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FOR THE HUMAN DEVELOPMENT INDEX

Abstract. As remarked by Ravallion (2012), the recent switch from arith-
metic to geometric mean in the aggregation of the United Nations’ Human

Development Index has caused a more severe inequality penalization of the

index for less developed countries, with outlying consequences. We clarify
and explain this fact and propose an aggregation function, the Trichotomy

Mean, that depends on two parameters: one regulates the overall penalization
of disequilibria (among or within dimensions) in analogy with Atkinson’s in-

equality aversion parameter for power means; the other modulates the Level

Dependence of the Adjustment, a novel concept describing the behavior—
decreasing, increasing, or constant—of penalization of given disequilibria for

increasing index level. Unlike the geometric mean (which, incidentally, has de-

creasing LDA type), the TM remains valid for zero or negative—and does not
distort for small positive—values of the input variables, thus permitting less

restrictive raw-variable normalizations and to overcome the need for exoge-

nous lower bounds. We compare the three versions of TM with the geometric
mean in an empirical analysis on the HDI 2014 data. We finally illustrate the

contributions of the TM to the development literature debate.

1. Introduction

The United Nations Development Programme’s Human Development Index (HDI ),
published yearly in the Human Development Report (HDR) and perhaps the most
important index used in development analysis, aggregates three fundamental dimen-
sions of human development: income, education, and health. Since its introduction
in 1990, the index has undergone several methodological revisions, mostly sum-
marized in Klugman et al. (2011), involving raw variable choice and/or indexing
procedure for education and income, normalization bounds, and aggregation. This
last issue will constitute the focus of this article.

Before 2010, the HDI aggregated the three dimensions by the arithmetic mean of
their normalized values, without taking into account any kind of unbalance among
them or any inequality (across the population or groups thereof) within single
dimensions. In order to overcome these deficiencies the following HDR (UNDP,
2010) started aggregating using the geometric mean instead: thereby, the new
HDI would adjust for unbalances among dimensions, whereas the newly-issued
Inequality-adjusted Human Development Index (IHDI ) would also adjust for within-
variable inequalities. In either case, the adjustment can be regarded as a penaliza-
tion to be applied to the arithmetic mean and it increases with the disequilibrium.
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2 LEVEL DEPENDENCE OF THE ADJUSTMENT FOR THE HDI

Several aspects of aggregation procedures for synthetic indices (especially in
development studies) and, in particular, of adjustments for unbalances and in-
equalities have been investigated in the literature (UNDP, 1993; Anand and Sen,
1995; Hicks, 1997; Foster et al., 2005; Stanton, 2006; Seth, 2009; UNDP, 2010;
Grimm et al., 2010). For a general analysis of composite indicators with unbalance
adjustment see Casadio Tarabusi and Guarini (2013), building on previous work
(Palazzi and Lauri, 1998; Casadio Tarabusi and Palazzi, 2004; Corsi and Guarini,
2011). Inequality among countries and dynamic changes in the HDI and its various
components from a relative standpoint have been studied by Sengupta and Ghosh
(2010, 2013).

Ravallion (2012, §2) remarks that one effect of the switch from arithmetic to
geometric mean in the HDI calculation is a more severe penalization for less devel-
oped countries, with possible outlying consequences. We try to clarify and explain
this fact by studying the features and shortcomings of the geometric mean and to
analyze in general terms the behavior of penalization with respect to the human
development level. More explicitly, we introduce the Level Dependence of the Ad-
justment (LDA), that correlates the absolute level of the composite indicator and
the amount of adjustment it undergoes due to the disequilibrium of (namely, un-
balance among or inequality within) its components. We distinguish three kinds of
LDA: for any given disequilibrium among dimensions, the adjustment may decrease
with the level of the index (decreasing LDA), or increase with it (increasing LDA),
or be independent from it (constant LDA).

After formalizing the concept of LDA, we derive the corresponding conditions on
generalized means, a class of aggregation functions already considered, e.g., in Seth
(2009, pp. 378–379). These conditions, applied to the current HDI’s and IHDI’s
aggregation (geometric means), classifies it as decreasing LDA (whereas the old
HDI’s arithmetic mean does not adjust for disequilibria at all, so it is a degenerate
case of constant LDA). This may or may not be a desirable situation for specific
kinds of development analysis, because it may depend on its context, method, scope
and theoretical and policy framework.

For this reasons we propose a new aggregation function belonging to the class
of generalized means, called Trichotomy Mean (TM ), that depends on a parame-
ter a (level-dependent disequilibrium aversion) according to whose value we have
decreasing (for a < 0), increasing (for a > 0), or constant (for a = 0) LDA. By
adjusting the value of a the user can choose which of the three alternatives fits best
the purpose of their analysis; indeed the absolute value of a may even be used to
calibrate the rate of decrease or increase of the adjustment with respect to the index
level. The TM also improves on the geometric mean with respect to another issue,
which provokes the above-mentioned undesirable effects denounced by Ravallion:
the geometric mean is only defined on positive values of the variables, which may
unduly constrain the preceding normalization step of the index evaluation proce-
dure and thereby distort the index results when the values of some variables are
small, while the TM is defined on all possible values.

The proposed TM also depends on a second user-adjustable parameter b (level-
independent disequilibrium aversion) that modulates the amount of an additional,
index-independent adjustment for disequilibria. Parameter b plays the same role
as Atkinson’s inequality aversion parameter in power means (Atkinson, 1970, §3),
whose value for the geometric mean (used in the current HDI as well as in the
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IHDI) is 1 (Klugman et al., 2011, §6). In the same spirit we choose to select and
suggest specific values for the two TM parameters, namely a = −1 for decreasing
LDA, a = 1 for increasing LDA, a = 0 for constant LDA, along with b = 1 in all
cases.

The empirical section of this article is devoted to an analysis and comparison of
the TM (for each of the three suggested parameter pairs) versus geometric mean
aggregation of the 2014 HDI normalized input data. There result significant rating
and ranking differences between the TM and the HDI’s geometric mean: accord-
ing to the fact that the geometric mean has decreasing LDA, the discrepancy is
minimum for a = −1, maximum for a = 1, and intermediate for a = 0.

We conclude with a discussion of the theoretical, methodological and policy
implications of our remarks and proposals on the ongoing debate in the human
development literature.

2. Aggregation analysis of the Human Development Index

A composite index is built in terms of n individual dimensions x1, . . . , xn given
for the elements of a prescribed set (or units). Each dimension xi is usually assumed
to be normalized with respect to some reference interval Ii of real numbers; in the
sequel we shall assume I1 = · · · = In = [0, 1], although the whole discussion can
easily be adapted to the general case. A positive weight wi is assumed assigned to
each dimension xi to account for its relative relevance, normalized so that

n∑
i=1

wi = 1.

If unspecified, such as in HDI and IHDI as well as in the sequel, the tacit assumption
is w1 = · · · = wn = 1/n. Aggregation of individual indices is obtained via a function
F of n variables (which also incorporates the weights as parameters), so that on
a unit with dimension vector x = (x1, . . . , xn) the composite indicator takes the
value

F (x) = F (x1, . . . , xn).

With an axiomatic type of approach as in Chakravarty (2003), the focus of this
article will be on aggregation, that is, on the properties of function F , without
discussing all other aspects of the indexing analysis (choice of individual variables,
their definition and weighting, normalization methods and parameters, et cetera);
a comprehensive survey of the complete procedure to produce composite indices is
provided in OECD (2008).

For the HDI the units are world countries, while n = 3, and x1 is the Health
Index, x2 the Education Index, and x3 the Income Index, currently defined as, re-
spectively: life expectancy at birth; the simple average of mean years and expected
years of schooling; the natural logarithm of the real gross national income per capita
in United States dollars adjusted for purchasing power parity; all normalized with
the min-max method to the interval [0, 1]. The choice made for the raw maxima
and minima used in the normalization is such that for all three variables the minima
across all countries of the normalized values are somewhat greater than 0, whereas
the maxima are rather close to 1 and the average is significantly greater than .5.
The weights chosen are w1 = w2 = w3 = 1/3. A deep account of further details
and a history of changes for HDI can be found in Klugman et al. (2011). Before
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2010 the aggregation for HDI was performed by using the arithmetic mean µarith:

µarith(x) =

n∑
i=1

wixi,

whose functional form, though, does not take into account any kind of unbalance
among the indices. In order to tackle this shortcoming, the new HDI replaced the
arithmetic mean with the geometric mean µgeom:

µgeom(x) =

n∏
i=1

xwi
i

(provided all xi’s are positive numbers; this constraint will be further discussed
later). As aggregation functions, both the arithmetic and the geometric mean
enjoy the following properties:

Property (i): continuity. The function F is continuous on its domain. So, for
instance, there is no “jump” in the index values.

