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Abstract: In the last few years, with the exponential diffusion of smartphones, services for turn-by-turn
navigation have seen a surge in popularity. Current solutions available in the market allow the
user to select via an interface the desired transportation mode, for which an optimal route is then
computed. Automatically recognizing the transportation system that the user is travelling by allows
to dynamically control, and consequently update, the route proposed to the user. Such a dynamic
approach is an enabling technology for multi-modal transportation planners, in which the optimal
path and its associated transportation solutions are updated in real-time based on data coming from
(i) distributed sensors (e.g., smart traffic lights, road congestion sensors, etc.); (ii) service providers
(e.g., car-sharing availability, bus waiting time, etc.); and (iii) the user’s own device, in compliance
with the development of smart cities envisaged by the 5G architecture. In this paper, we present
a series of Machine Learning approaches for real-time Transportation Mode Recognition and we
report their performance difference in our field tests. Several Machine Learning-based classifiers,
including Deep Neural Networks, built on both statistical feature extraction and raw data analysis are
presented and compared in this paper; the result analysis also highlights which features are proven to
be the most informative ones for the classification.

Keywords: transportation model recognition; machine learning; artificial neural networks

1. Introduction

This paper presents a series of Machine Learning-based classifiers for real-time solution of the
Transportation Mode Recognition (TMR) problem, i.e., the correct classification of which transportation
system the user is travelling with. Efficient TMR classifiers require to find an optimal trade-off between
performances, in terms of classification accuracy, and the resource demands, in terms of both data
collection and computational effort, from users. With the diffusion of smartphones, it is now reasonable
to assume to utilize a small portion of the computation resources of the users’ own devices—or even
the computational capabilities provided by distributed nodes according to the paradigm of edge
computing [1]—for the provision of a service that may improve the quality of life. Current solutions
for turn-by-turn navigation already rely on continuous monitoring of the device sensors; therefore,
it is possible to envisage an additional, small, background service for TMR in order to significantly
improve the quality of the proposed travelling path. The Machine Learning solutions presented in
this paper can be divided into two types: (i) statistical feature extraction-based approaches; and (ii)
raw data analysis-based ones. The former type of solutions requires an additional computational step,
as the process of statistical signal analysis and feature extraction can start only after the raw data is
gathered and thus delays the transportation mode recognition, while the latter can start directly after
the data is gathered and is hence more suitable for a real-time solution. Furthermore, more data should
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be gathered for statistical feature extraction-based analysis, as preserving all the information contained
in the raw data through the feature extraction process may not be trivial. For this reason, the statistical
feature extraction-based approaches will be trained and tested on data gathered during a time window
of 2 s, while the raw data analysis solutions require approximately one second of samples, without any
significant computational overhead.

As it will be discussed in Section 2, the main characteristics of this paper with respect to the state
of the art are the following:

• The design of several ad-hoc Machine Learning classifiers to solve the TMR problem in two different
data pipeline approaches, involving either statistical feature extractions or raw data analysis.

• The design of a Convolutional Neural Network to analyse raw data, characterised by an ad hoc
non-sequential architecture.

• The reduction of the time window over which the analysis of the classifiers is conducted to 1–2 s,
opening the possibility of having a TMR functionality running in the background of navigation
applications due to the limited battery consumption associated with the data collection.

• The inclusion in the TMR formulation of seven different transportation modes of heterogeneous
natures, namely, car, motorbike, walk, tram, still, subway and bus.

An immediate benefit for the market from a reliable solution to the TMR problem could be a more
accurate estimation of aggregated users flows for the public transportation companies, one of the
starting points for the efficient planning of public transport [2]. By the analysis of such transportation
flows, the companies responsible for public transportation systems could be able to better schedule and
plan their vehicle routes, even dynamically and in real time, while also providing a data-supported
analysis for their transportation system expansion to investors [3]. Currently, this analysis is often
conducted on statistical data obtained from socio-economic factors [4], but the availability of a real-time
information flows enables the optimization of the aggregated transportation flows, by means of
a dynamic response to specific demands (e.g., increasing the number of busses during certain periods
of time over the day/year, or re-planning their routes). This approach would lead to a tangible increase
in public transport users’ experience and, as a by-product, to a significant increase in the cities’ welfare
and to the attraction of more investments. Controlling these flows could also help traffic management
departments in reducing road congestions, even during emergencies, by better assessing the traffic
status. For instance, by dynamically adjusting the traffic light intervals (for example in response to
an emergency situation or to a particular peak of traffic flow) could greatly reduce the average travel
time and the number of red lights experienced by the average user/emergency vehicle, in line with
current research trends for smart traffic flow management [5]. Additionally, the analysis of the real-time
aggregated traffic flows for the various transportation modes could help the real-time estimation and
prediction of pollution levels [6].

