A CLASS OF NOWHERE DIFFERENTIABLE FUNCTIONS SATISFYING SOME CONCAVITY-TYPE ESTIMATE

Y. FUJITA^{1,*,†}, N. HAMAMUKI^{2,‡}, A. SICONOLFI³ and N. YAMAGUCHI⁴

¹Department of Mathematics, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan e-mail: yfujita@sci.u-toyama.ac.jp

²Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan e-mail: hnao@math.sci.hokudai.ac.jp

³Department of Mathematics, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

e-mail: siconolf@mat.uniroma1.it

⁴Faculty of Human Development, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan

e-mail: norikazu@edu.u-toyama.ac.jp

(Received March 30, 2019; accepted August 30, 2019)

Abstract. We introduce and investigate a class \mathcal{P} of continuous and periodic functions on \mathbb{R} . The class \mathcal{P} is defined so that second-order central differences of a function satisfy some concavity-type estimate. Although this definition seems to be independent of nowhere differentiable character, it turns out that each function in \mathcal{P} is nowhere differentiable. The class \mathcal{P} naturally appears from both a geometrical viewpoint and an analytic viewpoint. In fact, we prove that a function belongs to \mathcal{P} if and only if some geometrical inequality holds for a family of parabolas with vertexes on this function. As its application, we study the behavior of the Hamilton–Jacobi flow starting from a function in \mathcal{P} . A connection between \mathcal{P} and some functional series is also investigated. In terms of secondorder central differences, we give a necessary and sufficient condition so that a function given by the series belongs to \mathcal{P} . This enables us to construct a large number of examples of functions in \mathcal{P} through an explicit formula.

0236-5294/\$20.00 © 2019 Akadémiai Kiadó, Budapest, Hungary

^{*} Corresponding author.

[†] The first author is supported in part by JSPS KAKENHI Nos. 15K04949 and 18K03360.

[‡]The second author is supported in part by JSPS KAKENHI No. 16K17621.

 $Key\ words\ and\ phrases:$ geometric inequality, nowhere differentiable function, the Takagi function, inf-convolution.

Mathematics Subject Classification: primary 26A27, secondary 39B22.

1. Introduction

Let us denote by $C_p(\mathbb{R})$ the set of all continuous and periodic functions $f: \mathbb{R} \to \mathbb{R}$ with period 1 and f(0) = 0. Throughout this paper, we assume that r is an integer such that $r \ge 2$. Let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Our aim in this paper is to introduce and investigate the class \mathcal{P} of functions in $C_p(\mathbb{R})$ defined as follows: Given a function $f \in C_p(\mathbb{R})$, we consider, for each $(n, k, y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0, 1)$, the first-order forward and backward differences of f at $\frac{k+y}{r^n}$ defined, respectively, by

(1.1)
$$\delta_{n,k}^{+}(y;f) = \frac{f(\frac{k+1}{r^n}) - f(\frac{k+y}{r^n})}{\frac{1-y}{r^n}}, \quad \delta_{n,k}^{-}(y;f) = \frac{f(\frac{k+y}{r^n}) - f(\frac{k}{r^n})}{\frac{y}{r^n}}.$$

DEFINITION 1.1. Let c > 0 be a given constant. A function $f \in C_p(\mathbb{R})$ belongs to \mathcal{P}_c if

(1.2)
$$\delta^{+}_{n,k}(y;f) - \delta^{-}_{n,k}(y;f) \le -c$$

for all $(n, k, y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0, 1)$. We use the notation $\mathcal{P} = \bigcup_{c>0} \mathcal{P}_c$. Note that both \mathcal{P}_c and \mathcal{P} depend on the choice of r though we omit it in our notation.

Inequality (1.2) can be written equivalently as

(1.3)
$$\Delta_{n,k}(y;f) \le -2cr^n,$$

where $\Delta_{n,k}(y; f)$ is the second-order central difference defined by

(1.4)
$$\Delta_{n,k}(y;f) = 2r^n(\delta_{n,k}^+(y;f) - \delta_{n,k}^-(y;f)).$$

It is well-known that if a function $f: \mathbb{R} \to \mathbb{R}$ is concave and has the second derivative in some interval I, then $f'' \leq 0$ in I. Even if f is not twice differentiable, a discrete version of the estimate $\Delta_{n,k}(y, f) \leq 0$ still holds. Thus, the condition (1.3) can be regarded as a concavity-type estimate for f. Our definition of \mathcal{P} requires a function to have the second-order differences which tend to $-\infty$ in the prescribed rate as $n \to \infty$.

Although Definition 1.1 seems to be independent of nowhere differentiable character, it turns out that each function in \mathcal{P} is nowhere differentiable. This shows that our concavity-type estimate (1.3) is significantly different from a usual concavity since any concave function is twice differentiable almost everywhere.

We have two reasons to introduce and investigate the class \mathcal{P} . The first reason comes from a geometrical viewpoint. We show that each function in \mathcal{P} has a geometrical characterization stated as follows: For any given function $f \in C_p(\mathbb{R})$, let $\{q_f(t, x; z)\}_{z \in \mathbb{R}}$ be the family of parabolas defined by

(1.5)
$$q_f(t,x;z) = f(z) + \frac{1}{2t}(x-z)^2, \quad (t,x,z) \in (0,\infty) \times \mathbb{R} \times \mathbb{R}.$$

Then, we show that a function f in $C_p(\mathbb{R})$ belongs to \mathcal{P}_c if and only if f satisfies

 $(F1)_c$ For all $(n, k, y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0, 1)$ and $t \ge \frac{1}{2cr^n}$,

(1.6)
$$q_f\left(t, x; \frac{k+y}{r^n}\right) \ge \min\left\{q_f\left(t, x; \frac{k}{r^n}\right), q_f\left(t, x; \frac{k+1}{r^n}\right)\right\}, \quad x \in \mathbb{R}.$$

Inequality (1.6) is a geometrical one related to position of the three parabolas; see Fig. 1.

