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THE PICARD GROUP OF THE UNIVERSAL ABELIAN VARIETY AND

THE FRANCHETTA CONJECTURE FOR ABELIAN VARIETIES

ROBERTO FRINGUELLI AND ROBERTO PIRISI

Abstract. We compute the Picard group of the universal abelian variety over the moduli
stack Ag,n of principally polarized abelian varieties over C with a symplectic principal level
n-structure. We then prove that over C the statement of the Franchetta conjecture holds in a
suitable form for Ag,n.
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Introduction

Consider the moduli stack Mg of smooth genus g curves. Let Cη the universal curve over the
generic point η of Mg. The weak Franchetta conjecture says that Pic(Cη) is freely generated by
the cotangent bundle ωCη

. Arbarello and Cornalba in [AC87] proved it over the complex numbers.
Then Mestrano [Mes87] and Kouvidakis [Kou91] deduced over C the strong Franchetta conjec-
ture, which says that the rational points of the Picard scheme PicCη

are precisely the multiples
of the cotangent bundle. Then Schröer [Sch03] proved both the conjectures over an algebraically
closed field of arbitrary characteristic. At the end of loc. cit., Schröer poses the question of
whether it is possible to generalize the Franchetta Conjecture to other moduli problems.

In this paper we focus on the universal abelian variety Xg,n over the moduli stack Ag,n of
principally polarized abelian varieties of dimension g (or p.p.a.v. in short) with a symplectic
principal level-n structure (or level-n structure in short). For the analogous of the Franchetta
conjecture in this new setting, we have chosen the name of abelian Franchetta conjecture.

First of all, observe that the universal abelian variety π : Xg,n → Ag,n comes equipped with
some natural line bundles:

- the rigidified canonical line bundle LΛ, i.e. a line bundle, trivial along the zero section,
such that over any closed point (A, λ, ϕ) ∈ Ag,n, the restriction of LΛ along the fiber
π−1 ((A, λ, ϕ)) induces twice the principal polarization λ.

- the rigidified n-roots line bundles, i.e. the line bundles, trivial along the zero section,
which are n-roots of the trivial line bundle OXg,n

.

We can formulate the weak abelian Franchetta conjecture in terms of a description of the
Picard group of a generic universal abelian variety over Ag,n (observe that if n = 1, 2 the generic
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point of Ag,n is stacky, so it makes little sense to speak of “the” generic abelian variety), and
the strong one in terms of rational sections of the relative Picard scheme.

Question 1 (Weak abelian Franchetta Conjecture). Is there a principally polarized abelian va-
riety with level-n structure (A,Λ, Φ) over a field K such that A → Xg,n is a dominant map, and
the Picard group of A is freely generated by the rigidified canonical line bundle and the rigidified
n-roots line bundles?

Question 2 (Strong abelian Franchetta Conjecture). Does every rational section of the relative
Picard sheaf PicXg,n/Ag,n

→ Ag,n come from one of the elements above?

At first sight, the two question seems different. The reason is that, in general, the relative
Picard group of a scheme f : X → S does not coincide with the S-sections of the associated
Picard sheaf PicX/S . However, they are isomorphic, if the scheme X → S admits a section and
the structure homomorphism OS → f∗OX is universally an isomorphism. Since the universal
abelian variety satisfies both these properties, the conjectures are equivalent. In other words,
we can formulate the abelian Franchetta conjecture in terms of the set of rational relative line
bundles on Xg,n → Ag,n: the set of the equivalence classes of line bundles on U ×Ag,n

Xg,n → U
where U is an open substack of Ag,n. Two line bundles are in the same class if and only if they are
isomorphic along an open subset of Ag,n. Observe that the tensor product induces a well-defined
group structure on this set. Our main result is

Theorem A. Assume that g ≥ 4 and n ≥ 1. Then

Pic(Xg,n)
/
Pic(Ag,n) =

{
(Z/nZ)

2g ⊕ Z[
√
LΛ] if n is even,

(Z/nZ)
2g ⊕ Z[LΛ] if n is odd,

where
√
LΛ is, up to torsion, a square-root of the rigidified canonical line bundle LΛ and (Z/nZ)2g

is the group of rigidified n-roots line bundles. Moreover, the line bundle
√
LΛ, when it exists,

can be chosen symmetric.

The main difficulty in proving this theorem resides in the fact that differently from Mg,
the stack Ag is not generically a scheme. To solve this, we use the techniques of equivariant
approximation, first introduced by Totaro, Edidin and Graham in [EG96], [Tot99].

However, a description of the entire Picard group Pic(Xg,n) is still incomplete. Ideed, while it
is well known that the Picard group of Ag := Ag,1 is freely generated by the Hodge line bundle
det

(
π∗

(
ΩXg/Ag

))
(see [Put12, Theorem 5.4]), the same is not true in general. For some results

about the Picard group of Ag,n the reader can refer to [Put12].
The above theorem implies directly

Corollary B. [Abelian Franchetta conjecture]. Assume g ≥ 4 and n ≥ 1. The group of rational
relative rigidified line bundles on Xg,n → Ag,n is isomorphic to

(Z/nZ)
2g ⊕ Z[

√
LΛ] if n is even,

(Z/nZ)2g ⊕ Z[LΛ] if n is odd.

where
√
LΛ is, up to torsion, a square-root of the rigidified canonical line bundle LΛ and (Z/nZ)

2g

is the group of rigidified n-roots line bundles. Moreover, the line bundle
√
LΛ, when it exists,

can be chosen symmetric.

When g = 2, 3 and n > 1 we can prove Theorem A and Corollary B only when n is even. It
still remains to find out whether the torsion free part is generated by LΛ or

√
LΛ, when n is odd.

When n = 1, we can use the Torelli morphism to extend the result to the genus two and three
cases. Let Jg be the universal Jacobian on Mg of degree 0. We have a cartesian diagram of
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stacks

Jg

τ̃g
//

��

Xg

��

Mg

τg
// Ag

where the map τg is the Torelli morphism. Observe that the Hodge line bundle on Xg,n restricts
to the Hodge line bundle det

(
π∗

(
ωMg,1/Mg

))
on Mg. In particular the Torelli morphism induces

an isomorphism of Picard groups Pic(Ag) ∼= Pic(Mg) for g ≥ 3.
We will show that we have an analogous result for the universal families. More precisely

Theorem C. Assume that g ≥ 2. Then

Pic(Xg)
/
Pic(Ag) = Z[LΛ]

Furthermore, when g ≥ 3, the morphism τ̃g : Jg → Xg induces an isomorphism of Picard
groups.