Telecommunication system operators may also be interested in TMR solutions, as the anonymized
customer data analysis coming from the statistical studies may be integrated into solutions compliant
with the paradigm of edge- and fog-computing [7] and offered as a service to interested traffic operators
and third parties. Another advantage of integrating a TMR solution in an edge/fog environment is
that each fog node (e.g., a smart traffic light) may conduct its analysis autonomously, using a classifier
trained with data gathered nearby its location. The benefit of such a scheme would be twofold: on the
one hand, the classifiers trained on local data would have to solve an instance of the TMR problem that
requires less generalisation (e.g., with respect to road condition/material), on the other hand, the overall
accuracy of such classifiers may be higher, as they have to solve specialised instances of the problem.

The remainder of the paper is organised as follows: Section 2 discusses the state-of-the-art for the
TMR problem, and the innovations introduced by this work. Section 3 presents our dataset structure
and the two different proposed workflows for the two types of classifiers presented. Section 4 details
the proposed classifiers. Section 5 reports the field test results, while Section 6 draws the conclusions
and highlights possible future works.
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2. State-of-the-Art and Proposed Innovations

Implementing a real-time identification of TMR is a challenging problem since the recognition has
to be completed quickly, analysing only the data gathered in a small amount of time. The interest in
TMR has risen recently as, with the development of 5G networks, applications that mine information
from distributed and connected devices “at the edge of the network” have concrete economical returns.
In this regard, the University of Sussex and Huawei Ltd. recently presented the SHL dataset [8] and
its related research challenge [9] to encourage new research in the field. As discussed in Section 3,
this work utilises a dataset gathered with a different philosophy than SHL. Historically, the first
TMR solutions utilised Global Positioning System (GPS), as in [10,11], to infer features such as travel
velocity, acceleration and their variance. For the very nature of the problem, the most common
solutions involved Machine Learning methods, such as Decision Trees and Support Vector Machines,
that commonly require the pre-processing of the data in order to extract the relevant and informative
features. Solutions based only on GPS data are still being developed, as presented in [12,13]; but,
with the increasing diffusion of smartphones, the second generation of TMR solutions started exploiting
the sensors built into the various personal devices commonly utilised by the travellers. In this regard,
the work in [14] provided an interesting approach to TMR, completely reliant on the accelerometer
data gathered by the user’s smartphone, based on the extraction of the acceleration-related features
from the raw data; in turn, [15] and [16] combined data coming from the GPS and the accelerometer of
the smartphone to develop a classifier based on Decision Tree, a Hidden Markov Model and Support
Vector Machines. As was presented in [17], the addition of accelerometer-based data significantly
improved the classification performances, proving that the TMR process benefits from the analysis of
data coming from a simpler, but more available and precise, data source. Nevertheless, the diffusion of
Deep Neural Networks solutions, which exploit their capability of automatically identifying features
from the raw data, have been proposed, as in [13], in which a Convolutional Neural Network that
analyses GPS data is presented. A similar approach is taken in [18], where a Convolutional Neural
Network was used for the classification on pre-processed accelerometer data. Interesting results
regarding the benefit that higher sampling frequencies bring to TMR classifiers are presented in [19],
proving that a significant portion of information is contained in the higher frequencies of the sensor
signals. More recent works focused on either the feature extraction process, i.e., data pre-processing for
more informative features identification, as in [20], or in post-processing with multi-stage classifiers,
as in [21]. Works as [22] enhanced the learning capabilities of the classifiers commonly implemented
in the literature by presenting a solution based on “extreme learning machines”, a promising Neural
Network architecture that shows great generalization capabilities and fast convergence times. Finally,
in a recent publication [23], the authors proposed a solution to classify five different transportation
modes, proposing also methods for data reduction, such as Principal Component Analysis and
Recursive Feature Elimination. Interesting concerns regarding the battery usage of TMR solutions were
studied in [24], where the authors chose to utilise only local data sources available in the smartphone,
disregarding the GPS data, considered too power-demanding for being utilised by real users. The same
approach led to the design of the Deep Recurrent Neural Network presented in [25], which exploits
data coming from both the accelerometers and gyroscopes of a smartphone.