Fig. 1: The broken line and the solid line indicate, respectively, the function on the leftand right-hand side of (1.6)

Another interpretation of (1.6) is that the function $q_f(t, x; \cdot)$ takes a minimum over the interval $\left[\frac{k}{r^n}, \frac{k+1}{r^n}\right]$ at the endpoints. The second reason comes from an analytic viewpoint. We consider the

The second reason comes from an analytic viewpoint. We consider the operator $U: C_p(\mathbb{R}) \ni \psi \mapsto U_{\psi} \in C_p(\mathbb{R})$ defined by the series

(1.7)
$$U_{\psi}(x) = \sum_{j=0}^{\infty} \frac{1}{r^j} \psi(r^j x), \quad x \in \mathbb{R}.$$

Such a series is known to generate nowhere differentiable functions under a suitable condition on ψ . We prove that the condition $U_{\psi} \in \mathcal{P}$ can be equiva-

lently rephrased by the condition including the second-order differences of ψ . In fact, we establish

(1.8)
$$\Delta_{n,k}(y;U_{\psi}) = \sum_{j=0}^{n-1} r^j \Delta_{n-j,k}(y;\psi) - \frac{2r^n}{y(1-y)} U_{\psi}(y),$$

whenever $\psi \in C_p(\mathbb{R})$ and $(n, k, y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0, 1)$. When n = 0, the first term of the right-hand side of (1.8) is interpreted as 0. Thus, for a given c > 0, we see that $U_{\psi} \in \mathcal{P}_c$ if and only if the right-hand side of (1.8) is less than or equal to $-2cr^n$ for all $(n, k, y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0, 1)$. In other words, the class \mathcal{P} is characterized via the operator U. Besides, making use of (1.8), we give some sufficient conditions on ψ in order that $U_{\psi} \in \mathcal{P}$. We show that U_{ψ} belongs to \mathcal{P} if ψ is concave on [0, 1]. Also, even if ψ is not concave on [0, 1], there is the case where U_{ψ} belongs to \mathcal{P} provided that ψ is semiconcave on [0, 1] and satisfies some additional assumption. These simple sufficient conditions enable us to systematically construct a large number of examples of functions in the class \mathcal{P} through the explicit formula (1.7).

A typical example of functions constructed by this procedure is the generalized Takagi function $\tau_r \in C_p(\mathbb{R})$ defined by

(1.9)
$$\tau_r(x) = U_d(x) = \sum_{j=0}^{\infty} \frac{1}{r^j} d(r^j x), \quad x \in \mathbb{R},$$

where $d \in C_p(\mathbb{R})$ is the distance function to the set \mathbb{Z} , that is,

(1.10)
$$d(x) = \min\{|x-z| \mid z \in \mathbb{Z}\}, \quad x \in \mathbb{R}$$

The celebrated Takagi function is given by τ_2 . The function τ_2 is equivalent to the one first constructed by T. Takagi in 1903, who showed that τ_2 is nowhere differentiable (see [17]). Its relevance in analysis, probability theory and number theory has been widely illustrated by many contributions, see for instance [1,15,17,18]. Since *d* is concave on [0, 1], we can show that τ_r belongs to \mathcal{P} for any integer $r \geq 2$.

In connection with $(F1)_c$, we also study the behavior of the Hamilton– Jacobi flow $\{H_t f\}_{t>0}$ starting from $f \in \mathcal{P}$, where

(1.11)
$$H_t f(x) = \inf_{z \in \mathbb{R}} q_f(t, x; z), \quad (t, x) \in (0, \infty) \times \mathbb{R}.$$

This formula is widely used in the theory of viscosity solutions, and $H_t f$ is also referred to as an *inf-convolution* of f.

There are several papers related to our work. In [12], Hata and Yamaguti proposed a different generalization of the Tagaki function, the so-called Tagaki class, which includes not only nowhere differentiable functions, but

346

also differentiable and even smooth ones. To analyze this class, they used some functional equations containing second-order central differences. Although we also use the second-order central difference $\Delta_{n,k}(y; f)$ of a function $f \in C_p(\mathbb{R})$, the frame and the purpose of the investigation of [12] are however rather different from ours. In [3,13,16], an inequality for approximate midconvexity of the Takagi function was investigated. A precise behavior of the flow $\{H_t\tau\}_{t>0}$ starting from the Takagi function is studied in [7].

The function U_{ψ} of (1.7) has been considered by many authors. Cater [5] showed that if $\psi \in C_p(\mathbb{R})$ is concave on the interval [0,1] and ψ takes its positive maximum over [0,1] at $x = \frac{1}{2}$, then U_{ψ} is nowhere differentiable. Although the connection between the concavity of ψ and U_{ψ} was already explored in [5], we show in addition that the formula (1.7) provides examples of functions in the class \mathcal{P} . Furthermore, we show that U_{ψ} can belong to \mathcal{P} even if $\psi \in C_p(\mathbb{R})$ is not concave on [0,1]. Heurteaux [14] gave another sufficient conditions on $\psi \in C_p(\mathbb{R})$ such that U_{ψ} is nowhere differentiable. The set of maximum points in [0,1] of the function U_{ψ} was studied in [8] for r = 2. However, all of the above papers neither characterize a class of nowhere differentiable functions nor introduce a class like \mathcal{P} .

The structure of the paper is as follows. In Section 2 we prove nowhere differentiability and the geometrical characterization of a function in \mathcal{P} . Section 3 is devoted to the formula (1.8). We derive some sufficient conditions on $\psi \in \mathcal{P}$ in order that $U_{\psi} \in \mathcal{P}$. In Section 4, we study how the Hamilton–Jacobi flow $\{H_t f\}_{t>0}$ starting from $f \in \mathcal{P}$ behaves. Section 5 contains concluding remarks.

2. The class \mathcal{P}

In this section, we state and prove several results on the class \mathcal{P} . The first result of this section is Theorem 2.1, where we prove that each function in \mathcal{P} is nowhere differentiable. The second result of this section is Theorem 2.3, which shows that a function f in $C_p(\mathbb{R})$ belongs to \mathcal{P}_c if and only if f satisfies $(F1)_c$.

Since we study periodic functions with period 1, we often choose three points $\frac{k}{r^n}$, $\frac{k+y}{r^n}$, $\frac{k+1}{r^n}$ lying in [0, 1]. For this reason, we prepare the set A of admissible triplets (n, k, y) as

$$\mathbb{A} := \left\{ (n, k, y) \mid n \in \mathbb{N}_0, \ k \in \{0, 1, 2, 3, \dots, r^n - 1\}, \ y \in (0, 1) \right\}$$

For any $(n, k, y) \in \mathbb{A}$ we have $\left[\frac{k}{r^n}, \frac{k+1}{r^n}\right] \subset [0, 1]$. For a constant c > 0, note that $f \in C_p(\mathbb{R})$ belongs to \mathcal{P}_c if and only if (1.2) is satisfied for all $(n, k, y) \in \mathbb{A}$.

Y. FUJITA, N. HAMAMUKI, A. SICONOLFI and N. YAMAGUCHI

We first derive a fundamental inequality for $f \in \mathcal{P}$. For $f \in C_p(\mathbb{R})$, we see by (1.4) that

(2.1)
$$\Delta_{0,0}(y;f) = \frac{-2f(y)}{y(1-y)}, \quad y \in (0,1).$$

Thus, for c > 0 and $y \in (0, 1)$, we have $\Delta_{0,0}(y; f) \leq -2c$ if and only if

$$(2.2) cy(1-y) \le f(y).$$

Therefore we see that every $f \in \mathcal{P}_c$ satisfies (2.2) for any $y \in (0, 1)$. In particular, when $f \in \mathcal{P}$, we have f > 0 in (0, 1).

