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Abstract Brain-Computer Interfaces (BCIs) are systems allowing people to
interact with the environment bypassing the natural neuromuscular and hor-
monal outputs of the peripheral nervous system (PNS). These interfaces record
a user’s brain activity and translate it into control commands for external de-
vices, thus providing the PNS with additional artificial outputs. In this frame-
work, the BCIs based on the P300 Event-Related Potentials (ERP), which
represent the electrical responses recorded from the brain after specific events
or stimuli, have proven to be particularly successful and robust. The presence
or the absence of a P300 evoked potential within the EEG features is deter-
mined through a classification algorithm. Linear classifiers such as stepwise
linear discriminant analysis (SWLDA) and support vector machine (SVM)
are the most used discriminant algorithms for ERPs’ classification. Due to the
low signal-to-noise ratio of the EEG signals, multiple stimulation sequences
(a.k.a. iterations) are carried out and then averaged before the signals be-
ing classified. However, while augmenting the number of iterations improves
the Signal-to-Noise Ratio (SNR), it also slows down the process. In the early
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studies, the number of iterations was fixed (no stopping environment), but
recently several early stopping strategies have been proposed in the literature
to dynamically interrupt the stimulation sequence when a certain criterion is
met in order to enhance the communication rate. In this work, we explore how
to improve the classification performances in P300 based BCIs by combining
optimization and machine learning. First, we propose a new decision function
that aims at improving classification performances in terms of accuracy and
Information Transfer Rate both in a no stopping and early stopping environ-
ment. Then, we propose a new SVM training problem that aims to facilitate
the target-detection process. Our approach proves to be effective on several
publicly available datasets.

Keywords Brain Computer Interface · MILP Mixed Integer Linear
Programming · P300 Speller · Support Vector Machine

1 Introduction

A Brain-Computer Interface (BCI) is a system that records a user’s brain
activity and allows him to interact with the environment by exploiting both
signal processing and machine learning algorithms. In most cases, the recorded
signals are noisy, so that filtering or averaging techniques are used to improve
the signal-to-noise ratio (SNR). The information embedded in signals that are
relevant to characterize the user’s mental states are then selected during a fea-
ture extraction procedure before being classified and translated into artificial
outputs —i.e. into control commands for an output device such as a pointer, a
keyboard or a robotic arm [25,26,29,33,48]. BCIs use either electrical, magnetic
and metabolic signals [48] recorded with methods such as electroencephalogra-
phy (EEG), electrocorticography (ECoG), magnetoencephalography (MEG),
functional Near Infra-Red Spectroscopy (fNIRS) and functional Magnetic Res-
onance Imaging (fMRI). In particular, EEG represents one of the most used
methods since they are non invasive and inexpensive; for this reason they have
been used for a wide variety of tasks [7, 19].

In this framework, BCIs based on event-related potentials (ERPs) have
proven to be particularly successful and robust [36]. ERPs represent the elec-
trical responses recorded from the brain through EEG techniques after specific
events or stimuli. The ERPs are embedded within the general EEG activ-
ity [41], and are time-locked to the processing of a specific stimulus. As their
amplitude is lower that the one of the ongoing EEG activity, averaging tech-
niques are employed to increase the SNR: in principle, averaging background
noise which is not correlated to an event, such as the ongoing EEG activity,
tends to reduce its contribution to a small offset, which can be easily filtered
out, while the evoked responses, supposed to be the same after each stimulus,
are left unmodified. An ERP-based BCI attempts to detect ERP components
to infer the stimulus that the user intended to choose —i.e. the stimulus elic-
iting the ERP components [43] [40].
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In 1988, the P300 ERP was first used by Farwell and Donchin within a
BCI system [10]. Their P300 Speller consists of 36 alpha-numeric characters
arranged within the rows and columns of a 6 × 6 matrix. The user’s task is
to focus the attention on a specific character —i.e. on one of the cells of the
matrix. Each of the 6 rows and 6 columns then flashes for few tenths of mil-
liseconds in a random sequence. A sequence of 12 different flashes —the 6 rows
and 6 columns —is called an iteration. It constitutes the basis of an oddball
paradigm in which two classes of stimuli, namely the target (or rare) and the
non target (or frequent) which occur with different probabilities (0.166 and
0.833 in this case), elicit two different brain responses. In particular, the tar-
get (rare) stimuli should elicit the P300 response, which should not be evoked
after a non target (frequent) stimuli. In our case the row and the column con-
taining the attended character represent the target stimuli, while the other ten
are the non-target ones. Brain responses to the target and non-target stimuli
are distinguished using a classification algorithm. The correct identification of
the target row and column allows the desired character’s selection, which is
located at their intersection [20,21,38].

Later on in the literature, different variations of the original P300 paradigm
have been developed in order to improve the speller framework. For instance,
in [35, 37, 44] the authors proposed gaze-independent spellers, i.e. communi-
cation systems that can be used by subjects who have impairment at moving
their eyes. In all speller paradigms, given a sentence/run to copy-spell, the
EEG data are organized in terms of trials, iterations, and sub-trials. A sin-
gle character selection step is here referred to as a trial. Each trial consists
of several iterations/stimulation sequences, during which all the stimuli are
intensified once in a pseudo-random order. A single stimulus intensification is
here referred to as a sub-trial. The trials’ selection process usually involves one
or two levels. In the former case, symbols are typically presented successively
thus involving a single selection step. In the latter, the user has to select a
group of symbols at the first level and then the target symbol at the second
level.

To use a BCI, two phases namely training/calibration and test/online are
typically required. During the calibration phase, the user is instructed to focus
his/her attention on a specific character (copy task) for which correct labels
are then a priori known. The acquired EEG signals are then preprocessed by
filtering. A subset of EEG features is extracted to represent the signal in a
compact form. The obtained EEG patterns are recognized using a classification
algorithm, which is trained on the subset of identified features to determine
the presence or the absence of a P300 evoked potential. In the online phase,
new EEG patterns are classified using the trained model before being trans-
lated into a command for an application. As described above, in ERP-based
BCIs, to perform a single selection step, multiple iterations are carried out to
improve the SNR. Since each iteration takes about 3 seconds to be completed,
this strategy increases the time needed to detect brain signals thus affecting
down the communication rate. To overcome this drawback, different early stop-
ping (ES) or Dynamic Stopping methods have been introduced, where after a



4 L. Bianchi, C. Liti, G. Liuzzi, V. Piccialli, C. Salvatore

calibration phase, a suitable termination criterion is established to be tested
online when the number of iteration is sufficient to ensure a reliable classifica-
tion. In this work, we explore how to improve the classification performance
by combining optimization and machine learning both in the classical setting
with a fixed number of repetitions and in the early stopping setting.

1.1 Literature Review

As mentioned above, the presence or the absence of a P300 evoked potential
within the EEG features is determined using a classification algorithm [20].
Formally, the detection of brain responses to the target and non-target stimuli
can be translated into a binary classification problem. Let TS be the training
set defined as:

TS = {(xi, yi) : xi ∈ Rn, yi ∈ {−1,+1},
i := (k, r, t, f) ∀k = 1 . . . nk, r = 1 . . . nr, t ∈ T, f = 1 . . . nf} (1)

where nk denotes the total number of trials in the training phase and nr
denotes the number of iterations for each trial; the number of flashes nf and
the set of levels T together denote the set of possible stimuli that compose the
stimulation sequence (i.e. nf = 6 and T = {row, column} for P300 Speller’s
paradigm or T = {outer, inner} for two-levels paradigms).

During the calibration phase, a classification algorithm is trained over TS
to learn the discriminant function f such that

f(x) = y, (2)

and this function is used in the online phase to spell words or sentences.
In the BCI literature, several algorithms have been proposed for addressing
this classification problem [26]. In particular, linear classifiers such as stepwise
linear discriminant analysis (SWLDA) [8], and support vector machine (SVM)
[11] are still the most used discriminant algorithms for ERPs’ classification
[26]. These methods classify the brain responses by means of a separating
hyperplane [20]. This discriminant function is built on the basis of the training
data, and it is defined as:

f(x) = wTx+ b, (3)

where w is the vector containing the classification weights and b is the bias
term. Linear classifiers differ in the way they learn w and b [20]. In (3), the
right-hand side is called decision value. Its absolute value is proportional to
the distance of the sample points x from the separating hyperplane.

In a standard binary classification problem, for each instance the class
label is assigned based on the sign of the relative decision value. However, in
a classical P300 Speller [10], based on the assumption that a P300 is elicited
for one of the six row/column stimuli and finding that the P300 response is
invariant to row/column stimulation, the target class is assigned to the stimuli
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matching the maximum decision values for both the rows and the columns [20].
In general, recalling the definition of T and nf given in (1), we can identify
the target stimulus for trial k ∈ {1 . . . nk} and iteration r ∈ {1 . . . nr} as:

predicted stimulus(k,r,t) = argmax
f=1...nf

[
wTx(k,r,t,f) + b

]
∀t ∈ T (4)

The predicted character for trial k ∈ {1 . . . nk} and iteration r ∈ {1 . . . nr} is
then identified by combining the predicted target stimuli found ∀t ∈ T (i.e a
row target and a column target for the standard P300 paradigm).