Our work focuses on real-time solutions and hence the time window considered is of 2 s or lower,
where most of the work presented above require several seconds or even minutes of data gathering.
This assumption makes the proposed solution a better fit for on-device or fog computing-based
solutions, due to its lower computational complexity and data transfer requirements. An interesting
study dealing with real-time, background TMR is [26], where the authors developed a classifier based
on statistical analysis (ANOVA and t-test) of the collected acceleration data against the reference
distribution they identified for the transportation modes considered. Our work does not rely on the
identification of such a distribution as we decided to exploit the generalisation properties of Machine
Learning classifiers.
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Finally, the authors of [27] report a comparison between several classifiers, focusing also on the
process of feature selection starting from the data gathered in a window of 1 s, as in some of our
classification solutions.

In Table 1 we report in a graphical way a summary of the state-of-the-art analysis of this section,
to better highlight the various characteristics of the considered works from the literature.

Table 1. State-of-the-art summary.
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[11] 6
[12] 6
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[14] 6
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[17] 8
[18] 7
[19] 6
[20] 6
[21] 6
[22] 6
[23] 5
[24] 6
[25] 6
[26] 4
[27] 5

This work 7

To encourage the development of new solutions, we decided to make available the data gathered
by the authors, which represents a portion of the data utilised to train the algorithms of this work, in the
dataset TMRDataSet2020 [28]. The dataset contains data for a total of 7 transportation modes (walk, car,
motorbike, tram, still, bus and subway), which represent the classes that our TMR solution classifies.
The rest of the paper presents a series of machine learning solutions to deal with real-time TMR,
trained on our data, spacing from statistical feature extraction-based approaches inspired from other
existing solutions from the literature to Deep Neural Networks that run the classification directly on
the raw data. The statistical feature-based solution will be treated as a benchmark for the performance
of the Deep Neural Networks, and the results of the two approaches will be compared and discussed
in the following. The classifiers that were implemented for this study consist of the following:

• Random Forest [29], as it is an ensemble learning solution based on Decision Trees, which were
found in several works in the literature and represent one of the most typical baseline benchmarking
solution for Machine Learning classifiers [30].

• Support Vector Machines [31], as it is one of the most widely used Machine Learning solutions for
classification and was utilized in several recent works for TMR.

• Feed-Forward Neural Networks [32], as they represent the simplest neural network architecture
and provide a valid baseline for more specialized solutions.
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• Recurrent Neural Networks [33,34], as they were designed for time series analysis, such as the
sensor readings involved in the TMR problem.

• Convolutional Neural Networks [35], as their characteristics proved to be effective in dealing with
complex tasks, such as image and video analysis.

3. Data and TMR Workflow Description

The dataset consists of entries structured as reported in Table 2, which reports the order of the
sensor readings, sampled at a frequency of 50 Hz over at least 8 s and gathered by 18 users during
their normal travel routine from home to our Department. Note that, for the nature and quantity of the
gathered data, the classifiers developed in our tests are not expected to be able to directly generalise in
any scenario as the TMR problem heavily varies depending on vehicle and road conditions. In fact,
the common factor of the data sources (geographic proximity) reflects on the generalization ability of the
classifiers, which will become more specialized on the characteristics of the local area. The developed
solutions shall then be seen as designed for an edge-computing framework, in which a computing hub
gathers and analyses the data sources in its proximity, or a personalized solution that adapts to its
specific user. This approach is complementary to the one of the SHL dataset [8], as it collects hundreds
of hours of data from its three users, so that the classifiers trained on it may generalise better over
different road conditions. The 8 s of data recording were randomly distributed over the user’s travel,
to improve the generalisation of the TMR solutions, in such a way that approximately 10 recordings
were collected per hour. A total of 140 h of travel were analysed, roughly evenly distributed among
the various considered transportation modes.

Table 2. Complete data structure for the dataset utilised in this work.

Signal Strength Speed

Latitude Longitude

Acceleration-X Acceleration-Y Acceleration-Z

Gyroscope-X Gyroscope-Y Gyroscope-Z

Magnetometer-X Magnetometer-Y Magnetometer-Z

A total of seven transportation modes have been studied in this work: car, motorbike, walk, tram,
still, subway and bus.

For the sake of generalisation, the smartphone was kept in the pocket, in hand or on the dashboard
of the vehicle. For all measures, the standard Google Android coordinate system from the official
documentation [36] was considered.

