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In this paper we propose fast solution methods for the Cauchy problem for the multidimensional Schrödinger
equation. Our approach is based on the approximation of the data by the basis functions introduced in the
theory of approximate approximations. We obtain high-order approximations also in higher dimensions up
to a small saturation error, which is negligible in computations, and we prove error estimates in mixed
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examples, up to approximation order 6 and space dimension 200.
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1. Introduction

The present paper is devoted to the numerical solution of initial value problems for the
Schrödinger equation of free particles

i
∂u
∂ t

+∆xu = 0 , (1)

where u = u(x, t) is the wave function depending on the spatial variables x = (x1, ...,xn)∈
Rn and the time t ∈ R, ∆x is the usual Laplacian with respect to the variables x. The
time evolution of physical systems is generally described via partial differential equations,
especially via the Schrödinger equation

i
∂u
∂ t

+∆xu =V (x, t)u ,

in such fields where wave propagation is considered, for example, optics, acoustics and
quantum mechanics. Here V (x, t) is the potential, which models the interaction of the
particle with its environment. In case of a free particle V (x, t) = 0 and we get (1). The
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Schrödinger equation with real valued time dependent potential V (t)

i
∂w
∂ t

+∆xw =V (t)w

can be dealt with (1) by the transformation w(x, t) = u(x, t)e−i
∫ t

0 V (τ)dτ .
Solving numerically the Schrödinger equation is of great practical use but is in general

quite a complex problem mainly due to the fact that the wave function propagates high
frequency oscillations. The main objective of the paper is to develop fast solution methods
for the Cauchy problem of (1)

u(x,0) = g(x), x = (x1, , . . . ,xn) ∈ Rn, (2)

and for the inhomogeneous Schrödinger equation

i
∂u
∂ t

+∆xu = f (x, t), (x, t) ∈ Rn×R+ (3)

which is effective also in high dimension.
Under suitable integrability or decay conditions on g and f the solution of (1) - (2) can

be written as

u(x, t) = S g(x, t) =
∫
Rn

K (x−y, t)g(y)dy , (4)

and the solution of (3) - (2) is given by

u(x, t) = S g(x, t)+Π f (x, t)

with

Π f (x, t) =−i
t∫

0

ds
∫
Rn

K (x−y, t− s) f (y,s)dyds =−i
t∫

0

(S f (·,s))(x, t− s)ds . (5)

Here K (x, t) denotes the fundamental solution of (1) [6, p.193]

K (x, t) =
e i |x|2/(4t)

(4πit)n/2 .

In terms of the Fourier transform

Fu(ξ ) =
∫
Rn

u(x)e−2πi〈x,ξ 〉 dx

2
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the integral operators S and Π can be written as follows:

S g(x, t) =
∫
Rn

e2πi〈x,ξ 〉e−4π2it|ξ |2Fg(ξ )dξ , (6)

Π f (x, t) =−i
t∫

0

ds
∫
Rn

e2πi〈x,ξ 〉e−4π2i(t−s)|ξ |2F f (ξ ,s)dξ .

For fixed t > 0 the integral operator S is bounded in Lp = Lp(Rn) spaces. We write || f ||Lp

the Lebesgue norm of a function f ∈ Lp. From (4) and (6) it follows immediately that

‖S g(·, t)‖L∞ ≤ 1
(4π|t|)n/2 ‖g‖L1 , ‖S g(·, t)‖L2 = ‖g‖L2 ,

hence by interpolation the Lp dispersive estimate

‖S g(·, t)‖Lp ≤C|t|−n(1/2−1/p)‖g‖Lp′ , t 6= 0 , (7)

holds for 2≤ p≤ ∞ and p′ is the adjoint exponent, 1/p+1/p′ = 1.
Estimates of norms of solutions u(x, t) on Rn×R are known for example in mixed

Lebesgue spaces. For an interval I and r,q ≥ 1, Lr,q(I) denotes the Banach space of
Lr(Rn)-valued q-summable functions over I with the norm

‖u‖Lr,q(I) = ‖u‖r,q =

(∫
I

(∫
Rn

|u(x, t)|rdx
)q/r

dt
)1/q

.

The exponent pair (q,r) is called Schrödinger-admissible if q,r ≥ 2, (q,r) 6= (2,∞) and

2
q
+

n
r
=

n
2
. (8)

For any Schrödinger-admissible pairs (q,r) Strichartz type estimates

‖S g‖Lr,q(R+) ≤C‖g‖L2 , ‖Π f‖Lr,q(R+) ≤C‖ f‖Lr′,q′ (R+)
(9)

are valid with constants C independent of g∈ L2(Rn) and f ∈Lr′,q′(R+), [7, (11)]. More-
over, u = S g+Π f is continuous in t in the space L2 and

sup
t∈R+

‖u(·, t)‖L2 ≤C(‖g‖L2 +‖ f‖Lr′,q′ (R+)
) .

Note that for q = r = 2+4/n we derive the classical Strichartz estimate [15, (3.2)]

‖u‖L2(n+2)/n =

( ∫
R+

∫
Rn

|u(x, t)|2(n+2)/ndxdt
)n/(2(n+2))

≤C
(
‖g‖L2 +‖ f‖L2(n+2)/(n+4)

)
.

The goal of this paper is to derive semi-analytic cubature formulas for S g in (4) and
Π f in (5) of an arbitrary high-order which are fast and accurate also if the space di-
mension n ≥ 3. We follow the philosophy introduced in [8] and [9] for the cubature of
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high-dimensional Newton potential over the full space and over half-spaces. The idea is
to approximate the density functions by the basis functions introduced in the theory of ap-
proximate approximations (cf. [13] and the references therein). This approach, combined
with separated representations (cf. [3] and [4]) makes the method fast and successful in
high dimensions. In [10] and [11] we applied this procedure to obtain cubature formu-
las for advection-diffusion operators over rectangular boxes in Rn. In [12] our approach
was extended to parabolic problems. For the Schrödinger equation the situation is differ-
ent because the fundamental solution does not decay exponentially and standard cubature
methods are very expensive due to the oscillations of the kernel, especially in multidimen-
sional case. The application of approximate approximations to this equation reduces these
problems and provides new very efficient semi-analytic cubature formulas.