As mentioned in Section 1, for each character, data recorded from multi-
ple iterations have to be integrated to improve the SNR. To the best of our
knowledge there exist two main different iteration-averaging strategies in the
literature: (i) ERP avg: for each character brains responses to target and non
target stimuli are averaged across the iterations before being classified, and
(ii) DV avg: for each character the decision values of each target and non-
target stimulus are averaged across the iterations before assigning the target
class. Recently in [5], a new classification function namely score-based func-
tion (SBF) has been introduced for integrating brain responses recorded from
multiple iterations. For each character, the SBF exploits a set of heuristically-
determined scores to weight each stimulus according to its decision value. For
each stimulus, the assigned scores are summed up iteration by iteration. The
target class (one for the row and one for the column) is assigned to the stim-
ulus having the highest total score after the last available iteration. The SBF
has been introduced for developing an early stopping method (ESM) —i.e.
an automatic method that interrupts the stimulation at any point in a trial
when a certain criterion, based on the ongoing classification results, is satis-
fied (see for instance [13,16,17,23,24,28,36,37,42,46,47,50] [12,15,18]). The
proposed ESM based on the SBF outperformed the current state-of-the-art
early stopping methods proposed in [36]. Note that the SBF is quasi -opposite
to the approach proposed in [18] where a score is assigned to an SVM based
classifier and then an Early Stopping is defined using the cumulative scores
of the classifiers. In [15], an Early Stopping technique is used to improve the
accuracy of the P300 speller while it is performing other tasks. Thus the pro-
posed approach allows adapting the classification accuracy to the subject’s
attention level in real-time. In this paper, we follow the same line of research
of [5], by making some further steps to include the information on the protocol
into the classification phase. Indeed, the novelty of our approach consists of
three points:

1. determine the optimal scores for each participant by solving an optimiza-
tion problem on her/his training data;

2. solve a modified version of the optimization problem in order to implement
an efficient early stopping method;

3. include the information on the decision function (the target is the stimulus
having maximum decision value) into the training problem
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The great advantage of our method is that the calibration phase (different for
each participant) becomes completely automatic and does not need any cross
validation phase or manual parameters tuning.

The paper is structured as follows: in Section 2, we introduce our new
decision function, defining the optimization problems to be solved both in the
no stopping and early stopping scenario. In Section 3, we introduce a new
training problem that keeps into account explicitly the target assignment in
BCI, and in Section 4 we derive its Wolfe dual. In Section 6 we report the
behavior of our new approaches on several datasets and finally we draw some
conclusions in Section 7. In Appendix A we quickly describe the algorithm for
solving the dual of our new training problem, while in Appendix B we report
the detailed numerical results for all the datasets.

2 An Optimized Score Based decision Function (OSBF)

In [5], a set of heuristically-determined scores has been used to weight and
combine the decision values of multiple iterations within an early stopping
setting. In this work, we decided to modify the approach by using a set of
scores automatically determined by solving a mixed integer linear program-
ming (MILP) problem for each participant. Each stimulus receives a weight
according to its decision value: five zones are defined, and each zone gets a
different score a,b,c,d,e. In particular, the scores are related to the confidence
in the classification of the given stimulus as target: the score a is assigned to
the stimulus that is most likely to be the target, whereas the stimuli that are
highly unlikely to be the target get score e. All the stimuli in the middle get
decreasing scores according to the distribution of the decision values.

The zones are identified by considering the decision values of all iterations
for all stimuli in the training set and computing the corresponding quartiles
Q1, Q2 and Q3. The idea is to produce scores that reflect the distribution of
the data.

Figure 1 shows how the scores are assigned depending on the distribution
of the quartiles of the decision values in a simple 2-dimensional example. The
maximum score a is assigned only if the confidence in the current classification
is extremely high: i.e. if the decision value is positive and higher than all the
other decision values of the current iteration.

Note that, given the separating hyperplane, the score assignment for each
stimulus of each character is known: so, it is possible to build the following
binary vectors that represent in a compact form the score vector assignment
z for each stimulus of each character:

zk,r,t,fs =

{
1 if stimulus f of level t gets score s at iteration r for char k
0 otherwise

where f = 1 . . . nf and t ∈ T identify the stimulus, k = 1 . . . nk identifies the
character, r = 1 . . . nr identifies the iteration and, finally, s = a, . . . , e identifies
the score. The score assignments depends on the primary aim of the BCI:
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Fig. 1: Graphical representation of the score distribution, reflecting the dis-
placement of the points w.r.t the distribution of the decision values. The dif-
ferent areas represent the confidence of the classification w.r.t the target class.
Please note that this is a simplified example where samples are represented as
2-dimensional data points with features x1 and x2.

(i) if the main focus is the accuracy, the idea is to use all the available iterations
for spelling a character (no stopping protocol), also in the online phase.

(ii) if the idea is to try and speed up the communication, then the performance
to be maximized is the transmission rate, trying to reduce the number of
iterations needed to spell a character in the online phase (early stopping).

In the next two subsections, we describe the Mixed Integer Linear Program-
ming (MILP) Problems we define in order to find the scores in the two different
settings.

2.1 No stopping OSBF

First, we propose a strategy to choose the scores when all the iterations are
exploited and the primary focus is to increase the classification accuracy. In
this setting, we aim at reliability of the classification and we do so by imposing
the following constraints:

1. at the last iteration, we require, if possible, that the score obtained by the
target stimulus is larger (with some margin if possible, that implies robust-
ness of the classification) than the score of any non target stimulus. This
means that we ask not to fail in the classification after the last available



8 L. Bianchi, C. Liti, G. Liuzzi, V. Piccialli, C. Salvatore

Set of indexes

Set Description
K Set of trials in the offline phase
R Set of iterations that compose each trial
T Set of levels of the paradigm
F Set of stimuli in the stimulation sequence

Parameters

Name Set of Indexes Description
z K, R, T, F Binary vector of 5 components which represents the zones partition.

The i-th component of zk,r,t,f is set to 1 if and only if stimuli (k,r,t,f)
is assigned to the i-th confidence zone

Variables

Name Set of Indexes Description
x K, R, T Binary variable which equals 1 if the target stimuli is correctly de-

tected at current iteration in no stopping OSBF. For early stopping
OSBF, this variable equals 1 if the early stopping condition is verified
for the first time on the target at the current iteration, and it is not
satisfied by any non target stimulus earlier

err K, T Binary variable which equals 1 if the target stimuli was not correctly
detected at the last iteration possible

s Score vector s = {a, b, c, d, e}
∆ Reliability Threshold

Table 1: Description of the set of indexes, parameters and variables used in
the no stopping and early stopping OSBF

iteration; if this is not possible, a suitable binary variable representing the
failure on that stimulus is set to one;

2. to make the classification more robust on the test set, we require that in as
many iterations as possible, the score of the target is larger than the one
of the non target stimuli;

3. as an objective, we try and maximize the accuracy on the training set, and
the number of iteration where the classification is robust.

Our main variable in the optimization problem is the vector of scores s =
(a b c d e)

T
.

We add an auxiliary variable to try and impose some distance between
the score of the target stimulus and the scores of the non target stimuli that
we call ∆, and that represents a measure of reliability of the classification.
Further, we add some binary variables:

– xk,rt : binary variable that is equal to 1 if the target of character k for level
t has a score at iteration r that is larger than the score of any non target
stimulus plus ∆

– errkt : binary variable that is equal to 1 if the target is not correctly classified
for character k at level t, i.e. if at the last iteration the target score is lower
or equal to the score of some non target stimulus
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The MILP problem to be solved is then the following:

max
∑
t∈T

((
1−

∑nk

k=1 err
k
t

nk

)
+

1

nknr

nk∑
k=1

nr∑
r=1

xk,rt

)
(5)

s1 ≤ u (6)

sj+1 ≤ sj − 1 ∀j = 1, . . . , 4 (7)

s3 ≥ 0 (8)

s5 ≥ l (9)

∆ ≥ s1 − s5 + 1 (10)

1− errkt ≤ x
k,nr
t ∀k ∈ {1 . . . nk}, ∀t ∈ T (11)

r̄∑
r=1

sT zk,r,t,f +∆ ≤
r̄∑
r=1

sT zk,r,t,trg(k,t) (12)

+M(1− xk,r̄t ) ∀k, r̄, t, f : f 6= trg(k, t)

errkt , x
k,r
t ∈ {0, 1} ∀k ∀t ∀r (13)

where l and u are chosen bounds on the possible values of the scores,
and M is large enough to make the constraints trivially satisfied when the
corresponding binary variable xk,rt is zero. The objective function, that has
to be maximized, is composed by two terms: the percentage of success on the
training set, and the average number of iterations where the classification is
robust and reliable. We then have the following constraints:

(i) Constraints (6), (7) and (9) impose that the scores are bounded and that
are ordered in decreasing order and differ of at least one; whereas constraint
(8) imposes that the first three scores are nonnegative

(ii) constraint (10) imposes a lower bound on the threshold to ensure reliability
of the classification. Indeed this lower bound ensures that the threshold has
a minimum value depending on the scores: in particular s1−s5+1 represents
the maximum difference in score that can be assigned to different flashes
in a single iteration. Therefore, even in the worst possible scenario, where
two flashes get the same score, there must be at least one iteration where
one gets the maximum score and the other the minimum score to break
the parity.

(iii) constraints (11) impose that variable errkt is 1 if and only if xk,nr

t = 0,
that is it represents an unreliable classification at the last iteration.

(iv) constraints (12) impose that if at iteration r̄ the classification is reliable
for the target trg(k, t) of character k at level t, then the corresponding

binary variable xk,rt is set to 1.
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2.2 Early Stopping OSBF

Problem (5) can be modified in order to improve the system performance in
terms of speed, implementing an automatic Early Stopping Method, similarly
to [5].

The idea is again to use the scores s and the threshold ∆ at each iteration of
the test phase to verify an early stopping condition: during the test phase, the
stimuli are ordered according to the sum of their scores and, if the difference
in score between the first and second stimulus is greater than the threshold
∆, the method classifies the target character and the remaining iterations are
not performed.