Property (ii): positive monotonicity. F (x1, . . . , xn) ≥ F (x′1, . . . , x
′
n) if xi ≥ x′i

for every i. The index is (weakly) increasing in each component.

Property (iii): idempotence. If x1 = · · · = xn (the equilibrium locus, as defined
below) then F (x1, . . . , xn) = x1.

Property (iv): symmetry in dimensions. (This holds for µarith and µgeom only if
all weights are equal, as happens with the HDI.) We have F (x) = F (Sx)
whenever S is an n×n permutation matrix (each column and each row have
one 1 and 0 elsewhere). Each variable in the index has the same relevance.

Property (v): non-regressive compensability. For any i, i′, the rate of marginal
compensation (or of substitution) of variable xi with variable xi′ (this rate
equals (∂F/∂xi)/(∂F/∂xi′) under differentiability assumptions) is weakly
increasing with xi′ , provided the index value and the remaining variables
are kept constant.

This last property for the geometric mean is an immediate consequence of the weak
concavity; the preceding ones are straightforward.

3. Disequilibria and adjustment

The equilibrium locus (which is the balance locus if across dimensions, or the
equality locus if across individuals) is the set of points with equal coordinates. The
disequilibrium of x is the skew-symmetric matrix

D(x) = (xi − xi′)i,i′=1,...,n

of differences between all pairs of its coordinates. The adjustment (called penal-
ization in Casadio Tarabusi and Guarini (2013)) of F for disequilibrium is defined
as

A(x) = µarith(x)− F (x) for every x;

under Properties (i)–(v) it is continuous, everywhere non-negative, and equals zero
on the equilibrium locus. The adjustment may be interpreted as the additive cor-
rection that the arithmetic mean µarith(x) undergoes, due to the disequilibrium of
x, in order to yield F (x). According to Property (v) on F , the adjustment increases
with disequilibrium for fixed value of µarith(x) (more precisely: A(x+ ty) increases
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with t ≥ 0 if x is in the equilibrium locus and y = (y1, . . . , yn) is a zero-sum vector).
In stead, for fixed disequilibrium the adjustment may depend on µarith(x) in several
ways, as we shall discuss more extensively below. As already mentioned, the above
properties hold for F = µgeom; in particular, as is well-known,

µgeom(x) ≤ µarith(x) for every x,

and the inequality is strict unless all components of x are equal.
Throughout this article we shall assume the adjustment to be non-negative,

which penalizes disequilibria for any index that evaluates a desirable quantity such
as human development, and is consistent with the non-regressive compensability
Property (v). Nevertheless the entire discussion may easily be converted (simply
replacing F (x) with −F (−x)) to non-positive adjustment, fit for indices constructed
to estimate non-desirable quantities such as human poverty, as long as the word
“increasing” is replaced by “decreasing” in Property (v); in this case disequilibria
are penalized by assigning a possibly greater index than the plain arithmetic mean.

The arithmetic mean may be regarded as the aggregation function that satis-
fies Properties (i)–(v) and least adjusts for disequilibria, in a situation of perfect
substitutability among variables. On the other hand, the one that most adjusts is
the minimum function

F (x) = min(x1, . . . , xn)

(used for instance in the Rawlsian analysis of well-being), in a situation of perfect
complementarity. All other aggregation functions with those properties, such as the
geometric mean, are intermediate between these two extremes. For instance, for n =
2, if x = (.5, .5), in the equilibrium locus, then min(x) = µgeom(x) = µarith(x) = .5,
whereas the point x = (.3, .7), obtained from the previous choice by transferring a
quantity .2 from the first to the second coordinate, has the same arithmetic mean
.5 (no adjustment), while the minimum drops to .3 (a sharp adjustment of .2) and
the geometric mean decreases to approximately .46 (a milder adjustment of about
.04). The level sets of µarith for n = 2 are parallel straight lines at 45 degrees, while
each of those of min is made up of two half-lines parallel to the coordinate axes
and pointing in the positive direction; the level sets of an intermediate aggregation
function is somewhere between these two, as in Figure 1. For further details on
adjustment for disequilibria see Casadio Tarabusi and Guarini (2013) and Klugman
et al. (2011).

We want to investigate another feature of the geometric mean, and of general ag-
gregation functions satisfying the idempotence property, that does not seem to have
been studied in the literature: how the adjustment behaves when the disequilibrium
is kept constant, but the absolute index level varies.

Two points x and x′ share the same disequilibrium, that is D(x) = D(x′),
if and only if the difference x′i − xi is the same for all i = 1, . . . , n (geometri-
cally, they lie on the same parallel line to the equilibrium locus); in this case
(x′1, . . . , x

′
n) = (x1 + c, . . . , xn + c) for a common c. Given, as observed earlier, that

under progressive compensability the adjustment of an aggregation function F in-
creases with disequilibrium, we investigate how the adjustment behaves for fixed
disequilibrium (i.e., as the point moves along a parallel to the equilibrium locus). In
order to compare the values of F (hence of its disequilibrium adjustment) between
x and x′, we first observe that under idempotence we have

F (x1 + c, . . . , xn + c) = F (x1, . . . , xn) + c if x1 = · · · = xn.
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Figure 1. Level sets of value .25 for the minimum function, the
geometric mean and the arithmetic mean (for n=2)

Comparing the two sides of this equality for x outside the equilibrium locus gives
rise naturally to different kinds of dependence of the adjustment on disequilibrium:

Property (vi): level-dependence of the adjustment. The Level Dependence of the
Adjustment (LDA) may be:

decreasing if F (x1 + c, . . . , xn + c) > F (x1, . . . , xn) + c,

increasing if F (x1 + c, . . . , xn + c) < F (x1, . . . , xn) + c,

constant if F (x1 + c, . . . , xn + c) = F (x1, . . . , xn) + c,

for every x outside the equilibrium locus and every c > 0. For F smooth,
we can list respective sufficient conditions: we have

(3.1)


decreasing LDA if

∑n
i=1 ∂F/∂xi > 1,

increasing LDA if
∑n
i=1 ∂F/∂xi < 1,

constant LDA if
∑n
i=1 ∂F/∂xi = 1.

(The three cases do not encompass every possible aggregation function F , which
may fulfill various of the above requirements in different x-regions.) In terms of the
adjustment A, the three kinds respectively translate into:

A(x1 + c, . . . , xn + c) < A(x1, . . . , xn) (decreasing LDA),

A(x1 + c, . . . , xn + c) > A(x1, . . . , xn) (increasing LDA),

A(x1 + c, . . . , xn + c) = A(x1, . . . , xn) (constant LDA),

for every c > 0; this justifies the terminology. The constant LDA case is sometimes
called stability for translations in the literature. As shown by Figure 2 for n = 2
variables, the joint increment by c of all variables translates into the increment
F (x′) − F (x), where x′ = (x1 + c, x2 + c); this increment is always greater than
(respectively, smaller than, or equal to) c according if the LDA is decreasing, in-
creasing, or constant. In the first case, the level curves approach those of perfect
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Figure 2. Comparison of different level sets according to the LDA
for typical aggregation functions

substitutability as the index value increases, while they approach those of perfect
complementarity as the index value decreases; the reverse happens in the second
case; while all level curves are rigid translates of each other in the third case.

The arithmetic mean F = µarith and the minimum function F = min are easily
seen to have constant LDA. Instead, the geometric mean F = µgeom turns out
to fall within the case of decreasing LDA, as emerges from the plot of its level
sets in Figure 3 and will be proved shortly. An example with n = 2 variables
may illustrate the situation. If x = (.1, .3) and x′ = (.7, .9), two vectors with the
same disequilibrium .2 between coordinates, then c = .7 − .1 = .9 − .3 = .6, while
F (x′) ≈ .794 and F (x) ≈ .173, so that F (x′) > F (x)+ c, as predicted; equivalently,
the additive adjustment at x, namely µarith(x)−F (x) ≈ .2− .173 = .027, is greater
than at x′, namely µarith(x′)− F (x′) ≈ .8− .794 = .006.

4. Generalized means

In order to determine conditions more readily usable for detecting which LDA
alternative an aggregation function possibly falls into, we restrict attention to a wide
class of aggregation functions: generalized means. For each continuous and strictly



8 LEVEL DEPENDENCE OF THE ADJUSTMENT FOR THE HDI

x1

x2

Figure 3. Some level sets of the geometric mean

increasing (or decreasing) function f on the real line—or at least on a real interval J ,
usually the positive half-line—the weighted generalized (or quasi-arithmetic) mean
of x is defined as

(4.1) µ(x) = f−1(µarith(f(x1), . . . , f(xn))) = f−1
( n∑
i=1

wif(xi)

)
,

as long as x1, . . . , xn are in J ; see Hardy et al. (1988, Chap. III). We keep assuming
that w1 = · · · = wn = 1/n.

