
Time evolution of an infinitely extended Vlasov

system with singular mutual interaction

Silvia Caprino*, Guido Cavallaro+ and Carlo Marchioro++

April 8, 2015

Abstract

We study the time evolution of an infinitely extended system in
the mean field approximation, governed by the Vlasov equation. This
system is confined in an unbounded cylinder by an external force sin-
gular on the border. The mutual interaction is assumed singular at
short distance as 1/rα with α < 2/3 (or α < 1 in case of an external
Lorentz force) and with a short range. The initial density is assumed
bounded. Differently from studies which assume initial data compact
in space and/or in velocities, here we consider a system having infi-
nite mass and an exponential bound on the velocities, according to the
Maxwell-Boltzmann law.

Key words: Vlasov equation, infinitely extended plasma, singular interac-
tion.
Mathematics Subject Classification: 82D10, 35Q99, 76X05.

1 Introduction, statement of the problem and main
result

In the present paper we study the time evolution of a gas of particles in
the mean field approximation, that is in the limit in which the mass of
the particles goes to zero, while the number of particles per unit volume
diverges, in such a way that the mass density stays finite. As well known,
this system can be described by the Vlasov equation. We suppose that the
particles mutually interact via a short range potential singular at the origin
as 1/rα, 0 < α < 2/3. We put this system in an unbounded cylinder, where
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it is confined by an external radial force singular on the boundary of the
cylinder.

It is not obvious that this system cannot have a blow-up, that is a collapse
of infinite mass in a finite region and/or an unbounded growth of the velocity.
Actually for point particles the problem has been solved many years ago,
when the problem of the dynamics of infinitely many particles has been faced
(see [1, 2, 5, 6, 7, 11, 12, 18, 20, 21, 22, 27, 28, 29, 32, 33, 39, 45, 46, 47]
and for a short review [9]). The solution depends on the dimensions and the
shape of the region in which the motion happens (the unbounded cylinder
case is treated in [6]). In three dimensions the problem has been solved for
bounded interactions only [11, 18].

The mean field model has many features similar to the three dimen-
sional infinite particles system, up to a scaling in the spatial distances. The
singularity of the interaction is a real difficulty, too hard for point particle
systems, but solvable in the Vlasov case, since the singularity is averaged by
the mean field, as we will show in the present paper. For bounded interac-
tions the construction of the mean field limit has been proved (for bounded
total mass [4, 19, 34, 48] and for an unbounded total mass [5]), while for
singular interactions this problem is open except for a particular case with
weak singularity [24] (for a review see [26]). In the present paper we forget
this problem and we assume the Vlasov equation as the physical model that
we will study. We want to stress that, while a point particle cannot escape
from the cylinder by the energy conservation, here a characteristic of the
Vlasov system could be a priori pushed on the border of the cylinder by
the force produced by the other particles. We will prove that this cannot
happen.

Recently we have studied a similar problem in [14, 15] with a magnetic
confinement, that is we have introduced the Lorentz force produced by an
external magnetic field parallel to the symmetry axis of the cylinder, depend-
ing on the distance from the border and singular on it. While in [14, 15]
we assumed initially bounded velocities, here we assume only an initial con-
trol on the large velocities according to the Maxwell-Boltzmann law. This
weaker assumption appears more reasonable for an infinitely extended sys-
tem and produces some non-trivial difficulties. Actually in [14, 15] we have
studied the Coulomb singularity α = 1, while here we confine ourselves to
the case α < 2/3, i.e. the assumption of unbounded velocities imposes a
restriction on the possible singularities of the interaction. Moreover there
is another reason for this restriction: as it is well known, the Lorentz force
produced by a magnetic field cannot increase the energy of the system and
this property is used in [14, 15], while here the confining external force can
change the energy and this fact produces further difficulties in the proof. In
this set up we also quote [35], in which it is treated the relativistic Vlasov-
Maxwell system in one and a half dimension. We finally observe that, in
case of magnetic confinement, our technique is more efficient and we can
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arrive to α < 1. Unfortunately the more interesting case α = 1 (Coulomb
case) is not reachable, because this interaction is no more Lipschitz but only
quasi-Lipschitz, and so the convergence of the partial dynamics ( a cutoffed
system introduced in Section 2) to the infinite one remains an open problem.
In this case a study is in progress when we assume initial data with some
decay of the spatial density.

The Vlasov system we consider is



∂tf(x, v, t) + v · ∇xf(x, v, t) + (E(x, t) + Eext(x)) · ∇vf(x, v, t) = 0

E(x, t) = −
∫

R3

∇Φ(|x− y|) ρ(y, t) dy

ρ(x, t) =
∫

R3

f(x, v, t) dv

Eext(x) = −∇U(x)
f(x, v, 0) = f0(x, v),

(1.1)
where f(x, v, t) denotes the mass distribution at point (x, v) of the phase-
space at time t, E(x, t) is the force produced by the system and Eext(x) is
the confining external force.

Equation (1.1) is a conservation equation for the density f along the
characteristics of the system, that is the solutions to the following problem:

Ẋ(t) = V (t)
V̇ (t) = E(X(t), t) + Eext(X(t))
(X(0), V (0)) = (x, v)
f(X(t), V (t), t) = f0(x, v),

(1.2)

where (X(t), V (t)) := (X(x, v, t), V (x, v, t)) denote position and velocity at
time t of a particle starting at time t = 0 from (x, v). Since f is time-
invariant along the motion, it is:

‖f(t)‖L∞ = ‖f0‖L∞ . (1.3)

As it is well known, solutions along the characteristics (1.2) produce
a weak solution of the Vlasov equation (1.1), which becomes a classical
solution when f0(x, v) is assumed smooth. We remark that the Lebesgue
measure dxdv is conserved along the motion.

We assume the potential Φ to be a not negative, twice differentiable
function for |x| > 0, such that

Φ(|x|) =
1
|x|α

if |x| < r1 and Φ(|x|) = 0 if |x| ≥ r0, (1.4)

where 0 < r1 < r0 <∞.
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For α = 1 this equation have been studied in several papers, first when
the total mass is finite and Eext(x) = 0. The existence and uniqueness of
the solution have been proved, initially assuming symmetries that reduce
the problem to a two dimensional one, then for a real three dimensional
system. See for instance for bounded mass [3, 30, 37, 40, 41, 49]; for a nice
review of the mathematical results on this topic see also [23]. For particular
cases with unbounded mass see [14, 15, 16, 25, 36, 42, 43, 44]. The extension
of these results to the simpler case α < 1 is trivial.

In the present paper we study a case of unbounded mass. The system
evolves in an infinite cylinder D with symmetry axis directed along the x1

direction,

D = {x = (x1, x2, x3) ∈ R3 : x2
2 + x2

3 < A2} A > 0. (1.5)

We assume that U, the potential of the external confining force Eext, is a
positive non decreasing smooth function, together with its first and sec-
ond derivatives, diverging on the border of D, and depending only on r =√
x2

2 + x2
3. For concreteness we assume that U(r) has the following form:

U(r) = 0 for r < A− ν

U(r) =
1

(A− r)θ
for A− ν

2
< r < A, θ > 2.

(1.6)

The requirement θ > 2 is due to the iterative method and will be clear in
the following (see the argument after (2.38)).
We define

D0 = {x ∈ R3 : r < (A− ν)} 0 < ν <
A

2
, (1.7)

to be the support of the initial density.

Theorem 1. Let us fix an arbitrary positive time T. Assume in (1.4) that
α < 2

3 and let f0(x, v) ∈ L∞ be supported on D0 and such that

0 ≤ f0(x, v) ≤ C1e
−λv2 (1.8)

for some positive constants C1 and λ. Then there exists a solution to system
(1.2) in [0, T ]. This solution is supported on D and there exist two positive
constants C2 and λ̄ < λ such that

0 ≤ f(x, v, t) ≤ C2e
−λ̄v2 .

Moreover it is unique in the class of the characteristics distributed with
f(x, v, t) ≤ Ce−C′v2 for positive constants C and C ′.

The proof of the theorem will be given in the next Section. We stress
that we are in presence of three difficulties: the infinite mass, the singularity
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of the external force, the initially unbounded velocities. In the sequel we
shall see that the first two difficulties can be solved in analogy with [14, 15],
while the third difficulty will be the main object of our analysis.

We anticipate the strategy of the proof. First we introduce a partial
dynamics in which the initial distribution has compact support, being x in
a cylinder centered at the origin and of length M and v : |v| ≤ N. We prove,
in analogy with [14, 15], that for any fixed time T we can find a bound
on the velocities which is linear in N and consequently the support of the
density increases in time at most linearly with N . The reason for limiting
ourselves to α < 2

3 relies in (3.17), in which there is the condition for arriving
at this result. At this point, by choosing M = Nβ, with β large enough, we
obtain the result by an iterative method (via a contraction), which allows
to perform the limit N →∞.