In order to adapt problem (5) to the early stopping setting, we introduce
some further constraints, and modify the meaning of some binary variables:

max
∑
t∈T

(
1− 1

nk

nk∑
k=1

errkt −
100× nfl

60

SOA

nk

(
nk∑
k=1

nr∑
r=1

rxk,rt + nr

nk∑
k=1

errkt

))
(14)

(6)− (10)

1− errkt ≤
nr∑
r=1

xk,rt ∀k ∈ {1 . . . nk} (15)

nr∑
r=1

xk,rt ≤ 1 ∀k ∈ {1 . . . nk} (16)

(12)

r̃∑
r=1

sT zk,r,t,f ≥
r̃∑
r=1

sT zk,r,t,f −∆+ 1 (17)

−M(1− xk,r̄t ) ∀k, ∀t,∀r̃ < r̄,∀f : f 6= trg(k, t)

errkt , x
k,r
t ∈ {0, 1} ∀k ∀t ∀r (18)

In this case, the objective function keeps into account both the percentage
of success (to be maximized) and the time needed for classification (to be
minimized). Note that the second term (which represents the trial duration
in minutes) was multiplied by a factor 100 to make the two terms of the
objective function comparable. We then have some further constraints, since
in this case we are interested in the first iteration where the following early
stopping condition is met:

r̄∑
r=1

sT zk,r,t,f +∆ ≤
r̄∑
r=1

sT zk,r,t,trg(k,t). (19)

In this model, we set the binary variables xk,rt in such a way that it is 1 if and
only if the early stopping condition (19) is verified for the first time on the
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target at iteration r, and it is not satisfied by any non target stimulus earlier.
This is imposed by the combination of constraints (12), (16) and (17).

We stress that in both the no stopping and the early stopping scenarios,
the MILP problem is solved using the training set data (the same used to build
the hyperplane), whereas the score efficiency is evaluated on the test set.

3 A new training problem

As already pointed out in the introduction, in order to achieve a good clas-
sification accuracy it is fundamental to exploit the information that at each
iteration there is exactly one target stimulus for each level, assigning then the
target class to the stimulus having the maximum decision value. Our idea is
to try and add this protocol knowledge already in the training problem.

Given the definition (1) of training set, the standard training problem to
solve in order to find a separating hyperplane according to the SVM approach
is the following [31]:

min
w∈Rn,b∈R

1

2
‖w‖2 + C1

∑
i∈TS

ξi

yi(w
Txi + b) ≥ 1− ξi ∀i ∈ TS

ξi ≥ 0 ∀i ∈ TS

In this work, we modify the training problem including the information
that the target stimuli should receive the maximum decision value among all
the other flashes. Let’s denote by trgi the target stimulus for the stimulation
sequence where the stimulus i belongs: so, in particular, if i = (k, r, t, f) we
will have:

trgi = (k, r, t, f ′) ∈ TS & ytrgi = 1

Then, we want to impose:

wTx(k,r,t,f1) + b ≥ wTx(k,r,t,f2) + b ∀k, r, t, f1, f2 :

y(k,r,t,f1) = 1 & y(k,r,t,f2) = −1
(20)

From now on, in order to simplify the notation, we will write constraints (20)
in the following more compact form:

wTxtrgi + b ≥ wTxi + b ∀i ∈ TS : yi 6= 1 (21)

and we add slack variables to avoid infeasibility, getting the following set of
constraints:

wTxtrgi − wTxi ≥ 1− ηi ∀i ∈ TS : yi 6= 1 (22)

ηi ≥ 0 ∀i ∈ TS : yi 6= 1 (23)

Now we simply plug these constraints into the primal problem getting the
new training problem based on the maximum decision function:
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min
w∈Rn,b∈R

1

2
‖w‖2 + C1

∑
i∈TS

ξi + C2

yi 6=1∑
i∈TS

ηi (24)

yi(w
Txi + b) ≥ 1− ξi ∀i ∈ TS (25)

wT zi ≥ 1− ηi ∀i ∈ TS : yi 6= 1 (26)

ξi ≥ 0 ∀i ∈ TS (27)

ηi ≥ 0 ∀i ∈ TS : yi 6= 1 (28)

where the vector z is defined as:

zi = xtrgi − xi ∀i ∈ TS : yi 6= 1

4 Wolfe Dual of the new training problem

In order to build the Wolfe Dual of the quadratic optimization problem (24)-
(28), it is necessary to introduce the dual multipliers of the constraints:

– λi ∀i ∈ TS: the multiplier associated to constraints (25)
– ρi ∀i ∈ TS : yi 6= 1: the multiplier associated to constraints (26)
– µi ∀i ∈ TS: the multiplier associated to constraints (27)
– θi ∀i ∈ TS : yi 6= 1: the multiplier associated to constraints (28)

Let us define the vector λ and ρ as the vectors of size l1 and l2 respectively
containing λi (∀i ∈ TS) and ρi (∀i ∈ TS : yi 6= 1). Then we define the
following matrix Σ ∈ <(l1+l2)×n:

Σ =



y1(x1)T

...
yl1(xl1)T

(z1)T

...
(zl2)T


The following proposition holds:

Proposition 1 The dual problem of problem (24) is

min
1

2

(
λT ρT

)
ΣΣT

(
λ
ρ

)
− eTλ− eT ρ (29)

yTλ = 0 (30)

0 ≤ λ ≤ C1e (31)

0 ≤ ρ ≤ C2e (32)
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Proof The Wolfe dual of problem (24)-(28) is given by:

max
w,b,λ,ρ,µ,θ

L(w, b, ξ, η, λ, ρ, µ, θ) (33)

∇wL(w, b, ξ, η, λ, ρ, µ, θ) = 0 (34)

∇bL(w, b, ξ, η, λ, ρ, µ, θ) = 0 (35)

∇ξL(w, b, ξ, η, λ, ρ, µ, θ) = 0 (36)

∇ηL(w, b, ξ, η, λ, ρ, µ, θ) = 0 (37)

λ, ρ, µ, θ ≥ 0 (38)

where L(w, b, ξ, η, λ, ρ, µ, θ) is the Lagrangian of optimization problem (24)-
(28) that can be expressed as follows:

L(w, b, ξ, η, λ, ρ, µ, θ) =
1

2
‖w‖2 + C1

∑
i∈TS

ξi + C2

yi 6=1∑
i∈TS

ηi −
∑
i∈TS

λi
(
yi(w

Txi + b)− 1 + ξi
)

+

−
yi 6=1∑
i∈TS

ρi
(
wT zi − 1 + ηi

)
−
∑
i∈TS

µiξi −
yi 6=1∑
i∈TS

θiηi

(39)

By rearranging terms equation 39 can be rewritten as:

L(w, b, ξ, η, λ, ρ, µ, θ) =
1

2
‖w‖2 +

∑
i∈TS

ξi(C1 − λi − µi) +
∑
i∈TS

λi +

yi 6=1∑
i∈TS

ρi+

+

yi 6=1∑
i∈TS

ηi(C2 − ρi − θi)− wT
(∑
i∈TS

λiyixi +

yi 6=1∑
i∈TS

ρizi

)
− b

∑
i∈TS

λiyi

(40)

The constraints of the Wolfe Dual (equations 34-37) can now be computed
based on the Lagrangian function in equation 40. The equation∇wL(w, b, ξ, η, λ, ρ, µ, θ) =
0 leads to an expression for w:

w =

(∑
i∈TS

λiyixi +

yi 6=1∑
i∈TS

ρizi

)
, (41)

whereas the equation ∇bL(w, b, ξ, η, λ, ρ, µ, θ) = 0 leads to the constraint∑
i∈TS

λiyi = 0 (42)

Equation ∂L(w,b,ξ,η,λ,ρ,µ,θ)
∂ξi

= 0 allows to derive µi as a function of λ:

C1 − λi − µi = 0 ∀i ∈ TS (43)
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whereas ∂L(w,b,ξ,η,λ,ρ,µ,θ)
∂ηi

= 0 results in an expression of θi as a function of ρi

C2 − ρi − θi = 0 ∀i ∈ TS : yi 6= 1 (44)

Non-negativity of the multipliers λ, ρ, µ, θ combined with equations (43)
and (44) result in the following set of constraints:

0 ≤ λi ≤ C1 ∀i ∈ TS (45)

0 ≤ ρi ≤ C2 ∀i ∈ TS : yi 6= 1 (46)

We can plug equations (43) and (44) in the objective function, getting:

L(w, b, ξ, η, λ, ρ, µ, θ) =
1

2
‖w‖2 +

∑
i∈TS

ξi(C1 − λi − µi) +
∑
i∈TS

λi +

yi 6=1∑
i∈TS

ρi+

+

yi 6=1∑
i∈TS

ηi(C2 − ρi − θi)− wT
(∑
i∈TS

λiyixi +

yi 6=1∑
i∈TS

ρizi

)
− b

∑
i∈TS

λiyi =

=
1

2
‖w‖2 +

∑
i∈TS

0× ξi +
∑
i∈TS

λi +

yi 6=1∑
i∈TS

ρi +

yi 6=1∑
i∈TS

0× ηi − wTw − 0× b =

= −1

2
‖w‖2 +

∑
i∈TS

λi +

yi 6=1∑
i∈TS

ρi

(47)

The Wolfe Dual of problem (24)-(28) can then be expressed by using equa-
tion (47) as objective and equations (41), (42), (45), (46) as constraints.

min
1

2
‖w‖2 −

∑
i∈TS

λi −
yi 6=1∑
i∈TS

ρi (48)

w =

(∑
i∈TS

λiyixi +

yi 6=1∑
i∈TS

ρizi

)
(49)∑

i∈TS
λiyi = 0 (50)

0 ≤ λi ≤ C1 ∀i ∈ TS (51)

0 ≤ ρi ≤ C2 ∀i ∈ TS : yi 6= 1 (52)

Note that:

‖w‖2 = wTw =

(∑
i∈TS

λiyixi +

yi 6=1∑
i∈TS

ρizi

)T  ∑
i′∈TS

λi′yi′xi′ +

yi′ 6=1∑
i′∈TS

ρi′zi′

 =

∑
i∈TS

∑
i′∈TS

(λiλi′yiyi′(xi)
Txi′) +

yi 6=1∑
i∈TS

yi′ 6=1∑
i′∈TS

(ρiρi′(zi)
Txi′) + 2

∑
i∈TS

yi′ 6=1∑
i′∈TS

(λiρi′yi(xi)
T zi′)
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Let us define the vector λ and ρ as the vectors of size l1 and l2 respectively
containing λi (∀i ∈ TS) and ρi (∀i ∈ TS : yi 6= 1). Then we define the
following matrix Σ ∈ <(l1+l2)×n:

Σ =



y1(x1)T

...
yl1(xl1)T

(z1)T

...
(zl2)T


The dual problem can then be rewritten as

min
1

2

(
λT ρT

)
ΣΣT

(
λ
ρ

)
− eTλ− eT ρ (53)

yTλ = 0 (54)

0 ≤ λ ≤ C1e (55)

0 ≤ ρ ≤ C2e (56)

that is still a quadratic convex programming problem.

