicitly learning to count. Despite the
impressive results achieved by these approaches, all of them
need strong supervision information during the training phase.
In agricultural applications, manual labelling may require a huge
effort or, in some cases, it could be impossible to acquire fine-
grained ground truth labels. In this paper, we tackle this problem
by proposing a weakly supervised framework that learns to count
fruits without the need for task-specific supervision labels. In
particular, we devise a novel CNN architecture that requires
only a simple image level binary classifier to detect whether the
image contains instances of the fruits or not and combines this
information with image spatial consistency constraints. The result
is an architecture that learns to count without task-specific labels
(e.g., object bounding boxes or the multiplicity of fruit instances
in the image). The experiments on three different varieties of
fruits (i.e., olives, almonds and apples) show that our approach
reaches performances that are comparable with SotA approaches
based on the supervised paradigm.

Index Terms—Agricultural Automation, Computer Vision for
Other Robotic Applications, Deep Learning in Robotics and Au-
tomation, Robotics in Agriculture and Forestry, Visual Learning.

I. INTRODUCTION

AMONG the multitude of agricultural processes that
draw the attention of computer science and robotics

researchers, an important role is certainly played by yield
estimation. An accurate estimation of the yield of a culture
facilitates the farmer in planning for harvesting operations and
crop sales. However, the standard practice to yield estimation
often relies only on coarse measurements and direct inspection,
a practice that has high costs and low accuracy. To address this
problem, we have recently witnessed a widespread adoption
of camera-equipped robots in agricultural fields. The use
of automated vehicles combined with SotA computer vision
techniques [1], [2] achieves the benefits of both reducing costs
and increasing yield estimation accuracy.

While it is possible to reduce the cost and density of
yield sampling with the use of autonomous robots to collect
images of the orchard [3], [4], [5], the actual fruit counting
still remains a challenging task. This is mainly related to the
inherent difficulty of extracting high level concepts (i.e., fruits)
from raw images due to image anomalies, background clutter,
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Fig. 1: Our weakly supervised counting network. The weak super-
vision comes in the form of a simple binary presence classifier, that
requires less data and much simpler labelling to train than any fully
supervised method.

scale variations and occlusions, to name a few. While the
detection of some crop varieties is easier due to their shapes or
colors (e.g., tomatoes or apples) [6], [7], there are fruit species
that can be very difficult to distinguish from background or
foliage, such as olives or almonds.

In order to build more reliable systems to achieve fruit
counting, many vision-based strategies have been proposed
by the research community. Most of the existing approaches
exploit three fundamental paradigms: 1) counting by using
specific object detectors [4], [8], [2], 2) counting by estimating
density maps [9] or 3) counting by explicitly training an
object counter [6], [7]. Despite the impressive results presented
in these works, to be trained, all of the proposed strategies
require detailed supervision, in the form of object bounding
boxes, density maps or instance multiplicity. This procedure
is very burdensome and error prone and, in many agricultural
scenarios, it may be impossible to acquire a sufficient number
of labelled samples to achieve consistent performance that are
robust to image noise or other forms of covariate shift.

Driven by the previous considerations, in this work, we aim
to remove the need for explicit instance or density labelling.
This is achieved by proposing a weakly supervised deep
architecture that relies only on an image level binary classifier,
i.e., the sole supervision label that is needed is whether the
image contains instances of the fruit or not (see Figure 1).
Since this information by itself is not sufficient to allow
the network to learn to count, we propose a novel objective
function that imposes consistency between the image level
classifier predictions computed at different spatial locations
and scales. Our approach is related to what is done in the field
of representation learning [10] where counting tasks are used
to learn general image representation, but by the introduction
of the consistency loss on the weak binary classifier we
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manage to force the network to learn the actual object we
are interested in. To the best of our knowledge, this is the
first attempt to devise a weakly supervised object counting
strategy for yield estimation applications. The experiments
demonstrate that the proposed approach reaches performance
that are comparable to fully supervised baselines with respect
to three different fruit species, namely apples, almonds and
olives.

II. RELATED WORK

The introduction of computer vision techniques in agri-
culture, often referred to as agrovision [1], has considerably
grown in recent decades. In this context, yield estimation has
gained particular attention and the latest works have shown
impressive results in different scenarios, such as apple orchards
[5], vineyards [3] and mango orchards [11], [4].

Although in the majority of the agrovision researches the
problem of yield estimation is devised as a fruit detection
task, it can be framed as a more generic object counting one
and addressed either indirectly by using object detectors or
explicitly with architectures that learn to count. The latter
usually set up a regression problem to directly infer the number
of object instances in the image or to estimate density maps.