Being heavily dependent on the carrier availability, the “Signal Strength” field of Table 2 is not
considered in the following analysis; however, it may contain some high-level information to help the
classification (e.g., subway may be differentiated from train based on the average signal strength) that,
in future works, may require further testing and investigations.

The inclusion of GPS data, i.e., of the Latitude and Longitude fields, may also provide an interesting
contribution to post-processing solutions, as, depending on the physical coordinates of the analysed
user, the confidence level of the various classification choices may be updated (for example, in a rural
area the probability of being in a subway could be lowered to make the classification choice “car”
easier). In the analysis below, we decided to neglect the information related to GPS positioning, as our
solutions focus more on direct classification approaches without post-processing, relying mostly on
data gathered by the accelerometer and the gyroscope and keeping only the speed value, measured by
the Android system, as GPS-based feature. Note that the inclusion of location information may also
significantly impact the power required for the data gathering process.

The basic information used by the algorithms described in the following sections are resultant
acceleration, velocity and angular speed. Absolute GPS measures are not used for energy-saving
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reasons (Android’s speed measures have an update rate of 1 s, meaning that the GPS usage is reduced
to the minimum), but also to avoid having the classifiers discern the transportation modes depending
on the location of the measurements (having a limited number of students that volunteer for the data
collection process, which gathered the data mostly on their home-university trips, the classification
basis could have been heavily influenced by the location of their houses).

Signal and magnetic strength do not seem to be informative in our use case, as their inclusion did
not lead to any significant performance improvement; on the contrary, in some cases, it reduced the
accuracy of our solutions.

The starting point of most of the works available in the literature is to consider the resultant
acceleration ar, obtained from its measured components ax, ay, az on the Cartesian axes as

ar =
√

a2
X + a2

y + a2
z (1)

Figure 1 shows some examples of the resultant acceleration ar for the various considered
transportation systems. By figure inspection, it is already clear that the various transportation modes
differ in terms of amplitude and dominant frequency of their time-varying acceleration. However,
inferring actual rules to discern among them is not a trivial task.
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Figure 1. Resultant acceleration over 400 sampling times (8 s). Figure 1. Resultant acceleration over 400 sampling times (8 s).

Regarding the velocity measures of the device, we noted that their evolutions are much smoother
with respect to the acceleration profiles, as shown by the examples in Figure 2, which reports
an example of the velocity profile for every transportation mode considered. This smoothness is due to
the fact that the velocity measures returned by the Android API, derived from the GPS system data,
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are already averaged over 1 s. Note that since GPS is not accessible for the subway transportation
mode, the corresponding velocity data are not available.
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Another interesting feature is how the phone orientation changes over time, i.e., its angular
velocities. Figure 3 reports the angular velocity around the x-axis for the various transportation modes
for a representative data sample and highlights that the motorbike has the largest variance, probably
because even during small turns the driver and its motorbike have to partially tilt, while a considerable
variance is also present in the walk and subway modes.
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Figure 3. Module of the angular speed vector for the various transportation modes, during one
sampling time.

Similar to what was done for the acceleration, we will consider for the statistical feature analysis
the norm of the vector of the angular velocities ωx,ωy,ωz:

ω =
√
ω2

x +ω
2
y +ω

2
z (2)

In the following sections, we present the two workflows proposed for the design of the TMR
solutions presented in this paper. In the first workflow, the classifier relies on statistical features that
are extracted from the described raw data by means of a pre-processing stage, whereas in the second
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workflow the classifiers operate directly on the raw data. Figure 4 presents the schemes of the two
TMR data pipelines.
Sensors 2020, 20, 0 8 of 16

Figure 4. Functional flows for Transportation Mode Recognition (TMR).

3.1. TMR Based on Statistical Feature Extraction

The first proposed solution relies on a two-step approach: firstly, statistical features are extracted
from the raw data collected by the device; secondly, a classification is performed on the basis of
such features. This approach slows down the classification, but, if correctly done, can simplify
the problem—in practice, the feature extraction step is a change of the coordinates on which the
classification has to be solved to more convenient ones.

The extracted statistical features try to summarize the information contained in the various signals
produced by the sensors. In particular, for all quantities we included their mean values and their
minimum and maximum value over the sampling time, combined with their respective 95th and
5th percentile and standard deviation (std in the table). For acceleration and angular speed, we
also considered kurtosis and skewness values, as well as the average and maximum values for the
acceleration increase and decrease observed in the considered time window.