We sketch the strategy of the proof of Theorem A. For any p.p.a.v. A, we have the following
exact sequence of abstract groups

(1) 0 −→ HomAg,n
(Ag,n,X

∨
g,n) −→ Pic(Xg,n)

/
Pic(Ag,n)

res−→ NS(A)

where X ∨
g,n is the universal dual abelian variety and the second map is obtained by composing

the restriction on the Picard group of the geometric fiber of Xg,n → Ag,n corresponding to
(A, λ, ϕ) with the first Chern class map.

Using the universal principal polarization, we can identify the kernel with the set of sections

of the universal abelian variety and we will prove that it is isomorphic to the group (Z/nZ)
2g

of the n-torsion points. This was obtained by Shioda in the elliptic case and then in higher
dimension by Silverberg when Ag,n is a variety, i.e. when n ≥ 3. We will extend their results to

the remaining cases. Then, using the universal principal polarization, we will identify (Z/nZ)2g

with the group of rigidified n-roots line bundles.
Then, we will focus on the cokernel. We will fix a Jacobian variety J(C) with Neron-Severi

group generated by its theta divisor θ. Since the rigidified canonical line bundle LΛ restricted to
the Jacobian is algebraically equivalent to 2θ, the index of the image of res in NS(J(C)) can be
at most two. Then, by studying the existence of a line bundle on Xg,n inducing the universal
principal polarization, we will show that the inclusion Im(res) ⊂ NS(J(C)) is an equality if and
only if n is even, concluding the proof of Theorem A.

The paper is organized in the following way. In Section 1, we recall some known facts about
abelian varieties and their moduli spaces. In Section 2, we give an explicit description of the set
of sections of the universal abelian variety Xg,n → Ag,n. Then in Section 3, we prove the exact-
ness of the sequence (1) and we give a proof of Theorem C. Finally, in Section 4 we show that the
universal principal polarization of Xg,n → Ag,n is induced by a line bundle if and only if n is even.

We will work with the category of schemes locally of finite type over the complex numbers.
The choice of the complex numbers is due to the fact that our computation is based upon the
Shioda-Silverberg’s computation of the Mordell-Weil group of Xg,n → Ag,n for n ≥ 3 and the
Putman’s computation of the Picard group of Ag,n, which are proved over the complex numbers.
Moreover, Shioda proved that, in positive characteristic, the Mordell-Weil group of X1,4 → A1,4

can have positive rank (see [Shi73]). So, it seems that our statements are not true in positive
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characteristic, but we do not have any evidence of this.
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helpful discussions.

1. The universal abelian variety Xg,n → Ag,n.

In this section we will introduce our main object of study: the universal abelian variety Xg,n

over the moduli stack Ag,n of principally polarized abelian varieties with level n-structure. Before
giving a definition, we need to recall some known facts about the abelian schemes. For more
details the reader can refer to [Mum70] and [MFK94, Chap. 6, 7].

Definition 1.1. A group scheme π : A → S is called an abelian scheme if π is smooth, proper
and the geometric fibers are connected.

It is known that an abelian scheme is a commutative group scheme and its group structure is
uniquely determined by the choice of the zero section. An homomorphism of abelian schemes is
a morphism of schemes which sends the zero section in the zero section.

Let A → S be a projective abelian scheme of relative dimension g and OA its zero section.
Consider the relative Picard functor

PicA/S : (Sch/S) −→ (Grp)

T → S 7→ Pic(T ×S A)
/
Pic(T ) .

We set PicA/S (Zar), resp. PicA/S (Et), resp. PicA/S (fppf) the associated sheaves with respect to

the Zariski, resp. Étale, resp. fppf topology. Since A → S has sections, namely the zero section,
and the structure homomorphism is universally an isomorphism, the relative Picard functor and
the associated sheaves above are all isomorphic (see [FGI+05, Theorem 9.2.5]). Moreover, PicA/S

is isomorphic to the functor of rigidified (i.e. trivial along the zero section) line bundles on A → S

Pic′A/S : (Sch/S) −→ (Grp)

T → S 7→ {L ∈ Pic(T ×S A)| O∗
T×SAL ∼= OT }

where OT×SA is the zero section of T ×SA → T induced by OA. This functor is represented by a
locally noetherian group S-scheme PicA/S (see [FGI+05, Theorem 9.4.18.1]), called the relative

Picard scheme. There is a subsheaf Pic0A/S ⊂ PicA/S parametrizing rigidified line bundles which
are algebraically equivalent to 0 on all geometric fibers. It is represented by an abelian scheme:
the dual abelian scheme A∨ → S [FGI+05, 9.5.24]. By [FGI+05, 9.6.22], the definition of dual
abelian scheme in [MFK94] coincides with the definition above. From the theory of the Picard
functor of an abelian scheme, we have an homomorphism of group schemes over S

(2)
λ : PicA/S → HomS(A,A

∨)
L 7→

(
a 7→ λ(L)(a) := t∗aL ⊗ L−1

)

where ta : A → A is the translation by a (see [MFK94, Ch. 6, §2]). The kernel is the dual
abelian scheme A∨ → S. In particular, when S = Spec(k), with k an algebraically closed field,
we can identify the image of λ with the Neron-Severi group NS(A) of the abelian variety A.

Definition 1.2. A principal polarization λ of a projective abelian scheme A → S is an S-
isomorphism λ : A → A∨ such that over the geometric points s ∈ S, it is induced by an ample
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line bundle on As via the homomorphism (2) above. A principally polarized abelian scheme
(A → S, λ) is a projective abelian scheme A → S together with a principal polarization λ.

We denote with A[n] (resp. A∨[n]) the group of n-torsion points (resp. of n-roots of the trivial
line bundle OA). Up to étale base change S′ → S, they are isomorphic to the locally constant

group scheme (Z/nZ)2gS′ . Observe that a principal polarization induces an isomorphism of group
schemes A[n] ∼= A∨[n]. For any principally polarized abelian scheme (A → S, λ), we denote with

en : A[n]×A∨[n] → µn,S (resp. eλn : A[n]×A[n] → µn,S)

the Weil pairing (resp. the pairing obtained by composing the Weil pairing with the isomorphism
(IdA ×S λ)|A[n]). The first one is non-degenerate, while the second one is non-degenerate and
skew-symmetric.

For the rest of the paper we fix ζn a primitive n-root of the unity over the complex numbers.
By this choice we have a canonical isomorphism between the constant group Z/nZ and the group
µn,C of the n-roots of unity, which sends 1 to ζn.