Fact 4.1 (Hardy et al. (1988, §83)). Two different functions f and g give rise to
the same generalized mean µ if and only if they only differ by an additive and a
multiplicative constant; that is, if g = k1 + k2f for constants k1 and k2 with k2 6= 0
(in particular, replacing f with −f does not change µ). Therefore a generalized
mean µ determines the function f up to multiplication and addition of constants.

A generalized mean µ may be used as an aggregation function, provided the
interval J contains the ranges of all the individual variables. Properties (i)–(iv) are
automatically satisfied.

Fact 4.2 (Hardy et al. (1988, §92)). The generalized mean µ(x) is a concave
function of x if and only if f is concave increasing or convex decreasing. This
is exactly when Property (v) holds for the aggregation function F = µ. Then µ, as
already noted for the geometric mean, satisfies

µ(x) ≤ µarith(x) for every x,

with equality if and only if x is in the equilibrium locus.

One noteworthy case of generalized mean is for f(t) = tγ (equivalently, f(t) =
k1 + k2t

γ , as per Fact 4.1) for any real constant γ, which gives the power mean µγ
of order γ, with the following special cases:

• if γ = 1, we have the arithmetic mean µarith, corresponding to f(t) =
k1 + k2t (here J is the entire real line);
• if γ = 0, the limit of µγ for γ → 0 is the geometric mean µgeom, correspond-

ing to f(t) = k1 + k2 log t (here J is the positive half-line);
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• the limit of µγ for γ → −∞ is the minimum function (a degenerate, limit
case of generalized mean).

We can derive the conditions on f for the corresponding generalized mean µ to
have decreasing, increasing, or constant LDA.

Theorem 1. We can suppose the function f to be increasing, up to replacing it,
if necessary, with −f by Fact 4.1. If f is also smooth and its derivative f ′ never
vanishes, then the following conditions are equivalent:

• the corresponding generalized mean µ has decreasing (respectively, increas-
ing or constant) LDA;
• the composite function f ′ ◦ f−1 is strictly convex (strictly concave, affine);
• f ′′/f ′ is strictly increasing (strictly decreasing, constant);

Proof. By (4.1), setting g = f ′ ◦ f−1 and yi = f(xi) for all i = 1, . . . , n we obtain
n∑
i=1

∂µ

∂xi
(x) =

∑n
i=1 wif

′(xi)

f ′
(
f−1

(∑n
i=1 wif(xi)

)) =

∑n
i=1 wig(yi)

g
(∑n

i=1 wiyi
) .

By (3.1) we have decreasing LDA when the left-hand side—thus the right-hand
side—of this last equality is > 1 for every x = (x1, . . . , xn). Since y1, . . . , yn are
arbitrary, this happens if and only if g is strictly convex.

The third condition is that g′, or g′ ◦ f , is strictly increasing. (A sufficient
condition is that g′′, or (f ′)3(g′′ ◦ f), is > 0, which translates into f ′f ′′′ > (f ′′)2.)

The two other cases of LDA are treated similarly. �

In particular, if f(t) is the increasing function log t then f ′′(t)/f ′(t) = −1/t
is itself strictly increasing, so that the corresponding generalized mean, viz. the
geometric mean, satisfies the decreasing LDA, as anticipated.

5. The Trichotomy Mean and the Standard Adjustment

The aggregation function F we propose is the generalized mean µ arising from
a function f with some prescribed features. We require f to be defined on the
whole real line, smooth, increasing with non-vanishing derivative (that is, f ′ > 0),
and concave, in fact with f ′′ < 0 (alternatively, replacing f by −f by Fact 4.1, it
must be decreasing, convex, and satisfy f ′ < 0 < f ′′). Therefore f ′′/f ′ is negative;
its composition with the decreasing function log(−u) reverses its monotonicity, so,
by the third condition of Theorem 1, the LDA kind of F depends on whether the
function

L(t) = log

(
−f
′′(t)

f ′(t)

)
is decreasing, increasing or constant. Indeed the values of L near t reflect the
intensity of the adjustment that F applies to x whose arithmetic mean is t.

Since affine functions at+b are the simplest decreasing/increasing/constant func-
tions on the real line, we shall impose that f satisfy the second-order ordinary
differential equation

(5.1) L(t) = a(t− τ) + b with τ =
1

2
,

for real parameters a, b. The reference center τ is chosen at the midpoint 1/2 of
the typical reference interval [0, 1] where normalized variables lie; neverthesess the
framework naturally allows a different choice for τ . For each pair (a, b), by Fact 4.1
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all solutions of the equation give rise to the same generalized mean, which will
fulfill decreasing, increasing, or constant LDA according if the parameter a is
negative, respectively positive, or zero, while the parameter b will modulate an
additional level-independent amount of adjustment for disequilibria, with a sim-
ilar role as Atkinson’s inequality aversion parameter in power means (Atkinson,
1970, §3). The value of Atkinson’s parameter selected for the new HDI and IHDI
is 1 and corresponds to the geometric mean (Klugman et al., 2011, §6). Likewise,
for simplicity—the same principle followed in the choice of equal weights among
variables (ul Haq, 1995, Chap. 4)—we recommend specific values for the two pa-
rameters, namely a = −1 for decreasing LDA, a = 1 for increasing LDA, a = 0 for
constant LDA, and b = 1 in all cases.

Up to two constants of integration (one additive, one, non-zero, multiplicative),
whose choice, as observed before, does not affect the resulting generalized mean,
and setting the constants

B = eb,

C = − B

aeτa
if a 6= 0,

the solution of (5.1) is

f(t) =

{
e−Bt if a = 0,

Ei(Ceat) if a 6= 0,

where Ei is the exponential-integral function, see, e.g., Abramowitz and Stegun
(1964, §5.1). The inverse function of f is

f−1(s) =


− log s

B
for s > 0, if a = 0;

1

a
log

Ei−1(s)

C
for any s, if a < 0; for s < 0, if a > 0;

where the inverse on the right-hand sides is intended of the restriction of Ei to the
negative half-line if a > 0, to the positive half-line if a < 0.

We define the Trichotomy Mean (TM ) as the generalized mean µa,b determined
by such f , namely

µa,b(x) = f−1
( n∑
i=1

wif(xi)

)
.

The qualitative behavior of the TM for the three choices of the pair (a, b) suggested
above, namely (−1, 1), (1, 1), and (0, 1), for n = 2 is represented in Figure 2 by the
graphs about decreasing, respectively increasing, and constant LDA.

Notice that, of these choices, the function µ−1,1 turns out to resemble the geo-
metric mean the most, while µ1,1 is the most different of the three, in accordance
with the fact that the geometric mean has decreasing LDA.

Turning to constant LDA, standard calculus steps show that the arithmetic mean
and the minimum function are limit cases as b tends to −∞ or +∞, respectively, of
the TM for a = 0. Again for a = 0 and the recommended value b = 1, the function
µ0,1 may be taken as a prototype of a disequilibrium-adjusting aggregation function
that is stable for translations. In this sense, the adjustment AS(x) it provides for x
may be taken as a measure of the disequilibrium of x, therefore we call it Standard
Adjustment. Indeed: AS vanishes exactly on the equilibrium locus; it is strictly
positive elsewhere; it is invariant by addition of the same quantity to all components
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(in other words, it is independent of the index value); and AS(x+ty) increases with
t ≥ 0 if x is in the equilibrium locus and y = (y1, . . . , yn) is a zero-sum vector.

The above framework is flexible enough to possibly encompass more general
situations such as mixed LDA types—for instance, decreasing LDA for low values
(i.e., for poorer countries) and increasing LDA for high values (richer countries).
Indeed, the LDA type is correlated to the behavior of the function on the right-hand
side of equation (5.1), which can be assigned as needed.

We discuss two further features for inequality-adjusting functions.

Property (vii): unrestricted domain. The function F is defined on Rn.

This is relevant firstly because it allows the use of any normalization on raw data,
regardless of the range of normalized values. The HDI instead, being built with the
geometric mean, is only defined for positive values of normalized dimensions. In
fact, the authors of the HDR have to preliminarily solve the problem of zero and
negative values that make the geometric mean lose sense; see, e.g., UNDP (2010,
p. 218) (cf. also the comment about the asymmetry between normalized maxima
and minima made here in Section 2). Secondly, the index behavior becomes extreme
and unstable when some variables take small positive values, and, as pointed out
by Klugman et al. (2011, §4) the choice of pre-normalization minima acquires undue
relevance. If, instead, standardization rescaled to the [0, 1] interval were used as
normalization, the presence of negative outliers could not be excluded a priori.

In Casadio Tarabusi and Guarini (2013, Properties (vii.a),(vii.b)) another feature
of aggregation is introduced: complete or incomplete compensability. In the former
case, in order to maintain the same index level, any loss in one dimension is always
compensable with suitable gains in the other dimensions; in the latter case, a large
enough decrease of one dimension cannot be compensated with any increases in the
others. The geometric mean has complete compensability, and so does the TM for
a < 0 (the decreasing LDA case); instead, the TM for a ≥ 0 (the constant and the
increasing LDA cases) enjoys incomplete compensability.