We considered that a natural set of additional statistical features to be explored lies in the Fourier
domain, as was done in [6], as the vehicle motor vibrations translate into acceleration changes measured
by the smartphone. To this aim, we conducted our analysis on the acceleration frequencies ranging
from 1 Hz to 15 Hz.

All the considered statistical features are summarized in Table 3.

Table 3. The statistical features extracted in the pre-processing.

GPS/Speed Mean speed, Max speed, Min speed, Speed std, Speed
5th Percentile, Speed 95th Percentile

Acceleration

Mean acc, Acc std, Max acc, Min acc, Acc 5th
Percentile, Acc 95th Percentile, Acc kurtosis, Acc

skewness, Acc components at {1,2, . . . ,15} Hz, Acc
increase avg, Acc decrease avg, Acc increase max, Acc

decrease max

Gyroscope Mean ω, ω std, ω kurtosis, ω skewness

The 37 values of Table 3 are computed over 50 samples from the sensors, i.e., given the 50 Hz
sampling time, over 1s. The various algorithms that rely on the extracted features, detailed in the
following section of the paper, will be fed with the features extracted over two seconds—i.e., the
statistical features are extracted from the concatenation of two vectors of 37 values each. This choice
was driven by the trade-off between optimizing the classification performance (in terms of accuracy)
and maintaining a low computational time.

3.2. TMR Based on Raw Data

Other classification solutions, such as Deep Neural Networks, are able to infer the correlation
directly among the raw data, without the need of pre-processing it to extract additional features.
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3.1. TMR Based on Statistical Feature Extraction

The first proposed solution relies on a two-step approach: firstly, statistical features are extracted
from the raw data collected by the device; secondly, a classification is performed on the basis of
such features. This approach slows down the classification, but, if correctly done, can simplify
the problem—in practice, the feature extraction step is a change of the coordinates on which the
classification has to be solved to more convenient ones.

The extracted statistical features try to summarize the information contained in the various
signals produced by the sensors. In particular, for all quantities we included their mean values and
their minimum and maximum value over the sampling time, combined with their respective 95th
and 5th percentile and standard deviation (std in the table). For acceleration and angular speed,
we also considered kurtosis and skewness values, as well as the average and maximum values for the
acceleration increase and decrease observed in the considered time window.

We considered that a natural set of additional statistical features to be explored lies in the Fourier
domain, as was done in [6], as the vehicle motor vibrations translate into acceleration changes measured
by the smartphone. To this aim, we conducted our analysis on the acceleration frequencies ranging
from 1 Hz to 15 Hz.

All the considered statistical features are summarized in Table 3.

Table 3. The statistical features extracted in the pre-processing.

GPS/Speed Mean speed, Max speed, Min speed, Speed std, Speed 5th Percentile, Speed 95th Percentile

Acceleration
Mean acc, Acc std, Max acc, Min acc, Acc 5th Percentile, Acc 95th Percentile, Acc kurtosis,

Acc skewness, Acc components at {1,2, . . . ,15} Hz, Acc increase avg, Acc decrease avg,
Acc increase max, Acc decrease max

Gyroscope Mean ω, ω std, ω kurtosis, ω skewness

The 37 values of Table 3 are computed over 50 samples from the sensors, i.e., given the 50 Hz
sampling time, over 1s. The various algorithms that rely on the extracted features, detailed in
the following section of the paper, will be fed with the features extracted over two seconds—i.e.,
the statistical features are extracted from the concatenation of two vectors of 37 values each. This choice
was driven by the trade-off between optimizing the classification performance (in terms of accuracy)
and maintaining a low computational time.

3.2. TMR Based on Raw Data

Other classification solutions, such as Deep Neural Networks, are able to infer the correlation
directly among the raw data, without the need of pre-processing it to extract additional features.
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In principle, these solutions are harder to train, but, in practice, their generalization properties are
often more powerful, since Deep Learning solutions try to learn the most informative and suitable
representation of the data during the training process [37].

Instead of providing the algorithms with the statistical features vectors of the 74 components
(as with the feature-extraction based TMR solutions), the Deep Neural Networks considered in this
work will be fed directly with the data coming from the sensors over a defined amount of sampling
instants. In all our tests, the Deep Neural Networks (DeepNNs) were trained with the vectors of 64 raw
samples, corresponding to 1.28 s of data at 50 Hz, almost halving the time-window dedicated to data
collection. Together with the absence of data pre-processing, this reduction makes DeepNNs more
suitable for real-time applications for TMR, also reducing significantly the amount of data to transmit
to a remote server and the on-device computing requirements, thus lowering the power demanded by
the application.