Definition 1.3. A symplectic principal level n-structure (or level n-structure in short) over
a principally polarized abelian scheme (A → S, λ) of relative dimension g is a isomorphism

ϕ : A[n] ∼= (Z/nZ)2gS such that eλn(a, b) = e(ϕ(a), ϕ(b)), where e : (Z/nZ)2gS × (Z/nZ)2gS → µn,S is

the standard non-degenerate alternating form on (Z/nZ)2gS defined by the 2g× 2g square matrix( 0 Ig
−Ig 0

)
composed with the isomorphism Z/nZ ∼= µn defined by ζn.

After these definitions we can finally introduce our main objects of study.

Definition 1.4. Let Ag,n → (Sch/C) the moduli stack whose objects over a scheme S are
the triples (A → S, λ, ϕ) where (A → S, λ) is a principally polarized abelian scheme of relative
dimension g with a level n-structure ϕ. A morphism between two triples (f, h) : (A → S, λ, ϕ) −→
(A′ → S′, λ′, ϕ′) is a cartesian diagram

A

��

f
// A′

��

S
h // S′

such that f(OA) = O′
A, where OA (resp. O′

A) is the zero section of A (resp. A′), f∨ ◦ λ′ ◦ f = λ
and ϕ′ ◦ fA[n] =

(
Id(Z/nZ)2g × h

)
◦ ϕ.

A proof of the next theorem can be obtained adapting the arguments in [MFK94, ch. 7].

Theorem 1.5. For any n ≥ 1, Ag,n is an irreducible smooth Deligne-Mumford stack of dimen-

sion g(g+1)
2 . Moreover, if n ≥ 3 it is a smooth quasi-projective variety.

This stack comes equipped with the following objects:

- two stacks Xg,n and X ∨
g,n together with representable proper and smooth morphisms of

stacks π : Xg,n → Ag,n and π∨ : X ∨
g,n → Ag,n of relative dimension g;

- a closed substack Xg,n[n] ⊂ Xg,n, which is finite and étale over Ag,n;
- an isomorphism of stacks Λ : Xg,n → X ∨

g,n over Ag,n;

- an isomorphism of stacks Φ : Xg,n[n] ∼= (Z/nZ)2g
Ag,n

over Ag,n,
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such that for any morphism p : S → Ag,n associated to an object (A → S, λ, ϕ), we have two
commutative polygons

A //

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

λ

Xg,n

π
||①①
①①
①①
①①

Λ

��

S p
//

��

Ag,n

A∨

__❄❄❄❄❄❄❄❄

// X ∨
g,n

π∨

bb❊❊❊❊❊❊❊❊

A[n] //

zz✉✉
✉✉
✉✉
✉✉
✉✉

ϕ

Xg,n[n]

π
yyss
ss
ss
ss
ss

Φ

��

S p
//

��

Ag,n

(Z/nZ)2g
Ag,n

cc❍❍❍❍❍❍❍❍❍❍

// (Z/nZ)2g
Ag,n

ee❏❏❏❏❏❏❏❏❏

where the faces with four edges are cartesian diagrams. In other words (Xg,n → Ag,n,Λ, Φ) is
the universal triple of the moduli stack Ag,n. We will call Xg,n → Ag,n the universal abelian
variety over Ag,n and with OXg,n

we will denote its zero section. The isomorphism Λ will be
called universal polarization and Φ the universal level n-structure. Observe that by definition
the stack π∨ : X ∨

g,n → Ag,n parametrises the line bundles on the universal abelian variety which
are algebraically trivial on each geometric fiber. We will call it universal dual abelian variety.

2. The Mordell-Weil group of Xg,n.

A first step to prove the Theorem A is to understand the sections of the universal dual abelian
variety X ∨

g,n → Ag,n restricted to all open substacks U ⊆ Ag,n. Using the universal polarization
Λ, this amounts to understanding the group of the rational sections of the universal abelian
variety, which is usually called Mordell-Weil group. We want to prove the following:

Theorem 2.1. Assume g ≥ 1. For all open substacks U ⊆ Ag,n the group of sections U →
Xg,n×Ag,n

U is isomorphic to (Z/nZ)2g, the isomorphism being given by restricting the canonical

isomorphism Φ : Xg,n[n] ∼= (Z/nZ)2g
Ag,n

.

In this section we will assume implicitly g ≥ 1. For n ≥ 3 the Theorem was proven by
Shioda in the elliptic case and then by Silverberg in higher dimension (see Theorem 2.8 below).
Starting from this, we will extend the Shioda-Silverberg’s results to the remaining cases. The
main problem here for n = {1, 2} is that differently from the case of Ag,mm ≥ 3, the stack Ag,n

is not generically a scheme, so we cannot really reduce the argument to considerations on the
fiber of the generic point, or more precisely, there is not generic point at all. To solve this we
introduce the technique of equivariant approximation:

Definition-Proposition 2.2. Let G be an affine smooth group scheme, and let M = [X/G] be
a quotient stack. Choose a representation V of G such that G acts freely on an open subset U
of V whose complement has codimension 2 or more. The quotient [X × U/G] will be called an
equivariant approximation of M . It has the following properties:

(1) [X × U/G] is an algebraic space. If X is quasiprojective and the action of G is linearized
then [X × U/G] is a scheme.

(2) [X × V/G] is a vector bundle over [X/G], and [X × U/G] →֒ [X × V/G] is an open
immersion, whose complement has codimension 2 or more.

(3) The map [X × U/G] → [X/G] is smooth, surjective, separated and if K is an infinite

field then every map Spec(K)
p−→ [X/G] lifts to a map Spec(K) → [X × U ]/G.

(4) If X is locally factorial, then the map [X × U/G] → [X/G] induces an isomorphism at
level of Picard groups.

Moreover, such a representation V always exists for an affine smooth groups scheme G over a
field k.
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Proof. This is presented in [EG96], where all points above are proven. The only point that
needs further commenting is point 3. Let P : Spec(K) → [X/G], and consider the fiber
[X × U/G] ×[X/G] Spec(K). It is an open subset of a vector bundle over Spec(K), so if K
is infinite we know that its rational points are dense, and we have infinitely many liftings of P .

Note if K is a finite field it is possible for the fiber [X × U/G] ×[X/G] Spec(K) to have no
rational point at all, as the rational points in a vector bundle over a finite field form a closed
subset. This shows that if K is finite the point may not have any lifting.

The last statement is a direct consequence of the well-known fact that an affine smooth
algebraic group over a field k always admits a faithful finite dimensional representation, so we
just need to prove it for G = GLn. Such a representation can be constructed for example as in
[EG96, 3.1]. �

Note that there exists r such that Ag,n is the quotient a quasiprojective scheme by a linearized
group action of the affine group scheme PGLr [MFK94, ch. 7]. Then we can take an equivariant

approximation Bg,n
π−→ Ag,n where Bg,n is a scheme, and by pulling back Xg,n we get an induced

family Xg,n → Bg,n.

