
A computer-assisted existence proof for Emden’s
equation on an unbounded L-shaped domain

Filomena Pacella, Michael Plum and Dagmar Rütters

January 7, 2016

Abstract

We prove existence, non-degeneracy, and exponential decay at infinity of a non-trivial
solution to Emden’s equation −∆u = |u|3 on an unbounded L-shaped domain, subject to
Dirichlet boundary conditions. Besides the direct value of this result, we also regard this
solution as a building block for solutions on expanding bounded domains with corners,
to be established in future work. Our proof makes heavy use of computer assistance:
Starting from a numerical approximate solution, we use a fixed-point argument to prove
existence of a near-by exact solution. The eigenvalue bounds established in the course of
this proof also imply non-degeneracy of the solution.

1 Introduction

In this paper we are concerned with the existence of non-trivial solutions of the problem
{

−∆u = |u|3 in Ω
u = 0 on ∂Ω

(1)

in a planar L-shaped unbounded domain

Ω = ((−1,∞)× (0, 1)) ∪ ((−1, 0)× (−∞, 1)) ⊂ R
2.

It is obviously of great importance, both theoretically and for applications, not only to find
a solution but also to detect its shape and other qualitative properties. In particular, for
domains with corners, it is very interesting to find solutions which are localized at the corners
as, often, one can guess from applications or from energy considerations.

Here, by computer-assistance, we prove the existence of such a solution which is close to an
approximate numerically computed solution with the desired shape. The method and the
precise result will be stated in the next section.

Moreover, solutions in unbounded domains can be used to find solutions in bounded domains
by perturbative methods. Roughly speaking in some nonlinear parameter dependent elliptic
problems in bounded domains which, as the parameter goes to a limit value, “tend” to a
similar problem in an unbounded domain, one can use the solution in the unbounded domain
to construct solutions of the original problem. This is usually done by “gluing” together several
“copies” of suitable truncations of the solution in the unbounded domain. This technique
usually requires two main properties of the solution in the unbounded domain:

i) it must be nondegenerate, (2)

ii) it should have a suitably fast decay at infinity.
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Some typical cases, widely analyzed in the literature, are so-called singularly-perturbed prob-
lems or problems with critical nonlinearities. In a similar way a solution of (1) can be used to
find solutions in expanding bounded tubular domains.

Let us be more precise. Let M be a compact k-dimensional piecewise smooth submanifold
of RN without boundary, 1 ≤ k ≤ N − 1, N ≥ 2. For R > 0 define the expanded manifold
MR = {Rx, x ∈ M} and denote by ΩR its open tubular neighborhood of radius 1. Then
consider the problem

{
−∆u = f(u) in ΩR

u = 0 on ∂ΩR
(3)

for some nonlinear C1-function f . The equation (3) appears e.g. in nonlinear optics and models
standing waves in optical waveguides. The most interesting variant for applications which
exploits the nonlinear properties of the material is the self-focusing case where f(u)/u → ∞
as |u| → ∞. A typical example is given by f(u) = u3, modelling Kerr’s effect. For more
information on the physical background see for example [22].

When k = 1 then ΩR is a tubular guide, i.e. an optical fiber and the flat case, N = 2, is an
interesting one. When k ≥ 2 andM is regular and symmetric, in particular ΩR is an expanding
annuli, some existence results have been found using variational methods ([10], [4], [17], [23]).

The first paper which deals with the nonsymmetric case, but always assumingM to be regular,
is [11], where solutions are found in the form

uR =
m∑

i=1

UXR,i,R + o(1) (4)

in H1(RN) as R → ∞, where UXR,i,R are solutions of the “local” limit problem in an open
unbounded cylinder centered at suitable points XR,i, i = 1, . . . ,m of the domain ΩR. Solutions
of the form (4) are usually called “multibump” solutions. This result was improved in [1] for
positive solutions and extended then to sign-changing solutions in [2] in the case k = 1, but
always starting from regular manifolds.

If the original 1-dimensional manifold has some “corners” one would expect the existence of
similar “multibump” solutions, but with (some) bumps localized at the corners. In order to
find such a type of solutions the main thing is to have a solution of a limit problem in an
unbounded domain with a corner which is precisely localized at a corner. More precisely, if
the 1-dimensional manifold M is a piecewise regular manifold in the plane given by the union
of a finite number of smooth curves which intersect orthogonally one could use the solution we
find in the L-shaped domain Ω to construct a multibump solution of type (4) with the bumps
(positive or negative) at the corners.

It is important at this point to stress what we have already mentioned in (2), i.e. that in order
to use the solution u in the unbounded L-shaped domain as building block for solutions in
expanding bounded domains with corners, we need the two main properties i) and ii) (see (2)).
In other words the solution u must be nondegenerate and decay exponentially at infinity.

In this paper we also prove both properties of the solution found by a computer-assisted proof
and we compute its Morse index (which is one). We believe that all these results are interesting
in themselves.

Finally, let us explain briefly the numerical and analytical techniques that we use for our
computer-assisted proof. We start with an approximate solution ω ∈ H1

0 (Ω) to problem (1)
which we compute by a Newton iteration combined with a finite element method; in order
to overcome the singularity problems at the re-entrant corner (0, 0) of Ω, we also involve the
associated singularity function into the approximation process. In this first approximative
step, there is no need for any mathematical rigor.
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Now we put up a boundary value problem for the error v = u − w, which we re-write as a
fixed-point equation involving the residual −∆ω − |ω|3 of the approximate solution, and the
inverse of the linearization Lω = −∆ − 3|ω|ω. Now Banach’s Fixed-Point Theorem gives the
existence of a solution to problem (1) in some “close” H1

0 (Ω)-neighborhood of ω, provided that
the residual is sufficiently small (measured in H−1(Ω)) and ‖L−1

ω ‖H−1(Ω)→H1
0 (Ω) is “moderate”;

the precise conditions are formulated in Theorem 1.

For computing a rigorous bound to the residual we use an additional H(div,Ω)-approximation
to∇ω (see Section 4) and rigorous bounds to some integrals. A norm bound for L−1

ω is obtained
via spectral bounds for Lω: The essential spectrum can be bounded by simple Rayleigh quotient
estimates, and isolated eigenvalues below the essential spectrum are enclosed by variational
methods and additional computer-assisted means, supplemented by a homotopy method for
obtaining some necessary spectral a priori information.