The following sections detail the various implemented solutions, briefly introducing their
functioning logics and characteristics.

4. Classification Solutions for TMR

This section describes three TMR solutions based on statistical feature extraction, i.e.,
Random Forests, Feed-Forward Neural Networks and Recurrent Neural Networks, and two solutions
based on raw data, i.e., a deep implementation of Feed-Forward Neural Networks and a Deep
Convolutional Neural Network. The hyperparameters that characterize the various solutions employed
for the comparison were determined, if not otherwise specified, following an iterative model selection
procedure on the basis of a 5-fold cross-validation.

4.1. TMR Based on Feature Extraction

4.1.1. Random Forest

Random Forests (RFs) [29] are ensemble methods that consider a group of “weak learners” as
working together to form a “strong learner”, able to solve a complex problem. In RFs, the weak
learners are Decision Trees [30], classifiers in which each class is represented by a leaf node of the
tree, whereas each branch of the tree represents an attribute of the feature vector (e.g., speed > 3 m/s).
The depth of the tree is defined as the maximum number of attribute checks that distance the root of the
node (i.e., the starting point of the decision process) from the various leaves (i.e., the identified classes).

A Decision Tree is built iteratively from the analysis of the training dataset by selecting the criteria
that better divides, in terms of average classification error, the considered population into different
subsets. The process is repeated for the various subsets until a terminal condition is met, obtaining
arbitrarily complex decision flows.

The idea to build an RF classifier is to split the training dataset into multiple overlapping subsets
and then to build a different Decision Tree for each of the subsets, potentially considering only a random
subset of the available features. The classification results of the various trees are then averaged, and the
most confident class is picked as the overall result of the classification. By so doing, the RF is expected
to improve its generalization performance and to reduce overfitting problems with respect to a single
Decision Tree. Moreover, the complexity of the Decision Trees can be kept down arbitrarily by fixing
the maximum depth during their generation, making the overall decision problem complexity a tuning
factor. Figure 5 reports a high-level scheme for RF description (the interested reader is referred to [38]
and the bibliography therein to find a more detailed discussion of the training algorithms and fields of
application). The RF used in this paper (see Section 4) is characterized by two parameters: number of
trees, set to 1000, and their maximum depth, set to 14. The numerical values of these parameters were
obtained by using a hyperparameter tuning technique based on the “out-of-bag (OOB) score” [39].
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4.1.2. Support Vector Machines

Support Vector Machines (SVMs) [31] are one of the most broadly used supervised learning
solutions for classification, due to their ability to deal with nonlinear classification problems even in
cases in which the dataset is heavily unbalanced.

In their most basic formulation, SVMs are a class of linear binary classifiers. Training an SVM
means to find the hyperplane that separates the two classes available in the dataset in such a way that
the Euclidean distance between the hyperplane and its closest elements, of both classes, is maximised.
Utilising the so-called Kernel Trick [31], SVMs are able to efficiently find such a hyperplane in a higher
dimensional representation of the original data, in which the two classes become linearly separable.
The SVMs of this work use a radial basis function kernel.

4.1.3. Feed-Forward Neural Network

Feed-Forward Neural Networks (FFNNs) [32] are a class of Artificial Neural Networks in which
the connections between the various layers of neurons follow a single direction.

This type of neural networks represents the simplest multilayer solution, as an arbitrary number
of hidden layers can be placed between the input and the output layers. The training process for
such a network is usually based on the backpropagation algorithm [40], which updates the weights
corresponding to the various synapsis between the neurons, and consequently their eventual activation,
to minimize the error between the output provided by the network and the correct label.

For the feature extraction-based workflows, we consider a network with two hidden layers, fed with
the extracted statistical features, having 74 neurons on the input layer, 512 and 32 sigmoidal neurons in
the hidden layers, as well as 7 output neurons corresponding to the 7 identified transportation modes.