Proposition 2.3. If Xg,n → Ag,n has two non isomorphic sections over some open subset
U ⊆ Ag,n, then Xg,n → Bg,n has two non isomorphic (i.e. distinct, as Xg,n, Bg,n are schemes)
sections over the open subset U := U ×Ag,n

Bg,n.

Proof. Let U , U be as above. Let σ1, σ2 be two non isomorphic sections of Xg,n → Ag,n. By the
universal property of fibered product we get induced sections (Id, σ1◦π), (Id, σ2◦π) : Bg,n → Xg,n.
We get an obvious commutative diagram, and we can conclude that the two maps must be
different since π is an epimorphism, being a smooth covering. �

This way we have reduced our problem to showing that there are exactly n2g sections of
Xg,n → Bg,n. We now proceed to prove some lemmas.

Lemma 2.4. Let S be the spectrum of a DVR R, and let A → S be an abelian scheme. Let p, P
be respectively the closed and generic point of S. Then for all m the order of the m-torsion in
the Mordell-Weil group of the closed fiber Ap is greater or equal than the order of the m-torsion
in the Mordell Weil group of the generic fiber AP .

Proof. Let A [m] → S be the closed subscheme of n-torsion points of A. Then A [m]
π−→ S is

a proper étale morphism, as we are working in characteristic zero. We may suppose that R is
Henselian. Being étale and proper, the map π is finite. A finite extension of a local Henselian
ring is a product of local Henselian rings [Sta15, Tag 04GH]. Then for every lifting of P to
A [m] we have a corresponding map of local rings R′ → R that is étale of degree one, i.e. it
is an isomorphism. This implies that there is a corresponding lifting of p to A [m], proving the
lemma. �

Lemma 2.5. Let R a Noetherian local regular ring, and let p, P be the closed and generic and
closed points of Spec(R). Let A → Spec(R) be an abelian scheme. Then for all m > 0 the
order of the m-torsion in the Mordell-Weil group of Ap is greater or equal than the order of the
m-torsion in the Mordell Weil group of AP .

Proof. We prove the lemma by induction on the dimension of Spec(R). The case dim(Spec(R)) =
1 is the previous lemma. Now suppose dim(S) ≥ 2 and take a regular sequence (a1, . . . , ar) for
R. Then R1 = R(a1) and R2 := R/(a1) are both Noetherian local regular rings. If we see
Spec(R1), Spec(R2) as subschemes of Spec(R) the generic point of Spec(R1) is P , the generic
point of Spec(R2) is the closed point of Spec(R1), and the closed point of Spec(R2) is p.



8 ROBERTO FRINGUELLI AND ROBERTO PIRISI

Denote respectively by P1, P2 the generic points of Spec(R1), Spec(R2), and by p1, p2 their
closed points. Denote respectively by A1, A2 the pullbacks of A to Spec(R1), Spec(R2). Then

♯(A [m] (P )) = ♯(A1 [m] (P1)) ≤ ♯(A1 [m] (p1)) = ♯(A2 [m] (P2)) ≤ ♯(A2 [m] (p2)) = ♯(A [m] (p))

where the first equality comes from previous lemma, and the last comes from the inductive
hypothesis. �

Lemma 2.6. For all n > 0, g > 0 there is a field K, finitely generated over C, and a p.p.a.v. of
dimension g with level n-structure over K that has Mordell-Weil group isomorphic to (Z/nZ)2g,
where the isomorphism comes from the level structure.

Proof. For g = 1 it the result is proven in [Sch03, Prop. 3.2] when N = 1 and in [Shi72, Thm
5.5 + Rmk 5.6] for the other cases (see also [Shi73]). We can then take powers of these elliptic
curves to obtain the general statement. �

Recall now that Xg,n → Ag,n is a smooth morphism with connected fibers, and Ag,n is smooth
and irreducible, so it the same goes for Xg,n. Consequently also Bg,n and Xg,n are smooth and
irreducible, being open subsets of vector bundles over Ag,n and Xg,n respectively.

Proposition 2.7. Let ξ be the generic point of Bg,n. Then the torsion of the Mordell-Weil group
of Xg,n ×Bg,n

ξ is isomorphic to (Z/nZ)2g, the morphism coming from the level structure.

Proof. Consider any point P in Bg,n such that Xg,n ×Bg,n
P Mordell-Weil group with torsion

exactly (Z/nZ)2g. This exists by the previous lemma and the fact that the map Bg,n → Ag,n

has the lifting property for points (2.2, point 4). Then we can apply Lemma (2.5) to the local
ring OBg,n,P and the fact that Xg,n ×Bg,n

ξ comes with a canonical isomorphism of (Z/nZ)2g

with its n-torsion to conclude. �

Half of our work towards theorem (2.1) is done. Now we need to show that the Mordell Weil
group of the generic fiber Xg,n ×Bg,n

ξ is torsion, so that it will be equal to (Z/nZ)2g. Next
theorem gives us an answer when Ag,n is a variety.

Theorem 2.8 (Shioda-Silverberg). Suppose n ≥ 3. Let ξ → An,g be the generic point. Then the
Mordell-Weil group of Xn,g ×An,g

ξ is isomorphic to (Z/nZ)2g , the isomorphism coming from
the level structure.

Proof. For a complete proof in the elliptic case (resp. higher dimension) we refer to [Shi72] (resp.
[Sil85]). The statement with a sketch of the proof can be found in [Lox90, Theorem 1 and 3, pp.
227-235]. �

For n = 1, 2 we need a few more steps.

Lemma 2.9. Let AF be a principally polarized abelian variety over a field F and let Q be a
finitely generated purely transcendental extension of F . Define AQ := AF ×F Q. Then the
homomorphism of Mordell-Weil groups AF (F ) → AQ(Q) is an isomorphism.

Proof. Since AF is principally polarized, the Mordell-Weil group ofA is isomorphic to Pic0AF /F (F ),

and the Mordell-Weil group of AQ is isomorphic to Pic0AQ
(Q). Both AQ and AF have a rational

point, so we have PicAF /F (F ) = Pic(AF ), PicAQ/Q(Q) = Pic(AQ) (see for example [FGI+05,
Remark 9.2.11]). Moreover AQ and AF are smooth and thus locally factorial, so their Picard
groups are isomorphic to the group of divisors modulo rational equivalence. Consider the follow-
ing commutative triangle:
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AF × An
F

π

��

66

i

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

AQ
// AF

Here n is the degree of transcendence of Q/F and the map i is the inclusion of the generic
fiber. The pullback through π is an isomorphism on Picard groups. The pullback through i is
surjective. The map Q → F is a smooth covering, so the pullback Pic(AF ) = PicAF /F (F ) →
PicAQ/Q(Q) = Pic(AQ) is injective. This shows that the pullback through AQ → AF induces an
isomorphism on Picard groups.

