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Abstract Motivated by many practical applications, in this paper we study
budget feasible mechanisms with the goal of procuring an independent set of a
matroid. More specifically, we are given a matroid M = (E, I). Each element
of the ground set E is controlled by a selfish agent and the cost of the element
is private information of the agent itself. A budget limited buyer has additive
valuations over the elements of E. The goal is to design an incentive compatible
budget feasible mechanism which procures an independent set of the matroid
of largest possible value.

We also consider the more general case of the pair M = (E, I) satisfying
only the hereditary property. This includes matroids as well as matroid inter-
section. We show that, given a polynomial time deterministic algorithm that
returns an α-approximation to the problem of finding a maximum-value inde-
pendent set in M, there exists an individually rational, truthful and budget
feasible mechanism which is (3α + 1)-approximated and runs in polynomial
time, thus yielding also a 4-approximation for the special case of matroids.
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1 Introduction

Procurement auctions (a.k.a. reverse auctions) are executed by governments
or private companies to purchase commodities and services from providers.
The budget that can be spent in a procurement auction is often limited thus
imposing a limit on the total payments that can be handled to the providers.
Motivated by the setting described above, in this work we study the problem
of a budget limited buyer with additive valuations on a set of indivisible items,
each item controlled from an independent strategic agent. More specifically, we
assume rational agents with quasi-linear utilities, i.e., they aim to maximize the
difference between the payment they receive and the true cost of the item. We
consider the case of a buyer that is constrained to purchase a subset of objects
that forms an independent set of an underlying matroid structure. Matroids
are indeed linked to many interesting economic applications, e.g., auctions [5,
12,18], spectrum market [24], scheduling [11] and house market [19].

One of the main challenge in procurement auctions is to incentivize sellers
to declare their true costs (by assuming that those costs are private infor-
mation). The celebrated Vickrey-Clark-Groves (VCG) mechanism [10,15,25]
provides a solution to this problem: it returns a solution that maximizes the
valuation of the buyer while charging the sellers with payments equal to their
externalities to the procurement. The VCG mechanism is a truthful mecha-
nism, i.e., no seller can improve her utility by manipulating her cost regard-
less of the costs declared by other agents. However, VCG has also a major
shortcoming: the payments to the sellers cannot be controlled and could be
higher than the available budget. To overcome this problem, two different ap-
proaches have been proposed and investigated. The first one is the design of
frugal mechanisms [16] which minimize the payments handled from the buyer
to the strategic sellers. The other approach, also investigated in this work, is
the one of developing budget feasible mechanisms [23] aiming to maximize the
value for the procurement under a given budget that limits the total payments
to the sellers. Unfortunately, truthful budget feasible mechanisms cannot max-
imize the valuation of the buyer and therefore the attention was turned to the
development of truthful budget feasible mechanisms that obtains an approx-
imation of the optimal value of the procurement in a non-strategic setting.
This approach was initiated by Singer [23] that presented a budget feasible
mechanisms for a buyer with additive and nondecreasing submodular valua-
tions that approximate the optimal value of the procurement computed on the
true costs of the sellers.
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1.1 Our Results

The goal of our work is to design budget feasible mechanisms for procuring
items that form an independent set in a given matroid structure. To the best
of our knowledge, this is the first time that matroid constraints are consid-
ered in budget feasible mechanism design. Nevertheless, similar results to the
ones presented in our paper have been contemporaneously published in an
independent work [1].

Our results are positive. In Section 3 we consider the general problem of
procuring a set of maximum-value in a set system holding the only hereditary
property. In particular, given a deterministic polynomial time α-approximation
algorithm for the maximum-value set problem, we present a deterministic,
polynomial time, individually rational, truthful and budget feasible mechanism
which is a (3α+1)-approximation to the optimal solution. Then, in Section 3.1,
the proposed mechanism is used to obtain a deterministic, polynomial time,
individually rational, truthful and budget feasible mechanism which is a 4-
approximation to the maximum-value independent set of a matroid. These
results hold for the case of additive valuations over the objects.

Given the results presented in [9], where the authors prove that any deter-
ministic mechanism cannot achieve an approximation ratio better than 1+

√
2

for additive valuations (it is worth noticing that such lower bound does not
rely on any computational or complexity assumption), we conclude that the
performance of our mechanism is not far from the best achievable ones.