The article is organized as follows. In section 2, after an introduction into simple cu-
bature formulas for the operators S and Π based on approximate quasi-interpolants,
we prove new estimates of the cubature error for general generating functions in mixed
Lebesgue spaces. Similar to other integral operators of potential theory, we obtain high-
order approximations also in higher dimensions up to a small saturation error, which is
negligible in computations. In section 3 we describe algorithms for high-order approx-
imations of (4) and (5). Using the tensor product structure of cubature formulas, these
algorithms are very efficient in high dimensions, if g and f allow separate representa-
tions. The approach is extended in section 4 to the case that g and f are supported with
respect to x in a hyper-rectangle on Rn. In Section 5 we illustrate the efficiency of the
method on several examples, up to approximation order 6 and space dimension 200. For
the two-dimensional initial value problem (1)-(2) we provide graphics of the evolution of
u(x, t).

2. Cubature of S g and Π f

2.1. Approximate quasi-interpolants

To find an approximate solution of (1) - (2) we replace the function g in (4) by an approx-
imate quasi-interpolant

(Mh
√

D g)(x) = D−n/2
∑

m∈Zn
g(hm)η

(x−hm
h
√

D

)
, (1)

where h and D are positive parameters and η is a rapidly decaying function of the Schwarz
space S(Rn) satisfying for positive integer N the moment condition∫

Rn

η(x)dx = 1 ,
∫
Rn

xα
η(x)dx = 0, ∀α , 1≤ |α|< N . (2)

Here and in the following we use multi-index notation, bold Greek letters denote multi-
indices. Then the function

Shg(x, t) = S (Mh
√

D g)(x, t)

=
1

Dn/2(4πit)n/2 ∑
m∈Zn

g(hm)
∫
Rn

e i |x−y|2/(4t)
η

(y−hm
h
√

D

)
dy (3)

can be considered as cubature of S g, if η is chosen such that S η(x, t) can be computed
easily, preferably as an analytic expression. The existence of those generating functions
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η has been shown for various integral operators.
Then the cubature error follows immediately from the quasi-interpolation error due to

S g(·, t)−Shg(·, t) = S (I−Mh
√

D)g(·, t) .

Approximation properties of quasi-interpolants of the form (1) have been studied in the
framework of approximate approximations (cf. [13]). Let us recall the structure of the
quasi-interpolation error, which is proved in general form in [13, Thm 2.28]. Suppose that
g has generalized derivatives of order N. Using Taylor expansions of g(x) for the nodes
hm, m ∈ Zn, and Poisson’s summation formula the quasi-interpolant can be written as

(Mh
√

D g)(x) =(−h
√

D)NgN(x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

αg(x)σα(x,η ,D) (4)

with the function

gN(x)=
1

Dn/2 ∑
|α|=N

N
α! ∑

m∈Zn

(x−hm
h
√

D

)α

η

(x−hm
h
√

D

) 1∫
0

sN−1
∂

αg(sx+(1− s)hm)ds,

containing the remainder of the Taylor expansions, and the fast oscillating functions

σα(x,η ,D) =
1

Dn/2 ∑
m∈Zn

(x−hm
h
√

D

)α

η

(x−hm
h
√

D

)
= ∑

ν∈Zn
∂

αFη(
√

Dν)e
2πi
h 〈x,ν〉 . (5)

If g ∈W N
p (Rn) with N > n/p, 1≤ p≤ ∞, then gN can be estimated by

‖gN‖Lp ≤CN ∑
|α|=N

‖∂ αg‖Lp =CN |g|W N
p

with a constant CN depending only on η , n, and p. It follows from (5) that due to the
moment condition (2) the second sum in (4) transforms to

g(x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

αg(x)εα(x,η ,D) ,

where we denote

εα(x,η ,D) = ∑
ν∈Zn

ν 6=0

∂
αFη(

√
Dν)e

2πi
h 〈x,ν〉 = σα(x,η ,D)−δ0|α| .

Hence (4) leads to the representation of the quasi-interpolation error

(Mh
√

D g)(x)−g(x) = (−h
√

D)NgN(x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

αg(x)εα(x,D ,η),
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which implies in particular the error estimate in Lp(Rn)

‖g−Mh
√

D g‖Lp≤

CN(h
√

D)N |g|W N
p
+

N−1

∑
k=0

(h
√

D)k

(2π)k ∑
|α|=k

‖εα(·,D ,η)‖L∞‖∂ αg‖Lp

α!
.

(6)

Thus the quasi-interpolation error consists of a term ensuring O(hN)-convergence and
of the so-called saturation error, which, in general, does not converge to zero as h→ 0.
However, due to the fast decay of ∂ αFη , one can choose D large enough to ensure that

‖εα(·,D ,η)‖L∞ ≤ ∑
ν∈Zn\0

|∂ αFη(
√

Dν)|< ε

for given small ε > 0. In the examples below the saturation error is of the order O(e−π2D),
which in the cases D = 2 and D = 4 is comparable to the single and double precision
arithmetics of modern computers. Therefore, in numerical computations the saturation
error can be neglected for appropriately chosen D .

2.2. Approximation error for S g

From (3) we see that

Shg(x, t) = D−n/2
∑

m∈Zn
g(hm)S η

(x−hm
h
√

D
,

t
h2D

)
. (7)

Hence, if S η(x, t) is known analytically, then (7) is a very simple semi-analytic cubature
of S g. Of course, the cubature formula is computable only for a finite number of nonva-
nishing terms in (7). Therefore we assume that g(x) and f (x, t) are compactly supported.

The mapping properties (7) and (9) of S and the quasi-interpolation error (6) lead to
estimates of the approximation error for S g. In the following theorem we use the notation

‖∇kg‖Lp = ∑
|α|=k

‖∂ αg‖Lp

α!
.

THEOREM 2.1 Let g∈W N
p (Rn), 1≤ p≤ 2, N > n/p, be the initial value for the homoge-

neous Schrödinger equation (1). For any ε > 0 there exists D > 0 such that for t > 0 the
cubature formula (7) approximates the solution u(x, t) in Lp′(Rn), p′ = p/(p−1), with

‖u(·, t)−Shg(·, t)‖Lp′ ≤
C

tn(1/2−1/p′)

(
(h
√

D)N |g|W N
p
+ ε

N−1

∑
k=0

(h
√

D)k

(2π)k ‖∇kg‖Lp

)
.