Now, we show that each function in \mathcal{P} is nowhere differentiable. In what follows we write [z] for $z \in \mathbb{R}$ to indicate the largest integer not exceeding z. We denote by \mathbb{Q}_r the set of all rational numbers that can be written as $\frac{k}{r^n}$ for some $n \in \mathbb{N}$ and $k \in \mathbb{Z}$.

THEOREM 2.1. Each function in \mathcal{P} is nowhere differentiable in \mathbb{R} .

PROOF. Fix c > 0. Suppose that $f \in \mathcal{P}_c$ is differentiable at some point $x \in [0, 1]$.

We set $k_n = [r^n x]$ for each $n \in \mathbb{N}$. Also, set $y_n = y$ if $x \in \mathbb{Q}_r$ and $y_n = r^n x - [r^n x]$ if $x \notin \mathbb{Q}_r$, where $y \in (0, 1)$ is an arbitrary constant. We claim that $\delta_{n,k_n}^{\pm}(y_n; f) \to f'(x)$ as $n \to \infty$. This gives a contradiction since taking the limit $n \to \infty$ in (1.2) along these k_n and y_n implies that $0 \leq -c$.

When $x \in \mathbb{Q}_r$, we have $[r^n x] = r^n x$ for $n \in \mathbb{N}$ large. In fact, since $x \in \mathbb{Q}_r$, there are $n_0 \in \mathbb{N}_0$ and $k_0 \in \mathbb{Z}$ such that $x = \frac{k_0}{r^{n_0}}$, so that $r^n x = k_0 r^{n-n_0} \in \mathbb{N}$ if $n \ge n_0$. For $n \ge n_0$ we find that

$$\delta_{n,k_n}^+(y_n;f) = \frac{f\left(x + \frac{1}{r^n}\right) - f\left(x + \frac{y}{r^n}\right)}{\frac{1-y}{r^n}}$$
$$= \frac{f\left(x + \frac{1}{r^n}\right) - f(x)}{\frac{1}{r^n}\left(1-y\right)} - \frac{f\left(x + \frac{y}{r^n}\right) - f(x)}{\frac{y}{r^n}\frac{1-y}{y}}$$
$$\to \frac{f'(x)}{1-y} - y\frac{f'(x)}{1-y} = f'(x) \quad (n \to \infty).$$

In the same manner, we deduce that $\delta_{n,k_n}^-(y_n;f) \to f'(x)$ as $n \to \infty$.

Next, let $x \notin \mathbb{Q}_r$. We then have $[r^n x] < r^n x < [r^n x] + 1$ for each $n \in \mathbb{N}$. This implies that $y_n \in (0, 1)$ for each $n \in \mathbb{N}$ and that $\frac{[r^n x]}{r^n} \to x$ as $n \to \infty$. Thus,

$$\delta_{n,k_n}^+(y_n;f) = \frac{f\left(\frac{[r^n x]+1}{r^n}\right) - f(x)}{\frac{[r^n x]+1}{r^n} - x} \to f'(x) \quad (n \to \infty).$$

Acta Mathematica Hungarica 160, 2020

348

Similarly, it follows that $\delta_{n,k_n}^-(y_n;f) \to f'(x)$. This completes the proof. \Box

Next, we show that a function f in $C_p(\mathbb{R})$ belongs to \mathcal{P}_c if and only if f satisfies $(F1)_c$. To prove this, the following proposition is essential:

PROPOSITION 2.2. Let $(n, k, y) \in \mathbb{A}$ and $t \in (0, \infty)$. Then, for any $f \in C_p(\mathbb{R})$, inequality (1.6) holds if and only if

(2.3)
$$\Delta_{n,k}(y;f) \le -\frac{1}{t}.$$

PROOF. Fix $(n, k, y) \in \mathbb{A}$ and $t \in (0, \infty)$. Let $x_1(n, k, y, t)$ be the unique solution of the equation

$$q_f\left(t, x; \frac{k+y}{r^n}\right) = q_f\left(t, x; \frac{k}{r^n}\right).$$

By direct calculation,

(2.4)
$$x_1(n,k,y,t) = \frac{k}{r^n} + \frac{y}{2r^n} + t\delta_{n,k}^-(y;f).$$

Then, we have

$$\begin{cases} q_f\left(t, x; \frac{k}{r^n}\right) \le q_f\left(t, x; \frac{k+y}{r^n}\right), & x \le x_1(n, k, y, t), \\ q_f\left(t, x; \frac{k}{r^n}\right) > q_f\left(t, x; \frac{k+y}{r^n}\right), & x_1(n, k, y, t) < x. \end{cases}$$

Similarly, the unique solution $x_2(n, k, y, t)$ of the equation

$$q_f\left(t, x; \frac{k+y}{r^n}\right) = q_f\left(t, x; \frac{k+1}{r^n}\right)$$

is given by

(2.5)
$$x_2(n,k,y,t) = \frac{k}{r^n} + \frac{1+y}{2r^n} + t\delta_{n,k}^+(y;f).$$

Furthermore,

$$\begin{cases} q_f\left(t, x; \frac{k+y}{r^n}\right) \ge q_f\left(t, x; \frac{k+1}{r^n}\right), & x_2(n, k, y, t) \le x, \\ q_f\left(t, x; \frac{k+y}{2r^n}\right) < q_f\left(t, x; \frac{k+1}{r^n}\right), & x < x_2(n, k, y, t). \end{cases}$$

Then, a geometrical investigation shows that inequality (1.6) holds if and only if

(2.6)
$$x_1(n,k,y,t) \ge x_2(n,k,y,t)$$

By (2.4) and (2.5), we see that inequality (2.6) holds if and only if

$$\delta_{n,k}^{-}(y;f) - \delta_{n,k}^{+}(y;f) \ge \frac{1}{2r^{n}t}$$

The desired inequality follows immediately from (1.4). \Box

Now, we state the second result of this section.

THEOREM 2.3. Let $f \in C_p(\mathbb{R})$ and let c > 0 be a constant. Then, f satisfies $(F1)_c$ if and only if $f \in \mathcal{P}_c$.

PROOF. Assume first that $f \in \mathcal{P}_c$. Fix $(n, k, y) \in \mathbb{A}$ and $t \geq \frac{1}{2cr^n}$ arbitrarily. By (1.3) and (1.4), we have

$$\Delta_{n,k}(y;f) \le -2cr^n \le -\frac{1}{t},$$

and so (1.6) holds by Proposition 2.2. Thus we see that f satisfies $(F1)_c$.