Now recall that PicAQ/Q is isomorphic to PicAF /F ×F Q as a Q-scheme, and in particular
the map PicAQ/Q → PicAF /F has connected fibers. This implies that if L ∈ Pic(AF ) pulls back

to L′ ∈ Pic0AQ
then L must belong to Pic0AF

, and the isomorphism on the Picard groups then

implies the isomorphism on the Pic0.
We can now conclude as by definition the image of a point p ∈ PicAQ/Q(Q) representing the

pullback of a line bundle L ∈ PicAF /F (F ) is L itself. Then putting everything together we proved
that the pull-back along the map AQ → AF induces an isomorphism on the Mordell-Weil groups,
which proves our claim. �

Proposition 2.10. The generic fiber of Xg,n → Bg,n has Mordell-Weil group equal to (Z/nZ)2g.

Proof. Consider the following cartesian cube:

Xg,3n Bg,3n

Xg,n Bg,n

Xg,3n Ag,3n

Xg,n Ag,n

φ′

n

ρ′

n

π′

n

πn

φ
′

ρ′

π′
ρn

φ′ φ
ρ

π

The π maps are equivariant approximations, the φ maps are étale finite, the ρ maps are
families of abelian varieties. Let ζ be the generic point of Bg,3n. First we want to understand
the Mordell-Weil group of the generic fiber Xg,3n ×Bg,3n ζ. As Bg,3n is an open subset of a
vector bundle over Ag,3n the generic point of Bg,3n is a purely transcendental extension of the
generic point of Ag,3n. Then by Lemma (2.9) we can conclude that the Mordell-Weil group of
Xg,3n×Bg,3n ζ is isomorphic to the Mordell-Weil group of the generic fiber of Xg,3n → Ag,3n. As
3n is greater or equal to three he latter is torsion due to Silverberg’s theorem.

Now we already know that the Mordell-Weil group of Xg,n ×Bg,n
ξ has torsion equal to

(Z/nZ)2g , and as the étale map Xg,n ×Bg,3n ζ → Xg,n ×Bg,n
ξ is an epimorphism it must also

inject into the Mordell-Weil group of Xg,3n ×Bg,3n ζ. The latter is torsion, so the Mordell-Weil

group of Xg,n ×Bg,n
ξ must be equal to (Z/nZ)2g. �

Proof of theorem 2.1. any two sections U ×Ag,n
Bg,n → U ×Ag,n

Xg,n that induce the same
rational point in the generic abelian variety above must be generically equal. But two maps from
an irreducible and reduced scheme to a separated scheme that are generically equal must be the
same [Sta15, Tag 0A1Y]. This, in addition to the fact that by definition there exist n2g canonical
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distinct sections of Xg,n → Ag,n, coming from the level structure, concludes the proof of our
theorem. �

3. Preliminaries on the Picard group of Xg,n.

Let g ≥ 2 and n ≥ 1. In this section, we will give a partial description of the group of the
rigidified line bundles on Xg,n, which allows us to prove Theorem C.

First of all, we introduce some natural line bundles on the universal abelian variety.

Definition 3.1. We will call rigidified n-roots line bundles of Xg,n → Ag,n the rigidified line
bundles over Xg,n which are n-roots of the trivial line bundle OXg,n

.

Observe that the rigidified n-roots line bundles correspond to the sections of a substack of
X ∨

g,n, which is finite and étale over Ag,n. Over any C-point (A, λ, ϕ), they correspond to the n-
torsion points A∨[n] of the dual abelian variety. Using the universal polarization Λ : Xg,n

∼= X ∨
g,n,

we obtain an isomorphism between the rigidified n-roots line bundles and the the group of n-
torsion sections of Xg,n → Ag,n. Using the universal level n-structure Φ, we see immediately the

this group is isomorphic to (Z/nZ)
2g
.

Definition 3.2. Let (A → S, λ) be a family of p.p.a.v. over S. Let A∨ the dual abelian scheme
and let P the rigidified Poincaré line bundle on A ×S A∨. Pulling back P through the map
(IdA, λ) : A → A×S A∨, we get a rigidified line bundle on A. Since this line bundle is functorial
in S, it defines a line bundle over the universal abelian variety Xg,n: we will call this sheaf
rigidified canonical line bundle LΛ.

Remark 3.3. Let (A, λ, ϕ) be a C-point in Ag,n. There exists a line bundle M, unique up to
translation, over A inducing the polarization. The line bundle LΛ, restricted to a (A, λ, ϕ) is
equal to M2 in NS(A).

Indeed, this is equivalent to showing that λ(LΛ|(A,λ,ϕ)⊗M−2) = 0. By [MFK94, Proposition
6.1], we have that λ(LΛ) = 2Λ. Then, by definition of universal polarization, Λ|(A,λ,ϕ) = λ =
λ(M) from which the assertion follows immediately.

The proof of next lemma can be found in [MFK94, Proposition 6.1].

Lemma 3.4. Given a commutative diagram of schemes

X

p
��
❅❅

❅❅
❅❅

❅❅

f
// Y

q
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

where X is an abelian scheme over a connected scheme S. If, for one point s ∈ S, f(Xs) is
set-theoretically a single point, then there is a section 0 : S → Y such that f = 0 ◦ p.

Now we are going to study the image of the homomorphism (2).

Proposition 3.5. Let A be an abelian scheme over S and L a line bundle on A. Suppose
that there exists a closed point s ∈ S such that Ls = OAs

in NS(As). Then λ(L) is the zero
homomorphism in HomS(A,A

∨).

Proof. By hypothesis λ(L)s = λ(Ls) is the zero homomorphism. By Lemma 3.4, λ(L) factorizes
as the structure morphism A → S and a section of the dual abelian scheme. Since Λ is an
homomorphism of abelian schemes, it must be the zero homomorphism. �
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Let (A, λ, ϕ) be a C-point of Ag,n. Consider the homomorphism

res : Pic(Xg,n)
/
Pic(Ag,n) −→ Pic(A) −→ NS(A)

where the first row is given by restriction and the second one is the first Chern class map. We
have the following

Proposition 3.6. For any C-point (A, λ, ϕ) in Ag,n, we have an exact sequence of abstract
groups

(3) 0 −→
(
Z /nZ

)2g −→ Pic(Xg,n)
/
Pic(Ag,n)

res−→ NS(A)

where the kernel is the group of the rigidified n-roots line bundles.