4.1.4. Recurrent Neural Network

Working with time-dependent data, Recurrent Neural Networks (RNNs) represent a natural
approach to explore. The architecture chosen for our testing consists in a multi-layer Long Short-Term
Memory (LSTM) RNN [33,34]. The fundamental block of LSTM networks is the so-called memory
cell, where the recurrence is given by the positive feedback on the cell state. Accessing the data stored
in the cell state may improve the network’s decision, providing the ability to capture the long-term
relation between different entries of the analysed time series. The update and access to this memory
are regulated respectively by the input and the output gates, whose activation criteria are part of the
training process itself. An additional gate, called the forget gate, is present to regulate when the state
should be wiped. The RNN implemented in our testing was characterized by four hidden layers with
respectively 512, 256, 128, and 32 cells.
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4.2. TMR Based on Raw Data

4.2.1. Deep Feed-Forward Neural Network

For the raw data-based workflows, we consider a Deep Feed-Forward Neural Network (DFFNN)
with seven hidden layers, fed with raw data and having 60 sigmoidal neurons for the first three hidden
layers and 40 for the other four hidden ones.

4.2.2. Deep Convolutional Neural Network

Convolutional Neural Networks (CNN) [35] arose in popularity for their great performance in
image analysis tasks. In principle this class of Neural Network is similar to the Feed-Forward one,
with the main difference that each neuron has only local connectivity to the previous layer, meaning
that it is connected only to a limited number of spatially close neurons. Furthermore, the neurons of
the same layer share their weights and are often referred to as filters. Due to this weight sharing and
the local connectivity, we can think of a convolutional layer as a single filter that moves over the input
image (hence the name convolutional), producing an output that is a representation of the input and is
referred to as feature map.

In more complex architectures, multiple filters can be run over the same input to capture different
aspects of the starting features, each producing one corresponding feature map. We can visualize this
solution as having multiple filters in the same layer and, correspondingly, multiple features maps as
the output of the layer.

The main advantages of this type of architecture are the following ones:

1. The number of parameters to train is significantly reduced thanks to the fact that the
weights are shared, with beneficial consequences in the speed of the training process and
in avoiding overfitting.

2. The convolutional aspect of the moving filter, for image classification, removes the problem of
the spatial location of the patterns to recognize [35] (e.g., a face is recognised independently
on its absolute position in the picture). In our solution, passing to the network a matrix in
which each row contains the seven raw measures (three from the accelerometer, three from the
gyroscope and speed) at consequent sampling times, the spatial invariance property translates
into time-invariance (e.g., a particular spike in acceleration may characterize the motorbike
independently of where it appears in the time window, and, correspondingly, in the rows of
the input matrix). For instance, if the pattern to be recognised is “a fast spike followed by
an immediate drop in acceleration”, it is not of interest if this pattern appears at a given time or
a few instants later. Given the 1.28 s over which the samples are collected, the input of the CNN
is 64 × 7.

3. The more hidden level this architecture contains, the more complex patterns it can recognise,
since we can think each feature map as a different representation of the starting features,
with deeper layers capturing more complex concepts (as faces, objects, etc.) while the initial
layers focus on simpler ones (edges, colours, etc.).

The implemented neural network is a Deep Convolutional Neural Network (DeepCNN)
characterized by the ad-hoc architecture reported in Figure 6, where a few convolutional layers
with 32 filters each are connected to fully-connected feed-forward ones (referred to as Dense Layers
in the Figure). The purpose of this kind of architecture is to collect information at various levels and
forward it directly to the deeper layers. For this reason, the feed-forward layers are connected (after
the concatenation of their outputs) to the final classification layer (Output Layer in the figure).
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The information forwarding technique is conceptually similar to the idea behind Residual
Networks [41], a ground-breaking solution for very deep neural networks that obtained stunning
results in more complex classification tasks, such as image recognition. Connecting upper layers
directly to the final one provided the best classification accuracy during our tests, and the architecture
reported in Figure 6 was identified by means of model selection on the basis of a 10-fold cross-validation.
Deeper models, such as fully Residual architectures, did not improve the model accuracy and proved
to be more sensitive to noise and overfitting in general.

5. Results

This section reports the performance indicators for the trained algorithms in the validation
procedure and in the field tests.