Moreover, if g ∈W N
2 (Rn), then the approximation on Rn×R with uh(x, t) = Shg(x, t)

can be estimated in the mixed Lebesgue spaces Lr,q(R+) for any Schrödinger-admissible
pairs (q,r), cf. (8), by

‖u−uh‖Lr,q(R+) ≤C
(
(h
√

D)N |g|W N
2
+ ε

N−1

∑
k=0

(h
√

D)k

(2π)k ‖∇kg‖L2

)
.

6
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Remark 1 The analysis of the application of the integral operator S on the saturation
error

RN(x) =
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

αg(x)εα(x,η ,D)

shows that |S RN(x, t)| → 0 for fixed (x, t) as h→ 0. For example, if (1+ |x|2)(N−1)/2

×g(x) ∈W N−1
1 (Rn), then |S RN(x, t)|=Ct−n/2(

√
Dh)N‖(1+ | · |2)(N−1)/2g‖W N−1

1
for all

|x|< 2πt/h.

2.3. Approximation error for Π f

We construct an approximation for Π f in (5) using the approximate quasi-interpolant

Nh
√

D ,τ
√

D0
f (x, t) =

1√
D0Dn ∑

`∈Z
m∈Zn

f (hm,τ`)ψ

( t− τ`

τ
√

D0

)
η

(x−hm
h
√

D

)
. (8)

Here τ , h, are the step sizes, D0 and D are positive fixed parameters; ψ ∈ S(R) and
η ∈ S(Rn) are the generating functions, which belong to the Schwartz space S of smooth
and rapidly decaying functions. If the generating functions ψ and η fulfills the moment
condition (2) of order N, then Nh

√
D ,τ
√

D0
f approximates f with the order O((h

√
D +

τ
√

D0)
N) up to the saturation error in Lp(Rn+1) if N > (n+ 1)/p. This is also true for

mixed Lebesgue spaces, which are used for the mapping properties (9) of Π.
More precisely, using the previously mentioned approach one can expand

(Nh
√

D ,τ
√

D0
f )(x, t) = fN(x, t)+RN f (x, t) ,

where

fN(x, t) =
(−1)NN√

D0Dn

N

∑
k=0

(τ
√

D0)
k(h
√

D)N−k

k!

× ∑
|α|=N−k

1
α! ∑

`∈Z
m∈Zn

( t− τ`

τ
√

D0

)k
ψ

( t− τ`

τ
√

D0

)(x−hm
h
√

D

)α

η

(x−hm
h
√

D

)
Uk,α(x,hm, t,τ`)

with the notation

Uk,α(x,y, t,z) =
1∫

0

sN−1
∂

α
x ∂

k
t f
(
sx+(1− s)y,st +(1− s)z

)
ds ,

and the function

RN f (x, t) =
N−1

∑
k=0

(τ
√

D0)
k σk(t,ψ,D0)

k!(2πi)k

N−1−k

∑
|α|=0

(h
√

D)|α|σα(x,η ,D)

α!(2πi)|α|
∂

α
x ∂

k
t f (x, t) .

The moment conditions for ψ and η obviously imply, that for q,r ∈ [1,∞] and f such that

7



July 15, 2017 Applicable Analysis LanzaraMazyaSchmidt

the partial derivatives ∂ α
x ∂ k

t f ∈ Lr,q(R) for all indices |α|+ k ≤ N,

‖RN f − f‖Lr,q ≤ ‖σ0(·,D ,η)‖L∞

N−1

∑
k=0

(τ
√

D0)
k

k!(2π)k ‖εk(·,D0,ψ)‖L∞‖∂ k
t f‖Lr,q

+‖σ0(·,D0,ψ)‖L∞

N−1

∑
k=0

(h
√

D)k

(2π)k ∑
|α|=k

‖εα(·,D ,η)‖L∞

α!
‖∂ α

x f‖Lr,q

+
N−1

∑
k=1

(τ
√

D0)
k‖εk(·,D0,ψ)‖L∞

k!(2π)k

N−1−k

∑
|α|=1

(h
√

D)|α|‖εα(·,D ,η)‖L∞

α!(2π)|α|
‖∂ α

x ∂
k
t f‖Lr,q .

Moreover, if N > (n+1)/min(q,r), then one can show similar to [13, Lemma 2.29] that

‖ fN‖Lr,q ≤C
N

∑
k=0

∑
|α|=N−k

(τ
√

D0)
k(h
√

D)N−k‖∂ k
t ∂

α
x f‖Lr,q .

Now we are in the position to study the approximation of Π f defined by

Πh,τ f (x, t)=Π(Nh
√

D ,τ
√

D0
f )(x, t) =−i

t∫
0

ds
∫
Rn

K (x−y, t− s)Nh
√

D ,τ
√

D0
f (y,s)dy.

The difference between Π f and Πh,τ f can be estimated by (9) and the quasi-interpolation
error ‖ f −Nh

√
D ,τ
√

D0
f‖Lr′,q′ . However, the corresponding error estimate is proved for

sufficiently smooth functions on Rn+1, whereas the right-hand side f of (3) is given only
on Rn×R+. Therefore we extend f (·, t) : R+→W N

r (Rn) with preserved smoothness to a
function f (·, t) : R→W N

r (Rn). This can be done, for example, by using Hestenes reflec-
tion principle (cf. [5] and (3)). The extended function, again denoted by f , is compactly
supported and retains the smoothness of f |Rn×R+ . Then we get

Πh,τ f (x, t)

=
−i√
D0Dn ∑

`∈Z
m∈Zn

f (hm,τ`)

t∫
0

ψ

( t− τ`− s
τ
√

D0

)∫
Rn

e i |x−y|2/(4s)

(4πis)n/2 η

(y−hm
h
√

D

)
dyds

=
−i√

D0 Dn ∑
`∈Z

m∈Zn

f (hm,τ`)

t∫
0

ψ

( t− τ`− s
τ
√

D0

)
S η

(x−hm
h
√

D
,

s
h2D

)
ds (9)

where f (hm,τ`) for ` < 0 in (9) are understood as values of the extended function.