Proof. Consider the cartesian diagram

Xg,n
//

��

Xg,n

��

Bg,n
// Ag,n

where Bg,n → Ag,n is an equivariant approximation as in the Definition-Proposition 2.2. It
induces a commutative diagram of Picard groups

Pic(Xg,n) Pic(Xg,n)oo

Pic(Bg,n)

OO

Pic(Ag,n).oo

OO

We can easily see that Xg,n → Xg,n is an equivariant approximation for Xg,n. In particular, in
the diagram of Picard groups, the horizontal arrows are isomorphisms (by Definition-Proposition
2.2(4)) and the vertical ones are injective.

Let s be a lifting of (A, λ, ϕ) over Bg,n, which exists by Definition-Proposition 2.2(3). Consider
the homomorphism of groups

PicXg,n/Bg,n
(Bg,n) −→ PicXg,n/Bg,n

(s) = Pic(A) −→ NS(A)

where the first row is given by restriction and the second one is the first Chern class map.
Proposition 3.5 implies that the sequence of groups

0 −→ X∨
g,n(Bg,n) −→ PicXg,n/Bg,n

(Bg,n) −→ NS(A)

is exact. As observed in Section 1, we can identify the abstract group PicXg,n/Bg,n
(Bg,n) with

Pic(Xg,n)/Pic(Bg,n). By the diagram above, it is also isomorphic to the group Pic(Xg,n)/Pic(Ag,n).
The assertions about the kernel follows from the results of Section 2. �

Using this we can complete the description of the Picard group of the universal abelian variety
without level structure.

Proof of of Theorem C. By [ACGH85, Lemma p. 359] there exists a Jacobian variety J(C)
of a smooth curve of genus g with Neron-Severi group generated by the theta divisor θ. We set
m the index of the map res in the Proposition 3.6 with (A, λ, ϕ) = (J(C), θ, ϕ). Consider the
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morphism of complexes

0 // Pic(Ag) //

��

Pic(Xg) //

��

m ·NS(J(C)) //

��

0

0 // Pic(Mg) // Pic(Jg) // 2 ·NS(J(C)) // 0

The top sequence is exact by Proposition 3.6 in the case n = 1. The exactness of the bottom
sequence comes from [Kou91, Theorem 1] (see also [MV14][Subsection 7]). Observe that the
last vertical map is surjective by the existence of the line bundle LΛ (see Remark 3.3). It must
be also injective, because otherwise we can construct a line bundle on Jg which generates the
Neron-Severi of J(C). Then m = 2 and the first assertion follows immediately. As recalled in
the introduction the first vertical is an isomorphism when g ≥ 3, so the second assertion will
follow by the snake lemma. ✷

4. The universal theta divisor.

The main result of this section is the following

Theorem 4.1. Assume that g ≥ 4. There exists a line bundle over the universal abelian variety
Xg,n → Ag,n inducing the universal polarization if and only if n is even. Moreover, if it exists,
it can be chosen symmetric.

The above theorem allows us to conclude the description of the Picard group of the universal
abelian variety.

Proof of of Theorem A. As in the proof of Theorem C, we fix a Jacobian variety J(C) of a
smooth curve of genus g with Neron-Severi group generated by the theta divisor θ. By Proposi-
tion 3.6 with (A, λ, ϕ) = (J(C), θ, ϕ), it is enough to compute the index of the image of the map
Pic(Xg,n) → NS(J(C)) = Z[θ]. By Remark 3.3, the subgroup generated by LΛ has index two
in NS(J(C)). So the theorem follows from Theorem 4.1. ✷

The rest of the section is devoted to prove Theorem 4.1.

Remark 4.2. The sufficient condition is well-known when Ag,n is a variety (i.e. n ≥ 3): see
for example the survey of Grushevsky and Hulek ([GH13, Section 1]) for a good introduction,
following [Igu72]. Due to the ignorance of the authors, it is not clear if the results can be extended
to the remaining case n = 2, using the same arguments of loc. cit. For this reason, we give a
new proof of this fact, following the arguments of Shepherd-Barron in [SB08, §3.4]. Such proof
works also when 2 ≤ g ≤ 4.

Instead the proof of the necessary condition uses a result of Putman [Put12], which implies
that the Hodge line bundle does not admit roots on the Picard group of Ag,n (modulo torsion)
when n is odd and g ≥ 4. Anyway, by the remarks that follow [Put12, Theorem E], it seems
that the same holds also in genus two and three, but we do not have any reference of this. For
this reason, in this section, we will assume g greater than three.

First we will resume some results and definitions from [SB08, §3.4].
Definition 4.3. An abelian torsor (A y P → S) is a projective scheme P over S which is
a torsor under an abelian scheme A → S. An abelian torsor is symmetric if the action of A
on P extends to an action of the semi-direct product A ⋊ (Z/2Z)S where (Z/2Z)S acts as the
involution i on A. We will denote with FixP the closed subscheme of P where i acts trivially.
Note that FixP is a torsor under the subscheme A[2] ⊂ A of the 2-torsion points.
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The (fppf) sheaf PicτP/S of line bundles, which are the numerically trivial line bundles on

each geometric fiber, is represented by the dual abelian scheme A∨. In particular, an ample line
bundle M on an abelian torsor P → S defines a polarization λ on A by sending a point a ∈ A
to t∗aM⊗M−1 ∈ PicτP/S = A∨, where ta : P → P is the translation by a.

Definition 4.4. A relative effective divisor D on the abelian torsor (A y P → S) is principal if
the line bundle O(D) defines a principal polarization on A. A principal symmetric abelian torsor
(p.s.a.t.) is a symmetric abelian torsor with an effective principal divisor that is symmetric, i.e.
it is i-invariant as hypersurface. A level n-structure on (A y P → S) is a level n-structure

ϕ : A[n] ∼= (Z/nZ)
2g
S on A.