By related computer-assisted techniques we have been able to prove existence, multiplicity,
and also uniqueness statements for various kinds of boundary and eigenvalue problems; see
e.g. [6, 9, 14, 18, 19, 20].

The paper is organized as follows. In Section 2 we formulate the basic theorem (Theorem 1)
for our computer-assisted proof. Section 3 contains a description of the numerical methods
used to obtain an approximate solution ω, and Section 4 the essential estimates for obtaining
a residual bound. Section 5 is devoted to the spectral estimates for Lω needed to bound
‖L−1

ω ‖H−1(Ω)→H1
0 (Ω). Section 6 contains some more numerical details and our computational

results proving the existence of a solution to problem (1) together with a close H1
0 (Ω)-error

bound. Based on the spectral information obtained as a “side product” of our computer-
assisted proof, we prove nondegeneracy of the solution in Section 7. Finally, Section 8 contains
a proof of exponential decay of the solution.

2 Existence and Enclosure Theorem

Let Ω = ((−1,∞)× (0, 1)) ∪ ((−1, 0)× (−∞, 1)), i.e. Ω is an unbounded L-shaped domain.
Let H1

0 (Ω) be endowed with the inner product 〈u, v〉H1
0
:= 〈∇u,∇v〉L2 + 〈u, v〉L2 , and let

H−1(Ω) denote the dual space of H1
0 (Ω), equipped with the usual operator sup-norm. We

consider the problem {
−∆u = |u|3 in Ω

u = 0 on ∂Ω.
(5)

Our goal is to prove existence of a non-trivial solution by computer-assistance.

We assume that ω ∈ H1
0 (Ω) is an approximate solution to (5) (computed numerically) and

that constants δ and K are known such that

(a) δ bounds the defect (residual) of the approximate solution in the H−1-norm, i.e.

‖ −∆ω − |ω|3‖H−1 ≤ δ, (6)

(b) K bounds the inverse of the linearization at ω, i.e.

‖v‖H1
0
≤ K ‖Lω[v]‖H−1 for all v ∈ H1

0 (Ω), (7)

where Lω : H1
0 (Ω) → H−1(Ω), Lω[v] = −∆v − 3|ω|ωv denotes the linearized operator.
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Note that condition (7) implies that Lω is one-to-one. We will also need that Lω is onto. For
proving this we use the canonical isometric isomorphism Φ : H1

0 (Ω) → H−1(Ω) given by

(Φ[u])(v) := 〈u, v〉H1
0

(u, v ∈ H1
0 (Ω)) (8)

and show that

(i) (Φ−1Lω) (H
1
0 (Ω)) is dense in H1

0 (Ω) (implying that Lω(H
1
0 (Ω)) ⊂ H−1(Ω) is dense),

(ii) Lω(H
1
0 (Ω)) ⊂ H−1(Ω) is closed.

For proving (i) we first note that Φ−1Lω : H1
0 (Ω) → H1

0 (Ω) is symmetric w.r.t. 〈·, ·〉H1
0
:

〈Φ−1Lω[u], v〉H1
0

(8)
= (Lω[u]) [v] =

∫

Ω

∇u · ∇v − 3|ω|ωuv dx. (9)

Let now u ∈ H1
0 (Ω) be an element of the orthogonal complement of (Φ−1Lω)(H

1
0 (Ω)), i.e. we

have
0 = 〈u,Φ−1Lω[v]〉H1

0

symmetry
= 〈Φ−1Lω[u], v〉H1

0
for all v ∈ H1

0 (Ω).

Therefore Φ−1Lω[u] = 0, which implies Lω[u] = 0 and, since Lω is one-to-one, u = 0. Thus (i)
follows.

To prove (ii), let (Lω[un])n∈N be a sequence in Lω(H
1
0 (Ω)) converging to some r ∈ H−1(Ω).

Condition (7) shows that (un)n∈N is a Cauchy sequence in H1
0 (Ω) and thus converges to some

u ∈ H1
0 (Ω). Since Lω is bounded we obtain Lω[un] → Lω[u] (n→ ∞), which gives r = Lω[u] ∈

Lω(H
1
0 (Ω)) and therefore the closedness of Lω(H

1
0 (Ω)) in H

−1(Ω).

Theorem 1. Let ω ∈ H1
0 (Ω) be an approximate solution to (5), and δ and K constants such

that (6) and (7) are satisfied. Let moreover C4 > 0 be an embedding constant for the embedding
H1

0 (Ω) →֒ L4(Ω), and γ := 3C3
4 .

Finally suppose that there exists some α > 0 such that

δ ≤
α

K
− γα2

(
‖ω‖L4 + 1

3
C4α

)
(10)

and
2Kγα

(
‖ω‖L4 + 1

2
C4α

)
< 1. (11)

Then there exists a solution u ∈ H1
0 (Ω) to problem (5) such that

‖u− ω‖H1
0
≤ α. (12)

In particular, u is non-trivial if α < ‖ω‖H1
0
.

Remark 1. (a) Let ψ(α) denote the right-hand-side of (10), which obviously attains a pos-
itive maximum on [0,∞). Thus the existence of some α > 0 satisfying (10) is equivalent
to

δ ≤ max
α∈[0,∞)

ψ(α), (13)

which due to (6) will be satisfied if the approximate solution ω is computed with suf-
ficiently high accuracy. Furthermore, a small defect bound δ will imply a small error
bound α if K is not too large.

(b) As shown in [18], (10) implies (11) if δ satisfies (13) with a strict inequality and α is
chosen appropriately.
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For the proof of Theorem 1 see [18]. It is based on Banach’s Fixed Point Theorem and uses
the following Lemma (see [18, Lemma 3.1 and 3.2]), which in addition will be useful in a later
section of this paper.

Lemma 1. Let p1, p2, p3, p4 ∈ [2,∞) such that 1
p1
+ 1

p2
+ 1

p3
+ 1

p4
= 1 and Cpi > 0 an embedding

constant for the embedding H1
0 (Ω) →֒ Lpi(Ω), i = 1, . . . , 4. Then (i) and (ii) hold true:

(i) For all u, ũ, v ∈ H1
0 (Ω):

‖[|u|u− |ũ|ũ] v‖H−1 ≤ Cp3Cp4 (‖u‖Lp1 + ‖ũ‖Lp1 ) ‖u− ũ‖Lp2‖v‖H1
0
.