Our methods hold several potential applications also because of their sim-
plicity. Budget feasible mechanism design was actually motivated [9,23] by the
application to crowdsourcing [13], and the uniform matroid constraint that we
introduce allows to impose an upper limit on the total number of workers that
can be hired. Our mechanisms also find application to job scheduling. Con-
sider the problem of purchasing processing time in scheduling jobs associated
with a deadline and a profit. As jobs may conflict with each other, only one
job can be scheduled at the same time. Our work allows to model this setting
with a matroid constraint on the set of jobs that can be scheduled. Finally, we
mention an application to the spectrum market. Tse and Hanly [24] showed
that the set of achievable rates in a Gaussian multiple-access channel, known
as the Cover-Wyner capacity region, forms a polymatroid. It is known a pseu-
dopolynomial reduction from integral polymatroid to matroids [22]. Therefore,
our mechanism can also find application to the purchase of transmission rates
in the spectrum market.

1.2 Related Work

The study of the budget feasible mechanisms was initiated in [23] that gives a
6-approximation polynomial deterministic mechanism for additive valuations.
This result was improved in [9] that gives a detertministic 2+

√
2-approximated

mechanism and a deterministic lower bound of 1 +
√

2. More recently, [14]
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proposes a new and simple randomized mechanism that yields a tight approx-
imation ratio of 2 for additive valuations. The authors of [14] also present a
simple deterministic mechanism with a tight approximation guarantee of 3
against the fractional optimum.

This study of budget feasible mechanisms was later extended to con-
sider different buyer’s valuation functions w(·) defined over subset of the
items set: i) Additive (a.k.a. linear) w(S) =

∑
j∈S w(j); ii) Submodular

w(S ∪ T ) + w(S ∩ T ) ≤ w(S) + w(T ); iii) Fractionally subadditive (XOS)
w(S) ≤

∑
i αiw(Ti), 0 ≤ αi ≤ 1 if

∑
i:j∈Ti

αi ≥ 1,∀j ∈ S. iv.) Subadditive
w(S ∪ T ) ≤ w(S) + w(T ).

Already in the first paper of Singer [23], it was given a deterministic in-
approximability lower bound of 2 and a randomized 112-approximation for
general monotone submodular functions. The result for monotone submodu-
lar functions was later improved to 5 in [17].

Bei et al. [6] provide a 436-approximation mechanism for XOS valuations
and extend the study of budget feasible mechanisms to the Bayesian settings.
A recent work [2] improves the approximation factor for XOS functions to
244. Chan and Chen [8] study budget feasible mechanisms when each seller
holds multiple copies of the object. They give a logarithmic approximation
mechanisms for concave additive and sub-additive valuations.

Budget feasible mechanisms are also attractive due to their various ap-
plications. In crowdsourcing, one of the main goal is to assign skilled workers
with private costs to tasks. By injecting some characteristics in crowdsourcing,
budget feasible mechanisms have been further developed and improved. For
instance, Goel et al. [13] develop budget feasible mechanisms that achieve a
2e−1
e−1 -approximation to the optimal social welfare by exploiting the assumption

that one worker has limited contribution to the social welfare. Furthermore,
Anari et al. [4] provide a budget feasible mechanism that achieves an approx-
imation ratio of 1 − 1/e ≈ 0.63 by using the “large market” property which
assumes that the cost of any worker is relatively small compared to the bud-
get of the buyer. In the recent work of [17], the approximation for budget
feasible mechanisms that optimize general monotone submodular functions in
large markets has been improved to 2.58. Another related work [7] studies the
“dual” problem of maximizing the revenue by selling the maximum indepen-
dent set of a matroid. They propose a truthful ascending auction in which a
seller is constrained to sell objects that form a basis in a matroid.

Some of the results of this work have been independently published in [1].
In particular, in [1] the authors study generalizations of matroid constraints
such as finding maximum weighted matroid members, maximum weighted k-D
matchings, and maximum weighted independent sets. For these problems they
establish that a ρ-approximation can be converted into a deterministic (resp.
randomized), truthful, budget feasible mechanism with an approximation ratio
of 2ρ+ 2 (resp. 2ρ+ 1). This results into a 4-approximation deterministic and
a 3-approximation randomized truthful mechanism for matroid constraints.
Our approach and the one of [1] are closely related. The mechanism of [1]
also considers elements in decreasing order of cost/valuation ratio. The ele-
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ments are discarded till the ratio of the current element multiplied by the
value of the solution is at most equal to the budget B. However, [1] does not
consider more general problems having hereditary property (e.g., k-matroid
intersection) while provides results for specific cases as for example maximum
matching and maximum 3D-matching.