Adapting the Alexeev’s idea [Ale02] of identifying the stack of p.p.a.v with the stack of torsors
with a suitable divisor, Shepherd Barron in [SB08] proves that the stack Ag is isomorphic to the
stack of principal symmetric abelian torsors (p.s.a.t). The proof works also if we add the extra
datum of the level structure, obtaining the following

Proposition 4.5. [SB08, Proposition 2.4]. The stack Ag,n is isomorphic to the stack whose
objects over a scheme S are the principal symmetric abelian torsors with level n-structure. A
morphism between two objects

(f, g, h) : (A y P → S,D, ϕ) → (A′
y P ′ → S′, D′, ϕ′)

are two cartesian diagrams

P

��

g
// P ′

��

S
h // S′

A

��

f
// A′

��

S
h // S′

where (f, g, h) is a morphism of abelian torsors such that ϕ′ ◦ f |A[n] =
(
Id(Z/nZ)2g × h

)
◦ ϕ and

g−1(D′) = D.

Let Ng,n be the stack of the p.p.a.v. with a symmetric divisor defining the polarization. The
forgetful functor Ng,n → Ag,n is a Xg,n[2]-torsor. In particular, the universal abelian variety
Xg,n → Ag,n admits a universal symmetric divisor inducing the universal polarization if and
only if the torsor Ng,n → Ag,n admits a section. We can identify the stack Ng,n with the stack
of 4-tuples

(A y P → S,D, ϕ, x)

where (A y P → S,D) is p.s.a.t with a level n-structure ϕ and x is a section of FixP → S.
A morphism between two objects is a morphism of Ag,n compatible with the section of the i-
invariant locus. Using this interpretation, if we call Pg,n the universal abelian torsor on Ag,n,
our problem is equivalent to showing that the Xg,n[2]-torsor FixPg,n

→ Ag,n has a section.

We are now going to give another modular description of Ng,n in terms of theta characteristics.

Definition 4.6. Let (A y P → S,D) be a p.s.a.t. and λ : A ∼= A∨ the principal polarization
induced by O(D). Let TP be the subsheaf of HomS(A[2], µ2,S) of morphisms c such that

c(a)c(b)c(a+ b) = eλ2 (a, b)

for any a, b ∈ A[2]. Any morphism with this property will be called theta characteristic of the
p.s.a.t. (A y P → S,D). The sheaf TP is a torsor under the action of A[2]: b.c(a) = eλ2 (b, a)c(a)
for a, b ∈ A[2] and t ∈ TP . We will call TP the torsor of theta characteristics of the p.s.a.t
(A y P → S,D).

We have the following
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Proposition 4.7. The stack Ng,n is isomorphic to the stack Tg,n which parametrizes the 4-
tuples (A y P → S,D, ϕ, c) where (A y P → S,D) is a p.s.a.t. over S with a level n-structure
ϕ and theta characteristic c ∈ TP . A morphism between two objects

(f, g, h) : (A y P → S,D, ϕ, c) → (A′
y P ′ → S′, D′, ϕ′, c′)

is a morphism on Ag,n such that c′ ◦ f |A[2] = (Idµ2 × h) ◦ c.
First of all, we recall some preliminaries facts. Let A → S be an abelian scheme with a

symmetric line bundle. There exists a unique isomorphism ϕ : L ∼= i∗L such that O∗
Aϕ is the

identity. For any x ∈ A[2](S) the isomorphism x∗ϕ : x∗L ∼= x∗i∗L = x∗L is a multiplication by
an element eL(x) of H0(S,O∗

S) and it satisfies the following properties

(i) eL(OA) = 1S and eL(x) ∈ µ2(S) for any x ∈ A[2](S).
(ii) eL⊗M(x) = eL(x) · eM(x) for any x ∈ A[2](S) and for any symmetric line bundle M.

(iii) et
∗

yL(x) = eL(x + y) · eL(y) where ty : A → A is the traslation by y ∈ A[2](S).
(iv) If L is such that L2 ∼= OA then eL(x) = e2(x,L).
These properties (and their proofs) are slight generalizations of the ones in [Mum66, pp. 304-305].

Proof of Proposition 4.7. To prove the proposition it is enough to show that for any p.s.a.t.
(A y P → S,D) there exists a canonical isomorphism φ of A[2]-torsors between FixP and the
torsor of theta characteristics TP , such that, for any morphism (f, g, h) : (A y P → S,D) →
(A′ y P ′ → S′, D′) in Ag, we have that φ′(g(δ)) ◦ f |A[2] = (Idµ2 × h) ◦ φ(δ) for any δ ∈ FixP .

Let (A y P → S,D) be a p.s.a.t. Let T an S-scheme and δ ∈ FixP (T ). Then we have
an isomorphism ϕδ : AT → PT , which sends a to ta(δ). Since D is a symmetric divisor, the
line bundle O(D) is symmetric, i.e. there exists a canonical isomorphism O(D) = O(i−1(D)) ∼=
i∗O(D) of line bundles on P . With abuse of notation, we will denote with the same symbol the
pull-back on PT of the line bundle O(D). The map ϕδ commute with the action of the involution,
then we have a canonical isomorphism ϕ∗

δO(D) ∼= ϕ∗
δ i

∗O(D) ∼= i∗ϕ∗
δO(D). This allows us to

define a morphism of T -schemes

cδ : AT [2] −→ µ2,T

a 7−→ cδ(a) := eϕ
∗

δO(D)(a).

Using the properties (i), (ii), (iii), (iv) of e, we can see that cδ is a theta characteristic. Indeed,
let a, b ∈ AT [2], then

(4)
eλ2 (a, b)

def
= e2

(
a, t∗bϕ

∗
δO(D) ⊗ ϕ∗

δO(D)−1
) (iv)

= et
∗

bϕ
∗

δO(D)⊗ϕ∗

δO(D)−1

(a) =
(ii)
= et

∗

bϕ
∗

δO(D)(a) · eϕ∗

δO(D)−1

(a).

Moreover

(5) eϕ
∗

δO(D)(a) · eϕ∗

δO(D)−1

(a)
(ii)
= eOAT (a)

(iv)
= e2(a,OA∨

T
) = 1T .

By (i), this implies that eϕ
∗

δO(D)(a) = eϕ
∗

δO(D)−1

(a). Observe that by (iii) we have

(6) et
∗

bϕ
∗

δO(D)(a) = eϕ
∗

δO(D)(a+ b) · eϕ∗

δO(D)(b).

Putting all together, we see that cδ is a theta characteristic:

(7) eλ2 (a, b) = eϕ
∗

δO(D)(a+ b) · eϕ∗

δO(D)(b) · eϕ∗

δO(D)(a)
def
= cδ(a+ b)cδ(b)cδ(a),

Such construction is compatible with the base changes T ′ → T . In other words, it defines a
morphism of functors

φ : FixP −→ TP
δ 7−→ cδ.
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Moreover, the properties (i), (ii), (iii), (iv) imply also that ctb(δ)(a) = eλ2 (b, a)cδ(a) for any
a, b ∈ AT [2], or, in other words, that φ is an isomorphism of A[2]-torsors.