Many effective approaches for object counting have been
proposed in other contexts, such as crowd counting [12],
[13] or biological cell counting [9], [14]. Thus, the following
sections cover the SotA works that focus on the more general
object counting problem, with particular attention to agrovi-
sion applications, and give an outline of our contributions.

1) Counting by detection: The earliest paradigm adopted
to estimate the number of object instances in an image
is probably counting by detection. The idea behind it is
straightforward: counting is performed by summing the ob-
ject instances found by a class-specific object detector. This
strategy has been initially developed and widely adopted in
crowd counting applications, where a people detector [15] is
used to count the number of people in a scene. Detection is
performed both monolithically [16], [17], [18] and with part-
based approaches [19], [20], [21]. The latter were introduced
in an attempt to address high density crowd scenes, where
monolithic approaches (i.e., that rely on full body detectors)
fail due to the high number of occlusions.

In the context of agrovision, fruit detectors have been devel-
oped with a wide variety of strategies, from classification by
using low-level keypoint extractions [3], [22] to segmentation
and detection [23], [5], [24]

The advent of Convolutional Neural Networks (CNNs) has
considerably improved the robustness of detectors. CNN-
based detectors have been successfully used in the context of
supervised fruit counting for yield estimation [2]. The work
presented in [4], uses Faster R-CNN [25] to detect fruits.
The detection module is integrated with a navigation system
and a LiDAR component to associate fruits to corresponding
trees to perform yield estimation. Similarly, in [8] the authors
use Faster R-CNN to detect fruits in apple, almond and
mango orchard data. [26] propose a multi-modal extension
of Faster R-CNN to combine colour (RGB) and Near-Infrared

(NIR) information to achieve fruit detection. The approach
introduced by [27] has two components: a fruit detection and
ripeness estimation system inspired by [26] and a tracking by
detection system to compute the quantity of fruits.

The limitation of these approaches is the cost of training the
detector and, possibly, the lack of robustness to covariate shifts
of the detector itself. These considerations have driven the
researchers towards approaches that explicitly learn to count
object instances in an image.

2) Counting by regression: Counting by regression aims to
directly map visual features extracted globally or locally from
image patches to the count of object instances. Hence, the
model explicitly learns to count, which results in more robust
and precise estimations.

Similarly to counting by detection strategies, regression
based approaches have been deeply studied in crowd counting
applications [13], achieving very promising results. In agro-
vision, [6] and [7] are among the most significant works that
design solutions to the yield estimation problem by following
the supervised regression paradigm. [6] proposes a modified
version of Inception-ResNet CNNs to output the fruit count.
Furthermore, they show that the CNN can be trained by
using synthetic images, easing the labelling effort required.
In [7] the authors devise a count architecture composed of
three fundamental parts. The first is responsible for detecting
candidate fruit blobs using a fully convolutional network. The
second, trained as a liner regression problem, uses a CNN to
count the number of fruits in each blob.

3) Counting by density estimation: Regressing on the
global count provides an improved robustness with respect to
occlusions and background clutter, but spatial information is
inevitably discarded. Recently, different image descriptors that
take into account global or local spatial information have been
proposed in the context of image retrieval and classification
[28], [29], [30], [31], [32], [33]. However, these descriptors are
not specifically designed for object counting applications that,
on the other hand, could benefit from approaches able to learn
features that are jointly spatial-aware and well-suited for the
counting task. Thus, density map estimation approaches have
been proposed to incorporate the spatial correlation during
the learning process. This approach is introduced by [9]. By
learning object density maps, the benefit obtained is twofold:
they avoid learning the more complex detection task while
keeping spatial information. This approach has been extended
by [34], [35], [14] and further improved by more recent works
based on CNNs, such as [36], [37] and [38]. While these
approaches have been successfully applied in the context of
crowd or biological cell counting, to the best of our knowledge
no works have been proposed for fruit counting applications.

4) Unsupervised and weakly supervised counting: Non-
supervised approaches for fruit counting and yield estimation
are an unexplored area. In the context of crowd counting, the
work proposed by [39] and [40] avoid supervised learning
by exploiting motion dependencies across sequential frames
in a video stream. In [39] the Kanade-Lucas-Tomasi (KLT)
tracker is used to track features. Afterwards, clustering is
performed to estimate the number of people in the scene.
Similarly, in [40] low-level features are tracked and clustered
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with Bayesian clustering techniques. However, although these
strategies follow the unsupervised paradigm, they rely on the
uniformity of motion fields and work only with contiguous
sequences of image frames. This assumption are often too
restrictive in yield estimation applications.