THEOREM 2.2 Let (q,r) be a Schrödinger-admissible pair and N > (n+1)/min(q′,r′),
q′ = q/(q− 1), r′ = r/(r− 1). Suppose that the right-hand side f of the inhomogeneous
Schrödinger equation (3) satisfies ∂ k

t ∂ α
x f ∈ Lr′,q′(R+) for all 0≤ k+ |α| ≤ N. Then there

exist a constant C and for any ε > 0 parameters D0,D > 0, not depending on f , such that

8
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the cubature formula (9) provides the approximation estimate

‖Π f −Πh,τ f‖Lr,q(R+) ≤ C
N

∑
k=0

∑
|α|=N−k

(τ
√

D0)
k(h
√

D)N−k‖∂ k
t ∂

α
x f‖Lr′,q′ (R+)

+ ε

N−1

∑
k=0

N−1−k

∑
j=0

(τ
√

D0)
k(h
√

D) j

(2π)k+ j ∑
|α|= j
‖∂ k

t ∂
α
x f‖Lr′,q′ (R+)

.

3. Cubature formulas

3.1. Approximation of S g

For different basis functions η the integrals on the right in (3) allow analytic representa-
tions. For example, let for N = 2M

η(x) = ηN(x) = π
−n/2 L(n/2)

M−1 (|x|
2)e−|x|

2

with the generalized Laguerre polynomials

L(γ)
k (y) =

eyy−γ

k!

( d
dy

)k(
e−yyk+γ

)
, γ >−1 .

By using the relation ([13, Theorem 3.5])

ηN(x) = π
−n/2

M−1

∑
j=0

(−1) j

j!4 j ∆
je−|x|

2

we obtain the formula

1
(πit)n/2

∫
Rn

ei|x−y|2/t
ηN(y)dy =

1
πn(it)n/2

M−1

∑
j=0

(−1) j

j!4 j ∆
j
∫
Rn

e i |x−y|2/te−|y|
2

dy

=
1

πn/2(1+ it)n/2

M−1

∑
j=0

(−1) j

j!4 j ∆
je−|x|

2/(1+it) .

In view of ([13, (3.15)])

∆
je−|x|

2
= (−1) j j!4 je−|x|

2
L(n/2−1)

j (|x|2)

an approximate solution of (1) is given by the analytic formula

Shg(x, t) = D−n/2
∑

m∈Zn
g(hm)ΦN

(x−hm
h
√

D
,

4 t
h2D

)
with

ΦN(x, t) =
e−|x|

2/(1+i t)

πn/2(1+ i t)n/2

M−1

∑
j=0

1
(1+ i t) j L(n/2−1)

j

( |x|2
1+ i t

)
.

9
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Another approximation of order N = 2M of the initial function g can be derived by the
quasi-interpolant

gh(x) = D−n/2
∑

m∈Zn
g(hm)η̃N

(
x−hm
h
√

D

)

with a basis function in tensor product form

η̃N(x) =
n

∏
j=1

χ2M(x j); χ2M(x j) =
(−1)M−1

22M−1
√

π(M−1)!
H2M−1(x j)e

−x2
j

x j
. (1)

Hk are the Hermite polynomials

Hk(x) = (−1)kex2
( d

dx

)k
e−x2

.

Then u(x, t) in (4) is approximated by

Shg(x, t) = D−n/2
∑

m∈Zn
g(hm)Φ̃N

(x−hm
h
√

D
,

4 t
h2D

)
(2)

with

Φ̃N(x, t) =
n

∏
j=1

φ2M(x j, t) =
n

∏
j=1

1
(π i t)1/2

∫
R

e i(x j−y)2/t
χ2M(y)dy , t 6= 0. (3)

From the representation [13, (3.9) and (3.6)]

χ2M(y) =
1√
π

M−1

∑
`=0

(−1)`

`!4`
∂ 2`

∂y2` e
−y2

we obtain

φ2M(x j, t) =
1√
π

M−1

∑
`=0

(−1)`

`!4`
∂ 2`

∂x2`
j

e−x2
j/(1+i t)

(1+ i t)1/2

=
1√
π

M−1

∑
`=0

e−x2
j/(1+i t)

(1+ i t)`+1/2 L(−1/2)
`

( x2
j

1+ i t

)
,

which in view of

L(−1/2)
` (y2) =

(−1)`

`!4`
H2`(y)

gives

Φ̃N(x, t) =
e−|x|

2/(1+i t)

πn/2(1+ i t)n/2

n

∏
j=1

M−1

∑
`=0

(−1)`

`!4`
1

(1+ i t)`
H2`

( x j√
1+ i t

)
. (4)

10
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Note that the computation of the approximate solution with the summation (2) is very
efficient if the function g(x) allows a separated representation; that is, within a prescribed
accuracy, it can be represented as sum of products of univariate functions

g(x) =
P

∑
p=1

αp

n

∏
j=1

g(p)
j (x j)+O(ε) . (5)

Then the products of one-dimensional sums

Shg(x, t)≈ hn

πn/2

P

∑
p=1

αp

n

∏
j=1

∑
m j∈Z

g(p)
j (hm j)φ2M

(
x j−hm j

h
√

D
,

4 t
h2D

)

=
hn

πn/2

P

∑
p=1

αp

n

∏
j=1

∑
m j∈Z

g(p)
j (hm j)

×
M−1

∑
`=0

(−1)`

`!4`
e−(x j−hm j)

2/(h2D+4i t)

(h2D +4i t)`+1/2 H2`

(
x j−hm j√
h2D +4i t

)

provide the approximation of the n-dimensional initial value problem for the Schrödinger
equation (1).

3.2. Approximation of Π f in (5)

Let us assume in (8)

ψ(t) = χ2M(t), η(x) =
n

∏
j=1

χ2M(x j).

Then Π f is approximated by

Πh,τ f (x, t) = Π(Nh
√

D ,τ
√

D0
f )(x, t)

=− i√
D0Dn ∑

`∈Z
m∈Zn

f (hm,τ`)

t∫
0

χ2M

( s− τ`

τ
√

D0

)
Φ̃N

(x−hm
h
√

D
,
4(t− s)

h2D

)
ds.

(6)

The approximation of Π f requires the computation of a certain number of one-
dimensional integrals where, for (4), the integrands allow separated representations. Sup-
pose that also f (x, t) allows a separated representation, that is

f (x, t) =
P

∑
p=1

βp

n

∏
j=1

f (p)
j (x j, t)+O(ε), (7)

then, for (6) and (3),

Πh,τ f (x, t)≈ −i√
D0Dn ∑

`∈Z

P

∑
p=1

βp

t∫
0

χ2M

(
s− τ`

τ
√

D0

) n

∏
j=1

T (p)
j (x j,

4(t− s)
h2D

,τ`)ds (8)

11
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where

T (p)
j (x, t,τ`) = ∑

m∈Z
f (p)

j (hm,τ`)φN(
x−hm

h
√

D
, t) .