Indeed, by definition ctb(δ)(a) = eϕ
∗

tb(δ)
O(D)(a) for any a, b ∈ AT [2]. Observe that ϕtb(δ) =

ϕδ ◦ tb (by an abuse of notation we have denoted with the same symbols the translation by b ∈ A
on P and on A). In particular

(8) eϕ
∗

tb(δ)
O(D)(a) = et

∗

bϕ
∗

δO(D)(a)
(iii)
= eϕ

∗

δO(D)(a+ b) · eϕ∗

δO(D)(b)
def
= cδ(a+ b)cδ(b)

On the other hand,

(9) eλ2 (b, a)cδ(a) = cδ(a+ b)cδ(b)cδ(a)cδ(a)
(i)
= cδ(a+ b)cδ(b)

Showing that φ is an isomorphism of A[2]-torsors. The second assertion follows from the fact that
for any morphism (f, g, h) : (A y P → S,D) → (A′ y P ′ → S′, D′) we have ϕg(δ)◦f = g◦ϕδ. ✷

Remark 4.8. Let (A y P → S = Spec(k), D, ϕ) be a geometric point in Ag,n. For any k-point
δ of FixP , let m(δ) the multiplicity of the divisor D at δ. By [Mum66, Proposition 2], we have
cδ(a) = (−1)m(ta(δ))−m(δ).

The Proposition 4.7 allows us to prove Theorem 4.1.

Proof of of Theorem 4.1.

(⇐). As observed before, there exists a symmetric line bundle on Xg,n inducing the universal
polarization if and only if the morphism of stacks Ng,n → Ag,n has a section. By Proposition
4.7, the existence of such a section is equivalent to showing that there exists a universal theta
characteristic c : Xg,n[2] → µ2,Ag,n

. Since n is even, the level n-structure Φ induces a level

2-structure Φ̃ : Xg,n[2] → (Z/2Z)2g
Ag,n

. Let e : (Z/2Z)2g
Ag,n

× (Z/2Z)2g
Ag,n

→ µ2,Ag,n
the standard

symplectic pairing and π1 (resp. π2) the endomorphism which sends (x′, x′′) ∈ (Z/2Z)2g to (x′, 0)

(resp. to (0, x′′)). For any a ∈ Xg,n[2](S), consider the map a 7→ c(a) := e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(a)).
If we show that c is a theta characteristic, we have done. More precisely, we have to show that
for any a, b ∈ Xg,n[2] the morphism c satisfies the equality

(10) eΛ(a, b) = c(a+ b)c(a)c(b)

Indeed, on the left hand side we have

(11)

eΛ(a, b) = e(Φ̃(a), Φ̃(b)) = e(π1 ◦ Φ̃(a) + π2 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) =
= e(π1 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) · e(π2 ◦ Φ̃(a), π1 ◦ Φ̃(b) + π2 ◦ Φ̃(b)) =
= e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(b)) · e(π2 ◦ Φ̃(a), π1 ◦ Φ̃(b)).

Instead, on the right hand side
(12)

c(a+ b)c(a)c(b) = e(π1 ◦ Φ̃(a+ b), π2 ◦ Φ̃(a+ b)) · c(a)c(b) =
= e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(a+ b)) · e(π1 ◦ Φ̃(b), π2 ◦ Φ̃(a+ b)) · c(a)c(b) =
=

(
c(a) · e(π1 ◦ Φ̃(a), π2 ◦ Φ̃(b))

)
·
(
e(π1 ◦ Φ̃(b), π2 ◦ Φ̃(a)) · c(b)

)
· c(a)c(b)

Using these two equalities and the fact that we are working on µ2, the condition (10) follows
immediately.

(⇒) Fix n > 0. Suppose that there exists a line bundle L on π : Xg,n → Ag,n inducing the
universal polarization. Up to tensoring with a line bundle from Ag,n, we can suppose that L is
trivial along the zero section.
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Claim: The line bundle (π∗L)−1 is, up to torsion, a square-root of the Hodge line bundle in the
Picard group of Ag,n.

Suppose that the claim holds. If n is odd and g ≥ 4 the Hodge line bundle does not admit a
square root in Pic(Ag,n) modulo torsion (see [Put12, Theorem E and Theorem 5.4]). Therefore
n must be even.

It remains to prove the claim. Consider the cartesian diagram

Xg,4n
φ

//

π′

��

Xg,n

π

��

Ag,4n
φ′

// Ag,n

By what we have already proved before, on Xg,4n there exists a rigidified symmetric line bundle
M inducing the universal polarization. By [FC90, Theorem 5.1, p.25], π′

∗M is a line bundle such
that

(13) (π′
∗M)8 = (π′

∗(Ωπ′))
−4 ∈ Pic(Ag,4n).

In particular (π′
∗M)−1 is, up to torsion, a square-root of the Hodge line bundle. By Corollary

3.6, we have that φ∗L ⊗ P = M, where P is a rigidified 4n-root line bundle. Since L (resp.
M) is relative ample over Ag,n (resp. Ag,4n), we have that π!L = π∗L (resp. π′

!M = π′
∗M)

(see [MFK94, Prop. 6.13(i), p. 123]. Applying the Grothendieck-Riemann-Roch theorem to the
morphism π′, we have the following equalities (in the rational Chow group of divisors of Ag,4n)
(14)

c1(π
′
∗M) = c1(π

′
∗(φ

∗L⊗ P)) = [ch(π′
∗(φ

∗L⊗ P))]1 = π′
∗

(
[ch(φ∗L) ch(P)Td(Ω∨

π′)]g+1

)
=

= π′
∗

(∑g+1
k=0

c1(P)k

k! [ch(φ∗L)Td(Ω∨
π′)]g+1−k

)
=

= π′
∗

(
[ch(φ∗L)Td(Ω∨

π′)]g+1

)
= [ch(π′(φ∗L))]1 = c1(π

′
∗φ

∗L).

The equality between the second and third row follows from the fact that c1(P)k (for k 6= 0) is
a torsion element. Since Ag,4n is a smooth variety, the first Chern class map c1 : Pic(Ag,4n) →
CH1(Ag,4n) is an isomorphism. This fact together with (13) and (14) implies that (π′

∗φ
∗L)−1 =

(φ′∗π∗L)−1 is, up to torsion, a root of the Hodge line bundle in Pic(Ag,4n). Since the homomor-
phism φ′∗ : Pic(Ag,n)/Pic(Ag,n)Tors → Pic(Ag,4n)/Pic(Ag,4n)Tors is injective, the claim follows.

✷
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