6. The Trichotomy Mean
for the Inequality-adjusted Human Development Index

In the literature there have been several contributions on the adjustment of the
HDI for inequalities within any specific dimension across individuals (or groups
thereof, or regions, et cetera), such as UNDP (1993), Anand and Sen (1995),
Hicks (1997), Foster et al. (2005), Stanton (2006), Grimm et al. (2008), Seth
(2009), Grimm et al. (2010), and UNDP (2010). To overcome these criticisms, the
HDR 2010 introduced the Inequality-adjusted Human Development Index (IHDI),
that contemplates adjustments both for unbalance among variables and inequality
within single variables.

A possible model is the following. For i = 1, . . . , n and j = 1, . . . ,m denote: by
xij the value of variable i for individual (or group) j; by X the whole matrix of
such values; by xi · = (xi1, . . . , xim) its i-th row; by x · j = (x1j , . . . , xnj) its j-th
column. A positive weight wij is assumed assigned to each index pair (i, j), and all
are so that

n∑
i=1

m∑
j=1

wij = 1.
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Consequently, the i-th row takes the overall weight wi · =
∑m
j=1 wij for each i,

whereas the j-th column is assigned the overall weight w · j =
∑n
i=1 wij for each

j; of course,
∑n
i=1 wi · = 1 =

∑m
j=1 w · j . Specifically, for IHDI we have w1 · =

w2 · = w3 · = 1/3. (A possible simplifying assumption is that wij = wi ·w · j for
every i and j.) When some mean within row i (respectively, column j) is to be
computed, the weights wij are preliminarly renormalized by dividing them by wi ·
(respectively, w · j). Aggregation is performed by a function F of n ×m variables,
so that on a unit with matrix X the composite indicator takes the value

F (X) = F

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

 .

While the number of variables n is presumed fixed and chosen once and for all, the
number m of individuals may need to be left undetermined, in which case F needs
to be defined on n×m matrices for every m.

The IHDI is built by taking the geometric mean of the values xij of each row i
separately, and then the geometric mean of the results across i, namely

(6.1) µgeom(µgeom(x1 · ), . . . , µgeom(xn · )).

In the same fashion, the aggregation function F we propose in this setting is

µa,b(µa,b(x1, · ), . . . , µa,b(xn, · )),

where µa,b is the TM for given (a, b). Most of the discussion of the preceding
sections about the HDI, the geometric mean and the TM carries over to the IHDI
and the double-subscript situation. In the sequel we list some properties that only
make sense in the present setting and that hold true for any generalized mean; in
particular, for the geometric mean and for the TM for any (a, b).

Property (viii): symmetry in people. F (X) = F (XS) whenever S is an m ×m
permutation matrix. Thus each individual (or group) in the index has the
same importance.

Property (ix): replication invariance. F (X) = F (X, . . . ,X), where k copies of
the matrix X are juxtaposed, for every k ≥ 2. Thanks to this property it
is possible to compare the index on populations with different sizes.

Property (x): subgroup consistency. If the population is divided into two non-
overlapping groups A,B, if the matrices X,X ′ are correspondingly parti-
tioned into XA, XB , respectively X ′A, X

′
B , and if F (XA) > F (X ′A) while

F (XB) = F (X ′B), then F (X) > F (X ′). This means that the overall index
increases if it increases for one group of individuals while not changing for
the rest of the population.

Property (xi): path independence. The same index value results both if aggre-
gation occurs first across individuals and then across dimensions, or con-
versely, or all at once (assuming separate row-wise and column-wise ag-
gregations make sense). The results are indifferent to aggregation order
(Foster and Shneyerov, 2000, §3).

Path independence holds if F is any generalized mean µ:

µ(µ(x1 · ), . . . , µ(xn · )) = µ(µ(x · 1), . . . , µ(x ·m))

= µ(x11, . . . , x1m, . . . , xn1, . . . , xnm).
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Table 1

Differences between µgeom and µa,1 a = −1 a = 0 a = 1

Percentage with rank difference ≤ −2

or ≥ 2
9.1 21.9 35.3

Maximum absolute rank difference 3 6 8

Standard deviation of rank differences .92 1.27 1.93

Applying this to the geometric mean µ = µgeom, this provides two more possible
formulas to compute the IHDI besides (6.1).

7. An application of the Trichotomy Mean to the HDI

In this section we apply the three cases of TM (with decreasing, constant and
increasing LDA) on the data used in UNDP (2014), freely downloadable from
http://www.undp.org, and compare the outcomes versus the HDI. The database
lists the education, health and income indices for 194 world countries (although the
data for 7 of them are not complete and will not be included here) and some country
groups. The three dimensions are aggregated by the geometric mean to obtain the
HDI, and are aggregated by the TM to obtain the synthetic index proposed in this
article. For decreasing, constant, and increasing LDA we take the recommended
values of a to be −1, 0, 1 respectively, along with b = 1 in all cases. The results
appear in a table in the Appendix, where for each country are listed rating and
ranking for the arithmetic mean (namely, the pre-2010 HDI aggregation method),
the geometric mean (the actual HDI), each of the three versions of TM, and the
Standard Adjustment defined in Section 5.

In Table 1 we collect synthetic results of differences between the geometric mean
and each of the TMs (again with the recommended value pairs of parameters),
namely the maximum absolute rank difference, the standard deviation of the rank
difference and the percentage of countries whose ranks change by two or more
(in either direction). It appears clear that the decreasing LDA case is the most
similar to the geometric mean, while the increasing LDA case is the least similar.
Overall, the above rating and ranking differences are comparable to those between
the current HDI’s geometric mean versus the previous HDI’s arithmetic mean.

Countries that lose the highest numbers of rank positions in some of the TMs
with respect to the geometric mean are Oman, Singapore, and United Arab Emi-
rates, which share a fairly high HDI value and a large unbalance among dimensions;
in concordance with the definitions, their rank loss worsens when passing from de-
creasing to increasing LDA. The opposite happens to Latvia, which shows a pretty
high HDI and the smallest unbalance. Lesotho, a very low HDI country with a very
small unbalance, gains the highest total number of rank positions, the same across
the three LDAs.

In accordance with the theoretical framework, the TM value for increasing LDA
is smaller (respectively, larger) than for decreasing LDA for high (respectively, low)
index values. In fact, a = 1 applies a stronger (weaker) adjustment than a = −1 to
disequilibria for high (low) index values. Correspondingly there is a high negative
correlation (about −.52) between the arithmetic mean and the difference between
TMs for increasing and decreasing LDA.
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It may also be interesting to note that there is a rather high negative correla-
tion (namely about −.45) between the HDI computed by the arithmetic mean and
the standard adjustment. A similar evidence was found for the Index of African
Governance by Casadio Tarabusi and Guarini (2013, §7).

8. Contributions of the Trichotomy Mean
to the development literature debate

As described earlier, until 2010 the aggregation function used for the HDI was
the simple arithmetic mean. Because such function allowed perfect substitutability
among the input variables, the simplest choice for a function that would, instead,
penalize disequilibria arose from the Atkinson inequality index at the parameter
value 1: starting in the HDR 2010 the geometric mean was used as the aggrega-
tion function for the HDI. Nevertheless, Ravallion (2012, §2) observed that this
change had provoked a substantial downward revision for countries with low HDIs,
concentrated for the vast majority in a single world region (Sub-Saharan Africa).
Examining the HDR 2010 data, the author singled out the outlying case of Zim-
babwe. From the values of its input variables—Education Index .519, Health Index
.427, Income Index .012—the resulting HDI had dropped from .319 to .138 in the
switch, whereas all other countries had undergone a much smaller decrease.

Our theoretical framework enables a clear explanation for this extreme phenom-
enon, which is due to two further intrinsic characteristics of the geometric mean
and of its generating function as a generalized mean (the logarithm): decreasing
penalization and constraint at zero. The TM introduced in this article provides
significant advantages over the geometric mean with respect to each of the two
characteristics.

8.1. Decreasing penalization. As argued above, the geometric mean happens to
fall in the decreasing LDA category, therefore, for a given disequilibrium among
(or within) dimensions, the lower the human development level of a country, the
greater its penalization. This characteristic does not appear to have been observed
or taken into consideration in the literature before, neither in the UNDP reports, nor
in subsequent theoretical and methodological contributions concerning this switch
and the related tradeoff issues, such as Klugman et al. (2011) and Ravallion (2012).