Finally, in [2] the authors investigate budget feasible mechanism design for
symmetric submodular valuations which is a prominent class of non-monotone
submodular functions, and provide an O(1)-approximation truthful mecha-
nism that can require an exponential number of value queries. This result
has been improved in [3] where the authors present an O(1)-approximation
mechanism that runs in polynomial time in the value query model.

2 Preliminaries

Hereditary property. A hereditary problem M is a pair of (E, I) where E is
a finite ground set and I ⊆ 2E consists of subsets of the ground set satisfying
the following property:

– Hereditary property: If I ∈ I, then J ∈ I for every J ⊂ I.

The set I is does not need to be given by an explicit list of its element. Indeed,
given that |I| could be exponential in |E|, it would be infeasible to use this
representation. For this reason, we resort to an independence oracle that, given
a subset of elements T ⊆ E, returns whether T ∈ I or not.

Matroid. A matroid M is a hereditary problem satisfying the following addi-
tional property:

– Exchange property: For any pair of sets I, J ∈ I, if |I| < |J |, then there
exists an element e ∈ J \ I such that I ∪ {e} ∈ I.

The sets in I are called independent sets.
Given a matroid M = (E, I) and a subset T ⊆ E, the restriction of M

to T , denoted by M|T , is the matroid in which the ground set is T and the
independent sets are the independent sets ofM that are contained in T . That
is, M|T = (T, I(M|T )) where I(M|T ) = {I ⊆ T : I ∈ I}. Similarly, the
deletion of M, denoted by M \ T , is the matroid in which the ground set
is E − T and the independent sets are the independent sets of M that do
not contain any element in T . That is, M \ T = (E − T, I(M \ T )) where
I(M\ T ) = {I ⊆ E − T : I ∈ I}.

We use the above notation and definitions as well in the case when only
hereditary property is satisfied. Such sets are called (E, I)

Matroid Intersection. A possible generalization of matroids is the matroid in-
tersection problem which is defined as follows. Given k matroidsM1, . . . ,Mk,
letM = (E, I) be the matroid where E is the set of common ground elements

and I =
⋂k
j=1 Ij is the independent sets. In particular, the matroid intersec-

tion has to satisfy the hereditary property but does not need to satisfy the
exchange property.
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Matroid Budget Feasible Mechanisms. In an instance of the matroid budget
feasible mechanism design problem, we are given a matroid M = (E, I) con-
sisting of n ground elements (i.e., |E| = n), each of whom is associated with
a weight we ∈ R+. Each element e ∈ E is also associated with a private cost
ce ∈ R+, which is only known to the element itself. Our goal is to design a
truthful mechanism that gives incentives to elements for declaring their pri-
vate costs truthfully, and that selects an independent set with the constraint
that the total payment given to the elements does not exceed a given budget b.
Given an independent set I ∈ I, its value is defined by w(I) =

∑
e∈I w(e). We

compare the value of the independent set selected by the mechanism against
the value of the maximum-value independent set such that the sum of the true
costs of the elements does not exceed the budget.

We use w = 〈w1, . . . , wn〉 to denote the weights of the ground elements
and use d = 〈d1, . . . , dn〉 to denote the costs declared by the ground elements.
Let τ be the maximum-weight element (breaking ties arbitrarily), that is,
wτ = maxe∈E we. We assume that de ∈ R+ and de ≤ b for any e ∈ E since
elements with costs greater than b cannot be selected by any mechanism due
to the budget constraint. This also implies that no element i can improve its
utility by declaring di > b. Given a subset of element T ⊆ E, we use w−T
and d−T to denote the weights and the costs vector excluding elements in T .
Similarly, we use wT and dT to denote the weights and the costs vector only
including elements in T . For each element e ∈ E, bb(e) = de

we
is called the

buck-per-bang rate for element e.1

A deterministic mechanism M = (f, p) consists of an allocation function
f : (M,w,d, b) → I ∈ I and a payment function p : (M,w,d, b) → Rn+.
In the following, for notational convenience, we will omit braces in the do-
mains of functions f and p. Given the weights and the declared costs of
the ground elements, the allocation function returns an independent set in
the matroid and the payment function indicates the payments for each el-
ement. Let fM (M,w,d, b) and pM (M,w,d, b) be the independent set and
the payments returned by M , respectively. If an element e is in the in-
dependent set obtained by the mechanism M , then fMe (M,w,d, b) = 1.
Otherwise, fMe (M,w,d, b) = 0. It is assumed that pMe (M,w,d, b) = 0 if
fMe (M,w,d, b) = 0. The utility of an element is the difference between the
payment received from the mechanism and its true cost. Formally, the utility of
an element e is given by uMe (M,w,d, b) = pMe (M,w,d, b)−fMe (M,w,d, b)·ce.