(ii) Let u, ũ ∈ H1
0 (Ω), and let Lu and Lũ denote the linearizations at u and ũ, respectively.

Suppose that for some K > 0

‖v‖H1
0
≤ K‖Lũ[v]‖H−1 for all v ∈ H1

0 (Ω)

and
κ := 3Cp3Cp4K (‖u‖Lp1 + ‖ũ‖Lp1 ) ‖u− ũ‖Lp2 < 1. (14)

Then,

‖v‖H1
0
≤

K

1− κ
‖Lu[v]‖H−1 for all v ∈ H1

0 (Ω).

Remark 2. Note that, in (14), ‖u − ũ‖Lp2 can be replaced by Cp2‖u − ũ‖H1
0
, which for the

particular choice p1 = p2 = p3 = p4 = 4 amounts to the condition

κ := γK (‖u‖L4 + ‖ũ‖L4) ‖u− ũ‖H1
0
< 1.

3 Computation of an approximate solution

Let T > 1 be fixed and define Ω0 := Ω ∩ (−T, T )2. Then Ω0 is bounded and contains the
corner-part of Ω. Let ω0 ∈ H1

0 (Ω0) be an approximate solution of

{
−∆u = |u|3 in Ω0

u = 0 on ∂Ω0.
(15)

Then

ω =

{
ω0 in Ω0

0 in Ω\Ω0
(16)

is in H1
0 (Ω) and turns out to be a good approximate solution of (5) if T is chosen large enough

and ω0 is sufficiently accurate. Indeed our numerical results show that T = 3 is sufficient.

An approximate solution of (15) can be computed using finite elements and a Newton iteration.
As an initial guess, an appropriate multiple of the first eigenfunction of −∆ in (−1, 0)× (0, 1)
with homogeneous Dirichlet boundary conditions and extended by zero to Ω0\((−1, 0)×(0, 1))
can be used. However, due to the re-entrant corner at 0, approximations obtained with finite
elements alone do not yield a sufficiently small defect. So in addition we use a corner singular
function, which allows us to write the exact solution of (15) as a sum of a singular part and a
regular part in H2(Ω0) (see [12] and [13]): We introduce polar coordinates (r, ϕ), where r = |x|
and ϕ ranges between 0 and θ := 3π

2
, with ϕ = 0 for x > 0, y = 0 and ϕ = θ for x = 0, y < 0.

On Ω0 we define
γ(r, ϕ) := r

2
3 sin(2

3
ϕ). (17)
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Obviously, γ(r, 0) = γ(r, θ) = 0 and one can easily check that ∆γ = 0 in Ω0. We choose some
fixed function λ ∈ H2(Ω0)∩C

1(Ω0) which vanishes on the part of ∂Ω0 where γ does not vanish
and satisfies λ(0) = 1, ∇λ(0) = 0. With w := λγ ∈ H1

0 (Ω0), a solution u ∈ H1
0 (Ω0) to (15)

can then be written as
u = aw + v, (18)

where v ∈ H2(Ω0)∩H
1
0 (Ω0) is the regular part and a ∈ R is the so-called stress-intensity-factor.

Using the dual singular function Γ(r, ϕ) := r−
2
3 sin(2

3
ϕ) we can represent a by means of the

solution u, i.e. we have

a =
1

π

(∫

Ω0

(ΛΓ)|u|3 +∆(ΛΓ)u dx

)
, (19)

where Λ ∈ H2(Ω0) ∩ C1(Ω0) is a cutoff function with similar properties as λ and such that
∆(ΛΓ) ∈ L2(Ω0). A suitable choice for λ and Λ is e.g. given by λ(x, y) = Λ(x, y) = (1 −
x2)2(1− y2)2χ(−1,1)2(x, y) for (x, y) ∈ Ω0.

Clearly, a computation of the exact stress-intensity-factor by (19) is impossible since the exact
solution u is unknown. For our purpose - the improvement of the approximate solution - it
is however sufficient to know only an approximation of a. So let a finite element function ω̃0

(computed without separate singular part) be an approximate solution of (15). Inserting ω̃0

into (19) yields an approximate stress-intensity-factor

ã :=
1

π

∫

Ω0

(ΛΓ)|ω̃0|
3 +∆(ΛΓ)ω̃0 dx.

The regular part v = u− aw ∈ H2(Ω0) ∩H
1
0 (Ω0) of a solution u to (15) satisfies

−∆v = |aw + v|3 + a∆w (20)

and thus an approximate regular part ṽ (in the finite element space) can be computed using a
Newton iteration with initial guess v0 = ω̃0−ãI(w), where I denotes the interpolation operator
for the finite element space. Our new approximate solution to (15) is then given by

ω0 = ãw + ṽ, (21)

which yields an approximate solution ω to (5) by (16).

4 Computation of a residual bound

Let ρ̃ ∈ H(div,Ω) = {v ∈ (L2(Ω))2 : div v ∈ L2(Ω)} be an approximation of ∇ω, such that
ρ̃ is also an approximate solution of div ρ = −|ω|3. We comment on the computation of ρ̃ in
subsection 6.1. Then we can estimate:

‖ −∆ω − |ω|3‖H−1 ≤ ‖ − div(∇ω − ρ̃)‖H−1 + ‖ − div ρ̃− |ω|3‖H−1

≤ ‖∇ω − ρ̃‖L2 + C2‖ − div ρ̃− |ω|3‖L2 ,

with C2 denoting an embedding constant for the embedding H1
0 (Ω) →֒ L2(Ω) and hence also

for L2(Ω) →֒ H−1(Ω). Now we are left to compute upper bounds just for integrals, which
due to the splitting of the approximate solution into singular and regular part is however still
technically a bit challenging. We will comment on this in section 6.1.

Remark 3. If −∆ω − |ω|3 ∈ L2(Ω) (which requires higher smoothness of the approximate
solution), one can also use the embedding L2(Ω) →֒ H−1(Ω) directly to compute an upper
bound for the residuum:

‖ −∆ω − |ω|3‖H−1 ≤ C2‖ −∆ω − |ω|3‖L2 .