In the TM the decreasing penalization represents just one of three kinds of ad-
justment behavior, besides increasing and constant LDA, and this is modulated via
the parameter a. In this way the decreasing LDA, from an unintentional conse-
quence of a simplistic choice of the geometric mean, becomes one of three possible
explicit intentional options within the TM framework. The provision of a palette of
different LDA types is strongly relevant because each such option entails a different
approach to development policies: Is a given disequilibrium—unbalance among or
inequality within dimensions—less desirable within a context of low human devel-
opment (this would be reflected by decreasing LDA) or of high human development
(increasing LDA), or are they equally serious (constant LDA)?

On the one hand, decreasing LDA may appear preferable because the lower is
the development level of a country, the more serious the consequences of a same
amount of disequilibrium may be deemed to be. On the other hand, constant LDA,
especially in a disequilibrium-adjusting instance such as the TM for (a, b) = (0, 1)
(recall that the arithmetic mean has constant LDA, but fails to adjust for disequilib-
ria), may be considered the best choice because, in this case, a same disequilibrium
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inflicts the same adjustment to the unadjusted development level, regardless of the
development level itself. With this choice, unbalanced poor countries are penalized
twice—by the low value of their input variables and by the adjustment for their
unbalance—but not a third time by a stiffer adjustment due, again, to their low
overall level (as happens, instead, with decreasing LDA), and this may be regarded
as fairer. A further advantage of introducing the TM for (a, b) = (0, 1) (and the
class of constant LDA aggregation functions in general) is to use it to define a
level-independent measure of inequality, that we called the Standard Adjustment.
Finally, human development analyses conducted on particular regional contexts
may, consistently with the spirit of the capability approach, call for choices of vari-
ables that are different from the HDI proper, as in Bubbico and Dijkstra (2011).
The balance among the non-standard variables might be more fragile for high rather
than low values, therefore increasing LDA would be the natural option in this case.

Whichever the answer to the previous question, it should be kept in mind that
the overall effects of penalization tend to be stronger for the group of less devel-
oped countries, in view of the high negative correlation between disequilibrium and
human development level, as noted in Section 7. For all that has been argued, the
TM would contribute to make the use and significance of the HDI more clear and
transparent, hence more effective as an instrument for the elaboration and monitor-
ing of development policies. Such goals are coherent with the capability approach
perspective that is the ground for the human development framework. In fact, the
LDA type selection may be performed in the same spirit as Anand and Sen affirm
about weight determination:

Any choice of weights should be open to questioning and debating
in public discussions. (Anand and Sen, 1997)

In general, as argued in Klugman et al. (2011, §5), the capabilities approach is a
partial theory of well-being, hence reference to the HDI does not compel the ways
and motivations for pursuing better performance as gauged by the index, thus the
LDA type choice itself may fall within the tasks left to theorists and policy-makers.

8.2. Constraint at zero. The geometric mean is undefined for negative or zero
values of dimensions and, furthermore (and inevitably), for small positive values it
produces effects on the resulting index that become more and more distorting as the
values approach zero; indeed the geometric mean tends to the minimum function
as any of the input variables tends to zero, so that a small value for one variable
turns out to outweigh possibly much higher values for the others, as happens in
the above-mentioned case of Zimbabwe. Already in the HDR 2010, introducing the
adoption of the geometric mean, these problems were acknowledged and partially
overcome with questionable ad hoc patches:

The geometric mean in equation 1 does not allow zero values. For
mean years of schooling one year is added to all valid observations to
compute the inequality. Income per capita outliers—extremely high
incomes as well as negative and zero incomes—were dealt with by
truncating the top 0.5 percentile of the distribution to reduce the in-
fluence of extremely high incomes and by replacing the negative and
zero incomes with the minimum value of the bottom 0.5 percentile
of the distribution of positive incomes. (UNDP, 2010, p. 218)
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In the same direction, some changes were applied in the subsequent editions of the
HDR to the pre-aggregation steps of the HDI construction so that the distributions
of some normalized variables in the interval [0, 1] would be moved away from the
troublesome area of values close enough to zero: one change was to lower from 163
to 100 the minimum of Gross National Income per capita (Purchasing Power Par-
ity US $) in the min-max normalization; another was, in the HDR 2014, to switch
back from geometric to arithmetic mean in the aggregation of input dimensions
that constitute the Education Index. All changes and patches may artificially con-
tribute to compress the theoretical range [0, 1] of indices to significantly narrower
actual ranges for the individual normalized variables and of the ensuing HDI val-
ues, a priori excluding a non-negligible neighborhood of zero. The last-mentioned
change has also brought to an unexplainedly hybrid overall aggregation scheme,
with the arithmetic mean (ensuring perfect substitutability) within the Education
Index and the geometric mean (conveying imperfect substitutability) for the final
HDI.

On the other hand, the TM is defined for all values of the input variables,
hence the choice of the normalization and other pre-aggregation steps is not unduly
affected or constrained by the need of avoiding prohibited or distorting values. For
instance, applying the TM with the suggested pair of parameters for the decreasing
LDA case (thus the same LDA type as the geometric mean) to the Zimbabwe
2010 values quoted at the beginning of this section one obtains .226, substantially
reducing (indeed almost halving) the penalization towards the arithmetic mean
with respect to the use of the geometric mean. Using on the same input values the
TM with the suggested pairs of parameters for the two other LDA types one obtains
.249 in the constant LDA case and .265 in the increasing LDA case; the progressive
increase of the resulting index value is consistent with the respective LDA types,
the lowness of this country’s values, and the choices made for all parameters a, b,
and τ .

In accordance with Ravallion (2012, §1), we finally point out that the method-
ological aspects of the HDI construction have significant theory and policy impli-
cations that are worth being made fully explicit.

9. Conclusions

Stimulated by the observation of Ravallion (2012) that the 2010 switch from
arithmetic to geometric mean in the computation of the United Nation Develop-
ment Programme’s yearly Human Development Index has introduced excessive pe-
nalizations for less developed countries, in this article we have defined and studied
a new feature of aggregation functions for indices aiming to measure human de-
velopment: the Level Dependence of the Adjustment (LDA). From previous work
(Casadio Tarabusi and Guarini, 2013) we have recalled the concept of adjustment
for disequilibrium—namely, for unbalance within variables, or for inequality across
variables—by studying its analytical features. The geometric mean adjusts for dise-
quilibrium in an intermediate way between the two extremes: the arithmetic mean,
that does not adjust at all and implies perfect substitutability among variables or
individuals; and the minimum function, that applies the maximum possible adjust-
ment and implies perfect complementarity. Turning the attention from absolute
disequilibrium adjustment to its relative behavior with respect to the HDI level, we
have introduced three possible types of LDA: decreasing, constant, and increasing;
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and we have recognized that the geometric mean falls in the first one. Within the
family of generalized means, which includes the arithmetic and the geometric mean,
we have defined a new aggregation function, called Trichotomy Mean (TM). The
TM fulfills all the desirable properties of this family of functions and, unlike the
geometric mean, it is valid for all possible input values, thus avoiding distortions
for low values. The TM depends on two parameters a and b: the former modulates
the dependence of the adjustment on the level; the latter (as Atkinson’s inequality
aversion parameter) adds to the adjustment an additional component that depends
on disequilibrium but not on level. We have identified specific pairs of values for
the parameters—namely a = −1 for decreasing LDA, a = 0 for constant, a = 1 for
increasing, and b = 1 for all cases)—and defined the standard adjustment as the
adjustment for the constant case above, a satisfactory measure for disequilibrium.
Decreasing LDA appears more adequate to the HDI setup, yet the two other options
may in principle be applicable to this and other social indicators. The main the-
oretical and methodological contribution of this article is the provision of a single
framework that articulates in three distinct possible (categories of) options. Thus,
users are given the opportunity to choose which LDAs fit best their judgment of
values and policy perspectives. The choice of the aggregation function (be it the
arithmetic mean, the geometric mean, the TM for any value of its parameters, or
other) or more generally among the three LDA types carries significant theoretical
and methodological implications, therefore (also in view of the respective features
described in this article) it should be consistent with the assumptions and the object
of the analysis.

We have also treated the case of Inequality-adjusted Human Development Index,
identifying a further set of desirable properties, and proving that the TM may also
be used as an aggregation function in this context. We have performed an empirical
comparison between the TMs and the geometric mean on HDI 2014 data. The
analysis has confirmed the main theoretical properties of the three versions of the
TM. In particular, the decreasing LDA has turned out to be the closest of the three
to the HDI’s geometric mean, while the increasing LDA is the farthest, in terms both
of rating and of ranking. We have observed a negative correlation between human
development level and unbalance across variables. We have concluded by showing
how our findings may contribute to the ongoing debate on human development
literature.
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Appendix:
Comparison of indices on the HDR 2014 data

Legend:

E: HDR 2014 Education Index
H: HDR 2014 Health Index
Y : HDR 2014 Income Index

new (or n.) HDI: current HDI (computed with the geometric mean)
old (or o.) HDI: pre-2010 HDI (computed with the arithmetic mean)

TM(a, 1): TM with b = 1 and the given value of a (namely −1, 0, or 1)
AS: Standard Adjustment

*: Rank variation from old HDI to new HDI.