Individual Rationality: A mechanism M is individually rational if
pMe (M,w,d, b) − fMe (M,w,d, b) · de ≥ 0 for any M, any w ∈ Rn+,
any d ∈ Rn+, any b ∈ R+ and any element e ∈ E. That is, no element in the
selected independent set is paid less than the cost it declared.

Truthfulness: A mechanism M is truthful if it holds that
uMe (M,w,d−e, ce, b) ≥ uMe (M,w,d−e, de, b), for any M, any w ∈ Rn+,

1 we
ce

is usually known as the bang-per-buck rate. To simplify the presentation, we call de
we

the buck-per-bang rate.
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any d−e ∈ Rn−1+ , any de ∈ R+, any ce ∈ R+, b ∈ R+ and any e ∈ E, where
d−e = 〈d1, . . . , de−1, de+1, . . . , dn〉. When the context is clear, we sometimes
abuse some notations. For example, here we write uMe (M,w,d−e, ce, b)
instead of uMe (M,w, 〈d−e, ce〉, b). A truthful mechanism prevents any element
to improve its utility by mis-declaring its true cost regardless the costs
declared by the other elements.

Budget Feasibility: A mechanism M is budget feasible if∑
e∈E p

M
e (M,w,d, b) ≤ b, for any M,w ∈ Rn+, any d ∈ Rn+ and any

b ∈ R+.

Approximation: A mechanism M is x-approximation (or x-approximating),
for some x ≥ 1, if w(fM (M,w,d, b)) ≥ 1

xw(OPT(M,w,d, b)) for any
w ∈ Rn+,d ∈ Rn+ and b ∈ R+, where OPT(M,w,d, b) is the maximum-
value independent set in which the total cost of the elements is at most b.
We often call OPT(M,w,d, b) the optimal independent set and simplify it as
OPT(M, b) throughout the paper when the weights and the costs of elements
are clear. Similarly, we use MAX(M,w), shortened by MAX(M), to denote the
maximum-value independent set inM without the budget constraint. It is well
known that there exists a greedy algorithm that computes the maximum-value
independent set of a matroid M in time poly(n) which uses a poly(n) num-
ber of calls to an independence oracle. Finally, we use APX(M) to denote an
α-approximation (where α ≥ 1) to the maximum-value set of a problem M
without the budget constraint. In particular, already in the case of matroid
intersection finding the maximum-value common independent set of a matroid
intersection is NP-hard when more than three matroids are involved.

Simplifying notations: From now on, to avoid heavy notation, we sometimes
simplify it. For example, we will write fM , fMe , pM , pMe when the input of the
mechanism is clear. Moreover, we will use OPT(M\T, b) instead of OPT(M\
T,w−T ,d−T , b) to denote the optimal independent set in the matroidM\ T .
Similarly, we will use OPT(M|T, b) instead of OPT(M|T,wT ,dT , b) to denote
the optimal independent set in the matroid M|T . Furthermore, we will use
MAX(M \ T ) instead of MAX(M \ T,w−T ) to denote the maximum-value
independent set in M\ T without considering the costs of the elements and
the budget. Finally, we will use APX(M\ T ) to denote an α-approximation to
the maximum-value independent set of a matroid intersection M\ T without
considering the costs of the elements and the budget.

3 A mechanism for hereditary problems

In this section we consider problems that have hereditary property. In par-
ticular, this set of problems includes matroid intersection, which in general is
NP-hard when more than three matroids are involved. Some interesting cases
of matroid intersection problems can be solved efficiently (i.e., they can be
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formulated as the intersection of two matroids), for example, matchings in
bipartite graphs, arborescences in directed graphs, spanning forests in undi-
rected graphs, etc.

For general hereditary problems, our main result is the following. Given
a deterministic polynomial time blackbox approximation algorithm APX that
achieves an α-approximation (for some α ≥ 1) to the problem of finding the
maximum-value set of a hereditary problemM, we provide a polynomial time,
individually rational, truthful and budget feasible deterministic mechanism
that is a (3α+ 1)-approximation to the maximum-value set of the problemM
with the constraint that the sum of the costs of its elements is at most a given
budget.