The plan of the paper is the following: in Section 2 we give the proof
of Theorem 1, by assuming some properties on the partial dynamics which
are proved in Section 3. In Section 4 we state a result on a magnetically
confined plasma, enlarging the range of α up to α < 1, and in the Appendix
we collect some proofs and technical tools.

Before starting with the proof of the theorem, we shortly discuss the
case with α ≥ 2/3. We observe that the mean field approximation makes
an average on the interaction with different particles, and so it makes sense
for α < 2 (integrability condition of the mutual force). When 1 < α < 2 the
interaction is not Lipschitz nor quasi-Lipschitz, hence the partial dynamics
may be not unique and the method fails. When α = 1 the interaction is
quasi-Lipschitz and so the partial dynamics could be defined. Actually this
fact is not trivial due to the presence of an infinite external force confining
the system in the cylinder. This problem has been studied in [13] in presence
of a singular magnetic field that confines the system. Unfortunately, we
are not able to pass from the partial dynamics to the infinite one, because
of the quasi-Lipschitz property of the interaction which imposes a control
on the growth of the maximal velocity which is beyond our ability. For
2/3 ≤ α < 1 the problem with a confinement due to an external force
like the one described above remains unsolved for mathematical difficulties,
essentially due to the loss of control over the velocity component directed
along the external force direction. In the present paper we study the case
α < 2/3, but we stress that the proof for α < 1/2 would be much easier, as
we observe in the Remark 2 in Section 3.
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2 Proof of Theorem 1

For a ∈ R, L > 0, we set

D(a, L) = {x ∈ D : |x1 − a| < L}, D(L) = D(0, L),

and
B(L) = {v ∈ R3 : |v| < L}.

We introduce the following sequence of cut-off problems (named partial dy-
namics in the following), for M and N positive integer numbers:

ẊM,N (t) = VM,N (t)
V̇M,N (t) = EM,N (XM,N (t), t) + Eext(XM,N (t))
(XM,N (0), VM,N (0)) = (x, v)

(2.1)

EM,N (x, t) = −
∫
D
∇Φ(|x− y|) ρM,N (y, t) dy,

ρM,N (x, t) =
∫

R3

fM,N (x, v, t) dv,

fM,N (XM,N (t), VM,N (t), t) = fM,N
0 (x, v), (2.2)

fM,N
0 (x, v) = f0(x, v)χ (x ∈ D(M)) χ (v ∈ B(N)) ,

with f0 defined as in Theorem 1, χ(·) denoting the characteristic function
of the set (·). Such problem admits a unique solution over any arbitrarily
fixed time interval [0, T ], since the density has compact support and hence
the total charge is finite. An explicit proof of this fact is not written in the
literature, but it can be easily achieved by using the techniques of the present
paper, putting the total energy bounded by a constant (see Proposition 3).

We want to investigate the limit M,N → ∞. To do so, we consider a
relation M = Nβ, with β > 1 to be fixed later, hence in the following we
will drop the dependence on the index M .

Let us fix arbitrarily a time T. For any t ∈ [0, T ] we introduce the
maximal velocity of a plasma particle,

VN (t) = max

{
C̃, sup

s∈[0,t]
sup
(x,v)
|V N (s)|

}
, (2.3)

where C̃ is a constant that will be chosen large enough, and the maximal
displacement,

RN (t) = r0 +
∫ t

0
VN (s) ds, (2.4)

where r0 is the range of the interaction.
The following result on the partial dynamics is the core of the proof, and

will be proved in Section 3:
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Proposition 1.∫ T

0
|EN (XN (s), s)|ds ≤ C VN (T )γ , γ < 1. (2.5)

As a consequence, the following holds:

Corollary 1.
VN (T ) ≤ CN (2.6)

U(XN (t)) ≤ CN2 (2.7)

ρN (x, t) ≤ CN3γ′ , γ′ =
(1 + γ)

2
< 1. (2.8)

Proof. We introduce the quantity

EN (XN (t), V N (t), t) =
|V N (t)|2

2
+ U(XN (t)). (2.9)

Then we have:

dEN

dt
= V N (t) ·

[
E(XN (t), t) + Eext(XN (t))

]
+∇U(XN (t)) · V N (t) = V N (t) · E(XN (t), t),

and,

|V N (t)|2

2
+ U(XN (t)) =

|V (0)|2

2
+ U(X(0)) +

∫ t

0
V N (s) · E(XN (s), s) ds.

(2.10)

We remark that U is positive and the initial condition is such that U(X(0)) =
0. So by (2.10) we get

|V N (t)|2

2
+ U(XN (t)) ≤ |V (0)|2

2
+ VN (t)

∫ t

0
|E(XN (s), s)| ds. (2.11)

Hence, by Proposition 1 and the assumptions on the initial data,

|V N (t)|2

2
+U(XN (t)) ≤ C

[
|V (0)|2 + (VN (T ))1+γ

]
≤ C

[
N2 + (VN (tT )1+γ

]
.

Then
|V N (t)|2 ≤ C

[
N2 + (VN (T ))1+γ

]
which implies (2.6), being γ < 1, while

U(XN (t)) ≤ C
[
N2 +N1+γ

]
7



which implies (2.7).
Now we prove (2.8). We have:

ρN (XN (t), t) =
∫
fN (XN (t), V N (t), t) dV N (t) =

∫
f0(x, v) dV N (t).

From (2.11) and Proposition 1 it follows that

v2 = V (0)2 ≥ (V N (t))2 − 2VN (t)
∫ t

0
|E(XN (s), s)|ds ≥

(V N (t))2 − C3N
γ+1.

(2.12)

We decompose the integral as follows:∫
f0(x, v) dV N (t) =∫
|V N (t)|≤2C3N

1+γ
2

f0(x, v) dV N (t) +
∫
|V N (t)|>2C3N

1+γ
2

f0(x, v) dV N (t)

≤ CN3 1+γ
2 + C1

∫
|V N (t)|>2C3N

1+γ
2

e−λv
2
dV N (t)

Notice that, by (2.12), |V N (t)| > 2C3N
1+γ
2 implies, for C3 sufficiently

large,

v2 ≥ (V N (t))2 − (V N (t))2

4C3
≥ (V N (t))2

2
,

so that∫
f0(x, v) dV N (t) ≤

CN3 1+γ
2 + C1

∫
|V N (t)|>2C3N

1+γ
2

e−λ
(V N (t))2

2 dV N (t) ≤ CN3 1+γ
2

(2.13)

which implies the thesis.

Now we prove Theorem 1. We observe first that (2.7) ensures that the
solutions to the partial dynamics remain in the cylinder for the fixed time
interval [0, T ], since the potential stays bounded. We will keep this in mind in
the following, and we will avoid to put the characteristic function χ(x ∈ D)
in the spatial integrals.

Let us set, for k integer

δN (x, v, t) = |XN (x, v, t)−XN+1(x, v, t)|

uNk (t) = sup
(x,v)∈D(k)×B(N)

δN (x, v, t).
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We fix a couple (x, v) ∈ D(k) × B(N), with k ≤ N. By the equations of
motion in integral form it immediately follows

δN (x, v, t) =
∣∣∣∣ ∫ t

0
dt1

∫ t1

0
dt2

[
EN

(
XN (t2), t2) + Eext(XN (t2)

)]
−
∫ t

0
dt1

∫ t1

0
dt2

[
EN+1

(
XN+1(t2), t2) + Eext(XN+1(t2)

)] ∣∣∣∣
≤

∫ t

0
dt1

∫ t1

0
dt2 [F1(x, v, t2) + F2(x, v, t2) + F3(x, v, t2)] ,

(2.14)

where
F1(x, v, t) =

∣∣EN (XN (t), t
)
− EN

(
XN+1(t), t

)∣∣ , (2.15)

F2(x, v, t) =
∣∣EN (XN+1(t), t

)
− EN+1

(
XN+1(t), t

)∣∣ , (2.16)

and
F3(x, v, t) =

∣∣Eext (XN (t)
)
− Eext

(
XN+1(t)

)∣∣ . (2.17)

We warn that from now on we indicate by C any generic positive con-
stant, depending possibly on the initial data and the fixed time T but not
on N, and possibly changing from line to line.