Again, it remains to compute bounds for an integral.
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5 Computation of K

We use the isometric isomorphism Φ : H1
0 (Ω) → H−1(Ω), defined in (8), to obtain

‖Lω[u]‖H−1 = ‖(Φ−1Lω)[u]‖H1
0

(u ∈ H1
0 (Ω))

and therefore

‖v‖H1
0
≤ K‖Lω[v]‖H−1 (v ∈ H1

0 (Ω)) ⇐⇒ ‖v‖H1
0
≤ K‖(Φ−1Lω)[v]‖H1

0
(v ∈ H1

0 (Ω)). (22)

Moreover, (9) already showed that Φ−1Lω : H1
0 (Ω) → H1

0 (Ω) is symmetric and due to its
definition on the whole space H1

0 (Ω) therefore self-adjoint. Thus (22) holds for any

K ≥
1

min{|ν| : ν is in the spectrum of Φ−1Lω}
, (23)

provided the minimum is positive. We are therefore left to compute bounds for the essential
spectrum of the operator Φ−1Lω as well as bounds for the eigenvalues of finite multiplicity
which are closest to 0. We first draw our attention to the essential spectrum.

Consider the operator L0 : H
1
0 (Ω) → H−1(Ω), v 7→ −∆v+

(
π2

π2+1
χΩ1

)
v, with χΩ1 denoting the

characteristic function on Ω1 := (−1, 0)× (0, 1). Since both ω and χΩ1 have compact support
and are bounded, Φ−1Lω − Φ−1L0 : H1

0 (Ω) → H1
0 (Ω) is compact, and hence σess(Φ

−1Lω) =
σess(Φ

−1L0) due to a well-known perturbation result [15]. To bound σess(Φ
−1L0) we consider

Rayleigh quotients: Ω\Ω1 is the union of two disjoint semi-infinite strips, on each of which the

Rayleigh quotient
‖∇u‖2

L2

‖u‖2
L2

is bounded from below by π2. Hence, for each u ∈ H1
0 (Ω),

∫

Ω\Ω1

|∇u|2 dx ≥
π2

π2 + 1

∫

Ω\Ω1

[
|∇u|2 + u2

]
dx. (24)

Furthermore, trivially
∫

Ω1

[
|∇u|2 + π2

π2+1
u2
]
dx ≥

π2

π2 + 1

∫

Ω1

[
|∇u|2 + u2

]
dx (25)

holds. Adding (24) and (25) gives, for each u ∈ H1
0 (Ω),∫

Ω

[
|∇u|2 +

(
π2

π2+1
χΩ1

)
u2
]
dx ≥

π2

π2 + 1
〈u, u〉H1

0
,

and the left-hand side equals 〈Φ−1L0u, u〉H1
0
. So the Rayleigh quotient, and hence the spectrum,

and in particular the essential spectrum of Φ−1L0 is bounded from below by π2

π2+1
. Hence also

σess(Φ
−1Lω) ⊂

[
π2

π2+1
,∞

)
.

For analyzing eigenvalues of Φ−1Lω we note that, for (ν, u) ∈ R×H1
0 (Ω), ν 6= 1,

(Φ−1Lω)[u] = νu ⇐⇒ Lω[u] = νΦ[u]

⇐⇒ −∆u− 3|ω|ωu = ν(−∆u+ u)

⇐⇒ (1− ν)(−∆u+ u) = (1 + 3|ω|ω)u

⇐⇒ (−∆u+ u) =
1

1− ν︸ ︷︷ ︸
=:κ

(1 + 3|ω|ω)u,

⇐⇒

∫

Ω

[∇u · ∇ϕ+ uϕ] dx

︸ ︷︷ ︸
=〈u,ϕ〉

H1
0

= κ

∫

Ω

(1 + 3|ω|ω)uϕ dx

︸ ︷︷ ︸
=:N(u,ϕ)

for all ϕ ∈ H1
0 (Ω),

(26)
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which gives a new eigenvalue problem avoiding Φ−1, with spectral parameter κ. N is a sym-
metric bilinear form on H1

0 (Ω) and due to the positivity of ω, which can be proved by interval
evaluations, also positive definite. Therefore, 1 − ν > 0 for all possible eigenvalues ν and we
are now left to compute upper and lower bounds for eigenvalues κ of (26) neighbouring 1.
Defining the essential spectrum of (26) in the usual way to be the one of its associated self-

adjoint operator R =
(
IH1

0
− Φ−1Lω

)−1

(note that the eigenvalue problem (26) is equivalent

to Ru = κu), we see that it is bounded from below by (1−min σess(Φ
−1Lω))

−1 ≥ π2 + 1.

The following theorem is well known and provides an easy and efficient way for computing
upper bounds to eigenvalues below the essential spectrum, and hence (here) in particular to
eigenvalues below π2 + 1:

Theorem 2 (Rayleigh-Ritz). Let v1, . . . , vn ∈ H1
0 (Ω) be linearly independent and define the

matrices
A0 :=

(
〈vi, vj〉H1

0

)
i,j=1,...,n

, A1 := (N(vi, vj))i,j=1,...,n .

Denote by Λ1 ≤ . . . ≤ Λn the eigenvalues of A0x = ΛA1x and suppose that Λn < π2 + 1. Then
there are at least n eigenvalues of (26) below π2 + 1, and the n smallest of these, ordered by
magnitude, satisfy

κi ≤ Λi, i = 1, . . . , n.

Note that good upper bounds will be obtained by Theorem 2 if v1, . . . , vn ∈ H1
0 (Ω) are chosen as

approximate eigenfunctions associated with the n smallest eigenvalues of (26). The remaining
task for applying Theorem 2 is the enclosure of matrix eigenvalues, which can be achieved
using interval arithmetic and [14, Lemma 4] or using interval packages like INTLAB [21].

For the computation of lower eigenvalue bounds, which is more problematic than obtaining
upper bounds, we use the following method of Lehmann and Goerisch (see [5]).

Theorem 3. Let v1, . . . , vn ∈ H1
0 (Ω) and A0, A1 as before. Let X be some vector space, b some

symmetric, positive definite bilinear form on X, and T : H1
0 (Ω) → X some linear operator

satisfying b(Tψ, Tϕ) = 〈ψ, ϕ〉H1
0
for all ψ, ϕ ∈ H1

0 (Ω).

Let w1, . . . , wn ∈ X satisfy

b(Tϕ,wi) = N(ϕ, vi) for all ϕ ∈ H1
0 (Ω), i = 1, . . . , n (27)

and define A2 := (b(wi, wj))i,j=1...,n. Moreover, let ρ ∈ R such that

Λn < ρ ≤ π2 + 1 (28)

and in addition
ρ ≤ κn+1, (29)

if an (n+ 1)-st eigenvalue κn+1 < π2 + 1 exists.
Then, with µ1 ≤ . . . ≤ µn < 0 denoting the eigenvalues of

(A0 − ρA1)x = µ(A0 − 2ρA1 + ρ2A2)x, (30)

we have
κm ≥ ρ−

ρ

1− µn+1−m

, m = 1, . . . , n.