It is known that the VCG payment rule does not preserve the property
of truthfulness in the presence of approximated solutions (i.e., non-optimal
outcome). However, unlike the VCG mechanism, we show that Mechanism 1
is truthful when APX is used.

Before providing the mechanism, we discuss some intuition that has guided
us in the design of Mechanism 1. First, imagine that there exists an element
with a very high weight. Clearly, any set without this element would result
in a poor value compared to the optimal set. In this case, such element may
strategically declare a high cost in order to increase its utility, as it knows that
any good-approximating mechanism has to select it. To avoid that this hap-
pens, we remove the element τ (i.e., the element with the largest weight) from
the problem via the deletion operation and compare it with the set computed
later by the mechanism. Second, we observe that some of the existing budget
feasible mechanisms ([13,23]) adopt proportional payment schemes, where ele-
ments (i.e., agents) are paid proportionally and according to their contribution
in the solution. In other words, in a proportional payment scheme there is an
uniform price such that the payments for the elements in the solution are the
products of their contribution and this price. In addition, greedy algorithms
are commonly used in matroid systems.

Our mechanism combines these observations and works as follows. It first
orders the elements from the largest to the smallest buck-per-bang. Then, it
starts from a high price, i.e. the highest buck-per-bang value, and computes
the (approximated) maximum-value set of the hereditary problem. If there is
enough budget to pay this set at the current price then it proceeds to the final
step. Otherwise, it reduces the price (i.e. it considers the next buck-per-bang
value of the ordering), removes the previous element with higher buck-per-
bang value from the instance of the hereditary problem and computes the
(approximated) maximum-value set of the reduced instance of the hereditary
problem. We notice that the current buck-per-bang value is an upper bound
of the payment on each contribution in the next iteration. The mechanism
performs the procedure described above until the payment of the current (ap-
proximated) maximum-value set is within the budget b. In the final step, the
mechanism returns the best solution between the set of selected elements and
the element τ of largest weight.
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Mechanism 1: A budget feasible mechanism for procuring a set in
the hereditary problem M
Input:M = (E, I),w,d, b.
Output: f ,p

1 Let τ be the maximum-weight element (breaking ties arbitrarily);
2 Sort elements in E − τ in a non-increasing order of buck per bang, i.e.

bb(i) ≥ bb(j) if i < j, break ties arbitrarily;
3 Let i = 1 and T = ∅;
4 Set r = bb(i);
5 while w(APX(M\ (T ∪ τ))) · r > b do
6 T = T ∪ {i} and i = i+ 1;
7 r = bb(i);

8 r = min{ b
w(APX(M\(T∪τ))) , bb(i− 1)};

9 if w(APX(M\ (T ∪ τ))) > wτ then
10 For each e ∈ E, if e ∈ APX(M\ (T ∪ τ)), fe = 1 and pe = r · wk. Otherwise,

fe = 0 and pe = 0;

11 else
12 fτ = 1, pτ = b. For each edge e ∈ E − τ, fe = 0, pe = 0;

13 return f ,p;

Theorem 1 Mechanism 1 is a deterministic, polynomial time, individu-
ally rational, truthful and budget feasible mechanism that is a (3α + 1)-
approximation to the optimal set of the given hereditary problem (e.g., matroid
intersection) for a given budget.

Proof :

Complexity. It is not difficult to see that Mechanism 1 performs a poly(n)
number of steps. Moreover, we assume that we are given a deterministic poly-
nomial time (with respect to n) blackbox approximation algorithm APX(M)
that achieves an α-approximation to the problem of finding the maximum-
value set of the hereditary problemM. It follows that Mechanism 1 has com-
plexity O(poly(n)).

Approximation. Recall that T is the set of elements removed from the problem.
APX(M\ (T ∪ τ)) is the set found when Mechanism 1 stops, and it is an α-
approximation to the maximal-value set of M\ (T ∪ τ). The roadmap of the
proof is to first show that the set APX(M \ (T ∪ τ)) well approximates the
optimal set in M\ τ . Next, we show that returning the maximum between τ
and APX(M\ (T ∪ τ)) gives the (3α+ 1)-approximation to the optimal set in
M with the budget constraint.