5.1. Validation

The training process was firstly evaluated on the collected data by dedicating 25% of the collected
data, randomly selected among the 8-s samples, to the validation set. Most of the hyperparameters
presented so far were tuned over this validation. The results of the field tests validation, reported in
the next section, are in line with the results of the tests performed on the validation sets; therefore,
as an example of confusion matrices, we report at the end of the section only the ones relative to the
DeepCNN, which was the best-performing solution in the validation phase. As reported in Figure 7,
the performances of the DeepNN on the validation data are satisfactory, albeit we notice that the
classification performs worse in identifying the motorbike class, which is confused with the car class
and even the still class in some instances. Additionally, the still class was recognized a few times as the
walk one.
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5.2. Field Tests

The field test results were computed by the users by utilising a simple Android application
developed for the purpose during their travel, in the same conditions in which the training data were
collected. The Android application collects 2 s of data readings and forwards it to a remote server to run
the various classifiers (the raw data-based ones only use the last 1.28 s of the received data), as would
be the case in a solution that envisages the connection to a distributed computing node. We mention
that an on-device solution could have been developed with modern mobile frameworks, such as
Android Neural Network API (NNAPI) [42] and Basic Neural Network Subroutines (BNNS) [43],
but the development of an on-device prototype was not in the scope of this work, as implementing
and running all the presented classifiers on a smartphone would be extremely inefficient. The backend
we developed on our server then returns and logs the transportation modes recognized by every
classifier and each data sample, allowing a broad and fair comparison. A total of 100 tests were
done for each transportation mode, using a total of two different Android phones, and the results
are reported in the following tables. Firstly, we report in Table 4 the results regarding the statistical
feature-based approaches.

Table 4. Feature-based approaches results.

ACCURACY (%)

Transportation Mode RF SVM FFNN RNN

Bus 86 93 89 93
Car 87 100 90 92

Motorbike 49 11 23 48
Still 88 52 80 99

Subway 90 72 81 92
Tram 84 100 83 93
Walk 86 100 90 99

(Average) 81.4 75.4 76.6 88.0

During our testing, the most common classification errors were in the motorbike class,
mostly confused with a car and still classed by all the proposed classifiers. It is interesting to
note how the RF obtains the most uniform performances, surpassing the FFNN in the motorbike
recognition; however, overall, the RNN obtains the best performance, recognizing particularly well
the walk and still classes. The SVM is the only classifier that attains a perfect recognition on three
transportation modes, but its overall performance is lowered due to its very low capacity in discerning
a motorbike from a car. Notably, this classification mistake characterises all the statistical feature-based
approaches and may be explained by the similarity of the sensor readings for the two classes, as is
suggested from Figures 1 and 3. We also mention that the statistical feature extraction process inevitably
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removes some information, so even if the two classes were distinguishable in the original raw data
space, it is not surprising that the complexity of their recognition increased after the pre-processing.

Regarding the other solutions presented in this paper, Table 5 reports the results obtained by the
analysis of the seven raw data measures without any pre-processing.

Table 5. Raw Data analysis approaches results.

ACCURACY (%)

Transportation Mode DeepFFNN DeepCNN

Bus 89 98
Car 85 96

Motorbike 28 96
Still 90 100

Subway 87 100
Tram 89 100
Walk 90 100

(Average) 79.7 98.6

The overall best results are clearly obtained by the DeepCNN of Figure 6, while the DeepFFNN
obtains performances that are also lower than the statistical feature-based RF and RNN classifiers.
The generalization capabilities of the DeepFFNN were clearly offset by the increased complexity of the
problem in the raw data space, which in turn required a more refined architecture as the one proposed
for the DeepCNN. Even in the raw data space, the most challenging class remains the motorbike:
during our test, the DeepCNN still sporadically confuses the bus and motorbike classes with cars,
coherently with the reported results of the validation process. However, the recognition rate of the
motorbike class is significantly higher with the raw data-based approaches (both the DeepFFNN
and the DeepRNN ones), hinting that, probably, the extracted statistical features on which the other
algorithms ran did not contain all the information needed to discern it from the other classes, which may
be related to the quantities and relations not captured by the statistical analysis considered.

As already mentioned, besides the best performances obtained by the DeepCNN, another
main advantage of the raw data-based solutions is that the collection of the needed entries requires
1.28 s (instead of the 2 s needed by the statistical feature-based solutions), enabling an almost
real-time recognition.

6. Conclusions and Future Works

This work presented a series of different solutions for the real-time Transportation Mode
Recognition problem, based on both statistical feature extraction methods and raw data analysis-based
Deep Learning. The collected data, while being limited in size, represents a reasonable dataset gathered
to train a locally specialised TMR classifier (e.g., for a traffic light or a road sensor). We reported field
test results, highlighting how the analysis of the raw data performs overall better in terms of accuracy,
which suggests that the feature extraction process removes a portion of the significant information.

Future work may include the implementation of more complex, multi-stage classification solutions,
different Neural Network architectures, and the extension of the problem to more transportation modes.
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