Remark 4. (i) (28) and Theorem 2 imply in particular that at least n eigenvalues κ1 ≤
. . . ≤ κn < π2 + 1 exist.
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(ii) Again by (28) and Theorem 2, the matrix A0 − ρA1 is negative definite. Moreover, (27)
and (28) show after some calculations that A0 − 2ρA1 + ρ2A2 is positive definite, hence
the matrix eigenvalue problem (30) has indeed only negative eigenvalues.

(iii) We will see later that usually (27) does not determine w1, . . . , wn uniquely. A closer look
at the proof of Theorem 3 makes clear that good bounds will be obtained if wi ≈

1
Λi
Tvi,

when (Λi, vi) is an approximate eigenpair to problem (26).

(iv) Condition (29) requires an a-priori lower bound for the (n+1)-st eigenvalue (if it exists)
in order to compute lower bounds for the n smallest eigenvalues. However, a rough lower
bound ρ will be sufficient for this purpose and can be obtained using a homotopy method
(see subsection 5.1).

We will now explain how to choose X, b, T and w1, . . . , wn ∈ X satisfying the assumptions of
Theorem 3: Let

X =
(
L2(Ω)

)2
× L2(Ω), b

((
w1

w2

)
,

(
w̃1

w̃2

))
:= 〈w1, w̃1〉L2 + 〈w2, w̃2〉L2 , Tu :=

(
∇u
u

)
.

Obviously, b(Tψ, Tϕ) = 〈ψ, ϕ〉H1
0
for all ψ, ϕ ∈ H1

0 (Ω). We consider condition (27):

b(Tϕ,wi) = N(ϕ, vi) for all ϕ ∈ H1
0 (Ω)

⇐⇒ 〈∇ϕ,wi,1〉L2 + 〈ϕ,wi,2〉L2 = 〈ϕ, (1 + 3|ω|ω)vi〉L2 for all ϕ ∈ H1
0 (Ω)

⇐⇒ wi,1 ∈ H(div,Ω), − div(wi,1) + wi,2 = (1 + 3|ω|ω)vi
⇐⇒ wi,1 ∈ H(div,Ω), wi,2 = div(wi,1) + (1 + 3|ω|ω)vi. (31)

This shows that wi,1 ∈ H(div,Ω) can be chosen arbitrarily whereas wi,2 has to be chosen
according to (31). Recalling Remark 4 (iii), one should have wi ≈

1
Λi
Tvi with an approximate

eigenpair (Λi, vi) to obtain good bounds. Since wi,2 is already fixed, it remains to require

wi,1 ≈
1

Λi

∇vi.

A suitable choice of wi,1 is therefore given by an approximate minimizer in H(div,Ω) of

∥∥ 1
Λi
∇vi − w

∥∥2

L2 +
∥∥− divw +

(
1
Λi

− (1 + 3|ω|ω)
)
vi
∥∥2

L2 .

5.1 Homotopy method

Our aim is now to find some ρ ∈ R such that Λn < ρ ≤ κn+1 < π2 + 1 if κn+1 exists, or
Λn < ρ ≤ π2 + 1 otherwise. The crucial idea is to find a base problem, for which we have
knowledge about the eigenvalues, and connect it with the original problem via a family of
eigenvalue problems such that, indexwise, the eigenvalues increase along the homotopy. In our
case it is necessary to combine two separate homotopies: One is needed to find lower bounds
for eigenvalues of the eigenvalue problem −∆u+ u = κ(1+ c)u in Ω (u ∈ H1

0 (Ω)), where c is a
suitable piecewise constant function on Ω. A second homotopy then connects this eigenvalue
problem to the original one. For the first homotopy we use a domain decomposition method,
which goes back to an idea of E.B. Davies and is explained in detail in [6].

To construct a suitable base problem, choose 0 = ξ0 < ξ1 < . . . < ξk and a function c ≥ 3|ω|ω
which is constant on each of the rectangles

(−1, 0)× (0, 1), (ξi, ξi+1)× (0, 1) (i = 0, . . . , k − 1), (ξk,∞)× (0, 1)
(−1, 0)× (−ξi+1,−ξi) (i = 0, . . . , k − 1), (−1, 0)× (−∞,−ξk).
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Note that since ω has compact support, c = 0 on (ξk,∞)× (0, 1) and on (−1, 0)× (−∞,−ξk)
can be chosen if ξk is large enough (which we will assume in the following). Define now
Ω1 := (−1, 0) × (0, 1), Ω2 := (0,∞) × (0, 1), Ω3 := (−1, 0) × (−∞, 0) and consider for
j = 1, 2, 3 the eigenvalue problems




−∆u+ u = κ(1 + c)u in Ωj
∂u
∂ν

= 0 on the interfaces Γ1 := {0} × (0, 1), Γ2 := (−1, 0)× {0}
u = 0 on ∂Ω ∩ ∂Ωj.

(32)

Note that a lower bound for the essential spectrum of the eigenvalue problems on Ω2 and Ω3

is given by π2 + 1 due to the compact support of c. Using separation of variables on each of
the above rectangles we can compute fundamental systems for the resulting ODE problems.
Problem (32) (for j = 1, 2, 3) thus leads to transcendental equations in κ, whose solutions are
the eigenvalues of (32). By interval bisection and an Interval Newton method we can compute
enclosures of these roots and therefore enclosures for all eigenvalues below π2 + 1 − ε, with

some appropriately chosen ε > 0, of the three eigenvalue problems. Let κ
(0)
1 ≤ κ

(0)
2 ≤ . . . ≤ κ

(0)
L

denote the union of all these eigenvalues (of all three problems) ordered by magnitude and
counted by multiplicity. The following Lemma allows us to compare these eigenvalues with
the eigenvalues below π2 + 1 of the problem

{
−∆u+ u = κ(1 + c)u in Ω

u = 0 on ∂Ω,
(33)

which we denote by κ
(∞)
i , ordered by magnitude and counted by multiplicity.