An accurate quadrature rule of the one-dimensional integrals in (8) provides a sepa-
rated representation of Πh,τ f (this is described in detail in Section 4). Then the numerical
computation of Πh,τ f does not require to perform n-dimensional integrals and sums but
only one-dimensional operations, which leads to a considerable reduction of computing
resources, and gives the possibility to treat real world problems.

4. Schrödinger equation over hyper-rectangles

Assume now that g in (2) is supported in a hyper-rectangle [P,Q] = {x ∈ Rn : Pj ≤ x j ≤
Q j, j = 1, ...,n} and g ∈CN([P,Q]). Hence

S g(x, t) =
1

(4πit)n/2

∫
[P,Q]

ei|x−y|2/(4t)g(y)dy, x ∈ Rn, t ∈ R (1)

provides the solution of (1) with the data (2).
The direct application of the method described in Section 3 does not give good approx-

imations because the sum

D−n/2
∑

hm∈[P,Q]

g(hm)η

(
x−hm
h
√

D

)

approximates g only in a subdomain of [P,Q]. To overcome this difficulty we extend g by
using the Hestenes reflection principle into a larger domain with preserved smoothness.
If g̃ is the extension of g, since η is of rapid decay, one can fix r > 0 such that the quasi-
interpolant

D−n/2
∑

hm∈Ωrh

g̃(hm)η

(
x−hm
h
√

D

)

approximates g in [P,Q] with the same error estimate of (1). Here Ωrh = ∏
n
j=1 I j, I j =

(Pj− rh
√

D ,Q j + rh
√

D).
In the following we consider the basis functions in tensor product form (1). Then the

sum

S
[P,Q]

h g(x, t) = D−n/2
∑

m∈Ωrh

g̃(hm)Φ̃
[Pm,Qm]
2M (

x−hm
h
√

D
,

4 t
h2D

), t 6= 0

with Pm = (P−hm)/(h
√

D), Qm = (Q−hm)/(h
√

D), and

Φ̃
[P,Q]
2M (x, t) =

1
(π i t)n/2

∫
[P,Q]

ei |y−x|2/t
η̃2M(y)dy =

n

∏
j=1

1
(π i t)1/2

Q j∫
Pj

ei(y j−x j)
2/t

χ2M(y j)dy j,

12
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provides an approximation of (1) with the error estimate obtained in Theorem 2.1.
Φ̃

[P,Q]
2M (x,4 t) gives the solution of the initial problem

i∂tv+∆xv = 0, v(x,0) =
n

∏
j=1

I(Pj,Q j)(x j)χ2M(x j), x ∈ Rn, t ∈ R. (2)

Here I(Pj,Q j) is the characteristic function of the interval (Pj,Q j). In [11, Theorem 3.1] we
prove

THEOREM 4.1 The solution of the initial value problem (2) in Rn can be expressed by
the tensor product

v(x, t) =
n

∏
j=1

(
ΨM(x j,4 t,Pj)−ΨM(x j,4 t,Q j)

)
,

where

ΨM(x, t,y) =
1

2
√

π
e−x2/(1+i t)

(
erfc(F(x, i t,y))PM(x, i t)− e−F2(x,i t,y)

√
π

QM(x, i t,y)
)

(3)

with the complementary error function erfc, the argument function

F(x, t,y) =

√
t +1

t

(
y− x

t +1

)
, (4)

and PM , QM are polynomials in x of degree 2M−2 and 2M−3, respectively:

PM(x, t) =
M−1

∑
s=0

(−1)s

s!4s
1

(1+ t)s+1/2 H2s

(
x√

1+ t

)
;

Q1(x, t,y) = 0,

QM(x, t,y) = 2
M−1

∑
k=1

(−1)k

k!4k

2k

∑
`=1

(−1)`

t`/2

(
H2k−`(y)H`−1

(y− x√
t

)
−
(2k
`

)
H2k−`

( x√
1+ t

)H`−1
(
F(t,x,y)

)
(1+ t)k+1/2

)
, M > 1.

From Theorem 4.1 we deduce the following semi-analytic cubature formula for (1) with
the error O((h

√
D)2M)

S g(x, t)≈ 1
Dn/2 ∑

hm∈Ωrh

g̃(hm)

×
n

∏
j=1

(
ΨM
(x j−hm j

h
√

D
,

4 t
h2D

,
Pj−hm j

h
√

D

)
−ΨM

(x j−hm j

h
√

D
,

4 t
h2D

,
Q j−hm j

h
√

D

))
.

If g̃ allows a separated representation (5) we derive that, at the points of the uniform
grid {hk,τs}, the n− dimensional integral (1) is approximated by the product of one-

13
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dimensional sums

1
Dn/2

P

∑
p=1

αp

n

∏
j=1

S(p)
j (hk,τs)

where

S(p)
j (hk, t) =

∑
hm∈I j

g(p)
j (hm)

(
ΨM
(k j−m√

D
,

4 t
h2D

,
Pj−hm

h
√

D

)
−ΨM

(k j−m√
D

,
4 t

h2D
,
Q j−hm

h
√

D

))
.

Suppose now that the source term f (x, t) in (3) is supported with respect to x in the
hyper-rectangle [P,Q] = {x ∈ Rn : Pj ≤ x j ≤ Q j, j = 1, ...,n} and f ∈ CN([P,Q]×R).
Then, from (5),

Π f (x, t) =−i
t∫

0

ds
(4πis)n/2

∫
[P,Q]

ei|x−y|2/(4s) f (y, t− s)dy (5)

provides the solution of (3) with null initial data. We extend f (·, t) outside [P,Q] with pre-
served smoothness and denote by f̃ its extension. Due to the rapid decay of the generating
function η̃ , one can fix r and r0, positive parameters, such that the quasi-interpolant

N
(r,r0)

h
√

D ,τ
√

D0
f (x, t) =

1

D
1/2
0 Dn/2

∑
hm∈Ωrh
τ`∈Ω̃r0τ

f̃ (hm,τ`)χ2M

(
t− τ`

τ
√

D0

) n

∏
j=1

χ2M

(
x j−hm j

h
√

D

)

approximates f for all x ∈ [P,Q] and for all t ∈ [−T,T ], T > 0, with order O((h
√

D +

τ
√

D0)
N). Here Ω̃r0τ = (−T − r0τ

√
D ,T + r0τ

√
D). Hence

Πh,τ f (x, t) =
−i

D
1/2
0 Dn/2

∑
hm∈Ωrh
τ`∈Ω̃r0τ

f̃ (hm,τ`)K2M(x, t,hm,τ`),

where

K2M(x, t,hm,τ`) =

t∫
0

χ2M

( t− s− τ`

τ
√

D0

)
Φ̃

[Pm,Qm]
2M

(x−hm
h
√

D
,

4s
h2D

)
ds (6)

and

Φ̃
[P,Q]
2M (x, t) =

n

∏
j=1

(
ΨM(x j, t,Pj)−ΨM(x j, t,Q j)

)
.