We notice that, being the potential Φ short-range, (2.6) in Corollary 1
ensures that the characteristics starting from the set D(k) × B(N), during
the time interval [0, T ], at most interact with those starting from the set
D(k1)×B(N), with

k1 = k + r0 + CTN. (2.18)

We begin to treat F2, since the bound for F1 will be a by-product, as
it will be evident. To simplify the notation we put X̄ = XN+1(t) and
d := uNk1(t). We have:

F2(x, v, t) ≤ F ′2(x, v, t) + F ′′2 (x, v, t), (2.19)

where

F ′2(x, v, t) =

∣∣∣∣∣
∫
|X̄−y|≤2d

∇Φ(|X̄ − y|)
(
ρN (y, t)− ρN+1(y, t)

)
dy

∣∣∣∣∣ (2.20)

and

F ′′2 (x, v, t) =

∣∣∣∣∣
∫
|X̄−y|>2d

∇Φ(|X̄ − y|)
(
ρN (y, t)− ρN+1(y, t)

)
dy

∣∣∣∣∣ . (2.21)

We estimate F ′2(x, v, t). We have two cases: d < 1 or d ≥ 1. In the first
case by (2.8) we get:

F ′2(x, v, t) ≤
∫
|X̄−y|≤2d

ρN (y, t) + ρN+1(y, t)
|X̄ − y|α+1

dy ≤

CN3γ′
∫
|X̄−y|≤2d

1
|X̄ − y|α+1

dy ≤ CN3γ′ d2−α ≤ CN3γ′d

(2.22)
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while, in the second case we have

F ′2(x, v, t) ≤ CN3γ′
∫
dy

1
|X̄ − y|α+1

≤ CN3γ′ ≤ CN3γ′ d (2.23)

since, we recall, the integral is taken over the cylinder D, and then it is
finite, being 0 < α < 1. The definition of d implies that:

F ′2(x, v, t) ≤ CN3γ′ uNk1(t). (2.24)

As it regards the term F ′′2 , we put

(Y N (t),WN (t)) = (XN (y, w, t), V N (y, w, t))

and
Si(t) = {(y, w) : |X̄ − Y i(t)| ≥ 2d} i = N,N + 1.

By the invariance of the density along the characteristics and the Liou-
ville theorem we have,

F ′′2 (x, v, t) ≤∫
dy

∫
dw

∣∣∣∣∣ fN0 (y, w)
|X̄ − Y N (t)|α+1

− fN+1
0 (y, w)

|X̄ − Y N+1(t)|α+1

∣∣∣∣∣ [χ(SN (t)) + χ(SN+1(t))
]

≤
∫
SN (t)

dy

∫
dw

∣∣∣∣∣χ
(
|X̄ − Y N (t)| ≤ r0|

)
|X̄ − Y N (t)|α+1

−
χ
(
|X̄ − Y N+1(t)| ≤ r0|

)
|X̄ − Y N+1(t)|α+1

∣∣∣∣∣ fN0 (y, w)

+
∫
SN+1(t)

dy

∫
dw

χ
(
|X̄ − Y N+1(t)| ≤ r0|

)
|X̄ − Y N+1(t)|α+1

∣∣∣fN0 (y, w)− fN+1
0 (y, w)

∣∣∣ .
(2.25)

By the Lagrange theorem the first term in (2.25) is bounded by

d

∫
SN (t)

dy

∫
dw

fN0 (y, w)
|X̄ − ξ(t)|α+2

, (2.26)

where ξ(t) is a point of the segment joining Y N (t) and Y N+1(t). Note that
if |X̄ − Y N (t)| > 2d, then

|X̄ − Y N+1(t)| > |X̄ − Y N (t)| − |Y N (t)− Y N+1(t)| > 2d− d = d.

This implies that |X̄ − ξ(t)| is certainly bigger than 1
2 |X̄ −Y

N (t)|, hence by
(2.8) the previous term can be bounded by (using once again the Liouville
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theorem)

d

∫
SN (t)

dy

∫
dw

fN0 (y, w)
|X̄ − ξ(t)|α+2

≤ 2α+2d

∫
dy

∫
dw

fN0 (y, w)
|X̄ − Y N (t)|α+2

= 2α+2d

∫
dY N (t)

∫
dWN (t)

fN (Y N (t),WN (t), t)
|X̄ − Y N (t)|α+2

≤ CN3γ′d

∫
dy

1
|X̄ − y|α+2

≤ CN3γ′uNk1(t). (2.27)

For the second term in (2.25) we have:∫
SN+1(t)

dy

∫
dw

χ
(
|X̄ − Y N+1(t)| ≤ r0

)
|X̄ − Y N+1(t)|α+1

∣∣∣fN0 (y, w)− fN+1
0 (y, w)

∣∣∣
≤ 2

∫
SN+1(t)

dy

∫
dw fN+1

0 (y, w)
χ
(
|X̄ − Y N+1(t)| ≤ r0

)
|X̄ − Y N+1(t)|α+1[

χ(N ≤ |w| ≤ N + 1) + χ(|y| > Nβ)
]
. (2.28)

At this point we notice that, being x ∈ D(k) with k < N, if |y| > Nβ then
by (2.6) it is |X̄−Y N+1(t)| ≥ |X̄−y|−CN > r0. By the change of variables
(ȳ, w̄) = (Y N (t),WN (t)) we get for N sufficiently large, using once more
(2.6):∫

SN+1(t)
dy

∫
dw

χ
(
|X̄ − Y N+1(t)| ≤ r0

)
|X̄ − Y N+1(t)|α+1

∣∣∣fN0 (y, w)− fN+1
0 (y, w)

∣∣∣
≤ 2C1e

−λN2

∫
dȳ

∫
dw̄

χ(|w̄| ≤ CN)
|X̄ − ȳ|α+1

≤ CN3e−λN
2

∫
dȳ

1
|X̄ − ȳ|α+1

≤ Ce−
λ
2
N2
. (2.29)

Therefore, collecting all the bounds (2.24), (2.25), (2.27) and (2.29) we
have

sup
(x,v)∈D(k)×B(N)

F2(x, v, t) ≤ CN3γ′uNk1(t) + Ce−
λ
2
N2
. (2.30)

A bound for F1 takes the same form, without the last exponential term, so
that we have

sup
(x,v)∈D(k)×B(N)

{F1(x, v, t) + F2(x, v, t)} ≤ CN3γ′uNk1(t) + Ce−
λ
2
N2
. (2.31)

For F3(x, v, t) we have, by applying again the Lagrange theorem:

F3(x, v, t) ≤
[∣∣U ′′(XN (t))

∣∣+
∣∣U ′′(XN+1(t))

∣∣] δN (x, v, t). (2.32)
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By (2.7) and by using the explicit form of U in (1.6), it’s easily seen that∣∣U ′′(XN (t))
∣∣ ≤ CN 2(θ+2)

θ , (2.33)

hence
sup

(x,v)∈D(k)×B(N)
F3(x, v, t) ≤ CN

2(θ+2)
θ uNk1(t). (2.34)

Finally, by (2.14), (2.30) and (2.34) we get:

uNk (t) ≤ C
(
N3γ′ +N

2(θ+2)
θ

)∫ t

0
dt1

∫ t1

0
dt2 u

N
k1(t2) + Ce−

λ
2
N2
. (2.35)

We can iterate now this relation, passing from k1 to k2 and in general from
kj to kj+1, with kj+1 = kj + r0 + CTN , up to k`, where ` is the largest
integer such that a trajectory with initial position in D(k`) does not reach
the boundary of D(M) = D(Nβ) in the time interval [0, T ].
Hence we can make ` steps with

` ≤ M − k
r0 + CNT

. (2.36)

Once chosen k, we can fix

` = Intg
(
C
Nβ−1

r0 + T

)
,

where Intg(x) is the integer part of x. Since the maximal displacement is
bounded by CTN , we obtain

uNk (t) ≤ Ce−
λ
2
N2

`−1∑
s=0

(CNσ)s
t2s

(2s)!
+ CTN(CNσ)`

t2`

(2`)!
, (2.37)

putting

σ = max
{

3γ′,
2(θ + 2)

θ

}
.

The first term in (2.37) is bounded by

Ce−
λ
2
N2+(CNσ)1/2 t ≤ e−

λ
4
N2

(2.38)

for N large enough since, being γ < 1 and θ > 2, it is σ < 4. The second
term, by the choice of `, is bounded by N−CN

β−1
, provided that β > 1+σ/2

and N is large.
We obtain analogously a similar bound for |V N (x, v, t)− V N+1(x, v, t)|,

arriving at

sup
{(x,v,t)∈D(k)×B(N)×(0,T )}

{
|XN (x, v, t)−XN+1(x, v, t)|

+ |V N (x, v, t)− V N+1(x, v, t)|
}

≤ Ce−
λ
4
N2
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for N large enough. Thus the sequence
(
XN (x, v, t), V N (x, v, t)

)
converges

uniformly over

D
(
Nβ

2

)
×B(N)× [0, T ].

Let us denote the limit of the sequence by (X(x, v, t), V (x, v, t)). We
have to prove that this couple, during the time interval [0, T ], (i) satisfies
(1.2), (ii) is unique, (iii) X(t) remains confined in the cylinder and (iv) the
related spatial distribution is gaussian in the velocities.