Next, assume that $(F1)_c$ holds. Then, by Proposition 2.2, we see that

$$\Delta_{n,k}(y;f) \le -\frac{1}{t}$$

for all $(n, k, y) \in \mathbb{A}$ and $t \geq \frac{1}{2cr^n}$. Letting $t = \frac{1}{2cr^n}$, we conclude that $f \in \mathcal{P}_c$.

3. The functions U_{ψ} and \mathcal{P}

In this section, we give sufficient conditions on $\psi \in C_p(\mathbb{R})$ in order that $U_{\psi} \in \mathcal{P}$, where U is the operator defined by (1.7). The results enable us to generate a large number of functions in \mathcal{P} through the explicit formula (1.7). We also give some examples of $\psi \in C_p(\mathbb{R})$ for which $U_{\psi} \notin \mathcal{P}$.

The following theorem provides a representation of $\Delta_{n,k}(U_{\psi}; y)$ in terms of $\Delta_{n,k}(\psi; y)$, which plays a crucial role to study if $U_{\psi} \in \mathcal{P}$. Note that, for every $\psi \in C_p(\mathbb{R})$, we have $U_{\psi} \in C_p(\mathbb{R})$ and $U_{\psi}(0) = 0$ by the definition of U_{ψ} .

THEOREM 3.1. Let $\psi \in C_p(\mathbb{R})$. Then, (1.8) holds for each $(n, k, y) \in \mathbb{A}$. When n = 0, the first term of the right-hand side of (1.8) is interpreted as 0.

PROOF. Let $(n, k, y) \in \mathbb{A}$. When n = 0, we have k = 0, so that (1.8) follows from (2.1) since $U_{\psi}(0) = 0$. If $n \ge 1$, then

$$U_{\psi}\left(\frac{k+y}{r^n}\right) - \sum_{j=0}^{n-1} \frac{1}{r^j} \psi\left(\frac{k+y}{r^{n-j}}\right)$$

Acta Mathematica Hungarica 160, 2020

350

A CLASS OF NOWHERE DIFFERENTIABLE FUNCTIONS

$$= \sum_{j=n}^{\infty} \frac{1}{r^{j}} \psi \left(r^{j-n} (k+y) \right) = \sum_{j=n}^{\infty} \frac{1}{r^{j}} \psi \left(r^{j-n} y \right) = \frac{1}{r^{n}} U_{\psi}(y)$$

This is valid even for y = 0 and y = 1. Since $U_{\psi}(0) = U_{\psi}(1) = 0$, we have

$$U_{\psi}\left(\frac{k}{r^{n}}\right) = \sum_{j=0}^{n-1} \frac{1}{r^{j}} \psi\left(\frac{k}{r^{n-j}}\right), \quad U_{\psi}\left(\frac{k+1}{r^{n}}\right) = \sum_{j=0}^{n-1} \frac{1}{r^{j}} \psi\left(\frac{k+1}{r^{n-j}}\right).$$

We therefore have

$$\begin{split} \Delta_{n,k}(y;U_{\psi}) &= 2r^{n} \left[\frac{U_{\psi}\left(\frac{k+1}{r^{n}}\right) - U_{\psi}\left(\frac{k+y}{r^{n}}\right)}{\frac{1-y}{r^{n}}} - \frac{U_{\psi}\left(\frac{k+y}{r^{n}}\right) - U_{\psi}\left(\frac{k}{r^{n}}\right)}{\frac{y}{r^{n}}} \right] \\ &= 2r^{n} \left[\frac{\sum_{j=0}^{n-1} \frac{1}{r^{j}} \left(\psi\left(\frac{k+1}{r^{n-j}}\right) - \psi\left(\frac{k+y}{r^{n-j}}\right)\right) - \frac{1}{r^{n}} U_{\psi}(y)}{\frac{1-y}{r^{n}}} \right. \\ &- \frac{\sum_{j=0}^{n-1} \frac{1}{r^{j}} \left(\psi\left(\frac{k+y}{r^{n-j}}\right) - \psi\left(\frac{k}{r^{n-j}}\right)\right) + \frac{1}{r^{n}} U_{\psi}(y)}{\frac{y}{r^{n}}} \right] \\ \sum_{j=0}^{n-1} r^{j} 2r^{n-j} \left[\frac{\psi\left(\frac{k+1}{r^{n-j}}\right) - \psi\left(\frac{k+y}{r^{n-j}}\right)}{\frac{1-y}{r^{n-j}}} - \frac{\psi\left(\frac{k+y}{r^{n-j}}\right) - \psi\left(\frac{k}{r^{n-j}}\right)}{\frac{y}{r^{n-j}}} \right] - \frac{2r^{n}}{y(1-y)} U_{\psi}(y) \\ &= \sum_{j=0}^{n-1} r^{j} \Delta_{n-j,k}(y;\psi) - \frac{2r^{n}}{y(1-y)} U_{\psi}(y). \end{split}$$

This implies (1.8).

=

Applying Theorem 3.1, we derive some sufficient conditions on $\psi \in C_p(\mathbb{R})$ that guarantee $U_{\psi} \in \mathcal{P}$. As a typical result, it turns out that $U_{\psi} \in \mathcal{P}$ if ψ is concave in [0, 1] and positive in (0, 1).

Let us recall a notion of concavity. A function $g:[0,1] \to \mathbb{R}$ is said to be concave on [0,1] if the inequality

$$\lambda g(x) + (1 - \lambda)g(y) \le g(\lambda x + (1 - \lambda)y)$$

holds for all $x, y \in [0, 1]$ and $\lambda \in [0, 1]$. If the reverse inequality holds, then g is said to be convex. For a constant $\alpha \ge 0$, a function g on [0, 1] is said to be α -semiconcave on [0, 1] if $g(x) + \frac{\alpha}{2}x(1-x)$ is concave on [0, 1]. This is equivalent to the condition that $g(x) - \frac{\alpha}{2}x^2$ is concave on [0, 1].

REMARK 3.2. (i) Let $\psi \in C_p(\mathbb{R})$ and assume that ψ is concave on some interval I. Then it is easy to see that $\Delta_{n,k}(y;\psi) \leq 0$ for all $(n,k,y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0,1)$ such that $\left[\frac{k}{r^n}, \frac{k+1}{r^n}\right] \subset I$. More generally, if $\psi \in C_p(\mathbb{R})$

is α -semiconcave on I, then we have $\Delta_{n,k}(y;\psi) \leq \alpha$ for all $(n,k,y) \in \mathbb{N}_0 \times \mathbb{Z} \times (0,1)$ such that $\left[\frac{k}{r^n}, \frac{k+1}{r^n}\right] \subset I$. The reverse inequalities hold for $(\alpha$ -semi)convex functions.