Lemma 2. For all i = 1, . . . , L we have κ
(0)
i ≤ κ

(∞)
i , provided that an i-th eigenvalue κ

(∞)
i <

π2 + 1 of (33) exists.

Proof. Let V :=
{
u ∈ L2(Ω) : u|Ωj

∈ H1(Ωj), u|∂Ω∩∂Ωj
= 0 for j = 1, 2, 3

}
. Since V ⊃ H1

0 (Ω)
we have due to Poincaré’s min-max principle:

κ
(0)
i = inf

U⊂V subspace
dimU=i

max
u∈U\{0}

〈∇u,∇u〉L2 + 〈u, u〉L2

〈(1 + c)u, u〉L2

≤ inf
U⊂H1

0 (Ω) subspace
dimU=i

max
u∈U\{0}

〈∇u,∇u〉L2 + 〈u, u〉L2

〈(1 + c)u, u〉L2

= κ
(∞)
i .

In principle, we can construct a homotopy connecting problems (32) and (33), but this is
unnecessary, since a pure comparison of these two problems already leads to the desired rough
lower bound for some higher eigenvalue of (33). More precisely, numerical Rayleigh-Ritz
computations (Theorem 2) for problem (33), with some suitably chosen n ≤ L − 1, turn out

to give bounds κ̄
(∞)
1 ≤ · · · ≤ κ̄

(∞)
n+1 < π2 + 1, whence by Theorem 2 at least n + 1 eigenvalues

κ
(∞)
1 ≤ · · · ≤ κ

(∞)
n+1 of problem (33) below π2 + 1 exist, and κ

(∞)
i ≤ κ̄

(∞)
i . Moreover, the

computations give κ̄
(∞)
n < κ

(0)
n+1, whence we can find some ρ ∈ R such that

κ̄(∞)
n < ρ ≤ κ

(0)
n+1

Lemma 2

≤ κ
(∞)
n+1 < π2 + 1. (34)

As a second step we have to connect problem (33), with piecewise constant coefficient function
on the right-hand-side, with our original eigenvalue problem (26). For this purpose we define
cs := (1− s)c+ s (3|ω|ω) for 0 ≤ s ≤ 1 and consider the s-dependent eigenvalue problem

∫

Ω

[∇u · ∇ϕ+ uϕ] dx = κ̃(s)
∫

Ω

(1 + cs)uϕ dx for all ϕ ∈ H1
0 (Ω). (35)
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Obviously, for s = 0 this eigenvalue problem equals (33) (i.e. κ̃
(0)
i = κ

(∞)
i ) and for s = 1

we have problem (26). Moreover, by Poincaré’s min-max principle, the eigenvalues of (35)

increase along the homotopy since c ≥ 3|ω|ω, i.e. for 0 ≤ s ≤ t ≤ 1 we have κ̃
(s)
i ≤ κ̃

(t)
i as

long as κ̃
(t)
i < π2+1. Step by step, this provides numbers ρ (see (28), (29)) for the application

of Theorem 3 to problem (35), for an increasing (finite) sequence of s-values. A detailed
description of this homotopy method can be found e.g. in [9].

6 Numerical Results

6.1 Practical computation of the residuum

We first want to comment on some technical difficulties arising in the defect computation.
Recall that we can estimate the residuum by:

‖ −∆ω − |ω|3‖H−1 ≤ ‖∇ω − ρ̃‖L2 + C2‖ − div ρ̃− |ω|3‖L2 , (36)

where ρ̃ ∈ H(div,Ω) approximately minimizes the right-hand side of (36) and therefore is an
approximation of ∇ω. The approximate solution ω is of the form ω = ãw + v, with a corner
singular function w = λγ ∈ H1

0 (Ω) (where γ is given by (17) and λ(x, y) = (1 − x2)2(1 −
y2)2χ(−1,1)2) and a finite element approximation v ∈ VN of the regular part (compare (21);
now we write v instead of ṽ). Here VN denotes an H1

0 -conforming finite element space of
dimension N . Let now ρ̃v ∈ (VN)

2 be an approximation of ∇v (as well as an approximate
solution of div ρ = −|ω|3− ã∆w; compare (20)). ρ̃v is computed by approximate minimization
of ‖ρ−∇v‖2L2 + C2

2‖ div ρ+ ã∆w + |ω|3‖2L2 in (VN)
2. Define

ρ̃ := ã∇w + ρ̃v.

Substituting the expressions for ω and ρ̃ in (36) yields

‖ −∆ω − |ω|3‖H−1 ≤ ‖∇v − ρ̃v‖L2 + C2‖ − ã∆w − div ρ̃v − |ãw + v|3‖L2 . (37)

The first summand on the right-hand side of (37) can be computed exactly using a quadrature
rule of sufficiently high degree together with interval arithmetic, as ρ̃ is an element of (VN)

2 and
also ∇v is piecewise polynomial in each component. Due to the mixture of cartesian and polar
coordinates in the second summand, a verified computation of a tight upper bound for this term
is technically non-trivial. We interpolate the singular function γ(r, ϕ), as well as x∂γ

∂x
(r, ϕ) =

−2
3
r2/3 cosϕ sin ϕ

3
and y ∂γ

∂y
(r, ϕ) = 2

3
r2/3 sinϕ cos ϕ

3
in the finite element space VN , and replace

the corresponding terms in the second summand in (37) by these interpolations. Now the
integrand is piecewise polynomial, and hence the integral can be computed exactly. The
remaining task is to bound the interpolation errors, which after some elementary estimations
amounts to the computation of bounds to

∫

K

(γ − I(γ))2 d(x, y) (38)

for each element K (with I(γ) denoting the interpolation), and to analogous terms for x∂γ
∂x

and y ∂γ
∂y
. For this purpose we cover each element K by a finite union of circular segments

(i.e. rectangles in polar coordinates), replace K in (38) by this union (giving an upper bound
to the integral), and transform the integral to polar coordinate integration (over a union of
rectangles), which can be carried out in closed form, using Maple for calculating primitive
functions.
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6.2 Computational Results

We will now report on some of the numerical results that finally prove the existence of a solution
of problem (5) together with an error bound. All computations have been carried out on the
parallel cluster OTTO of the Institute for Applied and Numerical Mathematics at Karlsruhe
Institute of Technology. We used the finite element software M++ [24], which is written in
C++. For interval arithmetic we used the libraries C-XSC [16] as well as MPFR and MPFI
[8]. Our source code is available on http://www.math.kit.edu/user/mi1/Plum/PaperPPR/ or
upon request to the third author.