Lemma 1 Given anyM,w,d, b, when Mechanism 1 stops, it holds that:

w(OPT(M\ τ, b)) ≤ 2αw(APX(M\ (T ∪ τ))) + αwτ .

Proof It is trivial to see that this lemma holds when τ is the only element
in M. In the rest of the proof we use an idea which was also used in [13].
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We distinguish between two cases depending on whether the full budget b is
spent or not. Consider that the set E−{τ} is partitioned into two disjoint sets
E−{τ}−T and T . We notice that the maximum-value set w(OPT(M\ τ, b))
can be bounded by:

w(OPT(M\ τ, b)) ≤ w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b)).

In fact, letA = OPT(M\τ, b)∩T be the subset of OPT(M\τ, b) containing only
elements belonging to T . Moreover, let B = OPT(M\ τ, b)∩ (E−{τ}−T ) be
the subset of OPT(M\τ, b) containing only elements belonging to E−{τ}−T .
We have that OPT(M\ τ, b) = A ∪ B. Moreover, by the hereditary property
and the definition of restriction and deletion, we have that A ∈ I(M|T ) and
B ∈ I(M\ (T ∪ τ)).

Since the buck-per-bang is at least r for every element in T , we have that
the weight of the optimal set given a budget b inM|T (i.e., w(OPT(M|T, b)))
is at most b/r. Moreover, we have that w(APX(M \ (T ∪ τ))) ≥ b/r. Thus,
when the full budget is spent, we get that:

w(OPT(M\ τ, b)) ≤w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b))

≤ b
r

+ αw(APX(M\ (T ∪ τ)))

≤(α+ 1)w(APX(M\ (T ∪ τ))).

We now turn to the case where some budget is left in Mechanism 1. The
idea here is to bound the budget left. Since Mechanism 1 does not stop when
r = bb(i − 1), this implies that the set returned by APX was not budget
feasible at the previous iteration. This further implies that the maximum-
value set is not budget feasible either if the payment per weight is r. After
removing the element i− 1, the set returned by APX becomes budget feasible
when r = bb(i− 1). These together imply that:

w(MAX(M\ (T ′ ∪ τ)))bb(i− 1) ≥ w(APX(M\ (T ′ ∪ τ)))bb(i− 1)

> b

> w(APX(M\ (T ∪ τ)))bb(i− 1),

where T ′ = T −{i− 1}. Moreover, since the sum of w(APX(M\ (T ∪ τ))) and
w(i− 1) is at least an 1

α fraction of w(MAX(M\ (T ′ ∪ τ))), we get that:(
w(APX(M\(T∪τ)))+wi−1

)
bb(i−1) ≥ 1

α
w(MAX(M\(T ′∪τ)))bb(i−1) >

b

α
.

Hence, we get that:

w(APX(M\ (T ∪ τ))) + wi−1 >
b

αbb(i− 1)
.

Overall, it follows that:

OPT(M\ τ, b) ≤w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b))
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≤ b

bb(i− 1)
+ αw(APX(M\ (T ∪ τ)))

≤2αw(APX(M\ (T ∪ τ))) + αwi−1.

By substituting wi−1 with wτ , we get the proof. ut

Next, we show that returning the maximum between τ and APX(M\ (T ∪
τ)) is a (3α+ 1)-approximation to the optimal set in M.

Lemma 2 Given any M,w,d, b, the set returned by Mechanism 1, i.e., the
maximum between τ and APX(M \ (T ∪ τ)), is a (3α + 1)-approximation to
the optimal set inM.

Proof First notice that the optimal set in M is bounded by

w(OPT(M, b)) ≤ wτ + w(OPT(M\ τ, b)).

Moreover, by Lemma 1, we have that:

w(OPT(M\ τ, b)) ≤ αwτ + 2αw(APX(M\ (T ∪ τ))).

Therefore, the maximum between τ and APX(M\ (T ∪ τ)) approximates the
optimal set within a factor of (3α+ 1). ut

Truthfulness. Truthfulness of the mechanism relies on Myerson’s Lemma for
single parameter environments [21]. We show that the allocation function of
Mechanism 1 is monotone when APX is used by proving that the allocation
function is non-decreasing if the bid of the agent is decreased. The reason be-
hind is that our mechanism works in a greedy fashion and at each iteration the
cost declared by elements does not affect the set computed by the mechanism.

We start by showing that the element τ cannot benefit by mis-declaring
its true cost.