(ii) If $\psi \in C_p(\mathbb{R})$ is concave on [0, 1], then we have $\Delta_{n,k}(y, \psi) \leq 0$ for all $(n, k, y) \in \mathbb{A}$ by (i). However, the converse is not true in general: that is, even if $\Delta_{n,k}(y, \psi) \leq 0$ for all $(n, k, y) \in \mathbb{A}$, we cannot say that ψ is concave on [0, 1]. Every $f \in \mathcal{P}$ gives a counterexample to this. In fact, $\Delta_{n,k}(y, f) \leq 0$ for all $(n, k, y) \in \mathbb{A}$, but f is never concave on [0, 1] by Theorem 2.1, since a concave function must be differentiable almost everywhere.

We first prepare inequalities involving U_{ψ} and the generalized Takagi function τ_r defined in (1.9). Recall that d is the distance function given by (1.10).

LEMMA 3.3. Let $\psi \in C_p(\mathbb{R})$. Assume that there exists a constant m > 0such that $md(x) \leq \psi(x)$ for all $x \in [0, 1]$. Then, we have

(3.1)
$$\frac{mr}{r-1}x(1-x) \le m\tau_r(x) \le U_{\psi}(x), \quad x \in [0,1].$$

PROOF. It follows from our assumption that $md(r^j x) \leq \psi(r^j x)$ for all $x \in [0,1]$ and $j \in \mathbb{N}_0$. Thus, $m\tau_r(x) \leq U_{\psi}(x)$ by taking the sum.

It remains to prove that

(3.2)
$$\frac{\tau}{r-1}x(1-x) \le \tau_r(x), \quad x \in [0,1].$$

Let

$$F(x) = d(x) + \frac{1}{r}d(rx), \quad G(x) = \frac{r}{r-1}x(1-x), \quad x \in [0,1]$$

Since $F \leq \tau_r$, it suffices to show that $G(x) \leq F(x)$ for $x \in [0, 1]$. As F and G are symmetric about $x = \frac{1}{2}$, we may assume that $x \in [0, \frac{1}{2}]$. Note that

$$F(x) = 2x \left(0 \le x \le \frac{1}{2r} \right), \ F(x) = \frac{1}{r} \left(\frac{1}{2r} \le x \le \frac{1}{r} \right), \ F(x) \ge x \left(\frac{1}{r} \le x \le \frac{1}{2} \right).$$

When $0 \le x \le \frac{1}{r}$, we have

$$G(x) \le G\left(\frac{1}{r}\right) = \frac{1}{r}, \quad G(x) \le \frac{r}{r-1}x(1-0) \le 2x.$$

Thus $G(x) \leq F(x)$. Next, let $\frac{1}{r} \leq x \leq \frac{1}{2}$. Then,

$$G(x) \le \frac{r}{r-1} x \left(1 - \frac{1}{r}\right) = x \le F(x).$$

Hence, we conclude (3.2). \Box

REMARK 3.4. Assume that $\psi \in C_p(\mathbb{R})$ is concave in [0,1] and $\psi > 0$ in (0,1). Then, we have

(3.3)
$$2\psi\left(\frac{1}{2}\right)d(x) \le \psi(x), \quad x \in [0,1],$$

and thus ψ satisfies the assumption in Lemma 3.3 for $m = 2\psi(\frac{1}{2})$. Indeed, by the concavity of ψ , its graph lies above the segment connecting $(0, \psi(0))$ and $(\frac{1}{2}, \psi(\frac{1}{2}))$ and the segment connecting $(\frac{1}{2}, \psi(\frac{1}{2}))$ and $(1, \psi(1))$. This shows (3.3) since $\psi(0) = \psi(1) = 0$.

Now, we state the main result of this section.

THEOREM 3.5. Let $\psi \in C_p(\mathbb{R})$. Assume that there exist two constants m > 0 and $\alpha \ge 0$ such that

(i) $md(x) \le \psi(x)$ for all $x \in [0, 1]$.

(ii) $\Delta_{n,k}(y;\psi) \leq \alpha$ for all $(n,k,y) \in \mathbb{A}$.

If $2mr > \alpha$, then $U_{\psi} \in \mathcal{P}_c$ with $c = \frac{2mr-\alpha}{2(r-1)}$.

PROOF. Let us derive $\Delta_{n,k}(y; U_{\psi}) \leq -2cr^n$ for a fixed $(n, k, y) \in \mathbb{A}$. From Lemma 3.3 it follows that

$$-\frac{2r^n}{y(1-y)}U_{\psi}(y) \le -\frac{2mr^{n+1}}{r-1}$$

If n = 0, we see by (2.1) that $\Delta_{0,0}(y; U_{\psi}) \leq -\frac{2mr}{r-1} < -2c$. For $n \geq 1$ we have

$$\sum_{j=0}^{n-1} r^j \Delta_{n-j,k}(y;\psi) \le \sum_{j=0}^{n-1} r^j \alpha = \alpha \cdot \frac{r^n - 1}{r-1} < \alpha \cdot \frac{r^n}{r-1}.$$

Thus, by (1.8)

$$\Delta_{n,k}(y; U_{\psi}) \le \alpha \cdot \frac{r^n}{r-1} - \frac{2mr^{n+1}}{r-1} = -2cr^n$$

which proves the theorem. \Box

Let us denote by E the set of $\psi \in C_p(\mathbb{R})$ satisfying (i) and (ii) in Theorem 3.5 for some m > 0 and $\alpha \ge 0$ with $2mr > \alpha$. Theorem 3.5 asserts that $U_{\psi} \in \mathcal{P}$ for every $\psi \in E$. We give typical classes that are included in E.

PROPOSITION 3.6. The set E includes the following two sets: (1) $SC_0 := \{ \psi \in C_p(\mathbb{R}) \mid \psi \text{ is concave in } [0,1] \text{ and } \psi > 0 \text{ in } (0,1) \}.$ (2) \mathcal{P} .

PROOF. (1) Let $\psi \in SC_0$. It follows from Remark 3.4 that ψ satisfies Theorem 3.5(i) for $m = 2\psi(\frac{1}{2})$, while we can take $\alpha = 0$ in Theorem 3.5(ii)

by Remark 3.2(i). Since $2mr > \alpha$, we have $\psi \in E$ and $U_{\psi} \in \mathcal{P}_c$ with $c = \frac{2r}{r-1}\psi(\frac{1}{2})$.