As already mentioned in section 3, we used the computational domain Ω0 = Ω∩ (−3, 3)2, and
taking symmetry into account we restricted ourselves to the half domain Ω̃0 = conv{(0, 0), (3, 0),
(3, 1), (−1, 1)}, imposing Neumann boundary conditions on ∂Ω̃0\∂Ω0 =: ΓN . This diminishes
the constant K in (7), since only eigenfunctions which are symmetric w.r.t. ΓN have to be
considered in the eigenvalue problem (26), and hence less eigenvalues contribute to the min-
imum in (23). Furthermore, symmetry reduces the computational effort. Using the space
{u ∈ H1(Ω̃0) : u = 0 on ∂Ω0 ∩ ∂Ω̃0} in all computations has lead to an approximate solution
that is symmetric w.r.t. ΓN and eventually - after a successful application of our theoretical
results - to a symmetric solution u of (5).

In our computations we used Serendipity finite elements, whose nodes are given by corners
and midpoints of the elements. The associated linear algebraic systems (occuring in each step
of the underlying Newton iteration) were approximately solved using a preconditioned Krylov
method [24]. Figure 1 shows the computed approximate solution ω0 ∈ H1

0 (Ω0) (see (16)) on
the full domain Ω0.

-1 -0.5  0  0.5  1  1.5  2  2.5  3-3
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 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

Figure 1: Approximate solution ω0 ∈ H1
0 (Ω0)

To compute bounds for eigenvalues of (26) we used, as described before, a domain decom-
position method to obtain lower bounds for the base eigenvalues and a homotopy method to
connect the base problem (33) with our original eigenvalue problem (26). We note that for the
eigenvalue computation we did not use the approximation ω = ãw + v, but an interpolation
ωFE := IV

Ñ
(ω) in a finite element space VÑ which is coarser than VN . This avoids compli-

cated integration during the homotopies and saves computation time. Eventually we obtain
a bound for the inverse of the linearization at ωFE, which can then be used to compute the
corresponding bound for Lω by Lemma 1 (b), with ũ = ωFE and u = ω.

Recall that the base problem is given by

{
−∆u+ u = κ(1 + c)u in Ω

u = 0 on ∂Ω,
(39)
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where now c ∈ L∞(Ω) is chosen such that c ≥ 3|ωFE|ωFE in Ω and is constant on the
rectangles (−1, 0) × (0, 1), (0, 1) × (0, 1), (1, 3) × (0, 1) and (3,∞) × (0, 1) as well as on
(−1, 0) × (−1, 0), (−1, 0) × (−3,−1) and (−1, 0) × (−∞,−3). This choice defines also the
aforementioned comparison problem for the domain decomposition.

In the following table and figure we display some results of our eigenvalue computations. The

first column of the table shows lower bounds κ
(0)
i for the eigenvalues κ

(0)
i of the comparison

problem, which by Lemma 2 constitute lower bounds (indexwise) for the eigenvalues κ
(∞)
i = κ̃

(0)
i

of the base eigenvalue problem (39). The second column of the table shows upper bounds κ̄
(∞)
i

for the eigenvalues κ
(∞)
i , computed by Theorem 2. In particular κ̄

(∞)
11 < κ

(0)
12 (≤ κ

(∞)
12 ), whence

(34) holds for n = 11 and ρ = κ
(0)
12 , which enables the start of the homotopy for problem

(35). The figure shows the course of the homotopy, where we started with the a-priori lower

bound κ
(0)
12 for the 12th eigenvalue κ̃

(0)
12 = κ

(∞)
12 of problem (35) with s = 0 (and ω replaced by

ωFE). For additional illustration, the figure also contains approximations to the eigenvalues

κ̃
(0)
1 , . . . , κ̃

(0)
12 . At the end of the homotopy we obtained a lower bound for the third eigenvalue

of problem (26) (with ω replaced by ωFE). Using the Lehmann-Goerisch Theorem once again
we computed the desired lower bound for the second eigenvalue of (26) (with ωFE instead
of ω), which is the smallest eigenvalue above 1. Finally an application of the Rayleigh-Ritz
method yields an upper bound for the first eigenvalue of (26) (with ω replaced by ωFE) and
Lemma 1 (b) then gives a bound for the inverse of the linearization at ω.

i κ
(0)
i κ

(∞)
i

1 0.08291 0.18117
2 0.35867 0.48073
3 0.52231 0.69818
4 0.63443 0.84524
5 0.91020 1.02708
6 1.08005 1.43595
7 1.18596 1.52509
8 1.73749 1.93536
9 1.73749 1.97598
10 1.79188 2.07092
11 2.01325 2.27739
12 2.35653 2.75040

Table 1: Eigenvalues of
the comparison problem
and the base problem

κ̃
(0)
1

κ̃
(0)
2

κ̃
(0)
3

κ̃
(0)
4

κ̃
(0)
5

κ̃
(0)
6

κ̃
(0)
7

κ̃
(0)
8

κ̃
(0)
9

κ̃
(0)
10

κ̃
(0)
11

κ̃
(0)
12

κ
(0)
12

1

s = 0
s1 = 0.0313

s2 = 0.0918
s3 = 0.3472

s4 = 0.643
s5 = 0.6876

s6 = 0.8438
s = 1

κ3

κ
2
=

1.368

κ1 =
0.353

Figure 2: Course of the homotopy

An embedding constant C4 for the embedding H1
0 (Ω) →֒ L4(Ω), which is needed for the

application of Theorem 1, can be computed using Lemma 2 in [20]. The computation requires
a lower bound for the smallest Dirichlet eigenvalue of −∆ on Ω, which can again be obtained
using the Lehmann-Goerisch method.
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Verified bounds for some of the relevant data are given by:

‖ω‖L4(Ω) ≤ 3.014333

‖ −∆ω − |ω|3‖H−1(Ω) ≤ 0.001699

Ksym = 3.722884

C4 = 0.462000

α = 0.006471,

where Ksym denotes a constant satisfying

‖v‖H1
0 (Ω) ≤ Ksym‖Lω[v]‖H−1(Ω) for all v ∈ H1

0 (Ω) which are symmetric w.r.t. ΓN . (40)

Thus, the existence of a symmetric solution u ∈ H1
0 (Ω) to problem (5) with ‖u − ω‖H1

0
≤

0.006471 is proved.