Rank variation

Rating Ranking from n. HDI to

input indices HDI TM(a, 1), a = 1000 HDI TM(a, 1) TM(a, 1)

Country E H Y new old −1 0 1 ·AS n. o. −1 0 1 AS o.* −1 0 1

Australia .979 .961 .911 .950 .950 .950 .949 .949 1.1 1 1 1 1 1 170 0 0 0 0

Norway .909 .946 .976 .943 .944 .943 .943 .942 1.0 2 2 2 2 2 171 0 0 0 0

New Zealand .956 .940 .874 .923 .923 .922 .922 .921 1.7 3 3 3 3 3 160 0 0 0 0

Switzerland .843 .963 .950 .917 .919 .916 .915 .913 4.0 4 4 4 5 5 138 0 0 −1 −1

Netherlands .894 .939 .914 .915 .916 .915 .915 .915 .5 5 5 5 4 4 183 0 0 1 1

U.S.A. .888 .907 .946 .913 .914 .913 .913 .912 .8 6 6 6 6 6 175 0 0 0 0

Germany .883 .935 .916 .911 .911 .911 .911 .910 .6 7 7 7 7 7 180 0 0 0 0

Ireland .903 .934 .878 .905 .905 .905 .904 .904 .7 8 9 8 8 8 179 1 0 0 0

Canada .852 .946 .912 .902 .903 .902 .901 .900 2.1 9 10 9 9 9 154 1 0 0 0

Singapore .768 .959 .995 .902 .907 .898 .893 .887 14.1 10 8 12 13 15 52 −2 −2 −3 −5

Iceland .866 .955 .885 .901 .902 .901 .900 .899 1.9 11 11 10 11 11 159 0 1 0 0

Denmark .873 .914 .916 .901 .901 .901 .900 .900 .5 12 12 11 10 10 182 0 1 2 2

Sweden .829 .951 .917 .898 .899 .897 .895 .894 3.7 13 13 13 12 12 141 0 0 1 1

U.K. .860 .931 .885 .892 .892 .891 .891 .890 1.2 14 17 14 14 13 169 3 0 0 1

R. of Korea .866 .947 .863 .891 .892 .891 .890 .889 2.0 15 17 15 15 14 156 2 0 0 1

Hong Kong .767 .975 .946 .891 .896 .888 .884 .878 12.0 16 14 17 18 19 66 −2 −1 −2 −3

Japan .808 .978 .892 .890 .893 .888 .886 .883 6.5 17 16 16 16 17 110 −1 1 1 0

Liechtenstein .763 .921 1 .889 .895 .885 .881 .875 13.5 18 15 19 20 22 56 −3 −1 −2 −4

Israel .853 .951 .861 .887 .888 .887 .886 .885 2.6 19 19 18 17 16 151 0 1 2 3

France .814 .951 .892 .884 .886 .883 .881 .879 4.3 20 20 20 19 18 134 0 0 1 2

Belgium .813 .932 .903 .881 .883 .880 .879 .877 3.6 21 23 21 21 20 142 2 0 0 1

Luxembourg .763 .931 .963 .881 .886 .878 .875 .870 10.9 22 20 24 24 25 78 −2 −2 −2 −3

Austria .793 .941 .916 .881 .883 .879 .877 .875 5.9 23 22 22 23 23 118 −1 1 0 0

Finland .816 .931 .895 .879 .881 .878 .877 .876 3.2 24 24 23 22 21 146 0 1 2 3

Slovenia .863 .917 .845 .874 .875 .874 .874 .873 1.3 25 25 25 25 24 168 0 0 0 1

Italy .789 .960 .874 .872 .874 .870 .868 .865 6.6 26 26 26 26 26 108 0 0 0 0

Spain .795 .955 .864 .869 .871 .867 .866 .863 5.8 27 27 27 27 27 120 0 0 0 0

Czech R. .866 .888 .831 .861 .862 .861 .861 .861 .8 28 28 28 28 28 177 0 0 0 0

Greece .798 .935 .832 .853 .855 .852 .851 .849 4.5 29 31 29 29 29 132 2 0 0 0

Brunei .693 .901 .991 .852 .862 .846 .840 .831 21.9 30 28 30 31 34 27 −2 0 −1 −4
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(continued) Rank variation

Rating Ranking from n. HDI to

input indices HDI TM(a, 1), a = 1000 HDI TM(a, 1) TM(a, 1)

Country E H Y new old −1 0 1 ·AS n. o. −1 0 1 AS o.* −1 0 1

Qatar .687 .898 1 .851 .862 .845 .838 .829 23.8 31 28 31 33 36 22 −3 0 −2 −5

Cyprus .776 .921 .844 .845 .847 .844 .842 .840 4.7 32 32 32 30 30 128 0 0 2 2

Estonia .858 .838 .824 .840 .840 .840 .840 .840 .3 33 34 33 32 31 186 1 0 1 2

Saudi Arabia .723 .854 .945 .836 .841 .832 .829 .825 11.4 34 33 36 37 37 71 −1 −2 −3 −3

Lithuania .877 .802 .826 .834 .835 .834 .834 .833 1.3 35 37 34 34 33 167 2 1 1 2

Poland .824 .868 .811 .834 .834 .834 .834 .833 .8 36 38 35 35 32 173 2 1 1 4

Andorra .672 .941 .907 .831 .840 .825 .819 .812 20.5 37 34 39 39 42 30 −3 −2 −2 −5

Slovakia .803 .852 .836 .830 .830 .830 .830 .830 .6 38 40 37 36 35 181 2 1 2 3

Malta .733 .919 .846 .829 .833 .827 .825 .822 8.1 39 39 38 38 38 97 0 1 1 1

Un. Arab Emir. .673 .874 .961 .827 .836 .821 .816 .808 20.4 40 36 40 43 46 31 −4 0 −3 −6

Portugal .726 .922 .829 .822 .826 .819 .817 .814 8.7 41 42 42 42 41 94 1 −1 −1 0

Chile .746 .922 .806 .821 .825 .820 .818 .815 7.0 42 43 41 40 40 107 1 1 2 2

Hungary .804 .840 .809 .818 .818 .817 .817 .817 .3 43 46 43 41 39 184 3 0 2 4

Bahrain .713 .871 .872 .815 .819 .813 .811 .808 7.9 44 44 45 45 47 99 0 −1 −1 −3

Cuba .743 .912 .799 .815 .818 .813 .811 .809 6.5 45 45 44 44 45 109 0 1 1 0

Kuwait .646 .835 1 .814 .827 .806 .799 .789 28.2 46 41 49 49 49 8 −5 −3 −3 −3

Croatia .769 .878 .793 .812 .813 .811 .810 .809 2.9 47 47 46 47 44 149 0 1 0 3

Latvia .814 .802 .816 .811 .811 .811 .811 .811 .1 48 48 47 46 43 187 0 1 2 5

Argentina .782 .866 .778 .808 .809 .807 .806 .806 2.2 49 49 48 48 48 153 0 1 1 1

Uruguay .714 .880 .785 .790 .793 .788 .787 .785 6.2 50 51 50 51 52 112 1 0 −1 −2

Bahamas .713 .850 .811 .789 .791 .788 .787 .785 4.6 51 52 52 52 51 130 1 −1 −1 0

Montenegro .772 .843 .754 .789 .790 .788 .788 .787 2.0 52 53 51 50 50 158 1 1 2 2

Belarus .819 .768 .770 .785 .786 .785 .785 .785 .7 53 55 53 53 53 178 2 0 0 0

Romania .748 .828 .780 .785 .785 .784 .784 .783 1.5 54 56 54 54 54 164 2 0 0 0

Libya .697 .851 .812 .784 .787 .782 .781 .779 6.0 55 54 55 55 55 116 −1 0 0 0

Oman .604 .870 .913 .783 .796 .775 .769 .761 26.9 56 50 59 62 64 13 −6 −3 −6 −8

Bulgaria .751 .824 .761 .778 .779 .778 .777 .777 1.4 57 57 56 56 56 165 0 1 1 1

Russian Fed. .779 .738 .819 .778 .779 .778 .777 .777 1.5 58 57 57 57 57 162 −1 1 1 1

Barbados .741 .852 .742 .777 .778 .776 .775 .774 3.6 59 59 58 58 58 143 0 1 1 1

Palau .787 .806 .733 .775 .775 .774 .774 .774 1.3 60 62 60 59 59 166 2 0 1 1

Antig. & Barb. .680 .861 .791 .774 .777 .771 .770 .767 7.6 61 60 61 60 61 100 −1 0 1 0