(2) Let $\psi \in \mathcal{P}_c$ for some c > 0. By (2.2), we can take m = c in Theorem 3.5(i). We also take $\alpha = 0$ in Theorem 3.5(ii) by the definition of \mathcal{P}_c . Since $2mr > \alpha$, we conclude that $\psi \in E$ and $U_{\psi} \in \mathcal{P}_{c'}$ with $c' = \frac{cr}{r-1}$. \Box

Note that the two sets SC_0 and \mathcal{P} above are mutually disjoint, since a concave function is differentiable almost everywhere. Also, if ψ belongs to \mathcal{P} , then U_{ψ} also belongs to \mathcal{P} since $\mathcal{P} \subset E$ by Proposition 3.6(2). Thus, \mathcal{P} is an invariant set under the operator U.

REMARK 3.7. By Proposition 3.6(1) and its proof, we see that the generalized Takagi function τ_r belongs to \mathcal{P}_c with $c = \frac{r}{r-1}$ since $d \in C_p(\mathbb{R})$ is concave in [0, 1] and $d(\frac{1}{2}) = \frac{1}{2}$. In particular, the Takagi function τ_2 is in \mathcal{P}_2 for r = 2.

If $\psi \in C_p(\mathbb{R})$ is α -semiconcave in [0, 1], then (ii) in Theorem 3.5 is fulfilled by Remark 3.2(i). However, (i) does not hold in general even if $\psi > 0$ in (0, 1). One may then wonder if U_{ψ} belongs to \mathcal{P} for ψ in

$$SC_{\alpha} := \left\{ \psi \in C_p(\mathbb{R}) \mid \psi \text{ is } \alpha \text{-semiconcave in } [0,1] \text{ and } \psi > 0 \text{ in } (0,1) \right\}$$

with $\alpha > 0$. The answer is no. Besides, U_{ψ} for $\psi \in SC_{\alpha}$ does not necessarily possess nowhere differentiable character. Namely, for every $\alpha > 0$ there are the following three examples of $\psi \in SC_{\alpha}$:

(A) $U_{\psi} \in \mathcal{P}$ and $\psi \notin SC_0$.

(B) $U_{\psi} \notin \mathcal{P}$ and U_{ψ} is nowhere differentiable in [0, 1].

(C) $U_{\psi} \notin \mathcal{P}$ and $U_{\psi} \in C^{\infty}((0,1))$.

Let us give an example of $\psi \in SC_{\alpha}$ satisfying each (A)–(C).

EXAMPLE 3.8. For constants a, b > 0, let $\psi_0 = ad + bd^2 \in C_p(\mathbb{R})$. Then, ψ_0 is not concave on [0,1] but 2b-semiconcave on [0,1]. In addition, when $ar > b, U_{\psi_0} \in \mathcal{P}$. We thus obtain a function satisfying (A).

Indeed, since $\psi_0(x) = ax + bx^2$ on $[0, \frac{1}{2}]$, ψ_0 is not concave on [0, 1]. Also, we have $\psi_0(x) + bx(1-x) = (a+b)d(x)$ on [0, 1], and so ψ_0 is 2*b*-semiconcave on [0, 1]. Finally, since $\psi_0 \ge ad$ on [0, 1], we can take m = a and $\alpha = 2b$ in Theorem 3.5. Thus, $\psi_0 \in E$ and so $U_{\psi_0} \in \mathcal{P}$.

This example also shows that $SC_0 \cup \mathcal{P} \subsetneq E$.

Let us next discuss the example of (B). Let $\theta \in C_p(\mathbb{R})$ be a function such that

$$\theta(x) = x^2 \text{ for } x \in \left[0, \frac{1}{r}\right], \quad \theta \in C^2(\mathbb{R}), \quad \theta > 0 \text{ in } (0, 1).$$

We now apply [14, Theorem 3.1], which asserts that, if $\psi \in C_p(\mathbb{R}) \cap C^1(\mathbb{R})$ and ψ' is Hölder continuous in \mathbb{R} , then U_{ψ} is nowhere differentiable in \mathbb{R} .

Since θ satisfies these conditions, we deduce that U_{θ} is nowhere differentiable in \mathbb{R} . However, U_{θ} does not belong to \mathcal{P} as shown below.

THEOREM 3.9. $\Delta_{n,0}(\frac{1}{r}; U_{\theta}) = -\frac{2}{r-1}$ for each $n \in \mathbb{N}_0$. Thus, $U_{\theta} \notin \mathcal{P}$. PROOF. Let $n \in \mathbb{N}_0$. We have

$$U_{\theta}\left(\frac{1}{r}\right) = \sum_{j=0}^{\infty} \frac{1}{r^{j}} \theta(r^{j-1}) = \theta(r^{-1}) = \frac{1}{r^{2}}.$$

Thus,

$$\frac{2r^n}{y(1-y)}U_{\theta}(y)\Big|_{y=\frac{1}{r}} = \frac{2r^n}{r-1}.$$

When n = 0, this and (2.1) show that $\Delta_{0,0}(\frac{1}{r}; U_{\theta}) = -\frac{2}{r-1}$. Let $n \ge 1$. Since $\Delta_{m,0}(\frac{1}{r}, \theta) = 2$ for any $m \in \mathbb{N}$, it follows from Theorem 3.1 that

$$\Delta_{n,0}\left(\frac{1}{r}; U_{\theta}\right) = \sum_{j=0}^{n-1} r^{j} \Delta_{n-j,0}\left(\frac{1}{r}; \theta\right) - \frac{2r^{n}}{y(1-y)} U_{\theta}(y)\Big|_{y=\frac{1}{r}}$$
$$= 2\sum_{j=0}^{n-1} r^{j} - \frac{2r^{n}}{r-1} = -\frac{2}{r-1}. \quad \Box$$

Let $\alpha > 0$. Since $\theta \in C^2(\mathbb{R})$, we have $\varepsilon \theta \in SC_{\alpha}$ if $\varepsilon > 0$ is sufficiently small. Also, it is easy to see that $U_{\varepsilon \theta}$ is still nowhere differentiable and $U_{\varepsilon \theta} \notin \mathcal{P}$. We thus obtain a function satisfying (B).

EXAMPLE 3.10. Let us give an example of a function satisfying (C). Define

$$\psi(x) = |\sin(\pi x)| - \frac{1}{r} |\sin(\pi r x)| \in C_p(\mathbb{R}).$$

Then, by the definition of U_{ψ} , we easily see that $U_{\psi}(x) = |\sin(\pi x)| \in C_p(\mathbb{R})$. Thus $U_{\psi} \in C^{\infty}((0,1))$ and in particular $U_{\psi} \notin \mathcal{P}$ as required in (C).