A very recent and promising strategy has been proposed
by [41] in the context of instance segmentation application.
They devise a weakly supervised approach that exploits peak
response maps to identify class segments in the image. It is
then straightforward to perform object counting by simply
enumerating the estimated instance segments. However, this
approach is not specifically designed for object counting tasks
and, thus, as shown in the experimental section, it achieves
lower performance when compared to ours.

5) Contribution: To the best of our knowledge, in the
literature there are currently no works that propose a weakly
supervised approach for still image object counting tasks. All
the previous approaches rely on bounding box labels [4], [8],
[27], object instance count labels [6], [7] or density maps [13]
as supervision signals.

In this work, we give a new twist to the fruit counting
problem by removing the strong assumption of having labelled
data samples to train the object count models. The only
requirement is a simple image level binary classifier that
predicts whether the image contains instances of the fruit or
not, i.e., there is no need to provide the number of objects
in the image or bounding box labels or density maps during
training. To achieve this, we build an objective function that
combines the classifier output at different locations and scales
of the image with a spatial consistency term. This forces the
model to learn to count without the need for task specific
supervision signals.

An extensive set of experiments on different fruit varieties
(olives, almonds and apples) shows how the proposed weakly
supervised approach is able to achieve a performance similar
to its fully supervised counterparts and to SotA approaches.
Furthermore, two new datasets containing images of olive and
almond groves with ground truth information are released for
comparisons and further researches.

III. PROPOSED APPROACH

This section describes the proposed weakly supervised
framework for fruit counting. First, a fully supervised ar-
chitecture that learns to regress the total fruit count in an
image by using task specific labels (i.e., the multiplicity of
fruit instances) is introduced. The network, referred to as S-
COUNT (supervised counting) is trained in an end-to-end
fashion and acts as one of the supervised baselines.

Afterwards, Section III-B describes how S-COUNT is
extended to exploit the weakly supervised paradigm. This
network is referred to as WS-COUNT.

A. End-to-End Supervised Counting

The S-COUNT network is trained as a fully supervised
regression model. It directly outputs a single number that
represent the total fruit count for a given image. Each training
instance is composed by an image-label pair (I, y), where I is
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(a) Almonds (b) Apples (c) Olives

Fig. 2: Response maps of the S-COUNT and WS-COUNT architec-
tures. The first row depicts the input images, while the second and
the third show one of the eight output maps of the 1×1 convolutional
layer of the S-COUNT and WS-COUNT architecture, respectively.
It can be observed that the networks assign higher value to image
locations with high probability of fruits.

an RGB image and y ∈ R represents the ground truth number
of the object instances in the image.

The feature extraction part of S-COUNT is ResNet101
[42] architecture without the final fully connected layer (see
Figure 3). The output of the last 3 × 3 convolutional layer
of ResNet101, which has 2048 feature maps, is fed into a
1 × 1 convolution with 8 filters. The purpose of these filters
is to learn output response maps, which are then usd by the
final fully connected layer to regress the instance count (see
Figure 2). We experimentally observed that its response maps
have greater values in regions that most likely contain fruit
instances. Although S-COUNT is not a classification network,
this is expected since, in order to count the number of instances
in I, the network needs to be able to somehow locate them
before counting. The choice to use eight filters and not a single
one provides the network with the capability to learn multiple
modalities to represent the object and to improve the overall
accuracy. However, as shown in [43], learning too many maps
can lead to a performance drop due to overfitting, hence, we
do not ask the network to learn more than eight of them.

All the layers in the network, except for the output one,
have ReLU activations and batch normalization layers to ease
the optimization during training. The loss function that is
optimized is a standard Mean Squared Error (MSE) loss.

B. Weakly Supervised Counting

As stated in the previous section, the S-COUNT network
relies on task-specific supervision labels y(i) that encode the
fruit instance multiplicity in each image. Ideally, we want to
remove this label and have a network that is able to learn from
the images what and how to count. Stated like this the problem
is ill-posed, because the network should have at least a slight
hint about what to learn. For this reason, a more complex
counting network is introduced. This network is a multi-branch
counting CNN (MBC-CNN) that operates on different image
sub-windows at different levels. More precisely, it works
on three scales, the whole image, the image divided into
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quadrants, and the image divided into 16 parts (Figure 3).
For each level the network is applied to each tile and tries
to regress the number of fruits in the tile. Since the correct
number of fruits in the image is not used as a supervisory
signal, we impose the constraint that at each scale the total
count regressed on the corresponding tiles must be consistent
with the total count of other levels. As shown in [10], this
is enough to force the network to learn to count something.
However, using only this approach, it is not possible to be sure
that the network will learn to count fruits.