(i) We need a N -uniform estimate of the displacement |XN (x, v, t) −
x|. To this purpose, arguing in analogy with [10], we observe that all the
previous results hold whenever we choose the initial condition in D(a,Nβ)×
B(N) instead of D(Nβ) × B(N) being, we recall, D(a,Nβ) = {x ∈ D :
|x1 − a| < Nβ}. Now we fix a couple (x, v) and a such that |x1 − a| ≤ |v|

β

2 .
Moreover we fix N0 = Intg(|v|+ C̄), being C̄ a suitably large constant. By
this choice it is (x, v) ∈ D(a,Nβ

0 )×B(N0). We have

|XN (x, v, t)− x| ≤ |XN0(x, v, t)− x|+
N∑

k=N0+1

|Xk(x, v, t)−Xk−1(x, v, t)|.

(2.39)
From (2.6) it follows |XN0(x, v, t) − x| ≤ CN0t, while by the preceding
arguments the sum is converging as N →∞, hence

|XN (x, v, t)− x| ≤ CN0t ≤ C(|v|+ 1). (2.40)

Analogously, for the velocities we get

|V N (x, v, t)− v| ≤|V N0(x, v, t)− v|+
N∑

k=N0+1

|V k(x, v, t)− V k−1(x, v, t)|

≤ C(|v|+ 1).
(2.41)

These estimates allow to give a bound on the field E. Indeed from (2.40) it
follows

|EN (x, t)| =
∫
dy

∫
dw

fN (y, w, t)
|x− y|α+1

χ (|x− y| ≤ r0)

≤ C1

∫
dy

∫
dw

e−λw
2

|x− Y N (t)|1+α
χ
(
|x− Y N (t)| ≤ r0

)
≤ C1

∞∑
k=0

∫
k≤|w|≤k+1

dw e−λw
2

∫
dy

1
|x− Y N (t)|1+α

≤ C1

∞∑
k=0

e−λk
2

∫
|w|≤k+1

dw

∫
dy

1
|x− Y N (t)|1+α

.

(2.42)
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By (2.41), if |w| ≤ k, then |WN (t)| ≤ C(k + 1) so that, by a change of
variables, we get

|EN (x, t)| ≤C1

∞∑
k=0

e−λk
2

∫
|w|≤C(k+1)

dw

∫
dy

1
|x− y|1+α

≤

C
∞∑
k=0

e−λk
2
k3 ≤ C.

(2.43)

Notice that this estimate is uniform in N and thus it proves that the
limit field E(x, t) is finite. Moreover (2.43) induces a bound on the external
field Eext. Indeed, from (2.10), (2.41) and (2.43) it follows

U(XN (t)) ≤ |v|
2

2
+
∫ t

0
V N (s) · E(XN (s), s) ds ≤ |v|

2

2
+ C(1 + |v|).

The explicit expression for U in (1.6) implies that

|Eext(XN (t))| ≤ C(|v|2 + |v|)1+ 1
θ . (2.44)

Since

XN (t) = x+ vt+
∫ t

0
dt1

∫ t1

0
dt2 [E(XN (t2), t2) + Eext(XN (t2))],

the N -uniform estimates (2.43) and (2.44) allow to pass to the limit under
the time integrals and to prove that the limit functions X(t), V (t) satisfy
equations (1.2).

(ii) The uniqueness can be proved in the same way we bounded the
term F1(x, v, t), by putting two different solutions X(x, v, t) and X ′(x, v, t)
in place of XN (t) and XN+1(t).

(iii) The confinement of the characteristics X(t) is proven by (2.44),
which shows that for any fixed characteristic the external force stays bounded
over [0, T ] and hence X(t) does not reach the boundary of the cylinder.

(iv) Let λ̄ > 0. Again by (2.10), (2.41) and (2.43) we get

f(X(t), V (t), t)eλ̄V (t)2 = f0(x, v)eλ̄V (t)2 ≤

C1e
−(λ−λ̄)v2eλ̄(V (t)2−v2) ≤ C1e

−(λ−λ̄)v2eλ̄C(1+|v|) ≤ C
(2.45)

for any λ̄ sufficiently smaller than λ.
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3 Proof of Proposition 1.

In all the following estimates the constants will not depend on N, so from
now on we will omit the index N.

We define here the local energy, which is a key tool in our analysis. For
µ ∈ R and R > 0 we define the function,

ϕµ,R(x) = ϕ

(
|x1 − µ|

R

)
; (3.1)

ϕ is assumed to be smooth for technical purposes, as it will be clear in the
following, and is such that:

ϕ(r) = 1 if r ∈ [0, 1] (3.2)

ϕ(r) = 0 if r ∈ [2,+∞) (3.3)

−2 ≤ ϕ′(r) ≤ 0. (3.4)

Now we define

W (µ,R, t) =
1
2

∫
dxϕµ,R(x)

∫
dv |v|2f(x, v, t)

+
1
2

∫
dxϕµ,R(x)ρ(x, t)

∫
dy ρ(y, t)Φ(|x− y|)

+
∫
dxϕµ,R(x)ρ(x, t)U(x).

(3.5)

The function W, already introduced in [10] without any external potential
U, can be seen as a sort of mollified version of the energy of a bounded region
interacting with the rest of the system, and it will be the most important
tool to deal with the unboundedness of the plasma.

We define,

Q(R, t) = max

{
1, sup
µ∈R

W (µ,R, t)

}
(3.6)

and
Q(t) = sup

s∈[0,t]
Q(R(s), s). (3.7)

Remark 1. By the properties of the potentials Φ and U and by the assump-
tions on the initial conditions it is

W (µ,R, 0) ≤ CR.
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We state the most important result on the local energy, whose proof is
given in the Appendix:

Proposition 2. There exists a constant C independent of N such that

Q(R(t), t) ≤ CQ(R(t), 0).

As consequence of Remark 1 we have:

Corollary 2.
Q(R(t), t) ≤ CR(t). (3.8)

Now we give a first estimate on E, which will be refined in the following
Proposition 4 (such bound is analogous to the one given in [14, 15] for α = 1).

Proposition 3. There exist constants C3 and C, independent of N, such
that:

|E(x, t)| ≤ C3V(t)
5α−1

3 Q(R(t), t)
2−α

3 if
1
5
< α <

2
3

; (3.9)

|E(x, t)| ≤ CQ(R(t), t)
3
5 logV(t) if α ≤ 1

5
; (3.10)

Remark 2. Notice that since by definition R(t) ≤ CV(t), by Corollary 2 it
follows

|E(x, t)| ≤ CV(t)
4α+1

3 . (3.11)

Hence for α < 1/2 we get a bound on |E(x, t)| which is less than linear in
V(t), and this would be sufficient to prove Proposition 1. Hence the succes-
sive efforts will be addressed to enlarge the range of α up to 2

3 .

Proof. We premise an estimate on the spatial density: for any µ ∈ R and
any positive number R it is∫

|µ−x|≤R
dx ρ(x, t)

5
3 ≤ CW (µ,R, t). (3.12)

Indeed:

ρ(x, t) ≤
∫
|v|≤a

dvf(x, v, t) +
1
a2

∫
|v|>a

dv v2f(x, v, t) ≤

Ca3 +
1
a2

∫
dv v2f(x, v, t).

By minimizing over a, taking the power 5/3 of both members and integrating
over the set {x : |µ− x1| ≤ R} we get (3.12).
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Let us start with the case α > 1
5 . For any positive b < r0 it is

|E(x, t)| ≤ J0(x, t) + J1(x, t), (3.13)

with
J0(x, t) = C

∫
0<|x−y|≤b

dy
ρ(y, t)
|x− y|1+α

,

J1(x, t) = C

∫
b<|x−y|≤r0

dy
ρ(y, t)
|x− y|1+α

.

We estimate the terms in (3.13). We have

J0(x, t) ≤ C‖ρ(t)‖L∞b2−α ≤ CV(t)3b2−α.

By (3.12) we get:

J1(x, t) ≤ C

(∫
|x−y|≤r0

dy ρ(y, t)
5
3

) 3
5
(∫

b<|x−y|≤r0

1

|x− y|
5
2

(1+α)
dy

) 2
5

≤ CW (x1, r0, t)
3
5

[
b

1
2
− 5

2
α + r

1
2
− 5

2
α

0

] 2
5

≤ CQ(R(t), t)
3
5 b

1
5
−α.

Hence

J0(x, t) + J1(x, t) ≤ C
(
V(t)3b2−α +Q(R(t), t)

3
5 b

1
5
−α
)
.

The minimum value in b is attained at

b = C

((
α− 1

5

)
Q(R(t), t)

3
5

(2− α)V(t)3

) 5
9

(3.14)

so that we get

J0(x, t) + J1(x, t) ≤ C V(t)
5α−1

3 Q(R(t), t)
2−α

3 (3.15)

which, by (3.13), proves (3.9). To prove (3.10), let us consider first the case
α = 1

5 . By the same procedure used before we get

J0(x, t) + J1(x, t) ≤ CV(t)3b2−α +Q(R(t), t)
3
5 log b.