The integrals in (6) cannot be taken analytically. Therefore we use an efficient quadra-
ture based on the classical trapezoidal rule, which is exponentially converging for rapidly

14
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decaying smooth functions on the real line. Making the substitution introduced in [16]

s = tϕ(ξ ), ϕ(ξ ) =
1
2

(
1+ tanh

(aπ

2
sinhξ

))
=

1
1+ e−aπ sinhξ

,

with certain positive constant a, K2M transforms to

K2M(x, t,hm,τ`)=
πat
2

∞∫
−∞

χ2M

( t(1−ϕ(ξ ))− τ`

τ
√

D0

)
Φ̃

[Pm,Qm]
2M

(x−hm
h
√

D
,
4 tϕ(ξ )

h2D

)
ω(ξ )dξ

where we denote

ω(ξ ) =
coshξ

1+ cosh(aπ sinhξ )
.

The trapezoidal rule with step size κ gives for sufficiently large R ∈ N

K2M(x, t,hm,τ`)≈

πatκ
2

R

∑
q=−R

χ2M

( t(1−ϕ(κq))− τ`

τ
√

D0

)
Φ̃

[Pm,Qm]
2M

(x−hm
h
√

D
,
4 tϕ(κq)

h2D

)
ω(κq).

In general the number R in the quadrature rule depends on t because the integrand depends
on t. However, since |ϕ(ξ )| ≤ 1 and |χ2M(ξ )| ≤m1, ∀ξ ∈R, it follows, that for t ∈ [0,T ],
∀x ∈ [P,Q] and hm ∈Ωrh

|Φ̃[Pm,Qm]
2M

(x−hm
h
√

D
,
4 tϕ(ξ )

h2D

)
| ≤ m2 .

Hence R can be choosen (independent of t) such that the trapezoidal rule with step κ

gives an accurate approximation of the integral over R of ω(ξ ), which decays doubly
exponentially as |ξ | → ∞.

We obtain that, at the points of the uniform grid {hk,τs}, the n−dimensional integral
(5) is approximated by

Πh,τ f (hk,τs)≈ −iπaτsκ

2D
1/2
0 Dn/2

∑
hm∈Ωrh
τ`∈Ω̃r0τ

f̃ (hm,τ`)

×
R

∑
q=−R

χ2M

(s(1−ϕ(κq))− `√
D0

)
Φ̃

[Pm,Qm]
2M

(k−m√
D

,
4τ`ϕ(κq)

h2D

)
ω(κq).

If f̃ allows a separated representation (7) we get the efficient high-order approximation

Πh,τ f (hk,τs)≈ −iπaτsκ

2D
1/2
0 Dn/2

R

∑
q=−R

ω(κq)

× ∑
τ`∈Ω̃r0τ

χ2M

(s(1−ϕ(κq))− `√
D0

) P

∑
p=1

βp

n

∏
j=1

T (p)
j (k j,τs,τ`,κq) ,

(7)

15
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where

T (p)
j (k j,τs,τ`,κq) = ∑

hm j∈I j

f (p)
j (hm j,τ`)

(
ΨM

(k j−m j√
D

,
4τsϕ(κq)

h2D
,
Pj−hm j√

D

)
−ΨM

(k j−m j√
D

,
4τsϕ(κq)

h2D
,
Q j−hm j√

D

))
.

(8)

We obtain that, if f has the form (7), then the approximation of the potential (5) requires
us to compute 2RPn one-dimensional sums. Thus, if n > 1, the computational time scales
linearly in the space dimension n.

For an efficient implementation of ΨM we express erfc in (3) with the Faddeeva or
scaled complementary error function W (z) = e−z2

erfc(−iz) (cf. [2, 7.1.3]) and write

ΨM(x, t,y) =
e−x2/(1+it)−F2(x,it,y)

2
√

π

(
W
(
iF(x, it,y)

)
PM(x, it)−QM(x, it,y)√

π

)

=
e−y2+i(y−x)2/t

2
√

π

(
W
(
iF(x, it,y)

)
PM(x, it)−QM(x, it,y)√

π

)
,

where F(x, it,y) is defined by (4). Efficient implementations of double precision compu-
tations of W (z) are available if the imaginary part of the argument is nonnegative. Oth-
erwise, for Imz < 0, overflow problems can occur, which can be seen from the relation
W (z) = 2e−z2 −W (−z) (cf. [2, 7.1.11]). But this helps to derive a stable formula also for
Im(iF(x, it,y)) = ReF(x, it,y)< 0, since

e−x2/(1+it)−F2(x,it,y)

2
W (iF(x, it,y))

=
e−x2/(1+it)−F2(x,it,y)

2

(
2eF2(x,it,y)−W

(
− iF(x, it,y)

))
= e−x2/(1+it)− e−y2+i(y−x)2/t

2
W
(
− iF(x, it,y)

)
.

Thus we get the efficient formula

ΨM(x, t,y) = −e−y2+i(y−x)2/t

2
√

π

QM(x, it,y)√
π

+
e−y2+i(y−x)2/t W

(
iF(x, it,y)

)PM(x, it)
2
√

π
, ReF(x, it,y)≥ 0,

(
2e−x2/(1+it)− e−y2+i(y−x)2/t W

(
− iF(x, it,y)

))PM(x, it)
2
√

π
, ReF(x, it,y)< 0.

(9)

5. Numerical Tests

In this section we present some numerical results. First we verify numerically the accuracy
and the convergence order of the proposed method for the inhomogeneous Schrödinger
equation (3) with null initial data and then for the initial value problem (1)-(2). Finally, in
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Figures 2-6, we depict the evolution of u(x, t) under the two-dimensional equation (1) for
different initial values.