5 Algorithmic Framework

In figure 2, we summarize the proposed approach, which takes in input the
EEG signals of a P300 Speller task for a subject and outputs the performance
reached in terms of accuracy and ITR. The same pipeline is used within both
the no stopping and the early stopping setting.

This generic framework allows for performing several design choices for
both the preprocessing phase and the hyperplane construction. Details on
how we preprocessed our datasets are reported in section 6.1. Regarding the
hyperplane construction method, we used both the standard SVM problem
and the training problem proposed in section 3.

Our framework requires to execute an offline phase in which the hyperplane
construction problem is solved and the score vector is computed by using one
of the MILP problems proposed in sections 2.1 (no stopping setting) and 2.2
(early stopping setting). In the early stopping setting the MILP problem will
also output the reliability threshold ∆. Solving the MILP problems requires to
partition the decision values of offline data in 5 confidence zones (as specified
in figure 1) which are retrieved on the basis of the distribution of the decision
values. The output of the offline phase is composed both by the computed
hyperplane, the scores vector and eventually the threshold ∆. These values
are then used in an online scenario in order to evaluate subject’s performance
both in terms of accuracy (%) and Information Transfer Rate (bit/min), which
is of particularly interest in the early stopping setting.
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Fig. 2: Flowchart of the proposed algorithmic framework , which takes in input
the EEG signal of a subject in a P300 Speller task. The proposed framework
requires to perform an offline phase in order to instantiate the process. Results
from the offline phase are then used to automatically decode online EEG
signals and evaluate the performance results reached by the subject. This
pipeline is valid both in a no stopping and early stopping environment; in the
latter case, in the online phase the early stopping condition will be evaluated
at every incoming iteration before computing the performances obtained for
the subject.
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Fig. 3: Graphical representation of the AMUSE paradigm in which six speak-
ers are places all over the subject. In the first level, each speaker is used to
represent a set of characters, while on the second level each speaker is used to
represent a single character among the previously selected set.

6 Numerical Results

6.1 Dataset

We tested our approaches on five different datasets:

AMUSE The protocol is based on auditory stimulus elicited by means of spa-
tially located speakers, we have two levels, 15 rounds, six classes for each
level, see Fig. 3 [37]. It is performed on healthy subjects and downloadable
by the BNCI horizon website [1].

P300 Speller The protocol is the classical P300 Speller [10], performed on 10
healthy subjects.

ALS P300 Speller The protocol is the classical P300 Speller [10], performed
on 8 patients suffering of Amyotrophic Lateral Sclerosis (ALS).

MVEP It is a visual protocol in which a moving pattern generates a movement-
onset visual evoked potential that is used to recognize the user’s choice.
This protocol is based on modifications of Cake Speller protocol [44]. Six-
teen healthy subjects have been involved in the study.

Center Speller It is a visual protocol where we have a visual stimulus elicited
by means of three different stimuli, two levels, 10 rounds, six classes for
each level [44]. It is performed on 13 healthy subjects.

Akimpech It is a P300 Speller performed on 27 healthy subjects, the number
of characters is 16 with 15 iterations for each character in the calibration
phase, whereas in the online phase changes depending on the subject.

Details of the datasets are reported in Table 2. Please note that we have
evaluated our strategy on EEG data recorded from 95 subjects thus assessing
its generalization capabilities.

All EEG signals were pre-processed and features were extracted with the
NPXLab Suite [3]. Two principal pre-processing operations were applied:

– Electrodes selection: for the datasets Center Speller, MVEP, and AMUSE
(see section 6.1) we kept just the electrodes belonging to the 10-20 EEG
placement. This strategy allows us to reduce both the dimension of the
dataset and the overfitting;
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Dataset NS #Train #Test Part. Sens. Mod. Symb. Stim. Max It. SOA OH k
AMUSE [37] 16 384 809 H 61 A 30 12 15 0.175 18.25 10
CenterSpeller [44] 13 220 538 H 63 V 30 12 10 0.217 8.25 10
MVEP [35] 15 270 606 H 57 V 30 12 10 0.266 11.7 4
P300Speller [2] 10 120 60 H 8 V 36 12 8 0.250 7.25 12
ALSP300Speller [34] 8 120 160 ALS 16 V 36 12 10 0.250 8 12
Akimpech [22] 27 432 790 H 10 V 36 12 15 0.188 4 10

Table 2: Dataset parameters. The following characteristics are reported: num-
ber of subjects (NS), total number of trails in the training set, total number of
trials in the test set, type of paradigm, participants (part. H = healthy, ALS
= amyotrophic lateral sclerosis patient), number of sensors (Sens.), modality
(mod. A = auditory, V = visual), number of possible symbols (Symb.), total
number of stimuli in the selection process (for all possible levels), the max-
imum number of iterations in the original setting, the SOA (stimulus onset
asynchrony), the overhead (OH pre and post-stimulus pauses), the value of k
used in the k-decimation preprocessing operation.

– k-decimation: this technique was applied to all datasets in order to re-
duce overfitting. In this case, we down-sampled the EEG signal from every
electrode by replacing each k consecutive samples with their average value.

Let’s recall that the OSBF strategy requires to compute the quartiles of the
training set decision values in order to assign scores to stimuli. In this scenario,
we stress that, for the standard P300 Speller’s paradigm, stimuli corresponding
to the intensification of rows and columns are considered separately; in fact,
we observed that the distribution of the decision values was different for row
and column stimuli. The other paradigms we considered are based on two-
levels of selection: in this case, we considered stimuli corresponding to the
outer and inner level together for computing the quartiles, since we observed
similar distributions of the decision values.

6.2 No stopping scenario

As a first step, we evaluate the impact of choosing the scores by solving prob-
lem (5). We compare our strategy with both the classical DV avg approach
and the SBF decision function [5] where we sum up the heuristically deter-
mined scores for all the available iterations (i.e., we use it in a no stopping
fashion). We build the separating hyperplane by training a linear SVM with
the package Liblinear [9]. We try both the L1 and L2 loss, and since there is
no clear winner, we report the results obtained with both the losses. Table 3
shows the accuracy —i.e. the percentage of correctly classified characters —ob-
tained by the different approaches. Findings in Table 3 show that the OSBF
outperforms the other two approaches since it reaches the highest accuracy on
all the datasets. Please note that the OSBF is computationally cheap since the
solution of problem (5) is extremely fast (order of few seconds for each MILP
problem), and does not require any cross-validation phase (we fixed parame-
ters C1 in all the experiments). In order to further improve the accuracy, we
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try and build the hyperplane by solving the dual problem (33). We call this
approach M-SVM. In order to solve problem (33), we apply a modification of
the dual coordinate algorithm as described in the Appendix A. Also in this
case, we do not perform any cross validation but we fix C2 = 0.1×C1 and we
use the same value of C1 of the previous experiment.

A statistical test (Wilcoxon Matched Pair Test, p <0.05) performed on
the detailed data of Table 13 (see Appendix B) indicated that OSBF M-SVM
performed better than any other methods after Bonferroni correction, with the
only exception of OSBF-L2 SVM, whose difference was statistically significant
only before the aforementioned correction for multiple comparisons.

Looking at the average results in Table 4 it emerges that the results ob-
tained by OSBF applied to the M-SVM improve on average only on some
datasets, with a significant improvement on the two most difficult datasets: the
one containing ALS patients and AMUSE. The intuition was that it could help
only when standard SVM is not “good enough”. In order to better understand
the contribution of the new training problem, we look at the single-subject
results, dividing the participants (across all the datasets) into two classes:

Class 1 subjects where the standard SVM problem is better than the new
M-SVM;

Class 2 subjects where the standard SVM problem is worse than the new
M-SVM.

We observed that Class 1 and Class 2 contain respectively about 16% and
23% of the subjects among all datasets, whereas in the remaining 61% of the
subjects the standard SVM and the M-SVM perform exactly the same.

In Table 5, we report the average accuracy on both classes, and it is quite
evident that the new training problem helps whenever the starting accuracy
is not too high. When the starting accuracy is high, the performance does
not change or gets worse probably for the overfitting. Interestingly, adding the
constraints on the maximum decision value can be interpreted as a form of data
augmentation. Indeed, if we include the bias b into the vector w, augmenting
each data point in the training set with a last component equal to 1, we can
reinterpret the constraints (22) as standard sign constraints imposed on the
point zi, with label ŷi = 1. Therefore, we are augmenting our training set by
adding the points zi, as shown in Figure 4, and this results in balancing the
dataset.