To overcome this, the weakly supervised
framework is introduced. Consider a training set
T = {(I(0), c(0)), (I(1), c(1)), ..., (I(N), c(N))} where N
is the total number of training samples and c(i) ∈ {0, 1}
indicates whether the image contains instances of the fruit
or not. The information encoded by c(i) is clearly ”weaker”
than the precise instance count y(i), but it is easier to collect
and less prone to human counting errors.

Since these labels cannot be used naively to train a counting
network, we introduce an image level binary classifier, which
will be referred to as PAC (Presence-Absence Classifier), and
use it to train the actual counting network. The key intuition,
in addition to the counting consistency, is to force consistency
between the output of each counting branch and the prediction
of the PAC. If the classifier predicts the presence of object
instances, the counter should output a number greater than
zero. Conversely, when the absence of fruits is estimated, the
count must be zero.

Similarly to [10], WS-COUNT uses consistency checks on
counting at different levels to force the network to learn a
concept of objectness. However, in [10] there is no constraint
on what to count, so the network learns some vague concept of
objectness. Instead, our approach exploits the binary classifier
to allow the counting network to learn the correct concept.
While the supervision given by the PAC classifier is weak
and noisy, it is enough, together with the count consistency
constraints, to learn the counting task.

The rest of this section provides the details about the
PAC and the MBC-CNN networks and describes the objective
functions used to train the overall WS-COUNT framework.

1) Presence-Absence Classifier: The Presence-Absence
Classifier architecture is similar to the S-COUNT one pre-
sented in Section III-A, i.e., it has a ResNet101-based feature
extractor followed by a 1 × 1 convolutional layer with eight
response map. Differently from S-COUNT, the response map
layer output is not fed into a series of fully connected layers.
Instead, the PAC network uses the two-stage pooling layer
proposed by [43], which is composed of a class-wise pooling
operation with a spatial pooling one. The former combines
the eight maps from the last 1× 1 convolutional layer into a
final one that summarizes their contribution. The latter is used
to average the spatial information into a single final value ĉi.
This value is then provided as input to a sigmoid function
to predict the presence or the absence class associated to the
image I(i). The PAC network is trained with a standard binary
cross-entropy (BCE) loss.

2) Multi-Branch Counting CNN: The MBC-CNN oper-
ates on sub-windows extracted from the image at three

different scales: the first one is the full image while
the second and the third are obtained by dividing I(i)
into 4 and 16 non-overlapping sub-windows, respectively.
Each sub-window is processed by a CNN-branch with the
same {ResNet101→Response Map Layer→Fully Connected
Layers} structure as S-COUNT and outputs a single positive
real value o(j) that represents the estimation of the count
instances in that sub-window. The feature extraction part is
shared between the levels, while the fully connected predictor
is different for each level. By observing Figure 2 it is clear
that, similarly to S-COUNT, the response map layer of MBC-
CNN is able to localize fruit instances in the image. To allow
the MBC-CNN to learn to count, as introduced in the previous
sections, we set up two objective terms: a classifier consistency
LPAC-C loss and a spatial consistency LSP -C loss. The first
is responsible for constraining the counts of each branch to be
coherent with the presence-absence prediction of the classifier
(which is trained separately):

LPAC-C = −
N∑
i=0

2∑
k=0

22k∑
j=0

ĉ(i,k,j) log(g(o(i,k,j)))

+ (1− ĉ(i,k,j)) log(1− g(o(i,k,j))) (1)

where ĉ(i,k,j) and o(i,k,j) are the PAC prediction and the
estimated count for the sub-window j at level k, respectively,
and g(x) = σ(αx−0.5) is a shifted and scaled (by α) sigmoid
function that maps o(i,k,j) to {0, 1}.

The LSP -C loss aims to impose coherency among the sum
of sub-window counts of the three different levels:

LSP -C =

N∑
i=0

2∑
k=0

2∑
l=k+1

∣∣∣∣∣∣
∣∣∣∣∣∣
 22k∑

j=0

o(i,k,j)

−
 22l∑

m=0

o(i,l,m)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2
(2)

where i is the index associated with the current training image
I(i), while k and l iterate over the three different scales. o(i,j,k)

is the object instance estimate of the counting CNN for the
sub-window k at level j of image I(i) (similarly for o(i,m,l)).

The two losses are combined in the final objective function
that is optimized during training:

LMBC-CNN = LPAC-C + β · LSP -C (3)

The main hyperparameters are α and β parameters and can
be found through cross validation. Since the multi-branch
networks produce three estimates (one per scale level) that
are slightly different, it is possible to choose the final output
value as a specific level count or as the average of the three
predictions. By cross-validating this aspect, we found that the
average of predictions gives the best performance.