5.1. Inhomogeneous Schrödinger equation

We consider the Cauchy problem

i
∂u
∂ t

+∆xu = f (x, t), u(x,0) = 0 x ∈ Rn (1)

for right-hand sides

f (x, t) =
(

i
∂

∂ t
+∆x

) n

∏
j=1

w(x j)v(t) (2)

with suppw⊂ [−1,1]. If w(±1) = w′(±1) = 0 and v(0) = 0, then the solution of (1) is

Π f (x, t) = v(t)
n

∏
j=1

w(x j).

If w ∈CN([p,q]), we construct a Hestenes extension of w(x) outside [p,q] as

w̃(x) =



N+1

∑
s=1

csw(−αs(x−q)+q), q < x≤ q+
q− p

A
w(x), p≤ x≤ q

N+1

∑
s=1

csw(−αs(x− p)+ p), p− q− p
A
≤ x < p

(3)

where {a1, ...,aN+1} are different positive constants A = max αs, and cN = {c1, ...,cN+1}
satisfy the system

N+1

∑
s=1

cs(−αs)
k = 1, k = 0, ...,N.

Hence an extension of f (x, t) with preserved smoothness is

f̃ (x, t) = v(t)
n

∏
j=1

w̃(x j) .

We compare the values of the exact and the approximate solution for (1). In all the ex-
periments the approximations have been computed using (7)-(8) and the function ΨM in
(9). We choose the constants D = D0 = 4 to have the saturation error comparable with
the double precision rounding errors and the parameters in the quadrature rule κ = 10−5,
R = 3 ·106, a = 1.

In Tables 1 and 2 we report on the absolute errors and the approximation rates in the
space dimensions n = 1,3,10,20,100,200 for the solution of (1) with v(t) = t, w(x) =
cos2(5πx/2) and the Hestenes extension (3) with αs = 1/s (Table 1); w(x) = e4ix(x2−
1)2 and w̃(x) = w(x) (Table 2). The results show that, for high dimensions, the second
order fails but the forth and sixth order formulas approximate the exact solution with the
predicted approximation rates.
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Table 1. Absolute errors and approximation rates for the solution of (1) with f (x, t) in (2) where w(x) = cos2(5πx/2) and
v(t) = t, at the point x = (0.1,0.4, ...,0.4); t = 1 using formula (7)-(8) with (9) and the Hestenes extension corresponding
to αs = 1/s.

M = 1 M = 2 M = 3
h−1 τ−1 error rate error rate error rate

40 80 0.146E+00 0.326E-01 0.296E-02
n = 1 80 160 0.177E-01 3.04 0.106E-02 4.94 0.248E-04 6.89

160 320 0.222E-02 2.99 0.313E-04 5.08 0.176E-06 7.13

40 80 0.779E-01 0.135E-01 0.126E-02
n = 3 80 160 0.194E-01 2.00 0.482E-03 4.80 0.103E-04 6.93

160 320 0.522E-02 1.89 0.240E-04 4.32 0.103E-04 6.93

40 80 0.243E+00 0.236E-01 0.122E-02
n = 10 80 160 0.789E-01 1.62 0.163E-02 3.86 0.208E-04 5.87

160 320 0.212E-01 1.89 0.104E-03 3.97 0.356E-06 5.87

40 80 0.378E+00 0.486E-01 0.258E-02
n = 20 80 160 0.152E+00 1.31 0.343E-02 3.82 0.441E-04 5.87

160 320 0.436E-01 1.80 0.219E-03 3.97 0.771E-06 5.84

40 80 0.500E+00 0.207E+00 0.133E-01
n = 100 80 160 0.424E+00 0.23 0.176E-01 3.55 0.230E-03 5.85

160 320 0.189E+00 1.16 0.114E-02 3.95 0.402E-05 5.84

40 80 0.500E+00 0.329E+00 0.264E-01
n = 200 80 160 0.489E+00 0.03 0.348E-01 3.24 0.462E-03 5.84

160 320 0.308E+00 0.66 0.229E-02 3.92 0.778E-05 5.89

Table 2. Absolute errors and approximation rates for the solution of (1) with f (x, t) in (2) where w(x) = e4ix(x2−1)2 and
v(t) = t, at the point x = (0.1,0.1, ...,0.1); t = 1 using formula (7)-(8) with (9) and the extension w̃(x) = w(x) .

M = 1 M = 2 M = 3
h−1 τ−1 error rate error rate error rate

20 40 0.638E-01 0.153E-02 0.724E-04
n = 1 40 80 0.162E-01 1.98 0.986E-04 3.96 0.122E-05 5.89

80 160 0.407E-02 1.99 0.621E-05 3.99 0.199E-07 5.94

20 40 0.133E+00 0.550E-02 0.168E-03
n = 3 40 80 0.354E-01 1.96 0.361E-03 3.93 0.277E-05 5.92

80 160 0.899E-02 1.97 0.228E-04 3.98 0.439E-07 5.98

20 40 0.321E+00 0.161E-01 0.512E-03
n = 10 40 80 0.968E-01 1.73 0.106E-02 3.92 0.843E-05 5.92

80 160 0.254E-01 1.92 0.672E-04 3.98 0.134E-06 5.98

20 40 0.423E+00 0.260E-01 0.837E-03
n = 20 40 80 0.149E+00 1.50 0.174E-02 3.91 0.138E-04 5.92

80 160 0.409E-01 1.86 0.110E-03 3.98 0.219E-06 5.98

20 40 0.133E+00 0.242E-01 0.836E-03
n = 100 40 80 0.964E-01 0.46 0.173E-02 3.80 0.138E-04 5.92

80 160 0.363E-01 1.41 0.110E-03 3.97 0.219E-06 5.98

20 40 0.180E-01 0.590E-02 0.223E-03
n = 200 40 80 0.166E-01 0.11 0.461E-03 3.68 0.370E-05 5.91

80 160 0.843E-02 0.97 0.295E-04 3.97 0.587E-07 5.98
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Figure 1. Absolute errors, using log10 scale on the vertical axes, for the solution of (4) with w(x) = e(x+a)2
, a = 0.32612,

the Hestenes extension corresponding to αs = 1/2s, using (5) with h = 1/160, D = 4, x = (x,0.1, ...,0.1), t = 1.