6.3 Early stopping scenario

As a second step, we consider the early stopping version of both the SBF (that
is the current state of the art for early stopping methods) and the OSBF. In
order to evaluate the performance of the proposed method with respect to
the number of iterations needed for an accurate classification also the the-
oretical Information transfer rate (ITR, bit/min) has been computed. The
ITR is a communication measure based on Shannon channel theory with some
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x1

x2

w
T x

=
0

xtrg

xi

zi = xtrg − xi

Fig. 4: Given the point xi with label yi = −1, it is possible to reinterpret
constraints (22) as adding to the training set the points zi with label ŷi = 1.
Please note that this is a simplified example where samples are represented
with 2-dimensional data points with features x1 and x2.

Dataset
DV-avg
L1-SVM

DV-avg
L2-SVM

SBF
L1-SVM

SBF
L2-SVM

OSBF
L1-SVM

OSBF
L2-SVM

ALSP300Speller 0.919 0.913 0.913 0.944 0.95 0.963
P300Speller 0.95 0.967 0.95 0.95 0.967 0.967
CenterSpeller 0.957 0.953 0.953 0.94 0.953 0.949
AMUSE 0.741 0.756 0.752 0.753 0.763 0.796
MVEP 0.754 0.743 0.739 0.747 0.777 0.76
Akimpech 0.954 0.967 0.955 0.978 0.962 0.978

Table 3: Accuracy comparison between OSBF, SBF and standard approach
DV-avg

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 0.95 0.962 0.975
P300Speller 0.967 0.967 0.967
CenterSpeller 0.953 0.949 0.96
AMUSE 0.763 0.796 0.806
MVEP 0.777 0.76 0.783
Akimpech 0.962 0.978 0.974

Table 4: Accuracy obtained by OSBF with the different hyperplanes: standard
SVM with L1 loss, standard SVM with L2 loss, and the new M-SVM obtained
by solving problem (33)
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Dataset % Class 1 % Class 2
Class 1

L2-SVM
Class 1
M-SVM

Class 2
L2-SVM

Class 2
M-SVM

Tot
L2-SVM

Tot
M-SVM

ALSP300Speller 12.5 25 0.95 0.9 0.9 0.975 0.963 0.975
CenterSpeller 7.7 46.2 1 0.977 0.902 0.928 0.95 0.96
AMUSE 25 37.5 0.865 0.842 0.695 0.738 0.796 0.806
MVEP 20 40 0.859 0.827 0.714 0.789 0.76 0.783
Akimpech 17.9 3.6 0.952 0.919 0.923 0.974 0.978 0.974
P300Speller 0 0 - - - - - -

Table 5: Here we divide the subjects into two sets: the ones where M-SVM per-
forms worse than the standard L2 SVM and the ones where M-SVM performs
better than the standard SVM. Columns % Class 1 and % Class 2 report the
percentage of subjects belonging to class 1 and class 2 respectively. Columns
3-6 contain the accuracy obtained by subjects belonging to class 1 or class 2
using the L2-SVM or M-SVM hyperplane. Finally, columns Tot L2-SVM and
Tot M-SVM report the average accuracy computed on the entire datasets.
Results on P300 Speller dataset are not shown since in this case L2-SVM and
M-SVM perform exactly the same and, so, class 1 and 2 are empty.

simplifying assumptions. It can be computed by dividing the number of bits
transmitted per trial (or bit rate, bits/trial) by the trial duration in minute.
We compute the bit-rate, using the definition proposed in [49], as:

B = log2N + P log2 P + (1− P ) log2

(1− P )

(N − 1)
, (57)

where N is the number of possible symbols in the speller grid and P is the
probability that the target symbol is accurately classified at the end of a trial.
From (57) the ITR is computed as:

ITR =
B

trial duration
(58)

where

trial duration =
SOA · fs · i

60
min. (59)

In (59), SOA refers to the stimulus-onset asynchrony; fs represents the number
of stimuli in each stimulation sequence and i is the mean number of used
iterations to select a symbol. In Tables 6, 7, 8 and 9 the results obtained with
the early stopping setting are shown. Findings in Table 6 further corroborates
the potentials of the OSBF since its outperforms the SBF, no matter what
hyperplane is used. In Table 7 we compare the early stopping results in terms
of accuracy obtained with the OSBF with the different hyperplanes (L1-SVM,
L2-SVM and M-SVM): we can notice that, in this case, the M-SVM reaches
a higher level of accuracy than the other methods among almost all datasets.
Tables 8 and 9 show the results in terms of theoretical ITR. In this case, we
can see that all the strategies reach comparable results and there is not a clear
winner. This is confirmed by the statistical analysis (Wilcoxon test) which did
not reveal any significant difference among the various methods when applied
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Dataset SBF L1-SVM SBF L2-SVM OSBF L1-SVM OSBF L2-SVM

ALSP300Speller 0.85 0.863 0.925 0.925
P300Speller 0.95 0.95 0.967 0.95
CenterSpeller 0.903 0.893 0.944 0.931
AMUSE 0.636 0.647 0.756 0.744
MVEP 0.712 0.712 0.748 0.744
Akimpech 0.911 0.934 0.943 0.948

Table 6: Accuracy obtained in the early stopping setting by the SBF and
OSBF using the separation hyperplane given by a linear SVM with both L1
and L2 losses

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 0.925 0.925 0.944
P300Speller 0.967 0.95 0.967
CenterSpeller 0.944 0.931 0.95
AMUSE 0.756 0.744 0.76
MVEP 0.748 0.744 0.760
Akimpech 0.943 0.948 0.942

Table 7: Accuracy obtained in the early stopping setting by the OSBF with
the different hyperplanes: standard SVM with L1 loss, standard SVM with L2
loss, and the new M-SVM obtained by solving problem (33).

to the data contained on either Table 14 and 15 included in Appendix B. We
can then conclude that the OSBF strategy is a more conservative approach
than the SBF, since it manages to keep a high level of accuracy preserving the
communication speed.

As a final analysis, in Tables 10, 11 and 12 we compare the no stopping
and early stopping configurations respectively with L1-SVM, L2-SVM and M-
SVM hyperplanes. It is reasonable to expect that the early stopping setting
leads to a increase of ITR; on the other hand, we can expect a loss in terms
of accuracy. In order to evaluate these phenomena, we report the ITR levels
obtained both in the no stopping and early stopping setting and we compute
both the percentage of increase in terms of ITR and the percentage of loss in
terms of accuracy. We can notice that, no matter what hyperplane is used, the
early stopping configuration always leads to a consistent increase in terms of
ITR with a small percentage of accuracy loss.

7 Conclusions

BCIs are proposed for a wide range of applications, such as those for com-
municating [39], for entertainment [4], environmental or neuroprostheses con-
trol [30], rehabilitation [6], and supporting diagnoses [27], to name a few.
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Dataset SBF L1-SVM SBF L2-SVM OSBF L1-SVM OSBF L2-SVM

ALSP300Speller 20.187 19.234 20.187 20.716
P300Speller 34.38 34.086 32.343 30.356
CenterSpeller 28.372 28.042 27.76 27.649
AMUSE 12.67 12.929 14.490 15.232
MVEP 9.434 9.252 10.245 10.626
Akimpech 34.593 38.464 35.061 36.532

Table 8: ITR (bit/min) obtained in the early stopping setting by the SBF and
OSBF using the separation hyperplan given by a linear SVM with both L1
and L2 losses

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 20.187 20.716 21.79
P300Speller 32.343 30.356 32.11
CenterSpeller 27.76 27.649 27.909
AMUSE 14.490 15.232 15.35
MVEP 10.245 10.626 10.431
Akimpech 35.061 36.532 34.811

Table 9: ITR (bit/min) obtained in the early stopping setting by the OSBF
with the different hyperplanes: standard SVM with L1 loss, standard SVM
with L2 loss, and the new M-SVM obtained by solving problem (33).

Dataset
OSBF L1-SVM

NS
OSBF L1-SVM

ES
ITR increase

(%)
Accuracy loss

(%)

ALSP300Speller 9.342 20.187 116.1 2.6
P300Speller 12.172 32.343 165.7 0.0
CenterSpeller 10.281 27.760 170.0 0.9
AMUSE 5.895 14.490 145.8 0.9
MVEP 5.940 10.245 72.5 3.8
Akimpech 10.077 35.061 247.9 2.0

Table 10: Comparison of the ITR (bit/min) between the no stopping and early
stopping setting for the OSBF decision function by using the standard SVM
training problem with L1 loss.

Moreover, the same paradigm, such as the P300 discussed in this manuscript,
can be used in all of them. Despite this large scenario, all of these applications
try to get one among these two goals:

(i) to improve the accuracy of the systems, which usually is equivalent to
minimize the occurrence of classification errors;

(ii) to maximize the communication speed or, in a more general sense, the
information transfer rate.
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Dataset
OSBF L2-SVM

NS
OSBF L2-SVM

ES
ITR increase

(%)
Accuracy loss

(%)

ALSP300Speller 9.452 20.716 119.2 3.9
P300Speller 12.172 30.356 149.4 1.7
CenterSpeller 10.240 27.649 170.0 2.0
AMUSE 6.276 15.232 142.7 6.5
MVEP 5.723 10.626 85.7 2.0
Akimpech 10.370 36.532 252.3 3.1

Table 11: Comparison of the ITR (bit/min) between the no stopping and early
stopping setting for the OSBF decision function by using the standard SVM
training problem with L2 loss.

Dataset
OSBF M-SVM

NS
OSBF M-SVM

ES
ITR increase

(%)
Accuracy loss

(%)

ALSP300Speller 9.823 21.790 121.8 3.2
P300Speller 12.172 32.110 163.8 0.0
CenterSpeller 10.439 27.909 167.4 1.0
AMUSE 6.367 15.350 141.1 5.8
MVEP 6.002 10.431 73.8 2.9
Akimpech 10.278 34.811 238.7 3.3

Table 12: Comparison of the ITR (bit/min) between the no stopping and early
stopping setting for the OSBF decision function by using the M-SVM training
problem.