Malaysia .669 .846 .814 .772 .776 .770 .768 .765 8.4 62 61 63 63 62 95 −1 −1 −1 0

Mauritius .717 .825 .774 .771 .772 .770 .769 .769 2.6 63 64 62 61 60 150 1 1 2 3

Trinid. & Tob. .702 .767 .836 .766 .768 .765 .764 .763 4.1 64 67 64 64 63 137 3 0 0 1

Panama .658 .885 .770 .765 .771 .762 .759 .756 11.6 65 65 65 66 67 70 0 0 −1 −2

Lebanon .630 .923 .769 .765 .774 .759 .755 .750 19.1 66 63 67 68 70 36 −3 −1 −2 −4

Venezuela .681 .841 .776 .763 .766 .761 .760 .758 5.9 67 68 66 65 65 117 1 1 2 2

Costa Rica .655 .922 .735 .763 .771 .758 .755 .750 16.1 68 66 68 69 69 45 −2 0 −1 −1

Turkey .653 .850 .788 .759 .764 .756 .754 .752 9.4 69 69 70 70 68 91 0 −1 −1 1

Kazakhstan .763 .716 .796 .758 .758 .757 .757 .756 1.5 70 72 69 67 66 163 2 1 3 4

Seychelles .636 .818 .832 .756 .762 .753 .751 .748 11.3 71 71 71 71 71 73 0 0 0 0

Mexico .639 .885 .765 .756 .763 .752 .749 .746 13.6 72 70 72 72 74 55 −2 0 0 −2
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(continued) Rank variation

Rating Ranking from n. HDI to

input indices HDI TM(a, 1), a = 1000 HDI TM(a, 1) TM(a, 1)

Country E H Y new old −1 0 1 ·AS n. o. −1 0 1 AS o.* −1 0 1

Sri Lanka .738 .835 .684 .750 .752 .748 .747 .746 5.2 73 74 73 73 73 123 1 0 0 0

St. Kitts & N. .638 .824 .801 .750 .754 .747 .745 .742 9.7 74 73 76 76 78 88 −1 −2 −2 −4

Iran .682 .832 .740 .749 .751 .747 .746 .745 5.1 75 75 75 75 75 124 0 0 0 0

Azerbaijan .701 .781 .764 .748 .749 .747 .747 .747 1.6 76 76 74 74 72 161 0 2 2 4

Jordan .699 .829 .715 .745 .748 .744 .743 .742 4.4 77 78 77 78 77 133 1 0 −1 0

Grenada .726 .812 .701 .745 .746 .744 .743 .743 3.0 78 81 78 77 76 148 3 0 1 2

Serbia .694 .832 .714 .744 .747 .743 .742 .740 4.8 79 80 79 79 79 126 1 0 0 0

Brazil .662 .830 .749 .744 .747 .742 .741 .739 6.4 80 79 80 80 80 111 −1 0 0 0

Georgia .770 .835 .639 .743 .748 .741 .739 .736 9.2 81 77 81 81 81 92 −4 0 0 0

Peru .664 .843 .714 .737 .740 .734 .733 .731 7.4 82 82 82 82 83 102 0 0 0 −1

Ukraine .796 .747 .666 .734 .736 .733 .732 .731 3.9 83 84 83 83 82 139 1 0 0 1

Macedonia .643 .849 .720 .733 .737 .730 .728 .725 9.5 84 83 85 85 85 90 −1 −1 −1 −1

Belize .691 .829 .686 .732 .735 .731 .730 .728 5.7 85 86 84 84 84 121 1 1 1 1

Bosnia & Herz. .654 .867 .687 .730 .736 .727 .725 .722 11.2 86 85 87 87 87 75 −1 −1 −1 −1

Armenia .702 .839 .661 .730 .734 .728 .726 .725 7.5 87 87 86 86 86 101 0 1 1 1

Fiji .766 .766 .646 .724 .726 .722 .722 .720 4.5 88 91 88 88 88 131 3 0 0 0

Tunisia .622 .860 .702 .721 .728 .718 .715 .712 12.7 89 88 90 91 92 60 −1 −1 −2 −3

Thailand .607 .837 .739 .721 .728 .718 .716 .713 12.2 90 89 89 90 91 64 −1 1 0 −1

St. Vinc. & Gr. .656 .808 .701 .719 .722 .717 .716 .715 5.4 91 94 91 89 89 122 3 0 2 2

China .608 .851 .716 .718 .725 .714 .712 .709 13.2 92 93 93 93 94 58 1 −1 −1 −2

Dominica .609 .887 .684 .718 .727 .713 .709 .705 17.6 93 90 95 96 96 41 −3 −2 −3 −3

Algeria .642 .785 .730 .717 .719 .715 .714 .713 4.8 94 97 92 92 90 127 3 2 2 4

Albania .610 .883 .683 .717 .725 .712 .708 .704 17.0 95 92 96 97 97 42 −3 −1 −2 −2

Jamaica .667 .823 .665 .715 .718 .713 .711 .710 7.1 96 98 94 94 93 106 2 2 2 3

St. Lucia .632 .843 .684 .714 .720 .711 .709 .707 10.4 97 96 97 95 95 82 −1 0 2 2

Ecuador .595 .869 .696 .711 .720 .706 .703 .700 16.7 98 95 99 99 99 44 −3 −1 −1 −1

Colombia .603 .831 .717 .711 .717 .707 .705 .703 11.7 99 99 98 98 98 68 0 1 1 1

Suriname .590 .785 .758 .705 .711 .702 .700 .698 10.6 100 101 101 101 102 80 1 −1 −1 −2

Tonga .722 .810 .600 .705 .711 .702 .701 .698 10.2 101 102 100 100 100 83 1 1 1 1

Dominican R. .592 .822 .708 .701 .707 .698 .695 .693 11.9 102 103 103 104 104 67 1 −1 −2 −2

Turkmenistan .680 .699 .717 .699 .699 .698 .698 .698 .3 103 105 102 102 101 185 2 1 1 2

Mongolia .693 .731 .670 .698 .698 .697 .697 .697 .9 104 106 104 103 103 172 2 0 1 1

Maldives .546 .891 .697 .697 .711 .690 .685 .680 26.1 105 100 106 106 107 15 −5 −1 −1 −2

Samoa .702 .818 .582 .694 .701 .690 .688 .686 12.5 106 104 105 105 105 63 −2 1 1 1

Palestine .663 .819 .596 .687 .693 .683 .681 .679 11.3 107 107 107 107 109 74 0 0 0 −2

Indonesia .603 .782 .679 .684 .688 .682 .681 .679 7.2 108 108 108 109 108 104 0 0 −1 0

Botswana .618 .683 .755 .683 .685 .682 .681 .680 4.2 109 110 109 108 106 135 1 0 1 3

Egypt .574 .787 .702 .682 .688 .679 .677 .675 10.5 110 109 110 110 110 81 −1 0 0 0

Paraguay .587 .804 .654 .676 .682 .673 .671 .669 10.7 111 111 111 111 111 79 0 0 0 0

Gabon .588 .669 .776 .673 .678 .671 .670 .668 7.9 112 112 112 112 112 98 0 0 0 0

Bolivia .673 .727 .607 .667 .669 .666 .666 .665 3.3 113 114 113 113 113 145 1 0 0 0

Moldova .654 .752 .592 .663 .666 .661 .660 .659 5.8 114 116 114 114 114 119 2 0 0 0
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(continued) Rank variation

Rating Ranking from n. HDI to

input indices HDI TM(a, 1), a = 1000 HDI TM(a, 1) TM(a, 1)

Country E H Y new old −1 0 1 ·AS n. o. −1 0 1 AS o.* −1 0 1

Uzbekistan .653 .742 .598 .662 .664 .660 .660 .659 4.7 115 117 115 115 115 129 2 0 0 0

El Salvador .553 .809 .647 .661 .670 .657 .655 .653 14.6 116 113 117 117 118 49 −3 −1 −1 −2

Philippines .611 .749 .628 .660 .663 .658 .658 .657 4.9 117 118 116 116 116 125 1 1 1 1

Syria .553 .839 .613 .658 .668 .652 .649 .646 19.0 118 115 119 119 119 37 −3 −1 −1 −1

South Africa .694 .568 .720 .657 .661 .655 .654 .653 6.2 119 119 118 118 117 113 0 1 1 2

Iraq .467 .760 .747 .642 .658 .634 .632 .628 26.4 120 120 121 121 121 14 0 −1 −1 −1

Viet Nam .514 .861 .588 .638 .654 .631 .627 .623 27.4 121 121 122 122 123 11 0 −1 −1 −2

Guyana .581 .712 .627 .638 .640 .637 .636 .635 3.9 122 124 120 120 120 140 2 2 2 2

Cape Verde .483 .848 .627 .636 .653 .627 .624 .620 29.0 123 122 123 124 126 6 −1 0 −1 −3