The minimum is attained at

b =

[
Q(R(t), t)

3
5

V(t)3

] 1
2−α

,
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which implies the thesis. The case α < 1
5 is immediately proved as follows:

|E(x, t)| ≤ C
∫
|x−y|≤r0

dy
ρ(y, t)
|x− y|1+α

≤ CQ(R(t), t)
3
5

(∫
|x−y|≤r0

1

|x− y|
5
2

(1+α)
dy

) 2
5

≤ CQ(R(t), t)
3
5 .

Now we need to control the time average of the field E, that is

〈E〉∆̄ :=
1
∆̄

∫ t+∆̄

t
|E(X(s), s)| ds

over a suitably small time interval ∆̄. We have to fix some parameters which
will be used in what follows, precisely:

η ∈
(

2− α2

8− 5α
, 1− α

)
η′ ∈

(
2− α2

8− 5α
, η

)
η̄ ∈

(
0, 1− α+ η − (1− η)

(
2− α

2− α

)
+ η′

)
δ ∈ (0, η̄].

(3.16)

Notice that in order not to have an empty interval for η̄, we must require
that η′ > 2−α2

8−5α (see the following eqn. (3.66)), and analogously for η, so
that the condition that has to be fulfilled is

2− α2

8− 5α
< 1− α, (3.17)

which is satisfied for α < 2/3 and gives the range over which we are able to
prove Theorem 1.

By Remark 2, from now on we will assume 1
2 < α < 2

3 .
We define a time interval

∆1 :=
V(T )η

′

4C3V(T )
5α−1

3 Q(T )
1
3

(2−α)
(3.18)

where C3 is the constant in (3.9), and for any positive integer ` we set:

∆` = ∆`−1G = ... = ∆1G`−1, (3.19)

denoting by
G = Intg

(
V(T )δ

)
. (3.20)
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Putting for brevity

V := V(T ) Q := Q(T )

we have the following result:

Proposition 4. Suppose the following estimate holds:

〈E〉∆`
≤ C

[
V

4
3
α− 2

3
+ηQ

(2−α)
3 logV +

V
5α−1

3 Q
(2−α)

3

V η̄ Vδ(`−1)

]
. (3.21)

Then, there exists a positive number ∆̄ such that:

〈E〉∆̄ ≤ C4V(T )γ (3.22)

for any t ∈ [0, T ] such that t ≤ T − ∆̄.

Proof. By Corollary 2 it is Q ≤ CR(T ) ≤ CV, hence from (3.21) it follows:

〈E〉∆`
≤ C

[
Vα+η logV +

V
4α+1

3

V η̄ Vδ(`−1)

]
. (3.23)

At this point we define ¯̀ as the smallest integer such that

δ(`− 1) >
4α− 2

3
(3.24)

and, being η < 1−α, we obtain estimate (3.22) with ∆̄ = ∆¯̀ from (3.23).

We remark that the time interval ∆̄ is of the order

∆̄ ≈ C

V1−η′ . (3.25)

Proposition 4 enables us to conclude the proof of Proposition 1. We
divide the interval [0, T ] by n subintervals [ti−1, ti], i = 1, ..., n, with t0 = 0,
tn = T and 1

2∆̄ ≤ ti − ti−1 ≤ ∆̄. Hence it is:∫ T

0
|E(X(s), s)| ds ≤

n∑
i=1

∫ ti

ti−1

|E(X(s), s)| ds ≤ C
n∑
i=1

∆̄〈E〉∆̄, (3.26)

and by (3.22) we get:∫ T

0
|E(X(s), s)| ds ≤ C

n∑
i=1

∆̄Vγ ≤ C T Vγ (3.27)

with γ < 1, which proves the Proposition.
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3.1 Proof of (3.21)

We prove here that the assumption made in Proposition 4 is verified. Before
starting with the proof of (3.21) we give some preliminary results.
Let us consider two solutions of the partial dynamics, (X(t), V (t)) and
(Y (t),W (t)). By Proposition 3 and the definition (3.19) of ∆` the following
lemmas can be stated, whose proofs are given in the Appendix. We will
assume, for Lemma 2, to be in the region A/2 ≤ r < A (A is the radius
of the cylinder D), in order to avoid an unessential singularity of the polar
coordinates, while for r < A/2 the proof becomes trivial, since the external
field is zero.

Lemma 1. Let t ∈ [0, T ] such that t+ ∆` ∈ [0, T ] ∀` ≤ ¯̀. Then

If |V1(t)−W1(t)| ≤ Vη

then
sup

s∈[t,t+∆`]
|V1(s)−W1(s)| ≤ 2Vη. (3.28)

If |V1(t)−W1(t)| ≥ Vη

then
inf

s∈[t,t+∆`]
|V1(s)−W1(s)| ≥ 1

2
Vη. (3.29)

Using cylindrical coordinates we put V = (V1, Vr, Vτ ), where Vr is the
radial velocity component and Vτ the transversal velocity component.

Lemma 2. Let t ∈ [0, T ] such that t+ ∆` ∈ [0, T ] ∀` ≤ ¯̀.
For any V∗ ∈ [Vη,V],

If |Vτ (t)| ≤ V∗

then
sup

s∈[t,t+∆`]
|Vτ (s)| ≤ 2V∗. (3.30)

If |Vτ (t)| ≥ V∗

then
inf

s∈[t,t+∆`]
|Vτ (s)| ≥ 1

2
V∗. (3.31)
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Lemma 3. Let t ∈ [0, T ] such that t+ ∆` ∈ [0, T ] ∀` ≤ ¯̀, and assume that
|V1(t) −W1(t)| ≥ hVη for some h ≥ 1. Then it exists t0 ∈ [t, t + ∆`] such
that for any s ∈ [t, t+ ∆`] it holds:

|X(s)− Y (s)| ≥ hVη

4
|s− t0|.

Lemma 4. There exists a positive constant C such that, for any µ ∈ R and
for any couple of positive numbers R,R′ : R < R′ we have:

W (µ,R′, t) < C
R′

R
Q(R, t).

Now we are ready to start the proof of (3.21). It is based on an inductive
procedure, whose steps are the following:
step i) we prove (3.21) for ` = 1;
step ii) we show that if (3.21) holds for `− 1 it holds also for `;
Proof of step i).

We show that the following estimate holds:

〈E〉∆1 ≤ C

[
V

4
3
α− 2

3
+ηQ

2−α
3 logV +

V
5α−1

3 Q
2−α

3

V η̄

]
. (3.32)

For any t ∈ [0, T ] such that t + ∆1 ≤ T , we consider the time evolution of
the system over the time interval [t, t+ ∆1]. For any s ∈ [t, t+ ∆1] we set

(Y (s),W (s)) := (Y (s, t, y, w),W (s, t, y, w))

being
Y (t) = y, W (t) = w.

The time-invariance of f and of the measure dydw along the character-
istics allows to write, by the change of variables (y, w)→ (Y (s),W (s)):

|E(X(s), s)| ≤
∫
dydw

f(y, w, s)
|X(s)− y|α+1

=
∫
dydw

f(y, w, t)
|X(s)− Y (s)|α+1

.

(3.33)

We decompose the phase space in the following way. We define

T1 = {y : |y −X(t)| ≤ 2R(T )} (3.34)

S1 = {w : |v1 − w1| ≤ Vη} (3.35)

S2 = {w : |wτ | ≤ Vη} (3.36)

S3 = {w : |v1 − w1| > Vη} ∩ {w : |wτ | > Vη}. (3.37)
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We have

|E(X(s), s)| ≤
3∑
j=1

Ij(X(s)), (3.38)

where for any s ∈ [t, t+ ∆1]

Ij(X(s)) =
∫
T1∩Sj

dydw
f(y, w, t)

|X(s)− Y (s)|α+1
, j = 1, 2, 3.

Let us start with I1. Putting (Y (s),W (s)) = (ȳ, w̄), by the invariance of f
along the trajectories, Lemma 1 implies

I1(X(s)) ≤
∫
T ′1∩S′1

dȳdw̄
f(ȳ, w̄, s)
|X(s)− ȳ|α+1

, (3.39)

where T ′1 = {ȳ : |ȳ − X(s)| ≤ 4R(T )} and S′1 = {w̄ : |V1(s) − w̄1| ≤ 2Vη}.
Now it is

I1(X(s)) ≤
∫
T ′1∩S′1∩{|X(s)−ȳ|≤ε}

dȳdw̄
f(ȳ, w̄, s)
|X(s)− ȳ|α+1

+∫
T ′1∩S′1∩{|X(s)−ȳ|>ε}

dȳdw̄
f(ȳ, w̄, s)
|X(s)− ȳ|α+1

.