These two strategies are usually pursued because the consequences of errors
are different such as in the cases of a BCI used to drive a wheelchair, as
compared to a BCI used to communicate: in the first case an error can harm
a user, while in the second case it only leads to a typo. In any case, depending
on the application, the strategies to achieve such goals can vary a lot.

This paper focuses on the classification problem that arises in many BCI
protocols. The idea was to exploit the knowledge on the protocol in order to
improve the classification accuracy and the communication speed of the BCI,
that is to achieve both goals or at least to shorten the distance among them,
thus allowing a painless tuning of a BCI according to the target application.

The novelty of our approach is three-fold. First, for each participant we
determine the optimal scores by solving an optimization problem on her/his
training data; secondly, we implement an efficient early stopping method by
solving a modified version of the optimization problem connected to training;
finally, we successfully include the information on the decision function (i.e.
the target always is the stimulus having maximum decision value) into the
training problem. The main advantage of our proposed methodology is that
the preliminary calibration phase becomes completely automatic so that a
cross validation phase or manual parameters tuning is no longer fundamental.

Our method achieves such results by means of two main ingredients:
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(i) the use of a MILP problem to assign a “reliability score” to the classification
of each stimulus in every iteration

(ii) the definition of a new training problem that keeps into account that the
target class is assigned to the stimulus having the maximum decision value.

Both these elements have been applied in two different scenarios: a first
one where accuracy was the main focus and all the iterations available for each
subject were used both in the calibration and the online phase; a second one
where the focus was to improve the communication speed, and hence an early
stopping strategy was implemented in the online phase. In order to evaluate
the approaches we conducted an extensive experimentation on datasets coming
from different protocols and including both healthy subjects and ALS patients.
The results show how we were able to improve accuracy and ITR on all the
datasets, proving once more that combining machine learning tools to problem
knowledge can significantly improve performances.

To our knowledge, according to the literature, it is the first time that a
methods was successfully used and performed better than any other in either
accuracy and information transfer rate. Moreover, this was verified on six
different publicly available datasets, which include either healthy subjects or
ALS patients. This remarkable result, which has been obtained through offline
analysis, once verified also during online recording sessions, may represents
the new gold standard in P300 based BCI paradigms and provide a significant
improvement for all the applications that make use of it.

The use of an optimization problem to define how reliable a classification is, can
be used also in the context of collaborative BCIs [32], where a group decision is
made on the basis of the EEG signals of a certain number of subjects. The idea
is to use an optimization problem to assign a score to each subject for each
trial of a certain task as for example recognizing a face in an image containing
a crowded environment [45]. In this case, the idea is to evaluate from the EEG
the reliability of the subject on that task using an automated process based
again on a the solution of a MILP problem. This is material of future work.

A Dual Coordinate Descent Algorithm

In this section we describe how we modified the Dual Coordinate Descent Algorithm pro-
posed in [14] in order to find the separating hyperplane for problem 24-28. The Dual Coor-
dinate Descent Algorithm basically solves the dual problem applying a Gauss Seidel decom-
position method where each variable constitutes a block, and the subproblem with respect
to a single variable is globally solved analytically. We adapt the algorithm by modifying the
following points:

– how the gradient of the objective function is computed;

– how the hyperplane is updated.
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In particular, we can write the objective function f and the separating hyperplane w
as:

f =
1

2

l1∑
i=1

l1∑
j=1

λiλjyiyjx
T
i xj +

l1∑
i=1

l2∑
j=1

λiρjyix
T
i zj +

1

2

l2∑
i=1

l2∑
j=1

ρiρjzizj −
l1∑
i=1

λi −
l2∑
i=1

ρj

(60)

w =

l1∑
i=1

λiyixi +

l2∑
i=1

ρizi (61)

Let’s define the vector α =
[
λT ρT

]
∈ IRl1×l2 . Equations 60 and 61 can equivalently be

defined with respect to vector α. We can then express the i-th component of the gradient
of f(α) as:

∇if =

{∑l1
j=1 αjyiyjx

T
i xj +

∑l1+l2
j=l1

αjyix
T
i zj − 1 if i < l1∑l1

j=1 αjyjx
T
j zj +

∑l1+l2
j=l11

αjz
T
i zj − 1 otherwise

(62)

which can be rewritten as:

∇if =

{
yiw

T xi − 1 if i < l1

wT zi − 1 otherwise
(63)

Algorithm 1 A Dual Coordinate Descent Algorithm for problem 24-28

k ← 0
α←

[
λT ρT

]
α0 ← 0, w0 ← 0
while αk not optimal do
αk,1 ← αk, wk,1 ← wk

for i = 0 to l1 + l2 do

∇if(αk,i) =

{
yi(w

k,i)T xi − 1 if i < l1;

(wk,i)T zi − 1 otherwise

∇Pi f(αk,i) =


min(∇if(αk,i), 0) if αk,i = 0

max(∇if(αk,i), 0) if αk,i = C

∇if(αk,i) otherwise

if ∇Pi f(αk,i) == 0 then

αk+1
i = αki , w

k+1,i = wk,i

else

αk+1
i = min

(
C,max

(
0, αki −

∇if(α
k,i)

Qi,i

))
wk,i+1 =

w
k,i + yi

(
αk+1
i − αki

)
xi if i < l1;

wk,i +
(
αk+1
i − αki

)
zi otherwise;

αk,i+1 =
(
αki , . . . α

k+1
i , αki+1, . . . α

k
l1+l2

)
end if

end for
end while

We note that in principle we may use liblinear if we include the bias b into the vector
w, augmenting each data point in the training set with a last component equal to 1, and we
set C1 = C2. However, it turns out from the experiments that is more effective to treat the
zi separately defining a dedicated parameter C2 to be chosen in cross validation, which is
why we defined our own training algorithm.
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B Detailed numerical results

As a supplement, we provide the detailed results obtained for all subjects for all considered
datasets. In Table 13 we provide the results obtained in the no stopping setting, while in
Tables 14 and 15 the results for the early stopping setting are reported.