7 Nondegeneracy of the solution

Besides decay properties, which we will analyze in the next section, we also prove nondegen-
eracy of the solution u ∈ H1

0 (Ω) we have obtained, i.e. that 0 is not in the spectrum of the
linearization Lu at u. For this purpose we note that due to the restriction to the half domain Ω̃0

with Neumann boundary conditions on ΓN , the eigenvalue bounds computed in the previous
section are not sufficient to prove nondegeneracy of u in the whole space H1

0 (Ω). Indeed, we
have to compute also eigenvalues of Φ−1Lω : H1

0 (Ω) → H1
0 (Ω) corresponding to antisymmetric

eigenfunctions. This can be done using the same methods as described in the previous sections,
this time imposing Dirichlet boundary conditions on ΓN . Altogether, bounds for the smallest
eigenvalues of Φ−1Lω are given by

ν1 ≤ −1.8359, ν2 ≥ 0.1116, (41)

where the first eigenvalue corresponds to a symmetric eigenfunction, while the second one
corresponds to an antisymmetric one. Thus, 0 is not in the spectrum of Φ−1Lω. To obtain the
corresponding result also for Φ−1Lu, we first apply Lemma 1 (b), with p1 = p2 = p3 = p4 = 4,
to obtain

Corollary 1. Let u, ũ ∈ H1
0 (Ω) and let dist (σ(Φ−1Lũ), 0) > 0. Furthermore assume that, for

some α > 0,
‖u− ũ‖H1

0
≤ α.

If
κ := 3C3

4 (C4α + 2‖ũ‖L4)α < dist(σ(Φ−1Lũ), 0) (42)

then nondegeneracy of u follows.

For the proof note that dist(σ(Φ−1Lũ), 0) > 0 implies ‖v‖H1
0
≤ K‖Lũ[v]‖H−1 (v ∈ H1

0 (Ω)) with

K = 1
dist(σ(Φ−1Lũ),0)

(see also (22), (23)).

We apply Corollary 1 with ũ = ω, and u being the solution of (5) given by Theorem 1, and
thus satisfying

‖u− ω‖H1
0
≤ α. (43)

Using the data of the previous paragraph we obtain κ = 0.01473 and therefore, by (41) and
(42), nondegeneracy of u. Moreover, using Poincaré’s min-max principle, we can deduce from
(41) and (43) that the Morse index of u is 1; we omit the details here.
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8 Decay at infinity

We finally prove that the solution u ∈ H1
0 (Ω) decays exponentially at infinity.

Theorem 4. Let φ(z) = sin(πz). There exists a constant β > 0 such that for x→ ∞ we have

u(x, y) = βe−πxφ(y) + o(e−πxφ(y))
∂u
∂x
(x, y) = −βπe−πxφ(y) + o(e−πxφ(y))

and analogously for y → −∞

u(x, y) = βeπyφ(x+ 1) + o(eπyφ(x+ 1))
∂u
∂y
(x, y) = βπeπyφ(x+ 1) + o(eπyφ(x+ 1)).

Proof. For the proof it is sufficient to show that u ∈ C( Ω \[−2.5, 2.5]2) and u(x, y) → 0 as
x → ∞ uniformly in y (and similarly u(x, y) → 0 as y → −∞ uniformly in x). Then Prop.
4.2. in [7] can be applied to the half strips Ω∩{x > 2.5} and Ω∩{y < −2.5}, and implies the
theorem.

So let r = 1√
2
+ ε (for some sufficiently small ε > 0) and let Ωc ⊂ Ω be a C2-domain

such that {(x, y) ∈ Ω : 2.5 < x < 3.5} ⊂ Ωc ⊂ {(x, y) ∈ Ω : 2 < x < 4} and
dist

(
Ωc ∩Br(3,

1
2
), (∂Ωc) ∩ Ω

)
> 0. Choose moreover a cutoff-function ζ ∈ C∞(Ωc) such that

ζ = 0 on (∂Ωc) ∩ Ω and ζ = 1 in Ωc ∩ Br(3,
1
2
).

Define now ũ = uζ ∈ H1
0 (Ωc); then for every ϕ ∈ H1

0 (Ωc) we have, since
∫
Ωc

∇u · ∇(ζϕ) dx =∫
Ωc
u3ζϕ dx,

∫

Ωc

∇ũ · ∇ϕdx =

∫

Ωc

(ζ∇u · ∇ϕ+ u∇ζ · ∇ϕ) dx

=

∫

Ωc

∇u · ∇(ζϕ) dx−

∫

Ωc

(2∇u · ∇ζ + u∆ζ)ϕdx =

∫

Ωc

fϕ dx,

where f := u3ζ − 2∇u · ∇ζ − u∆ζ ∈ L2(Ωc).

Then Theorem 9.8 in [3] yields (with Ω1 := Ωc ∩ Br(3,
1
2
)):

ũ ∈ H2(Ω1) and ‖ũ‖H2(Ω1) ≤ γ
(
‖ũ‖L2(Ωc) + ‖f‖L2(Ωc)

)

for some constant γ not depending on u.

Since ũ = u in Ω1, ζ ∈ C∞(Ωc) and ‖f‖L2(Ωc) ≤ C‖u‖H1(Ωc), we obtain

u ∈ H2(Ω1) and ‖u‖H2(Ω1) ≤ Ĉ ‖u‖H1(Ωc).

Define now
un(x, y) := u(x+ n, y), n ∈ N, (x, y) ∈ Ωc.

Then, since
∫
Ωc

∇un · ∇ϕdx =
∫
Ωc
u3nϕdx for ϕ ∈ H1

0 (Ωc), by the above we obtain

un ∈ H2(Ω1) and ‖un‖H2(Ω1) ≤ Ĉ ‖un‖H1(Ωc).

Using the embedding H2(Ω1) →֒ C(Ω1) implies (with K denoting the embedding constant):

un ∈ C(Ω1) and ‖un‖C(Ω1)
≤ KĈ ‖un‖H1(Ωc).

Therefore we have u ∈ C(Ω ∩ {x > 2.5}). Moreover, ‖un‖H1(Ωc) = ‖u‖H1(Ωc+(n,0)) → 0
(n → ∞) since u ∈ H1(Ω), whence ‖un‖C(Ω1)

→ 0 as n → ∞ follows, implying u → 0 as
x→ ∞ uniformly in y.
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