Lemma 3 The element with the maximum weight, i.e., the element τ , could
not improve its utility by declaring a cost dτ 6= cτ .

Proof On the one hand, if Mechanism 1 returns the element τ when it declares
its true cost, then τ gets a payment of b. Thus, there is no incentive for it
to declare a different cost. On the other hand, when Mechanism 1 returns
APX(M \ (T ∪ τ)), even if τ mis-declares its true cost it does not change
the outcome of the mechanism because it would be still the element with the
largest weight and wτ < w(APX(M\ (T ∪ τ))). ut

Next, we show that no element in E − τ can improve its utility by mis-
declaring its true cost. The proof relies on the analysis of different cases. The
first case shows that no element which is removed by Mechanism 1 can benefit
by mis-declaring its true cost.
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Lemma 4 Assume that an element k ∈ T (i.e., the element k is removed by
the mechanism) when it declares its cost truthfully. Then, the element k could
not improve its utility by declaring a cost dk 6= ck.

Proof Since k ∈ T , it means that the element k is not in the set returned by
Mechanism 1. Hence, its utility is zero. This implies that, when the element k
is considered, that is, r = bb(k), it holds that w(APX(M\ (T k ∪ τ))) · r > b,
where T k denotes the set of elements removed until k is considered. We now
distinguish between two different cases.

– Suppose that the element k declares a higher cost dk > ck, and it is con-
sidered earlier at the h-th iteration with h ≤ k. Equivalently speaking, k
becomes the element with the h-th largest buck-per-bang rate. In this case,
Mechanism 1 would not stop until k is considered. Notice that the declared
costs are not involved in the computation of the approximated maximum-
value sets. Indeed, the computed approximated maximum-value sets are
exactly the same as declaring truthfully until the h-th iteration. Moreover,
the approximated maximum-value set is also the same in the h-th iteration
since the remaining elements in the problem are the same. Given that r
in the h-th iteration is equal to or greater than in the previous iterations,
it follows that the approximated maximum-value set returned by APX is
not budget feasible. This implies that element k would be removed from
the problem and it would never be included in a set by Mechanism 1.
Therefore, its utility is zero.

We use a similar argument to show that the element k could not improve its
utility by declaring a smaller cost.

– Suppose that the element k declares a smaller cost dk < ck and it is con-
sidered at the h-th iteration with h ≥ k. Let us focus on how Mechanism 1
performs. Until the k-th iteration, the approximated maximum-value sets
are the same as k declaring its cost truthfully and they are not budget
feasible. Next, the approximated maximum-value set in the k-th iteration
is also the same as before. If the set is budget feasible, then we know that

b
w(APX(M\(T∪τ))) is strictly less than bb(k) = ck

wk
. This holds because the

mechanism does not terminate at r = ck
wk

when the element k declares
truthfully. Therefore, even if the element k is in this set, the payment will
be strictly less than its true cost. On the other hand, if the set is not budget
feasible, then the mechanism would update its upper bound of payment
for each contribution in the next iteration. The new upper bound is at
most bb(k) = ck

wk
. This implies that the element k would not get a payment

greater than its true cost. ut

We now show that the no remaining element (i.e., an element that is not put
in the set T by Mechanism 1) that is not included in the set returned by the
mechanism can benefit by mis-declaring its true cost.

Lemma 5 Assume that an element k is in E − τ − T − APX(M \ (T ∪ τ))
when it declares its cost truthfully. Then, the element k could not improve its
utility by declaring a cost dk 6= ck.
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Proof Since k /∈ APX(M\ (T ∪ τ)), we know that the utility of the element
k is zero. Suppose that the mechanism terminates at the h-th round when
the element k declares its cost truthfully. We now distinguish among three
different cases.

– Suppose that the element k declares a higher cost dk > ck and it is con-
sidered by Mechanism 1 at an l-th iteration with l < h. In this case,
Mechanism 1 would not stop before or at the l-th iteration since the com-
puted approximated maximum-value sets are exactly the same, and thus
they are not budget feasible, as in the case where k declares its cost truth-
fully. This implies that the element k would be never included in a set by
Mechanism 1 when it declares a larger cost. Therefore, its utility is still
zero.

– Suppose that the element k declares a cost dk 6= ck and it is considered by
Mechanism 1 at the h-th iteration. In this case, Mechanism 1 would not
stop before the h-th iteration because the approximated maximum-value
sets are not feasible. The approximated maximum-value set in the h-th
iteration is the same as in the case where k declares its cost truthfully since
the remaining elements are the same. Therefore, if the set is budget feasible,
then the mechanism computes the same set and payments. Otherwise, the
element k is removed since it must be the element with the h-th largest
buck-per-bang rate. It follows that the element k cannot benefit also in
this case.