(3.40)

Notice that∫
S′1

dwf(y, w, s) ≤ CVη
∫
|w⊥|≤a

dw⊥+∫
|w⊥|>a

dw⊥

∫
dw1 f(y, w, s) ≤

Ca2Vη +
1
a2

∫
dw|w|2f(y, w, s) = Ca2Vη +

1
a2
K(y, s)

where w⊥ = (0, w2, w3) and K(y, s) =
∫
dw|w|2f(y, w, s). Minimizing in a

we obtain ∫
S′1

dwf(y, w, s) ≤ CV
η
2K(y, s)

1
2 . (3.41)

Hence, setting

ρ1(y, s) =
∫
S′1

dwf(y, w, s),

by (3.41) and Lemma 4 we get(∫
T ′1

dy ρ1(y, s)2

) 1
2

≤ CV
η
2

(∫
T ′1

dy K(y, s)

) 1
2

≤

CV
η
2

√
W (X1(s), 4R(s), s) ≤ CV

η
2

√
Q.

(3.42)
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Going back to (3.40), this bound implies:

I1(X(s)) ≤ CV2Vηε2−α+(∫
T ′1

dy ρ1(y, s)2

) 1
2
(∫

T ′1∩{|X(s)−y|>ε}
dy

1
|X(s)− y|2+2α

) 1
2

≤

C

(
V2+ηε2−α + V

η
2

√
Q

ε2α−1

)
.

Minimizing in ε we obtain:

I1(X(s)) ≤ C V
4
3
α− 2

3
+α+1

3
η Q

1
3

(2−α). (3.43)

For I2 we obtain obviously the same bound,

I2(X(s)) ≤ C V
4
3
α− 2

3
+α+1

3
η Q

1
3

(2−α). (3.44)

For the third term we cover S3∩T1 by means of the sets Ah,k and Bh,k, with
k = 0, 1, 2, ...,m and h = 1, 2, ...,m′, defined in the following way:

Ah,k =
{

(y, w, s) : hVη < |v1 − w1| ≤ (h+ 1)Vη,
βk+1 < |wτ | ≤ βk, |X(s)− Y (s)| ≤ lh,k

} (3.45)

Bh,k =
{

(y, w, s) : hVη < |v1 − w1| ≤ (h+ 1)Vη,
βk+1 < |wτ | ≤ βk, |X(s)− Y (s)| > lh,k

} (3.46)

where:

βk =
V
2k

lh,k =
2

k
2−αQ

1
3

hV
4
3

. (3.47)

Since we are in S3, it is immediately seen that

m < (1− η) log2 V, m′ < 2V1−η. (3.48)

Consequently we put

I3(X(s)) ≤
m′∑
h=1

m∑
k=0

(
I ′3(h, k) + I ′′3 (h, k)

)
, (3.49)

being

I ′3(h, k) =
∫
T1∩Ah,k

f(y, w, t)
|X(s)− Y (s)|α+1

dydw (3.50)

and
I ′′3 (h, k) =

∫
T1∩Bh,k

f(y, w, t)
|X(s)− Y (s)|α+1

dydw. (3.51)
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By adapting Lemma 1 and Lemma 2 to this context, it is easily seen that
∀ (y, w, s) ∈ Ah,k it holds:

(h− 1)Vη < |V1(s)−W1(s)| ≤ (h+ 2)Vη,

and
βk+1

2
< |Wτ (s)| ≤ 2βk.

Hence setting

A′h,k =
{

(ȳ, w̄, s) : (h− 1)Vη < |V1(s)− w̄1| ≤ (h+ 2)Vη,
βk+1

2
< |w̄τ | ≤ 2βk, |X(s)− ȳ| ≤ lh,k

}
,

(3.52)

we have
I ′3(h, k) ≤

∫
T ′1∩A′h,k

f(ȳ, w̄, s)
|X(s)− ȳ|α+1

dȳdw̄. (3.53)

By the choice of the parameters βk and lh,k made in (3.47) we have:

I ′3(h, k) ≤ C l2−αh,k

∫
A′h,k

dw̄ ≤ Cl2−αh,k βkV
∫
A′h,k

dw̄1 ≤

C l2−αh,k βkV
1+η ≤ C

h2−αV
4
3
α− 2

3
+ηQ

1
3

(2−α).

(3.54)

Hence by (3.48)

m′∑
h=1

m∑
k=0

I ′3(h, k) ≤ C V
4
3
α− 2

3
+ηQ

1
3

(2−α) logV. (3.55)

Now we pass to I ′′3 (h, k), for which we need to make the time average
over the interval [t, t+ ∆1]. Setting

B′h,k = {(y, w) : (y, w, s) ∈ Bh,k for some s ∈ [t, t+ ∆1]} (3.56)

we have,∫ t+∆1

t
I ′′3 (h, k) ds ≤

∫ t+∆1

t
ds

∫
T ′1∩B′h,k

dydw
f(y, w, t)

|X(s)− Y (s)|α+1
≤∫

T ′1∩B′h,k
dydw f(y, w, t)

∫ t+∆1

t
ds

χ(Bh,k)
|X(s)− Y (s)|α+1

.

(3.57)
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By Lemma 3, putting a = 4 lh,k
hVη we have,∫ t+∆1

t
ds

χ(Bh,k)
|X(s)− Y (s)|α+1

=∫ t+∆1

t

χ(|X(s)− Y (s)| > lh,k)
|X(s)− Y (s)|α+1

ds ≤∫
{s:|s−t0|≤a}

χ(|X(s)− Y (s)| > lh,k)
|X(s)− Y (s)|α+1

ds +∫
{s:|s−t0|>a}

χ(|X(s)− Y (s)| > lh,k)
|X(s)− Y (s)|α+1

ds ≤

1
lα+1
h,k

∫
{s:|s−t0|≤a}

ds+
[

4
hVη

]α+1 ∫
{s:|s−t0|>a}

1
|s− t0|α+1

ds ≤

2a
(lh,k)α+1

+ 2
[

4
hVη

]α+1 ∫ +∞

a

1
sα+1

ds =
C

(lh,k)αhVη
.

(3.58)

Moreover,∫
T ′1∩B′h,k

f(y, w, t) dydw ≤ C

β2
k

∫
T ′1∩B′h,k

w2f(y, w, t) dydw,
(3.59)

so that∫ t+∆1

t
I ′′3 (h, k) ds ≤ C

(βk)2 (lh,k)α hVη

∫
T ′1∩B′h,k

w2f(y, w, t) dydw. (3.60)

Taking into account (3.47) and (3.48), it is

C

(βk)2 (lh,k)α hVη
≤ C 22k

2
kα

2−αh1−α
Q−

α
3 V

4
3
α−2−η ≤

C
1

h1−α Q
−α

3 V
4
3
α−2−η+(1−η)(2− α

2−α ) ≤

C Q−
α
3 V

4
3
α−2−η+(1−η)(2− α

2−α )

(3.61)

since α < 1. Now it is:∫
T ′1∩B′h,k

w2f(y, w, t) dydw ≤
∫
T ′1∩Ch,k

w2f(y, w, t) dydw (3.62)

where

Ch,k =
{
w : (h− 1)Vη < |v1 − w1| ≤ (h+ 2)Vη,
βk+1 < |wτ | ≤ βk

}
,

(3.63)
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so that,

m′∑
h=1

m∑
k=0

∫
T ′1∩B′h,k

w2f(y, w, t) dydw ≤

C

∫
T ′1

K(y, t) dy ≤ CW (X1(T ), 5R(T ), T ) ≤ CQ
(3.64)

by Lemma 4.
Hence from (3.60), (3.61) and (3.64) it follows:

m′∑
h=1

m∑
k=0

∫ t+∆1

t
I ′′3 (h, k) ds ≤ C Q1−α

3 V
4
3
α−2−η+(1−η)(2− α

2−α ). (3.65)

By multiplying and dividing by ∆1 defined in (3.66) we obtain,

m′∑
h=1

m∑
k=0

∫ t+∆1

t
I ′′3 (h, k) ds ≤

CV
5α−1

3 Q
2−α

3
Q1−α

3 V
4
3
α−2−η+(1−η)(2− α

2−α )

Vη′
∆1 ≤

CV
5α−1

3 Q
2−α

3 Vα−1−η+(1−η)(2− α
2−α)−η′∆1,

(3.66)

where we have used the bound Q1−α
3 ≤ CV1−α

3 . By the choice of the pa-
rameters made in (3.16), it is

α− 1− η + (1− η)
(

2− α

2− α

)
− η′ < −η̄ < 0.

Hence
m′∑
h=1

m∑
k=0

∫ t+∆1

t
I ′′3 (h, k) ds ≤ V

5α−1
3 Q

2−α
3

V η̄
(3.67)

Finally the bounds (3.43), (3.44), (3.49), (3.55) and (3.67) imply:

3∑
j=1

∫ t+∆1

t
Ij(X(s)) ds ≤ C∆1

[
V

4
3
α− 2

3
+ηQ

2−α
3 logV +

V
5α−1

3 Q
2−α

3

V η̄

]
.