Let us next check that $\psi \in SC_{\alpha}$ for some $\alpha > 0$. The positivity of ψ in (0,1) follows from a straightforward calculation, so we omit the proof. Next, since functions $\frac{1}{r}\sin(\pi rx)$ and $-\frac{1}{r}\sin(\pi rx)$ are semiconcave, the minimum $-\frac{1}{r}|\sin(\pi rx)|$ of them is also semiconcave. Therefore, ψ being the sum of two semiconcave functions in [0,1] is semiconcave in [0,1].

Similarly to the previous example, for a given $\alpha > 0$, we have $\varepsilon \psi \in SC_{\alpha}$ if $\varepsilon > 0$ is sufficiently small. A function satisfying (C) has thus been obtained.

We conclude this section by studying if a Weierstrass type function belongs \mathcal{P} .

EXAMPLE 3.11. The famous Weierstrass function W is given by

$$W(x) = \sum_{j=0}^{\infty} a^j \rho(b^j x), \quad \rho(x) = \cos(\pi x),$$

where $a \in (0, 1)$ and b is an odd integer with $ab > 1 + \frac{3\pi}{2}$. Note that ρ is continuous and periodic on \mathbb{R} with period 2 and $\rho(0) \neq 0$. Since we consider functions ψ in $C_p(\mathbb{R})$ with $\psi(0) = 0$, we study U_η for $\eta(x) = \sin(2\pi x) \in C_p(\mathbb{R})$ instead of W. By Hardy [11], it is shown that U_η is nowhere differentiable. We also remark that η possesses a balance of convexity and concavity properties, since it is concave on $[0, \frac{1}{2}]$ and convex on $[\frac{1}{2}, 1]$.

We claim that U_{η} does not belong to \mathcal{P} . In fact, noting that $\eta(\frac{r^{j}}{2}) = \sin(\pi r^{j}) = 0$ for all $j \in \mathbb{N}_{0}$, we see that $U_{\eta}(\frac{1}{2}) = 0$ by the definition of U_{η} . This implies that $U_{\eta} \notin \mathcal{P}$ since, if $U_{\eta} \in \mathcal{P}$, we have $U_{\eta} > 0$ in (0, 1) by (2.2).

4. The behavior of $\{H_t f\}_{t>0}$ for $f \in \mathcal{P}$

In this section we consider the behavior of the Hamilton–Jacobi flow $\{H_t f\}_{t>0}$ for $f \in \mathcal{P}$, where $H_t f$ is the function defined by (1.11). It is known that $H_t f$ belongs to $C_p(\mathbb{R})$ and uniformly approximates f as t goes to 0 (see [4, Ch. 3.5]). Also, $H_t f$ is a unique viscosity solution of the initial value problem of the Hamilton–Jacobi equation:

(4.1)
$$\begin{cases} u_t(t,x) + \frac{1}{2}(u_x(t,x))^2 = 0, & (t,x) \in (0,\infty) \times \mathbb{R}, \\ u(0,x) = f(x), & x \in \mathbb{R} \end{cases}$$

(cf. [6]). Here, $u_t(t,x) = \frac{\partial u}{\partial t}(t,x)$ and $u_x(t,x) = \frac{\partial u}{\partial x}(t,x)$. First of all, we prove that the range of z in (1.11) can be reduced.

LEMMA 4.1. Let $f \in C_p(\mathbb{R})$. If $f(z) \ge 0$ for all $z \in [0,1]$, then

(4.2)
$$H_t f(x) = \min_{z \in [0,1]} q_f(t,x;z), \quad (t,x) \in (0,\infty) \times [0,1].$$

PROOF. Fix $(t, x) \in (0, \infty) \times [0, 1]$. We first let z < 0. Since $f(z) \ge 0$, the geometrical investigation implies that $q_f(t, x; z) > q_f(t, x; 0)$. Thus, the minimum in (1.11) is never attained for z < 0. The same arguments show that z > 1 is not a minimizer of (1.11), and hence (4.2) holds. \Box

Now, we state the main result of this section.

THEOREM 4.2. Let $f \in \mathcal{P}_c$ for c > 0. Then, the following holds:

 $(F2)_c$ For all $n \in \mathbb{N}_0$,

(4.3)
$$H_t f(x) = \min_{k \in \{0, 1, 2, 3, \dots, r^n\}} q_f \left(t, x; \frac{k}{r^n} \right), \quad (t, x) \in \left[\frac{1}{2cr^n}, \infty \right) \times [0, 1].$$

PROOF. This is a consequence of (4.2) and $(F1)_c$. In fact, since $f \in \mathcal{P}_c$ satisfies the inequality $f(z) \geq 0$ for $z \in [0, 1]$ by (2.2), we have (4.2), while Theorem 2.3 guarantees that $(F1)_c$ holds. \Box

By Theorem 4.2 we see that $H_t f$ with $f \in \mathcal{P}_c$ is a piecewise quadratic function in [0, 1] for all t > 0 and that the *x*-coordinate of each vertex of the parabolas making up $H_t f$ always belongs to \mathbb{Q}_r . In general it is known that $H_t f$ for $f \in C_p(\mathbb{R})$ is $\frac{1}{2t}$ -semiconcave in [0, 1] for all t > 0. For $f \in \mathcal{P}_c$ we deduce from (4.3) that

$$H_t f(x) - \frac{x^2}{2t} = \frac{1}{2t} \min_{k \in \{0, 1, 2, 3, \dots, r^n\}} \left[-\frac{2k}{r^n} x + \left(\frac{k}{r^n}\right)^2 + f\left(\frac{k}{r^n}\right) \right]$$

for $(t,x) \in [\frac{1}{2cr^n}, \infty) \times [0,1]$. This shows that $H_t f(x) - \frac{x^2}{2t}$ is not only concave but also piecewise linear in [0,1].

One may ask if, conversely, a function $f \in C_p(\mathbb{R})$ satisfying $(F2)_c$ for some c > 0 is nowhere differentiable. We have no complete answer to this question at the moment. However, we can prove that such an f is nondifferentiable on a dense subset of \mathbb{R} . In general this is not enough to infer that it is nowhere differentiable, as is shown by the Riemann function. Indeed, let R be the Riemann function defined by

$$R(x) = \sum_{j=1}^{\infty} \frac{\sin(\pi j^2 x)}{j^2}, \quad x \in \mathbb{R}.$$

Set

$$F := \left\{ \frac{2A+1}{2B+1} \, \Big| \, A, B \in \mathbb{Z} \right\} \, (\subset \mathbb{Q}).$$

By Hardy [11] and Gerver [9,10], it is shown that R is differentiable on the set F and that R is non-differentiable on the set $(\mathbb{R} \setminus \mathbb{Q}) \cup (\mathbb{Q} \setminus F)$.