IV. EXPERIMENTS

A. Datasets

The proposed WS-COUNT framework is evaluated with
respect to three different fruit species: apples, almonds and
olives (see Figure 2). For apples and almonds we use the
datasets provided by [8]. We also gathered and labelled a
brand new almond dataset to evaluate the performance under
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Fig. 3: The figure shows the core architectural components of our WS-COUNT network. MBC-CNN (on the left) processes the input image
at three different scales (1, 1/2 and 1/4) and outputs the estimated fruit counts for each image tile. To this end, the image tiles are fed into
a Resnet-101 feature extractor (red blocks) that ends with a 1× 1 convolutional layer (yellow block) with 8 response maps. These maps are
then flattened and processed by 3 fully connected layers that output the final count estimate. The feature extractor part shares its parameters
across each branch, while the fully connected layers are specific for each image scale. The count estimate of each branch is summed with
the other counts at the same scale and the results is forced to be similar with those at the other scales by using a Mean Squared Error (MSE)
loss. The weak supervision signal is provided by the PAC (green blocks on the right), that processes the same image sub-blocks of the
MBC-CNN network and provides a binary label encoding whether there are fruits in the image block or not. Count consistency is achieved
by comparing the PAC outputs with the MBC-CNN count estimates with a Binary Cross Entropy (BCE) loss. To convert the continuous
values of the MBC-CNN into {0, 1} labels, we fed them into a sigmoid functions.

different conditions and scenarios. Furthermore, since there are
currently no olive datasets available in the research commu-
nity, we also collected and manually labelled a set of images
of olive trees. Both the almond and the olive datasets are made
available to the community on the accompanying web page.

The apple and the almond datasets from [8] are composed
of 1115 RGB images with a resolution of 308×202 pixels and
555 images with 300×300 pixels, respectively. The images in
both datasets are provided with manually annotated bounding
boxes around the fruits. The count label for each image are
directly derived from the bounding box lists.

The novel almond dataset (AlmondISAR) has been collected
by flying a DJI Phantom 4 drone over a cultivation of almond
trees. First, 17 high resolution (5472×3078 pixels) images de-
picting the full almond tree canopy are extracted. Afterwards,
these images have been cropped to generate 1158 images
at 300 × 300 pixel of resolution. To build the olive dataset
(OlivesISAR), 31 high resolution images with 5456 × 3632
pixels are collected by using a high quality camera. The images
capture the full olive tree shape. Three of them are kept apart
to run the entire tree shape (see Section IV-D), while the
remaining 28 were used to train the count models. Similarly to
the almond dataset, the latter ones are processed by randomly
picking smaller tiles of 606×403 pixels to obtain a dataset of
1402 images. The bounding box labelling was performed by
using [44]. It is important to mention that the bounding box
information is only used to train the approach described in [8]
(see Section IV-B) for comparison, while our approach needs
only the fruit instance counts in the image. All the train-test
splits are reported in Tables II.

(a) Almonds (b) Apples (c) Olives

Fig. 4: Sample images of the three fruit species (Almonds (4a),
Apples (4b) and Olives (4c)) used in the experiments.

B. Baselines

To prove the effectiveness of our approach, we compare it
against six different baselines. As stated before, to the best of
our knowledge all the SotA approaches for fruit counting are
fully supervised.

As the fully SotA supervised baselines we use the ap-
proaches proposed by [8] and [6]. The former is trained
on bounding-box instance labels and uses the Faster-RCNN
object detector to count the fruit instances in an image. Con-
versely, the latter takes advantage from a modified Inception-
ResNet CNN to learn a model that regresses directly the fruit
counts. In the following, these approaches are referred to as
RCNNCount and DeepCount, respectively. Furthermore, WS-
COUNT is compared against the weakly-supervised strategy
proposed by [41] (which will be referred to as PRM), that
exploits peek response maps to perform instance-level seg-
mentation. We simply count the detected peaks to estimate
the total number of fruits in the image.

In addition to this, we consider also two supervised net-
works trained in an end-to-end fashion by using the instance
counts as supervision signal. The first one is the S-COUNT
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architecture presented in Section III-A.
Since WS-COUNT exploits a multi-branch structure, we

decided to compare it also against a multi-branch version of
S-COUNT (which we named MBS-COUNT) to provide a fair
comparison. Each branch of MBS-COUNT, similarly to the
MBC-CNN architecture, processes one of the sub-windows
and outputs a count estimate. We train it by optimizing the
following loss:

LMBS-COUNT = LMB-MSE + LSP -C (4)

where

LMB-MSE =

N∑
i=0

2∑
k=0

∣∣∣∣∣∣
∣∣∣∣∣∣
 22k∑

j=0

o(i,j,k)

− y(i)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(5)

is the loss that enforces the network to keep the sum of the
sub-window count estimates close to the ground truth count
label, while LSP -C is the spatial-consistency loss defined in
(2). It worth noting that, unlike the objective defined for WS-
COUNT, in this case we rely on the supervision labels y(i).