– Finally, suppose that the element k declares a cost dk 6= ck and it is con-
sidered after the h-th iteration. In this case, Mechanism 1 would compute
the same set and payments and again the element k would get utility zero.
ut

Finally, it remains to show that no element belonging to the set returned
by Mechanism 1 can benefit by mis-declaring its true cost. The proof of the
following lemma uses a similar argument to the one used in Lemma 5.

Lemma 6 Assume that an element k is in APX(M\ (T ∪τ)) when it declares
its cost truthfully. Then, the element k could not improve its utility by declaring
a cost dk 6= ck.

Proof Suppose that the mechanism terminates at the h-th round when the
element k declares its cost truthfully. Since k ∈ APX(M\ (T ∪ τ)), we know
that the payment of the element k is r ·wk. Hence, its utility is r ·wk− ck. We
distinguish among three different cases.

– Suppose that the element k declares a higher cost dk > ck and it is consid-
ered at the l-th iteration, with l < h. In a similar way to Lemma 5, in this
case Mechanism 1 would not stop before or at the l-th iteration since the
computed approximated maximum-value sets are exactly the same and
they are not budget feasible. This implies that the element k would be
removed from the matroid and it will never be included in a set by Mech-
anism 1. Therefore, its utility becomes zero.
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– Suppose that the element k declares a cost dk 6= ck and it is considered at
the h-th iteration. In this case, Mechanism 1 would not stop before the h-th
iteration because the approximated maximum-value sets are not feasible.
The approximated maximum-value set in the h-th round is the same as in
the case where k declares its cost truthfully since the remaining elements
are the same. Therefore, if the set is budget feasible, the mechanism would
compute the same set and payments. Otherwise, the element k would be
removed. It follows that the element k cannot benefit in any case.

– Finally, suppose that the element k declares a cost dk 6= ck and it is con-
sidered after the h-th iteration. In this case, Mechanism 1 would compute
the same set and payments, and again the element k would not benefit.
ut

This concludes the proof of the theorem. ut

3.1 Budget feasible mechanisms for simple matroids

We now show how to use the mechanism defined in the previous section to
obtain a deterministic, polynomial time, individually rational, truthful and
budget feasible mechanism that is a 4-approximation to the optimal indepen-
dent set of a matroid. The mechanism is directly obtained from Mechanism 1
by exchanging APX with MAX, the optimal algorithm for matroids. We point
out that a very similar mechanism achieves a 4-approximation also for the
case when, instead of a matroid, we are given an undirected weighted (gen-
eral) graph where the selfish agents are the edges of the graph and the buyer
wants to procure a matching under the given budget that yields the largest
possible value for him.

Theorem 2 Mechanism 1 is a deterministic, polynomial time, individually
rational, truthful and budget feasible mechanism that is a 4-approximation to
the optimal independent set of a matroid given a budget.

Proof We can prove the truthfulness of Mechanism 1 for matroids by ap-
plying exactly the same argument used in Theorem 1. Moreover, we get the
4-approximation just by using the same argument used in Theorem 1 with
α = 1. We only briefly discuss the complexity.

Complexity. It is not difficult to see that Mechanism 1 performs a poly(n)
number of steps. Moreover, as described in Section 2, there exists a greedy
algorithm that computes the maximum-value independent set of a matroid
M in time poly(n) which uses a poly(n) number of calls to an independence
oracle, that is, MAX(M) can be computed in polynomial time (with respect to
n) by using an independence oracle. It follows that Mechanism 1 for matroids
has complexity O(poly(n)). ut
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4 Conclusions

We present in this paper a budget feasible mechanism for general hereditary
problems including intersection of matroids. Our main result is a (3α + 1)-
approximation for matroid intersection given an α-approximation algorithm
for the optimization version of the problem. Our algorithm is simple and we
hope it will provide guidelines for designing novel and more efficient algorithms
for this class of problems.

Budget feasible mechanism design was an area of active research with huge
advancement in the last few years but there is still a number of problems
that resist to elegant solutions with small approximation factor. We mention,
for example, XOS valuations and non-monotone submodular functions, and
any combination with matroid constraints of valuation functions other than
additive.
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