THEOREM 4.3. Let $f \in C_p(\mathbb{R})$ and let c > 0 be a constant. Assume that $(F2)_c$ holds. Then, there exists a dense subset of the interval [0,1] such that f is non-differentiable at each point of this subset.

We denote by $D^-f(x)$ the subdifferential of f at x, that is, the set of $\phi'(x)$ such that $\phi \in C^1$ near x and $f - \phi$ has a local minimum at x. We list basic properties of the subdifferential used in the proof of Theorem 4.3. Let $f \in C_p(\mathbb{R})$ and $x \in \mathbb{R}$.

(I) If f is differentiable at x, then $D^{-}f(x) = \{f'(x)\}$ ([2, Lemma II.1.8(b)]):

(II) Let t > 0 and choose $z \in \mathbb{R}$ such that $H_t f(x) = q_f(t, x; z)$. Then $\frac{x-z}{t}$ $\in D^{-}f(z)$ ([2, Lemma II.4.12(iii)]).

PROOF OF THEOREM 4.3. Fix $x_0 \in (0,1)$ and $\varepsilon > 0$, and let I = $(x_0 - \varepsilon, x_0 + \varepsilon)$. We prove that there is some $z \in I$ such that f is not differentiable at z. We may assume that $\varepsilon < \min\{x_0, 1 - x_0\}$, so that $I \subset [0, 1]$. Let $t \in (0, \frac{\varepsilon^2}{2M})$, with M > 0 the oscillation of f, that is, $M = \sup_{\mathbb{R}} f - \inf_{\mathbb{R}} f$. Since $H_t f$ is represented by (4.3) with n such that $t \ge \frac{1}{2cr^n}$, there exists some $\delta \in (0, \varepsilon)$ such that $H_t f = q_f(t, \cdot; z)$ in $J := [x_0 - \delta, x_0] \subset I$ with $z = \frac{k}{r^n}$ for some $k \in \{0, 1, 2, 3, \dots, r^n\}$. The choice of t then guarantees that $z \in I$. Indeed, we have

$$f(x_0) \ge H_t f(x_0) = f(z) + \frac{1}{2t} (x_0 - z)^2,$$

and hence $(x_0 - z)^2 \leq 2t(f(x_0) - f(z)) \leq 2Mt < \varepsilon^2$, that is, $z \in I$. It follows from (II) that $\frac{x-z}{t} \in D^-f(z)$ for all $x \in J$. This implies that $\left[\frac{x_0-\delta-z}{t},\frac{x_0-z}{t}\right] \subset D^-f(z)$: that is, $D^-f(z)$ is not a singleton. Hence we conclude by (I) that f is not differentiable at z. \Box

REMARK 4.4. The above proof actually shows that the dense set we found is a subset of \mathbb{Q}_r .

5. Concluding remark

We conclude this paper by mentioning another possible definition of \mathcal{P}_c . Let us define \mathcal{P}'_c as the set of all $f \in C_p(\mathbb{R})$ such that there exists an infinite subset $\mathbb{N}' \subset \mathbb{N}_0$ such that f satisfies (1.2) for all $(n, k, y) \in \mathbb{A}$ with $n \in \mathbb{N}'$. In other words, we require (1.2) only for some subsequence of $n \in \mathbb{N}_0$. Even if this generalized class \mathcal{P}'_c is used, one can easily see that Theorem 2.3 is obtained in a suitable sense. Namely, $f \in \mathcal{P}'_c$ if and only if f satisfies $(F1)_c$ with "for all $n \in \mathbb{N}'$ " instead of "for all $n \in \mathbb{N}_0$ ". The proof is almost the same as before.

Moreover, Theorem 2.1 is true for a function in $\mathcal{P}' := \bigcup_{c>0} \mathcal{P}'_c$ since the proof still works when taking the limit along \mathbb{N}' . The formula (1.7) still gives many examples of functions in \mathcal{P}' . Though \mathcal{P}' provides a more general class than \mathcal{P} , there are, however, no essential changes or difficulties in the proofs. For this reason, for simplicity of presentation, the authors decided to give results for \mathcal{P}_c instead of \mathcal{P}'_c .

Acknowledgement. Antonio Siconolfi appreciates funding for selected research from the Faculty of Science, University of Toyama. It enabled him to visit the University of Toyama in March, 2018.

References

- P. Allaart and K. Kawamura, The Takagi function: a survey, *Real Anal. Exchange*, 37 (2011/12), 1–54.
- [2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc. (Boston, MA, 1997).
- [3] Z. Boros, An inequality for the Takagi function, Math. Inequal. Appl., 11 (2008), 757– 765.
- [4] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Inc. (Boston, MA, 2004).
- [5] F. S. Cater, Constructing nowhere differentiable functions from convex functions, *Real Anal. Exchange*, 28 (2002/2003), 617–621.
- [6] M. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67.
- [7] Y. Fujita, N. Hamamuki and N. Yamaguchi, A self-affine property of evolutional type appearing in a Hamilton–Jacobi flow starting from the Takagi function, *Michi-gan Math. J.*, to appear.
- [8] Y. Fujita and Y. Saito, On the sets of maximum points for generalized Takagi functions, Toyama Math. J., 39 (2017), 85–93.
- [9] J. Gerver, The differentiability of the Riemann function at certain rational multiples of π , Amer. J. Math., **92** (1970) 33–55.
- [10] J. Gerver, More on the differentiability of the Riemann function, Amer. J. Math., 93 (1971) 33–41.
- [11] G. H. Hardy, Weierstrass's non-differentiable functions, Trans. Amer. Math. Soc., 17 (1916), 301–325.
- [12] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., 1 (1984), 183–199.
- [13] A. Házy and Z. Páles, On approximately midconvex functions, Bull. London Math. Soc., 36 (2004), 339–350.
- [14] Y. Heurteaux, Weierstrass functions in Zygmund's class, Proc. Amer. Math. Soc., 133 (2005), 2711–2720.
- [15] J. C. Lagarias, The Takagi function and its properties, RIMS Kôkyûroku Bessatsu, B34 (2012), 153–189.
- [16] J. Makó, A new proof of the approximate convexity of the Takagi function, Acta Math. Hungar., 151 (2017), 456–461.
- [17] T. Takagi, A simple example of the continuous function without derivative, *Phys.-Math. Soc. Japan*, 1 (1903), 176–177; reprinted in *The Collected Papers of Teiji Takagi*, S. Kuroda (Ed.), Iwanami (1973), 5–6.
- [18] J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., 41 (1968), 21–25.