Finally, since PAC is used as a source of supervision, we
asked ourselves whether simply counting the binary prediction
of the presence-absence classifier (PAC) could provide good
estimates. For this reason, the binary classifier is applied at
the finer scale (16 tiles) and, for each tile, the sum of the fruit
detections (0− 1 signals) is counted. This last baseline helps
us to understand whether the WS-COUNT network is able to
perform better than the supervisory PAC network.

C. Implementation Details
The implementation of the S-COUNT, MBS-COUNT, PAC

and WS-COUNT architectures is based on the Pytorch frame-
work. For each architecture, one model for each fruit dataset
is trained. ResNet101 is pretrained on ImageNet [45] and fine-
tuned with a smaller learning rate (i.e., 10−6) with respect to
the top layers (see Table I for further implementation details).

For the implementation of RCNN-COUNT [8], the Ten-
sorflow implementation of the Faster-RCNN object detector
architecture is used. To provide a comparison independent
from the feature extraction module, we decide to use the
same backbone as in our networks (i.e., ResNet101), instead
of VGG16 [46]. The object detection network is initialized on
the COCO object detection dataset [47] and then fine-tuned on
the fruit sets after performing a net surgery process to reduce
the number of classes from 80 (i.e., the COCO number of
categories) to 1. Since the authors do not provide the code
for DeepFruit, we follow the indications on the paper [6] to
implement it. Conversely, we used the code provided by [41] to
train their PRM network in our scenarios. We only replaced the
ResNet50 feature extractor in their code with the 101 version
(the same used in our network) to achieve a fair comparison.

All the aforementioned architectures are optimized by using
a Nvidia Tesla K-40 GPU with 12 GB of VRAM. All the
newtorks are optimized with SGD, except for DeepCount that
is trained with the Adam optimizer as suggested by the authors
in [6]. The code and the data are available at the accompanying
web page 1.

1https://isar.unipg.it/

Net Batch Learning
rate Epochs Training

Time
Test Time

(s/img)

O
liv

es
IS

A
R

S-COUNT 16 10−4 100 8h 0.026
MBS-COUNT 5 10−5 200 65h 0.11
MB-PAC-Only 16 10−2 20 1h 0.09
WS-COUNT 3 10−5 200 65h 0.057

RCNNCount [8] 1 3 × 10−4 100 12h 0.60
DeepCount[6] 15 10−3 60 45m 0.021

PRM[41] 16 10−2 50 80m 1.19

A
pp

le
s[

8]

S-COUNT 64 10−4 100 2h 0.007
MBS-COUNT 16 10−5 200 10h 0.069
MB-PAC-Only 64 10−2 20 1h 0.026
WS-COUNT 16 10−5 200 10h 0.024

RCNNCount [8] 1 3 × 10−4 100 12h 0.47
DeepCount[6] 15 10−3 60 45m 0.005

PRM[41] 16 10−2 50 40m 0.52

A
lm

on
ds

[8
]

S-COUNT 32 10−4 100 2h 0.01
MBS-COUNT 14 10−5 200 10h 0.073
MB-PAC-Only 32 10−2 20 1h 0.032
WS-COUNT 12 10−5 200 10h 0.027

RCNNCount [8] 1 3 × 10−4 100 12h 0.44
DeepCount[6] 15 10−3 60 15m 0.008

PRM[41] 16 10−2 50 30m 0.083

A
lm

on
ds

IS
A

R

S-COUNT 32 10−4 100 3h 0.01
MBS-COUNT 14 10−5 200 12h 0.073
MB-PAC-Only 32 10−2 20 2h 0.032
WS-COUNT 12 10−5 200 12h 0.027

RCNNCount [8] 1 3 × 10−4 100 13h 0.44
DeepCount[6] 15 10−3 60 20m 0.008

PRM[41] 16 10−2 50 40m 0.083

TABLE I: Batch sizes, learning rates, epochs, training and test times
of all the networks compared in the experiments. The training times
for DeepCount and PRM are considerably lower than WS-COUNT,
MBS-COUNT and S-COUNT since our networks need to process
the images at three different scales.