5.2. Initial value problem

Consider the initial value problem

i
∂u
∂ t

+∆xu = 0, u(x,0) = g(x) =
n

∏
j=1

w(x j); w(x j) = 0 if x j 6∈ [−1,1]. (4)

Thus suppg ⊂ [−1,1]n. Denote by w̃ the extension of w outside [−1,1] with preserved
smoothness. An approximate solution of (4) is given by

uh(x, t) =
1

Dn/2

n

∏
j=1

∑
hm∈I

w̃(hm)

×
(

ΨM
(x j−hm

h
√

D
,

4t
h2D

,
−1−hm

h
√

D

)
−ΨM

(x j−hm

h
√

D
,

4t
h2D

,
1−hm

h
√

D

)) (5)

with I = (−1− r
√

D ,1+ r
√

D).
In this part we provide results of some experiments which show accuracy and numerical

convergence orders. We assume w(x) = e(x+a)2
which gives the exact solution of (4)

u(x, t) =
n

∏
j=1

ie
(a+x j)

2

1−4it

2
√

4it−1

(
erfc

(
4i(a+1)t + x j−1

2
√

t
√

4t + i

)
− erfc

(
4i(a−1)t + x j +1

2
√

t
√

4t + i

))

and we compare the calculated solution uh with the exact solution u. In our experiments
we choose a = 0.32612. In Figure 1 we report on the absolute error at some grid points
in dimensions n = 1,3,10,50,100. The approximations have been computed with D = 4,
M = 3 and h = 1/160 in (5), and the Hestenes extension with αs = 1/2s. If g allows
the representation (5) that is g has rank P then, denoting by ε

(p)
j the 1-dimensional error

for each function g(p)
j , then the total error εn = O

(
∑

P
p=1 ∑

n
j=1 ε

(p)
j

)
. Results in Figure 1

confirm that, for P = 1 and g in (4), the n−dimensional error εn = O(nε1).
In Table 3 we show that formula (5) approximates the exact solution with the predicted

approximate orders N = 2,4,6 in the space dimensions n = 1,3,10,20,
100,200.

We conclude the paper illustrating the evolution of u(x, t) evolving under the two-
dimensional Schrödinger equation (4). First we consider the evolvement of the traveling
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Table 3. Absolute errors and approximation rates for the solution of (4) with w(x) = e(x+a)2
, a = 0.32612, at the point

x = (0.2,0.1, ...,0.1); t = 1 using formula (5) and the Hestenes extension corresponding to αs = 1/s .

M = 1 M = 2 M = 3
h−1 error rate error rate error rate

40 3.069E-03 1.178E-05 4.522E-08
n = 1 80 7.693E-04 1.99 7.438E-07 3.98 7.206E-10 5.97

160 1.924E-04 1.99 4.661E-08 3.99 1.151E-11 5.96
320 4.812E-05 1.99 2.915E-09 3.99 2.158E-13 5.73

40 9.246E-03 3.538E-05 1.357E-07
n = 3 80 2.312E-03 1.99 2.233E-06 3.98 2.163E-09 5.97

160 5.781E-04 1.99 1.399E-07 3.99 3.457E-11 5.96
320 1.445E-04 1.99 8.754E-09 3.99 6.455E-13 5.74

40 1.292E-01 1.184E-04 4.546E-07
n = 10 80 7.764E-03 2.01 7.479E-06 3.98 7.246E-09 5.97

160 1.937E-03 2.00 4.687E-07 3.99 1.157E-10 5.96
320 4.840E-04 2.00 2.931E-08 3.99 2.159E-12 5.74

40 6.400E-02 2.385E-04 9.155E-07
n = 20 80 1.569E-02 2.02 1.505E-05 3.98 1.458E-08 5.97

160 3.904E-03 2.00 9.437E-07 3.99 2.331E-10 5.96
320 9.749E-04 2.00 5.902E-08 3.99 4.347E-12 5.74

40 3.832E-01 1.258E-03 4.831E-06
n = 100 80 8.542E-02 2.16 7.947E-05 3.98 7.700E-08 5.97

160 2.076E-02 2.04 4.980E-06 3.99 1.230E-09 5.96
320 5.155E-03 2.01 3.115E-07 3.99 2.294E-11 5.74

40 9.669E-01 2.691E-03 1.033E-05
n = 200 80 1.901E-01 2.34 1.700E-04 3.98 1.647E-07 5.97

160 4.486E-02 2.08 1.065E-05 3.99 2.632E-09 5.96
320 1.105E-02 2.02 6.665E-07 3.99 4.908E-11 5.74

Gaussian u(x,0) = ec i(x1−x2)e−60|x|2 on the domain (−1.25,1.25)× (−1.25,1.25) at four
consecutive time values. Figures 2 and 3 show the evolution of Reu(x, t) and |u(x, t)|
when c = 30. At time t = 0.04 the solution has almost completely left the domain. The
case c = 10 is reported in Figures 4 and 5. Figures 6 and 7 concern the initial data
g(x1,x2) = e30 ix1e−60(x1−1/4)2

sin(πx2) . The figures of the imaginary part of u(x, t) are
virtually the same as for the real part, so we skipped that plots. In all the figures we
used the approximation formula of order N = 6, the extension of w̃ j = w j and the step
h = 0.005. Similar tests with finite difference scheme can be found in [1] and [14].
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Figure 2. Real part of u when w j(x) = eic jxe−60x2
, j = 1,2, c1 = 30, c2 =−30, N = 6, h = 0.005 .

Figure 3. Absolute value of u when w j(x) = eic jxe−60x2
, j = 1,2, c1 = 30, c2 =−30, N = 6, h = 0.005 .
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Figure 4. Real part of u when w j(x) = eic jxe−60x2
, j = 1,2, c1 = 10, c2 =−10, N = 6, h = 0.005 .

Figure 5. Absolute value of u when w j(x) = eic jxe−60x2
, j = 1,2, c1 = 10, c2 =−10, N = 6, h = 0.005
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Figure 6. Real part of u when w1(x) = e30ixe−60(x−1/4)2
, w2(x) = sin(πx), N = 6, h = 0.005 .

Figure 7. Absolute value of u when w1(x) = e30ixe−60(x−1/4)2
, w2(x) = sin(πx), N = 6, h = 0.005 .
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