(3.68)

Hence by (3.38) and (3.68), we have∫ t+∆1

t
|E(X(s), s)| ds ≤ C∆1

[
V

4
3
α− 2

3
+ηQ

2−α
3 logV +

V
5α−1

3 Q
2−α

3

V η̄

]
,

so that we have proved (3.21) for ` = 1.
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Proof of step ii).
In the previous step we have seen that, starting from estimate (3.9), we

arrive at (3.21) on ∆1. Let us now assume that (3.21) holds at level ` − 1
over an interval of size ∆`−1, ` > 1. Then it holds over an interval of size
∆` (see Remark 3 in the Appendix). In particular we get, analogously to
(3.66),

m′∑
h=1

m∑
k=0

∫ t+∆`

t
I ′′3 (h, k) ds ≤

C
V

5α−1
3 Q

1
3

(2−α)

Vη′Vδ(`−1)
Q1−α

3 V
4
3
α−2−η+(1−η)(2− α

2−α )∆`

(3.69)

and consequently

〈E〉∆`
≤ C

[
V

4
3
α− 2

3
+ηQ

1
3

(2−α) logV +
V

5α−1
3 Q

1
3

(2−α)

V η̄ Vδ(`−1)

]
(3.70)

which proves the second step. Hence (3.21) is proved.

4 Magnetic confinement

We consider the same system, in which the external confining force is the
Lorentz force, that is we consider the equation



∂tf(x, v, t) + v · ∇xf(x, v, t) + (E(x, t) + v ∧B(x)) · ∇vf(x, v, t) = 0

E(x, t) = −
∫

R3

∇Φ(|x− y|) ρ(y, t) dy

ρ(x, t) =
∫

R3

f(x, v, t) dv

f(x, v, 0) = f0(x, v)
(4.1)

and the related characteristics equation
Ẋ(t) = V (t)
V̇ (t) = E(X(t), t) + V (t) ∧B(X(t))
(X(0), V (0)) = (x, v)
f(X(t), V (t), t) = f0(x, v),

(4.2)

We assume that the external magnetic fieldB is such thatB(x) = (h(r2), 0, 0)
where, we recall, r2 = x2

2 +x2
3 and h(r2) is a non-negative, smooth function,

diverging together with its primitive as r → A. The following result holds:
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Theorem 2. Let us fix an arbitrary positive time T. Assume in (1.4) that
α < 1 and let f0(x, v) ∈ L∞ be supported on D0 and such that

0 ≤ f0(x, v) ≤ C1e
−λv2 (4.3)

for some positive constants C1 and λ. Then there exists a solution to system
(4.2) in [0, T ]. This solution is supported on D and there exist two positive
constants C2 and λ̄ < λ such that

0 ≤ f(x, v, t) ≤ C2e
−λ̄v2 .

Moreover it is unique in the class of the characteristics distributed with
f(x, v, t) ≤ Ce−C′v2 for some couple of constants C and C ′.

We do not give the proof of this theorem, as it can be deduced from the
proof of Theorem 1, but we stress that the magnetic confinement is easier
to deal with, since the magnetic force v ∧ B does not change the modulus
of the velocity. Hence also in this case we arrive at estimates (2.40), (2.41)
and (2.43) for the solutions and the auto-induced field E. These estimates
allow to prove the confinement of the plasma, whose proof, analogous to the
one in [14], we give for completeness.

We write by components equations (4.2), putting R2(t) = X2
2 (t)+X2

3 (t),
obtaining

(V2X2 + V3X3)h(R2) = V̇2X3 − V̇3X2 +X2E3 −X3E2.

Let H be a primitive of h. By integrating in time we get

1
2

∫ t

0

d

ds
H(R2(s))ds =

1
2
[
H(R2(t))−H(R2(0))

]
=∫ t

0
ds
[
V̇2(s)X3(s)− V̇3(s)X2(s) +X2(s)E3(s)−X3(s)E2(s)

]
.

(4.4)

Now we integrate by parts the right hand side of (4.4).∫ t

0
ds
[
V̇2(s)X3(s)− V̇3(s)X2(s) +X2(s)E3(s)−X3(s)E2(s)

]
=

[V2(s)X3(s)− V3(s)X2(s)]t0 +
∫ t

0
[X2(s)E3(X(s), s)−X3(s)E2(X(s), s)] ds.

(4.5)

By (2.40), (2.41) and (2.43), formula (4.5) shows that the right hand side
in (4.4) is bounded by a function of |v| and hence, for a fixed characteristic,
bounded. This implies that also the left hand side has to be bounded,
which gives us the confinement, since the assumptions on f0 imply that
H(R2(0)) ≤ C.
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5 Appendix

Proof of Lemma 4.
It follows from the definition of the function ϕµ,R that, for any µ ∈ R

and any couple R,R′ such that 0 < R < R′, it is:

ϕµ,R
′
(x) = ϕ

(
|x1 − µ|
R′

)
≤

∑
i∈Z:|i|≤R′

R

ϕ

(
|x1 − (µ+ iR)|

R

)
.

Hence, since all terms in the function W are positive, we have:

W (µ,R′, t) ≤
∑

i∈Z:|i|≤R′
R

W (µ+ iR,R, t) ≤ C
(
R′

R

)
Q(R, t).

Proof of Proposition 2.

For any s and t such that 0 ≤ s < t ≤ T we define

R(t, s) = R(t) +
∫ t

s
V(τ) dτ. (5.1)

Then, it is:

R(t, t) = R(t) and R(t, 0) = R(t) +
∫ t

0
V(τ) ≤ 2R(t). (5.2)

Let (X(s), V (s)) and (Y (s),W (s)) be two characteristics starting at time s =
0 from (x, v) and (y, w) respectively. Since the flow preserves the measure
in the phase space and f is invariant along the characteristics we have:

W (µ,R(t, s), s) =
1
2

∫
dx

∫
dv ϕµ,R(t,s)(X(s)) |V (s)|2fN0 (x, v)+

1
2

∫
dxdv

[
ϕµ,R(t,s)(X(s))fN0 (x, v)

∫
dydwfN0 (y, w)Φ(|X(s)− Y (s)|)

]
+
∫
dxdv ϕµ,R(t,s)fN0 (x, v)U(X(s)).

(5.3)

Deriving the function W with respect to the time s we get:

∂sW (µ,R(t, s), s) = A1(t, s) +A2(t, s) (5.4)

with

A1(t, s) =
∫
dxdv ϕµ,R(t,s)(X(s))fN0 (x, v)

[
V (s) · E(X(s), s)+

1
2

∫
dydwfN0 (y, w)∇Φ(|X(s)− Y (s)|) · (V (s)−W (s))

] (5.5)
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and

A2(t, s) =
1
2

∫
dxdv fN0 (x, v) ∂s

[
ϕµ,R(t,s)(X(s))

]
[
V 2(s) +

∫
dydw fN0 (y, w) Φ(|X(s)− Y (s)|) + U(X(s))

]
.

(5.6)

We show that A2(t, s) is negative. In fact, the sum in square brackets is
positive, on the other hand, by the definition of the function ϕ it is:

∂s

[
ϕµ,R(t,s)(X(s))

]
=

ϕ′
(
|X1(s)− µ|
R(t, s)

)[
X1(s)− µ
|X1(s)− µ|

· V1(s)
R(t, s)

− ∂sR(t, s)
R2(t, s)

|X1(s)− µ|
]
.

Now, ϕ′(r) 6= 0 only if 1 ≤ r ≤ 2 and by definition ∂sR(t, s) = −V(s), so
that:

−∂sR(t, s)
R2(t, s)

|X1(s)− µ| ≥ V(s)
R(t, s)

.

Hence

X1(s)− µ
|X1(s)− µ|

· V1(s)
R(t, s)

− ∂sR(t, s)
R2(t, s)

|X1(s)− µ| ≥ −|V1(s)|+ V(s)
R(t, s)

≥ 0.

Thus, being ϕ′ ≤ 0, we have proved that

A2(t, s) ≤ 0. (5.7)

In the term A1 noticing that ∇Φ(|x− y|) is an odd function, by the change
of variables (x, v)→ (y, w) we obtain:

A1(t, s) = −1
2

∫
dxdv

∫
dydw fN0 (x, v)fN0 (y, w)

[
ϕµ,R(t,s)(X(s))

∇Φ(|X(s)− Y (s)|) · (V (s) +W (s))
]

= −1
2

∫
dxdv

∫
dydw fN0 (x, v)fN0 (y, w)×{

∇Φ(|X(s)− Y (s)|) · V (s)
[
ϕµ,R(t,s)(X(s))− ϕµ,R(t,s)(Y (s))

]}
.