Micronesia .610 .754 .544 .630 .636 .627 .626 .625 10.0 124 125 124 123 122 85 1 0 1 2

Guatemala .484 .802 .639 .628 .642 .622 .619 .616 22.5 125 123 127 127 127 24 −2 −2 −2 −2

Kyrgyzstan .657 .731 .515 .628 .634 .624 .623 .622 11.2 126 126 125 125 124 76 0 1 1 2

Namibia .521 .684 .683 .624 .629 .622 .621 .620 8.3 127 131 126 126 125 96 4 1 1 2

Timor-Leste .472 .731 .691 .620 .631 .615 .613 .611 18.5 128 129 128 128 128 39 1 0 0 0

Honduras .506 .828 .562 .618 .632 .611 .608 .604 24.3 129 127 130 131 131 19 −2 −1 −2 −2

Morocco .469 .784 .640 .617 .631 .611 .609 .606 22.5 130 130 129 129 129 25 0 1 1 1

Vanuatu .594 .794 .495 .616 .628 .610 .608 .605 19.9 131 132 131 130 130 35 1 0 1 1

Nicaragua .485 .844 .567 .615 .632 .606 .603 .599 29.0 132 127 132 132 134 5 −5 0 0 −2

Tajikistan .641 .727 .482 .608 .617 .604 .602 .601 14.3 133 133 133 133 132 51 0 0 0 1

Kiribati .602 .752 .495 .607 .616 .603 .602 .600 14.7 134 134 134 134 133 48 0 0 0 1

India .472 .714 .595 .585 .594 .582 .580 .579 13.2 135 137 135 135 135 57 2 0 0 0

Cambodia .496 .799 .504 .585 .600 .578 .575 .573 24.2 136 136 136 136 137 20 0 0 0 −1

Bhutan .421 .743 .637 .584 .600 .577 .575 .573 25.1 137 135 137 137 136 18 −2 0 0 1

Ghana .553 .633 .538 .573 .575 .573 .572 .572 2.3 138 141 138 138 138 152 3 0 0 0

Lao .437 .743 .570 .570 .583 .564 .563 .561 20.7 139 138 139 140 140 29 −1 0 −1 −1

Congo .512 .597 .588 .564 .566 .564 .564 .564 2.0 140 143 140 139 139 155 3 0 1 1

Zambia .592 .586 .509 .561 .562 .560 .560 .560 2.0 141 144 141 141 141 157 3 0 0 0

S. Tome & Pr. .471 .713 .519 .559 .568 .555 .554 .553 13.9 142 142 142 142 142 54 0 0 0 0

Bangladesh .448 .779 .499 .558 .575 .551 .549 .547 25.9 143 140 143 143 143 16 −3 0 0 0

Eq. Guinea .416 .509 .815 .557 .580 .547 .545 .542 35.3 144 139 144 144 144 2 −5 0 0 0

Nepal .451 .745 .467 .539 .554 .533 .532 .531 22.3 145 146 146 146 146 26 1 −1 −1 −1

Pakistan .371 .716 .580 .536 .556 .529 .528 .527 27.7 146 145 147 148 148 10 −1 −1 −2 −2

Kenya .516 .642 .464 .536 .541 .534 .533 .533 7.3 147 148 145 145 145 103 1 2 2 2

Swaziland .551 .446 .606 .530 .534 .528 .528 .528 6.1 148 149 148 147 147 114 1 0 1 1

Angola .473 .491 .626 .526 .530 .524 .524 .524 6.0 149 150 149 149 149 115 1 0 0 0

Myanmar .372 .695 .557 .524 .541 .518 .517 .517 23.9 150 147 150 150 150 21 −3 0 0 0

Rwanda .477 .678 .399 .505 .518 .501 .500 .500 17.6 151 152 153 153 153 40 1 −2 −2 −2

Cameroon .486 .539 .490 .504 .505 .504 .504 .504 .8 152 156 151 151 151 176 4 1 1 1

Nigeria .423 .500 .601 .503 .508 .501 .501 .501 7.1 153 155 152 152 152 105 2 1 1 1

Yemen .339 .663 .555 .500 .519 .493 .494 .494 25.4 154 151 154 154 154 17 −3 0 0 0

Madagascar .459 .688 .391 .498 .513 .493 .492 .492 20.3 155 153 155 155 155 32 −2 0 0 0

Papua N. Guin. .377 .653 .483 .492 .504 .487 .487 .487 16.9 156 157 157 157 157 43 1 −1 −1 −1
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(continued) Rank variation

Rating Ranking from n. HDI to

input indices HDI TM(a, 1), a = 1000 HDI TM(a, 1) TM(a, 1)

Country E H Y new old −1 0 1 ·AS n. o. −1 0 1 AS o.* −1 0 1

Zimbabwe .498 .613 .388 .491 .500 .488 .488 .488 11.4 157 160 156 156 156 72 3 1 1 1

Solomon Isl. .406 .733 .397 .491 .512 .483 .483 .482 29.4 158 154 161 161 162 4 −4 −3 −3 −4

Tanzania .426 .639 .428 .488 .498 .485 .485 .485 12.6 159 161 159 159 159 62 2 0 0 0

Comoros .449 .629 .410 .487 .496 .484 .484 .484 11.6 160 162 160 160 160 69 2 0 0 0

Lesotho .505 .453 .503 .486 .487 .486 .486 .486 .8 161 166 158 158 158 174 5 3 3 3

Mauritania .351 .639 .513 .486 .501 .482 .482 .482 18.9 162 158 162 162 161 38 −4 0 0 1

Senegal .369 .668 .465 .486 .501 .481 .481 .481 19.9 163 159 164 164 164 34 −4 −1 −1 −1

Uganda .480 .603 .391 .484 .491 .481 .481 .481 10.0 164 164 163 163 163 84 0 1 1 1

Benin .412 .605 .430 .475 .482 .473 .473 .473 9.7 165 168 165 165 165 89 3 0 0 0

Togo .516 .562 .366 .473 .481 .471 .471 .472 9.8 166 169 166 166 166 87 3 0 0 0

South Sudan .306 .647 .534 .473 .496 .466 .468 .469 28.1 167 163 168 167 167 9 −4 −1 0 0

Haiti .374 .663 .422 .471 .486 .466 .466 .466 19.9 168 167 167 168 168 33 −1 1 0 0

Afghanistan .365 .630 .445 .468 .480 .464 .464 .464 15.8 169 170 169 169 169 46 1 0 0 0

Djibouti .304 .643 .519 .466 .489 .460 .461 .463 27.2 170 165 170 170 170 12 −5 0 0 0

Côte d’Ivoire .391 .473 .502 .453 .455 .452 .452 .452 3.1 171 172 171 171 171 147 1 0 0 0

Gambia .346 .597 .415 .441 .453 .438 .438 .439 14.4 172 173 172 172 172 50 1 0 0 0

Ethiopia .316 .671 .388 .435 .458 .429 .430 .430 28.8 173 171 173 173 173 7 −2 0 0 0

Malawi .440 .543 .297 .414 .427 .411 .413 .414 13.9 174 175 174 174 174 53 1 0 0 0

Liberia .366 .624 .305 .411 .432 .407 .408 .409 23.7 175 174 175 175 175 23 −1 0 0 0

Mali .306 .539 .409 .407 .418 .405 .406 .407 12.1 176 177 176 176 176 65 1 0 0 0

Guinea-Bissau .327 .528 .361 .396 .405 .395 .395 .396 9.9 177 180 177 177 177 86 3 0 0 0

Guinea .295 .556 .368 .392 .406 .390 .391 .392 15.5 178 179 179 179 178 47 1 −1 −1 0

Mozambique .371 .465 .349 .392 .395 .391 .392 .392 3.3 179 182 178 178 179 144 3 1 1 0

Burundi .371 .525 .304 .390 .400 .388 .389 .390 11.1 180 181 180 180 181 77 1 0 0 −1

Burkina Faso .252 .559 .419 .389 .410 .386 .389 .391 21.4 181 178 181 181 180 28 −3 0 0 1

Eritrea .227 .659 .369 .381 .418 .375 .378 .381 40.1 182 176 182 182 182 1 −6 0 0 0

Sierra Leone .305 .393 .438 .374 .379 .374 .374 .375 4.2 183 184 183 183 183 136 1 0 0 0

Chad .256 .480 .421 .373 .386 .371 .373 .375 12.6 184 183 184 184 184 61 −1 0 0 0

Central Afr. R. .317 .464 .268 .340 .350 .339 .341 .342 9.0 185 187 185 185 186 93 2 0 0 −1

Congo (D. R.) .373 .461 .225 .338 .353 .337 .340 .342 13.1 186 186 186 186 185 59 0 0 0 1

Niger .197 .591 .327 .336 .372 .334 .338 .342 33.7 187 185 187 187 187 3 −2 0 0 0