D. Results and Discussion

To evaluate the performance of both the baseline methods
and our approach, the count estimates are compared with
the ground truth value by using the RMSE metric. In order
to perform statistical verification of the results, we train 20
models by using different weight initialization seeds for each
network. The RMSE of each model on the test set are then
used to compute the means and the standard deviations. We
start our discussion by commenting the RMSE obtained by
each model over the whole test sets for each fruit dataset. The
results are shown in the right-most column of Table II.

It can be observed that the best performance are achieved
by [8]. This is to be expected, since their model is specifically
trained with the most informative labels (bounding boxes on
instances), which are more robust to self-occlusions and back-
ground clutter. The S-COUNT and MBS-COUNT networks
give higher, but still comparable, errors with respect to [8],
showing that end to end counting on total number of instances
is effective. The most important result is that WS-COUNT,
despite being trained in a weakly supervised manner, achieves
performances that are close to our supervised baselines (S-
COUNT and MBS-COUNT) and better than DeepCount [6]. It
is also important to observe that the errors obtained by the MB-
PAC-Only baseline are considerably higher than WS-COUNT,
which proves that the combination of the classifier consistency
and the spatial consistency losses gives the network a better
capability to count the fruit instances. Furthermore, WS-
COUNT performs significantly better than PRM [41], which
proves that, despite both of them follow the weakly supervised
paradigm, our approach is better suited for fruit counting.



7

OlivesISAR
GT #fruits

(#Train / #Test)
0

(653/8)
1-5

(374/64)
6-10

(176/25)
11+

(87/7)
All

(1298/104)
S-COUNT 0.05±0.04 1.51±0.11 2.39±0.22 4.45±0.36 2.03±0.07
MBS-COUNT 0.51±0.35 1.11±0.27 2.58±0.38 4.35±1.05 1.91±0.21
MB-PAC-Only 0.04±0.02 1.56±0.92 3.00±0.78 7.50±1.58 2.73±0.41

WS-COUNT 0.05±0.02 1.23±0.14 2.90±0.12 6.69±0.33 2.44±0.06
RCNNCount[8] 0.0±0.0 1.15±0.07 2.29±0.13 2.42±0.81 1.57±0.18
DeepCount[6] 0.76±0.34 2.54±0.34 4.47±0.38 9.1±1.06 3.81±0.22
PRM[41] 6.82±5.58 5.71±3.29 4.25±0.62 5.41±2.92 5.95±2.08

Almonds [8]
GT #fruits

(#Train / #Test)
0

(39/9)
1-5

(186/36)
6-10

(149/23)
11-15

(93/20)
All

(467/88)
S-COUNT 3.12±0.4 2.62±0.19 2.93±0.2 4.93±0.23 3.40±0.09
MBS-COUNT 3.83±0.94 2.48±0.31 2.12±0.46 4.85±0.44 3.24±0.19
MB-PAC-Only 2.32±1.67 1.83±1.67 3.26±0.61 6.16±1.35 3.65±0.63
WS-COUNT 1.59±0.3 1.53±0.24 3.63±0.17 6.07±0.27 3.61±0.12
RCNNCount[8] 2.08±0.29 1.36±0.1 1.48±0.17 2.86±0.44 1.90±0.13
DeepCount[6] 3.14±0.66 3.0±0.51 3.21±0.34 6.88±0.57 4.29±0.17
PRM[41] 0.69±0.23 2.2±0.34 5.82±0.58 9.86±0.54 5.75±0.41

Apples [8]
GT #fruits

(#Train / #Test)
0

(56/8)
1-5

(532/59)
6-10

(351/40)
11-15
(65/4)

All
(1004/111)

S-COUNT 1.98±0.21 1.56±0.09 2.17±0.1 4.47±0.5 2.00±0.06
MBS-COUNT 2.21±0.54 1.37±0.17 2.02±0.25 4.42±0.66 1.88±0.12
MB-PAC-Only 1.23±3.15 1.77±2.35 2.44±1.18 5.26±1.5 2.22±0.89
WS-COUNT 0.90±0.22 1.76±0.15 2.55±0.18 4.12±0.33 2.03±0.06
RCNNCount[8] 0.61±0.23 1.29±0.04 1.24±0.2 0.70±0.7 1.22±0.12
DeepCount[6] 0.59±0.46 1.78±0.18 2.78±0.27 4.49±0.56 2.3±0.15
PRM[41] 0.14±0.19 2.19±0.09 5.38±0.18 9.35±0.19 4.02±0.11