Dataset Subj.
DV-avg
L1-SVM

DV-avg
L2-SVM

DV-avg
M-SVM

SBF
L1-SVM

SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

ALSP300Speller 1 0.850 0.900 0.850 0.900 0.950 0.900 0.950 0.900 0.950
ALSP300Speller 2 0.800 0.850 0.850 0.850 0.850 0.850 0.850 0.900 1.000
ALSP300Speller 3 0.800 0.800 0.850 0.950 1.000 0.950 0.900 0.950 0.900
ALSP300Speller 4 0.950 0.800 0.900 0.850 0.950 0.850 0.950 0.950 0.950
ALSP300Speller 5 1.000 1.000 1.000 0.950 0.900 0.950 1.000 1.000 1.000
ALSP300Speller 6 1.000 1.000 1.000 0.900 0.950 0.950 1.000 1.000 1.000
ALSP300Speller 7 0.950 0.950 0.950 0.900 0.950 0.950 0.950 1.000 1.000
ALSP300Speller 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 4 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833
P300Speller 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 6 0.833 1.000 0.833 0.833 1.000 0.833 1.000 1.000 1.000
P300Speller 7 1.000 1.000 1.000 1.000 0.833 1.000 1.000 1.000 1.000
P300Speller 8 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833
P300Speller 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CenterSpeller VPiac 0.929 0.952 0.929 0.905 0.905 0.905 0.952 0.929 0.929
CenterSpeller VPiba 0.974 0.947 0.974 0.947 0.974 0.947 0.947 0.947 0.974
CenterSpeller VPibb 1.000 1.000 1.000 0.974 1.000 0.947 1.000 1.000 1.000
CenterSpeller VPibc 1.000 1.000 1.000 0.977 1.000 0.977 1.000 1.000 0.977
CenterSpeller VPibd 0.976 0.927 0.951 0.976 0.951 0.976 0.927 0.927 0.951
CenterSpeller VPibe 1.000 1.000 1.000 1.000 0.969 1.000 1.000 1.000 1.000
CenterSpeller VPibf 1.000 1.000 1.000 0.977 0.977 0.977 0.977 1.000 1.000
CenterSpeller VPibg 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CenterSpeller VPibh 0.750 0.769 0.769 0.827 0.635 0.788 0.808 0.788 0.827
CenterSpeller VPibi 0.940 0.940 0.960 0.960 0.980 0.960 0.960 0.960 0.980
CenterSpeller VPibj 0.930 0.930 0.907 0.860 0.884 0.860 0.837 0.814 0.837
CenterSpeller VPica 0.973 0.946 0.973 1.000 0.973 1.000 1.000 1.000 1.000
CenterSpeller VPsaf 0.974 0.974 1.000 0.974 0.974 0.949 0.974 0.974 1.000
AMUSE VPfar 0.711 0.644 0.711 0.600 0.556 0.578 0.711 0.711 0.711
AMUSE VPfau 0.845 0.845 0.810 0.828 0.862 0.845 0.862 0.862 0.879
AMUSE VPfav 0.849 0.849 0.849 0.830 0.849 0.830 0.849 0.849 0.849
AMUSE VPfaw 0.750 0.806 0.861 0.806 0.861 0.833 0.889 0.889 0.917
AMUSE VPfax 0.756 0.756 0.732 0.768 0.744 0.720 0.756 0.756 0.793
AMUSE VPfaz 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.969
AMUSE VPfca 0.974 0.947 0.974 0.974 1.000 0.974 0.947 1.000 0.974
AMUSE VPfcb 0.695 0.712 0.780 0.847 0.746 0.746 0.712 0.847 0.831
AMUSE VPfcc 0.969 0.969 0.938 0.938 0.969 0.938 0.969 0.969 0.969
AMUSE VPfcd 0.743 0.857 0.743 0.800 0.857 0.857 0.800 0.914 0.886
AMUSE VPfcg 0.682 0.591 0.621 0.712 0.727 0.697 0.697 0.697 0.697
AMUSE VPfch 0.259 0.379 0.397 0.276 0.241 0.276 0.241 0.431 0.500
AMUSE VPfcj 0.391 0.551 0.536 0.449 0.377 0.493 0.536 0.580 0.638
AMUSE VPfck 0.736 0.717 0.736 0.698 0.698 0.660 0.660 0.698 0.679
AMUSE VPfcm 0.617 0.600 0.633 0.683 0.717 0.600 0.700 0.650 0.700
AMUSE VPkw 0.909 0.909 0.909 0.848 0.879 0.909 0.909 0.909 0.909
MVEP VPfat 0.821 0.923 0.897 0.872 0.923 0.821 0.949 0.897 0.897
MVEP VPgdf 0.647 0.618 0.618 0.647 0.647 0.588 0.706 0.618 0.647
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MVEP VPgdg 0.821 0.744 0.821 0.692 0.769 0.718 0.769 0.744 0.795
MVEP VPiac 0.667 0.667 0.727 0.606 0.697 0.667 0.727 0.697 0.697
MVEP VPiba 0.519 0.500 0.519 0.537 0.537 0.593 0.556 0.500 0.648
MVEP VPibe 1.000 0.973 1.000 0.973 0.973 0.946 1.000 1.000 1.000
MVEP VPibs 0.760 0.780 0.760 0.820 0.660 0.740 0.840 0.840 0.820
MVEP VPibt 0.810 0.833 0.810 0.786 0.833 0.786 0.762 0.786 0.786
MVEP VPibu 0.468 0.553 0.489 0.426 0.468 0.447 0.532 0.489 0.489
MVEP VPibv 0.833 0.806 0.833 0.833 0.750 0.889 0.889 0.806 0.944
MVEP VPibw 0.975 0.925 0.975 0.975 0.975 1.000 0.925 0.975 0.950
MVEP VPibx 0.917 0.861 0.917 0.917 0.917 0.944 0.972 0.917 0.944
MVEP VPiby 0.684 0.632 0.684 0.737 0.711 0.684 0.737 0.763 0.711
MVEP VPice 0.659 0.705 0.682 0.614 0.614 0.591 0.591 0.659 0.659
MVEP VPicv 0.730 0.622 0.676 0.649 0.730 0.649 0.703 0.703 0.757
Akimpech ACS 0.923 0.962 0.962 0.923 0.962 0.962 0.962 0.962 0.962
Akimpech APM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech ASG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech ASR 0.973 0.919 0.865 0.919 0.973 0.811 0.946 0.919 0.865
Akimpech CLL 0.974 1.000 1.000 0.949 0.949 0.949 0.974 0.923 0.974
Akimpech CLR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech DCM 0.980 0.980 0.980 1.000 0.959 0.959 1.000 1.000 0.980
Akimpech DLP 0.957 0.957 0.913 0.913 1.000 1.000 0.957 1.000 1.000
Akimpech DMA 0.833 0.800 0.800 0.833 0.833 0.833 0.900 0.867 0.833
Akimpech ELC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech FSZ 0.867 0.933 0.900 0.967 1.000 0.933 0.933 0.967 0.967
Akimpech GCE 0.964 0.964 0.929 0.929 0.929 0.929 0.893 0.964 0.964
Akimpech ICE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech IZH 0.950 0.950 0.950 0.975 0.975 0.975 1.000 0.975 0.975
Akimpech JCR 0.667 0.944 0.944 0.889 1.000 1.000 0.778 1.000 1.000
Akimpech JLD 1.000 1.000 1.000 1.000 1.000 0.957 1.000 1.000 1.000
Akimpech JMR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech JSC 0.962 0.962 0.962 0.808 0.962 0.923 0.923 1.000 0.962
Akimpech JST 1.000 1.000 1.000 0.971 1.000 0.971 0.971 1.000 1.000
Akimpech LAC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech LAG 0.977 0.953 0.930 0.977 0.977 0.977 0.953 0.977 0.953
Akimpech LGP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech LPS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech MoMR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech PGA 0.818 0.841 0.818 0.841 0.886 0.864 0.864 0.886 0.886
Akimpech WFG 0.907 0.953 0.953 0.930 1.000 0.977 0.977 0.977 0.977
Akimpech XCL 1.000 1.000 1.000 0.952 1.000 1.000 0.952 1.000 1.000

Table 13: Detail of the Accuracy results obtains with all no stopping framework
mentioned

Dataset Subj.
SBF

L1-SVM
SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

ALSP300Speller 1 0.950 0.800 0.900 0.950 0.850 1.000
ALSP300Speller 2 0.750 0.750 0.700 0.800 0.900 0.850
ALSP300Speller 3 0.850 0.850 0.750 0.800 0.950 0.800
ALSP300Speller 4 0.750 0.900 0.750 0.900 0.900 0.900
ALSP300Speller 5 0.850 0.850 0.850 1.000 0.950 1.000
ALSP300Speller 6 0.800 0.850 0.850 1.000 0.900 1.000
ALSP300Speller 7 0.900 0.900 0.900 0.950 0.950 1.000
ALSP300Speller 8 0.950 1.000 1.000 1.000 1.000 1.000
P300Speller 1 0.833 0.833 0.833 1.000 1.000 1.000
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P300Speller 2 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 3 1.000 1.000 1.000 1.000 0.833 1.000
P300Speller 4 0.833 0.833 0.833 0.833 0.833 0.833
P300Speller 5 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 6 0.833 1.000 0.833 1.000 1.000 1.000
P300Speller 7 1.000 0.833 1.000 1.000 1.000 1.000
P300Speller 8 1.000 1.000 1.000 0.833 0.833 0.833
P300Speller 9 1.000 1.000 1.000 1.000 1.000 1.000
P300Speller 10 1.000 1.000 1.000 1.000 1.000 1.000
CenterSpeller VPiac 0.833 0.857 0.810 0.881 0.881 0.857
CenterSpeller VPiba 0.921 0.921 0.921 0.947 0.947 0.974
CenterSpeller VPibb 0.947 0.921 0.947 1.000 0.974 1.000
CenterSpeller VPibc 0.932 0.909 0.909 1.000 1.000 0.977
CenterSpeller VPibd 0.878 0.927 0.878 0.927 0.951 0.927
CenterSpeller VPibe 0.969 0.938 0.969 0.969 1.000 0.969
CenterSpeller VPibf 0.907 0.907 0.907 1.000 0.930 1.000
CenterSpeller VPibg 1.000 1.000 1.000 1.000 1.000 1.000
CenterSpeller VPibh 0.769 0.615 0.788 0.827 0.788 0.846
CenterSpeller VPibi 0.900 0.940 0.960 0.960 0.940 0.960
CenterSpeller VPibj 0.814 0.837 0.837 0.837 0.791 0.837
CenterSpeller VPica 0.919 0.892 0.946 0.973 0.946 1.000
CenterSpeller VPsaf 0.949 0.949 0.949 0.949 0.949 1.000
AMUSE VPfar 0.489 0.489 0.489 0.689 0.644 0.644
AMUSE VPfau 0.759 0.828 0.741 0.828 0.862 0.845
AMUSE VPfav 0.717 0.830 0.811 0.830 0.830 0.811
AMUSE VPfaw 0.528 0.667 0.694 0.806 0.833 0.861
AMUSE VPfax 0.646 0.500 0.634 0.732 0.683 0.683
AMUSE VPfaz 0.938 0.875 0.938 0.969 0.938 0.969
AMUSE VPfca 0.737 0.763 0.658 0.974 0.974 0.974
AMUSE VPfcb 0.559 0.576 0.644 0.729 0.712 0.814
AMUSE VPfcc 0.844 0.844 0.906 0.969 0.938 0.875
AMUSE VPfcd 0.714 0.714 0.657 0.829 0.857 0.829
AMUSE VPfcg 0.515 0.606 0.470 0.667 0.636 0.636
AMUSE VPfch 0.293 0.224 0.293 0.362 0.362 0.414
AMUSE VPfcj 0.435 0.362 0.493 0.449 0.478 0.565
AMUSE VPfck 0.547 0.528 0.528 0.642 0.679 0.679
AMUSE VPfcm 0.583 0.667 0.417 0.683 0.600 0.617
AMUSE VPkw 0.879 0.879 0.909 0.939 0.879 0.939
MVEP VPfat 0.846 0.974 0.769 0.923 0.897 0.897
MVEP VPgdf 0.529 0.588 0.441 0.588 0.618 0.618
MVEP VPgdg 0.564 0.769 0.667 0.795 0.744 0.795
MVEP VPiac 0.727 0.667 0.545 0.606 0.667 0.667
MVEP VPiba 0.556 0.519 0.611 0.593 0.463 0.593
MVEP VPibe 0.892 0.919 0.892 1.000 1.000 1.000
MVEP VPibs 0.800 0.580 0.600 0.680 0.800 0.780
MVEP VPibt 0.786 0.833 0.786 0.786 0.786 0.786
MVEP VPibu 0.404 0.468 0.447 0.511 0.468 0.468
MVEP VPibv 0.889 0.750 0.889 0.944 0.861 0.917
MVEP VPibw 0.975 0.950 0.875 1.000 1.000 0.950
MVEP VPibx 0.833 0.833 0.806 0.917 0.917 0.889
MVEP VPiby 0.711 0.684 0.658 0.605 0.684 0.711
MVEP VPice 0.545 0.523 0.523 0.591 0.614 0.659
MVEP VPicv 0.622 0.622 0.568 0.676 0.649 0.676
Akimpech ACS 0.808 0.923 0.846 0.846 0.846 0.885
Akimpech APM 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech ASG 1.000 0.962 0.962 0.923 0.962 0.962
Akimpech ASR 0.811 0.946 0.649 0.946 0.892 0.838
Akimpech CLL 0.846 0.872 0.923 0.872 0.923 0.974
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Akimpech CLR 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech DCM 0.939 0.898 0.918 0.959 0.959 0.939
Akimpech DLP 0.826 0.870 1.000 0.957 0.957 0.957
Akimpech DMA 0.900 0.800 0.800 0.900 0.867 0.867
Akimpech ELC 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech FSZ 0.967 1.000 0.900 0.933 0.967 0.967
Akimpech GCE 0.857 0.893 0.821 0.929 0.893 0.893
Akimpech ICE 0.917 1.000 0.875 1.000 1.000 1.000
Akimpech IZH 0.875 0.850 0.800 0.925 0.925 0.900
Akimpech JCR 0.889 0.944 0.833 1.000 0.944 0.889
Akimpech JLD 1.000 1.000 0.913 1.000 1.000 1.000
Akimpech JMR 0.923 0.923 0.923 1.000 1.000 0.962
Akimpech JSC 0.654 0.846 0.885 0.808 0.923 0.885
Akimpech JST 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech LAC 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech LAG 0.930 0.907 0.930 0.907 0.953 0.907
Akimpech LGP 1.000 1.000 1.000 1.000 1.000 1.000
Akimpech LPS 0.800 0.800 0.800 0.800 0.800 0.800
Akimpech MoMR 1.000 0.941 0.941 1.000 0.941 1.000
Akimpech PGA 0.818 0.864 0.841 0.841 0.886 0.886
Akimpech WFG 0.930 0.977 0.907 0.977 0.953 0.977
Akimpech XCL 0.905 1.000 0.952 0.952 1.000 0.952