By the definition of ϕµ,R(t,s) it follows

|ϕµ,R(t,s)(X(s))− ϕµ,R(t,s)(Y (s))| ≤ 2
|X(s)− Y (s)|

R(t, s)
,

and then:

|A1(t, s)| ≤ V(s)
R(t, s)

∫
dxdv

∫
dydw fN0 (x, v)fN0 (y, w)

|∇Φ(|X(s)− Y (s)|)| |X(s)− Y (s)|
[
χB(s)(x, v) + χB̄(s)(y, w)

]
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where, by the definition of ϕ,

B(s) = {x : |X1(s)− µ| ≤ 2R(t, s)} and B̄(s) = {y : |Y1(s)− µ| ≤ 2R(t, s)}.

By symmetry we have:

|A1(t, s)| ≤ 2
V(s)
R(t, s)

∫
dxdv

∫
dydw fN0 (x, v)fN0 (y, w)

|∇Φ(|X(s)− Y (s)|)| |X(s)− Y (s)| χB(s)(x, v).

Since
r |∇Φ(|r|)| ≤ C Φ(|r|),

we have,

|A1(t, s)| ≤ C
V(s)
R(t, s)

∫
dxdv

∫
dydw fN0 (x, v)fN0 (y, w) Φ(|X(s)− Y (s)|)×

χB(s)(x, v)

≤ C
V(s)
R(t, s)

W (µ, 3R(t, s), s),

as for

|X1(s)− µ| ≤ 2R(t, s) it results |x1 − µ| ≤ 3R(t, s).

Hence by Lemma 4,

|A1(t, s)| ≤ C V(s)
R(t, s)

Q(R(t, s), s). (5.8)

Going back to (5.4), we see that (5.7) and (5.8) imply:

∂sW (µ,R(t, s), s) ≤ C V(s)
R(t, s)

Q(R(t, s), s). (5.9)

Notice that∫ t

0

V(s)
R(t, s)

ds = −
∫ t

0

∂sR(t, s)
R(t, s)

ds = log
R(t, 0)
R(t, t)

≤ log 2,

so that, by integrating in s both members and taking the supremum over µ
in (5.9) we get, by the Gronwall lemma,

Q(R(t, s), s) ≤ CQ(R(t, 0), 0).

The thesis follows by putting s = t, since by (5.2) Q(R(t, t), t) = Q(R(t), t),
while the monotonicity of the function Q and Lemma 4 imply Q(R(t, 0), 0) ≤
Q(2R(t), 0) ≤ CQ(R(t), 0).
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Remark 3. We premise the following remark to the proofs of Lemmas 1,
2, and 3. We have,

〈E〉∆`
≤ 〈E〉∆`−1

, ∀ ` ≤ ¯̀. (5.10)

In fact, ∆` = G∆`−1, hence recalling (3.20),

[
t, t+ ∆`

]
=
G⋃
i=1

[
t+ (i− 1)∆`−1, t+ i∆`−1

]
(5.11)

and so,

1
∆`

∫ t+∆`

t
|E(X(s), s)| ds ≤ max

i

1
∆`−1

∫ t+i∆`−1

t+(i−1)∆`−1

|E(X(s), s)| ds, (5.12)

whence we get (5.10), since the estimate (3.21) is built with the maximal
time T .

Proof of Lemma 1.

We give first the proof for ` = 1, that is ∆` = ∆1.
Since the external force gives no contribution to the first component of the
velocity, by (3.9) and (3.66) we get, for any s ∈ [t, t+ ∆1],

|V1(s)−W1(s)| ≤ |V1(t)−W1(t)|+∫ t+∆1

t

[
|E(X(s), s)|+ |E(Y (s), s)|

]
ds ≤

Vη + 2C3V
5α−1

3 Q
1
3

(2−α)∆1 ≤ 2Vη.
Analogously we prove the second statement:

|V1(s)−W1(s)| ≥ |V1(t)−W1(t)|−∫ t+∆1

t

[
|E(X(s), s)|+ |E(Y (s), s)|

]
ds ≥

Vη − 2C3V
5α−1

3 Q
1
3

(2−α)∆1 ≥
Vη

2
.

We show now that Lemma 1 holds true also over a time interval ∆`,
` > 1, supposing for E the estimate (3.21) at level ` − 1. Proceeding as
before we get by Remark 1, for any s ∈ [t, t+ ∆`],

|V1(s)−W1(s)| ≤ |V1(t)−W1(t)|+∫ t+∆`

t

[
|E(X(s), s)|+ |E(Y (s), s)|

]
ds ≤

Vη + C

[
V

4
3
α− 2

3
+ηQ

1
3

(2−α) logV +
V

5α−1
3 Q

1
3

(2−α)

V η̄ Vδ(`−2)

]
Vδ(`−1)Vη′

4C3V
5α−1

3 Q
1
3

(2−α)
≤

Vη + C logV V
4
3
α− 2

3
+η+ 4α−2

3
+η′− 5α−1

3 + CVδ−η̄+η′ ≤

Vη + C Vη′ ≤ 2Vη,
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using (3.24), recalling that η′ < η, δ ∈ (0, η̄], and V is sufficiently large.
We proceed analogously for the lower bound.

Proof of Lemma 2.

The equation of motion in cylindrical coordinates, φ-component, is

1
%

d

dt

(
%2φ̇
)

= Eφ, (5.13)

where Eφ is the transversal component of the self-generated field, being zero
by definition the same component of the external field (% and φ represent
polar coordinates in the plane x1 = const).
As said before, we assume to be in the region A/2 ≤ % < A (A is the
radius of the cylinder D), in order to avoid an unessential singularity of the
polar coordinates, while for % < A/2 the proof becomes trivial switching to
cartesian coordinates, since the external field is zero.
Denoting by Vφ = %φ̇, by (5.13) we have, for any s ∈ [t, t+ ∆1],

|Vφ(s)| ≤ |Vφ(t)|+ C

∫ s

t
dτ |E(X(τ), τ)|. (5.14)

The proof proceeds in the same way as for Lemma 1, since V∗ ∈ [Vη,V].

Proof of Lemma 3.

We treat first the case ` = 1, that is ∆` = ∆1.
Let t0 ∈ [t, t + ∆1] be the time at which |X1(s) − Y1(s)| has the minimum
value. We put Γ(s) = X1(s)− Y1(s). Moreover we define the function

Γ̄(s) = Γ(t0) + Γ̇(t0)(s− t0).

Since the external force does not act on the first component of the velocity
it is:

Γ̈(s)− ¨̄Γ(s) = E1(X(s), s)− E1(Y (s), s)

Γ(t0) = Γ̄(t0), Γ̇(t0) = ˙̄Γ(t0)

from which it follows

Γ(s) = Γ̄(s) +
∫ s

t0

dτ

∫ τ

t0

dξ
[
E1(X(ξ), ξ)− E1(Y (ξ), ξ)

]
.

By (3.9) and (3.66),∫ s

t0

dτ

∫ τ

t0

dξ |E1(X(ξ), ξ)− E1(Y (ξ), ξ)| ≤ 2C3V
5α−1

3 Q
2−α

3
|s− t0|2

2
≤

C3V
5α−1

3 Q
2−α

3 ∆1|s− t0| ≤ Vη
′ |s− t0|

4
.

(5.15)
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Hence,

|Γ(s)| ≥ |Γ̄(s)| − Vη′ |s− t0|
4

. (5.16)

Now we have:

|Γ̄(s)|2 = |Γ(t0)|2 + 2Γ(t0)Γ̇(t0)(s− t0) + |Γ̇(t0)|2|s− t0|2.

We observe that Γ(t0)Γ̇(t0)(s − t0) ≥ 0. Indeed, if t0 ∈ (t, t + ∆1) then
Γ̇(t0) = 0 while if t0 = t or t0 = t + ∆1 the product Γ(t0)Γ̇(t0)(s− t0) ≥ 0.
Hence

|Γ̄(s)|2 ≥ |Γ̇(t0)|2|s− t0|2.

By Lemma 1 (adapted to this context with a factor h ≥ 1), since t0 ∈
[t, t+ ∆1] it is

|Γ̇(t0)| ≥ hV
η

2
hence

|Γ̄(s)| ≥ hV
η

2
|s− t0|

and finally by (5.16),

|Γ(s)| ≥ hV
η

4
|s− t0|.

From this the thesis follows, since obviously |X(s)− Y (s)| ≥ |Γ(s)|.

We note that the same proof works also considering the interval [t, t+∆`],
` > 1, and for E the estimate (3.21) at level ` − 1. In fact we have for the
product (see at the end of the proof of Lemma 1),

〈E〉∆`−1
∆` ≤ CVη

′

which, used in (5.15), allows to achieve the proof.
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[6] Buttà, P., Caprino, S., Cavallaro, G., Marchioro, C.: On the dynamics of
infinitely many particles with magnetic confinement. Boll. Unione Mat.
Ital. Ser. VIII Sez. B 9, 371–395 (2006)
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