AlmondsISAR
GT #fruits

(#Train / #Test)
0

(528/12)
1-5

(420/72)
6-10

(93/14)
11+

(16/1)
All

(1057/99)
S-COUNT 0.36±0.11 1.46±0.07 2.9±0.18 2.91±0.83 1.69±0.06
MBS-COUNT 0.83±0.58 1.55±0.21 2.95±0.72 2.21±1.45 1.8±0.24
MB-PAC-Only 1.31±0.72 1.69±0.24 3.73±0.68 4.42±1.83 2.15±0.19
WS-COUNT 1.47±0.28 1.39±0.11 3.22±0.25 3.46±0.56 1.81±0.03
RCNNCount[8] 0.30±0.07 1.16±0.15 2.17±0.4 1.6±0.8 1.33±0.2
DeepCount[6] 1.56±0.43 2.09±0.27 5.15±0.57 7.84±1.42 2.82±0.12
PRM[41] 3.39±2.39 2.57±0.58 4.33±1.27 7.25±1.48 3.22±0.47

TABLE II: The table reports the mean and the standard deviation
of the RMSE for all the test sets conditioned by the number of the
fruits in the images. The second column gives results for no olives in
the image, while the third, the fourth and the fifth give the results for
low, medium and high number of fruits per image. The last column
provides the results averaged on the whole test set.

To further investigate the capability of our approach, we
run experiments to evaluate the performance depending on the
number of fruits in the images (see Table II).

The first aspect that can be observed is that, in general,
the performance of all the approaches deteriorates as the
number of fruits grows. This is mainly motivated by the
increasing difficulty of handling object self-occlusions (i.e.,
bunches of fruits). Nevertheless, the RMSEs of WS-COUNT
are comparable to those of the supervised architecture and
there are even cases where it outperforms the supervised
baselines, i.e., , when the number of fruits is lower than 6
units per image. The errors slightly increase with respect to
the baselines when the number of fruits is greater than 6
units. This is to be expected, since the weakly supervised
approach has no supervision signals (i.e., bounding boxes or
total counts) that give it clues about the exact locations and
number of instances. Hence, it is more challenging for WS-
COUNT to learn to distinguish self-occluded objects.

Finally, we run tests on the full resolution image to compare

Network D-281 D-294 D-282
GT 138.0 184.0 208.0
S-COUNT 132.47±7.9 163.35±15.52 172.12±11.95
MBS-COUNT 154.52±28.35 194.24±38.69 235.11±66.54
MB-PAC-Only 167.48±67.49 258.39±78.27 98.45±40.86
WS-COUNT 164.59±19.65 221.67±22.24 109.78±14.12
RCNNCount[8] 140.2±6.01 163.4±6.41 140.8±31.12
DeepCount[6] 106.32±34.8 105.6±59.78 32.98±11.68
PRM[41] 72.38±19.82 413.35±214.64 577.23±167.6

TABLE III: Table showing the performance on entire olive plant
images.

the performance when counting fruits on complete hi-res
image shots. As explained in Section IV-A, three images,
depicting considerable portions of olive tree canopy, are kept
aside. The results obtained on images D-281 and D-294 (see
Table III) confirm that WS-COUNT gives count estimates
that are very close to the supervised baselines and, more
importantly, to ground-truth. Conversely, the image D-282
seems to be more challenging since the associated errors
are higher, not only for WS-COUNT, but also for the other
supervised baselines (e.g., RCNN-Count, whose estimate is
more than 50 units lower than the ground-truth one). We
attribute this performance decrease to the adverse illumination
conditions (light from behind the tree). Making the approach
robust to such a problem will be the object of future work.

V. CONCLUSION

In this work, we proposed a novel weakly-supervised frame-
work for fruit counting in agricultural applications. The WS-
COUNT strategy is able to learn to count without requiring
task-specific supervision labels, such as manually labelled
object bounding boxes or total instance count. Instead, it
exploits a simple binary presence absence classifier (PAC),
trained with only image level labels, and a spatial consistency
loss that imposes coherency among counting branches at
different scale levels. By removing the necessity for laborious
data collection processes, our approach takes an important
step towards the complete automation of yield estimation
systems. The experiments run on three different fruit species
clearly show that our approach guarantees performances that
are comparable to those of fully supervised baselines.

Although the results obtained are very promising, there
are still important aspects that will be addressed in future
works, such as making the algorithm more robust to self-
occlusion happening when there are dense groups of fruits,
or improving the accuracy on adverse illumination conditions.
In addition, integrating this approach on a robotic platform
requires methods to deal with multiple image shots of the
same trees that naturally occur when collecting a video of an
orchard and which could bias the whole orchard yield estimate.

REFERENCES

[1] K. Kapach, E. Barnea, R. Mairon, Y. Edan, and O. Ben-Shahar, “Com-
puter vision for fruit harvesting robots–state of the art and challenges
ahead,” International Journal of Computational Vision and Robotics,
vol. 3, no. 1-2, pp. 4–34, 2012.

[2] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A
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