Table 14: Detail of the Accuracy results obtains with all early stopping frame-
work mentioned

Dataset Subj.
SBF
L1-SVM

SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

ALSP300Speller 1 16.599 15.734 19.593 16.599 15.239 20.175
ALSP300Speller 2 12.222 12.556 11.111 12.222 13.845 13.722
ALSP300Speller 3 16.492 19.073 16.298 16.492 21.032 15.210
ALSP300Speller 4 16.424 12.501 13.826 16.424 15.879 16.836
ALSP300Speller 5 20.577 20.771 21.207 20.577 20.565 22.236
ALSP300Speller 6 21.654 19.193 18.605 21.654 20.305 22.356
ALSP300Speller 7 18.508 21.477 23.429 18.508 20.565 23.236
ALSP300Speller 8 39.018 32.566 36.928 39.018 38.296 40.548
P300Speller 1 25.132 23.148 25.132 31.020 30.263 31.815
P300Speller 2 38.774 40.025 40.025 41.359 40.025 41.359
P300Speller 3 32.652 22.977 30.263 31.815 19.547 29.542
P300Speller 4 33.831 36.650 36.650 24.433 25.132 24.433
P300Speller 5 41.359 44.314 41.359 37.599 37.599 37.599
P300Speller 6 25.132 31.020 26.655 27.573 29.542 29.542
P300Speller 7 27.573 21.454 27.573 28.855 26.974 27.573
P300Speller 8 30.263 28.855 31.020 21.990 19.991 20.456
P300Speller 9 41.359 42.786 41.359 34.466 34.466 34.466
P300Speller 10 47.722 49.631 47.722 44.314 40.025 44.314
CenterSpeller VPiac 20.249 26.589 23.718 23.546 24.404 21.732
CenterSpeller VPiba 26.307 26.794 26.794 27.868 26.982 30.014
CenterSpeller VPibb 31.684 31.049 31.816 33.617 30.699 32.973
CenterSpeller VPibc 29.426 27.713 28.289 30.473 31.336 29.083
CenterSpeller VPibd 23.146 27.908 24.662 23.647 26.704 23.576
CenterSpeller VPibe 36.558 33.161 37.370 32.653 33.707 32.973
CenterSpeller VPibf 32.471 26.430 31.821 32.140 30.004 31.824
CenterSpeller VPibg 43.509 43.085 44.608 39.607 43.725 38.569
CenterSpeller VPibh 18.407 11.128 16.535 16.797 15.199 19.050
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CenterSpeller VPibi 28.770 31.514 31.356 27.147 27.185 26.935
CenterSpeller VPibj 22.652 24.898 24.808 18.391 16.365 18.844
CenterSpeller VPica 25.320 24.957 27.354 25.990 24.959 25.704
CenterSpeller VPsaf 30.342 29.324 31.062 28.999 28.167 31.544
AMUSE VPfar 5.549 5.370 6.552 8.610 9.986 8.314
AMUSE VPfau 14.682 16.384 17.185 14.834 16.699 16.139
AMUSE VPfav 15.535 14.670 15.456 19.101 21.385 19.395
AMUSE VPfaw 8.541 12.963 12.811 14.112 16.804 16.256
AMUSE VPfax 10.425 8.435 10.154 11.186 10.287 9.579
AMUSE VPfaz 29.548 31.219 31.078 33.581 30.235 37.179
AMUSE VPfca 19.655 20.983 17.787 27.462 27.767 27.462
AMUSE VPfcb 7.303 8.242 10.630 8.356 10.413 11.195
AMUSE VPfcc 20.129 22.135 24.316 22.509 25.576 22.971
AMUSE VPfcd 15.004 14.126 13.374 13.763 15.183 14.970
AMUSE VPfcg 8.621 10.283 7.204 9.691 9.228 9.166
AMUSE VPfch 1.838 1.146 1.469 2.819 2.862 3.136
AMUSE VPfcj 3.197 2.200 3.654 4.565 5.378 7.027
AMUSE VPfck 9.682 9.056 9.368 9.594 10.557 10.408
AMUSE VPfcm 5.763 7.058 4.565 9.227 7.871 8.002
AMUSE VPkw 27.244 22.588 28.013 22.433 23.480 24.398
MVEP VPfat 14.958 14.291 13.818 17.155 15.372 14.972
MVEP VPgdf 5.504 5.419 3.910 5.314 5.845 6.016
MVEP VPgdg 6.586 11.509 9.982 8.776 8.822 9.048
MVEP VPiac 11.131 8.422 7.097 6.886 8.350 8.398
MVEP VPiba 4.186 5.435 7.175 5.528 4.035 6.015
MVEP VPibe 16.537 17.687 16.239 18.598 21.599 18.751
MVEP VPibs 8.185 6.961 6.306 6.972 9.618 9.155
MVEP VPibt 9.232 10.368 9.426 12.149 11.743 12.149
MVEP VPibu 2.253 3.136 2.854 4.108 3.430 3.672
MVEP VPibv 10.438 7.861 10.650 14.113 12.383 13.729
MVEP VPibw 13.403 13.192 17.706 17.485 19.418 15.786
MVEP VPibx 15.977 14.671 15.071 16.467 16.972 15.894
MVEP VPiby 10.564 7.123 9.098 6.992 8.197 8.767
MVEP VPice 5.280 4.897 5.019 5.710 6.264 6.892
MVEP VPicv 7.271 7.813 6.522 7.422 7.343 7.215
Akimpech ACS 23.354 29.594 27.111 22.840 23.990 24.666
Akimpech APM 51.115 53.921 54.563 50.551 51.691 48.586
Akimpech ASG 40.801 43.749 42.566 36.551 40.254 41.175
Akimpech ASR 22.004 20.972 13.311 22.561 20.642 16.259
Akimpech CLL 24.106 29.092 30.928 23.146 29.745 32.356
Akimpech CLR 52.884 47.413 45.833 45.833 41.666 39.285
Akimpech DCM 45.059 42.503 42.313 42.218 43.689 40.103
Akimpech DLP 21.249 31.112 28.765 28.278 28.668 25.819
Akimpech DMA 18.975 25.073 24.142 25.724 28.174 26.192
Akimpech ELC 53.088 50.737 53.710 50.182 52.083 48.076
Akimpech FSZ 34.140 45.379 29.082 32.874 35.871 34.417
Akimpech GCE 25.441 28.303 26.500 25.405 25.961 24.513
Akimpech ICE 35.864 38.841 28.723 35.256 34.203 33.536
Akimpech IZH 31.358 32.417 28.353 31.212 32.067 29.545
Akimpech JCR 17.051 21.163 22.774 23.031 23.047 19.216
Akimpech JLD 49.818 45.833 39.010 44.788 47.577 42.177
Akimpech JMR 29.005 41.494 39.660 37.878 41.044 39.746
Akimpech JSC 17.758 27.944 25.540 19.469 28.301 25.784
Akimpech JST 53.710 57.053 55.220 51.691 54.347 51.115
Akimpech LAC 58.760 57.772 60.043 55.443 50.182 52.083
Akimpech LAG 39.163 38.809 41.354 36.548 41.729 36.667
Akimpech LGP 41.540 50.737 51.497 46.928 51.497 50.551
Akimpech LPS 21.166 23.951 22.754 22.754 22.754 24.598
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Akimpech MoMR 36.569 37.083 33.674 35.714 32.850 35.166
Akimpech PGA 17.631 24.322 21.851 22.807 24.922 22.353
Akimpech WFG 31.372 41.167 37.770 34.324 33.587 35.640
Akimpech XCL 41.036 52.083 46.840 42.640 45.833 40.279

Table 15: Detail of the ITR (bit/min) results obtains with all early stopping
framework mentioned
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