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Abstract

We study the time evolution of a Vlasov-Poisson plasma moving
in a torus, in which it is confined by an unbounded external magnetic
field. This field depends on the distance from the border of the torus,
is tangent to the border and singular on it. We prove the existence and
uniqueness of the solution, and also its confinement inside the torus
for all times, i.e. the external field behaves like a magnetic mirror.
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1 Introduction

Recently the time evolution of a Vlasov-Poisson plasma confined in a cylin-
der by a magnetic field has been studied in [3, 4, 5]. More precisely the
authors have assumed the presence of an external magnetic field parallel
to the axis of the cylinder, smooth inside and singular on the border. It is
proved in [3] (for finite total mass) and [4, 5] (for infinite total mass), in spite
of the fact that the mutual interaction could become very large, that the
magnetic mirror effect happens, i.e. each element of the plasma is rejected
by the border and the plasma remains confined inside the cylinder. In the
present paper we show that the same effect happens also if the plasma is
contained in a torus, that is a region in which the border has a non vanish-
ing curvature. The analysis in the present situation needs some non trivial
improvements, due to the geometry of the region. For reader’s convenience
the present paper is self-contained, even if some parts follow directly [3].
The idea lies always in the rectification of the characteristics of the plasma
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(that is, a fluid-element’s trajectory is close to a straight line in a short time
interval) along the lines of the magnetic field. We show that a control of
the time average of a plasma particle’s velocity along the direction of the
magnetic field allows to obtain the result. The principal difficulty is that
the magnetic field could destroy the rectification property near the border,
where its intensity becomes very large. Another motivation to the present
paper is that in [3] it is stated that a confining effect happens also when the
magnetic field is orthogonal to the symmetry axis of the cylinder, without an
explicit proof, which actually is not straightforward, and it can be achieved
analogously to the present one.

The existence of the solution of the Vlasov-Poisson equation in three
dimensions is not obvious, because of the singular nature of the interaction,
that could produce an infinite growth of the velocity in a finite time. This
behavior has been excluded twenty years ago by a clever use of time aver-
ages of the electric field. A central point in the proof was a rectification
of the motion of a characteristic of the Vlasov fluid during a small time
interval ∆. The interval ∆ has to be chosen large enough to benefit by the
time average, but also small enough such that the rectification property for
speedy particles holds. In this way it has been proved that initially bounded
velocities remain bounded for any time interval [0, T ]. This approach and
other ones are discussed in the papers [2], [10], [13, 14, 16] and [17] in the
case of finite total mass. See also [9] for a review. The various papers on the
argument also improve the dependence on T . Moreover we mention that the
time evolution of a Vlasov-Poisson plasma in presence of singular external
forces has been studied in some recent papers [6, 7, 8, 11, 15], while the “one
and one-half” dimensional relativistic Vlasov-Maxwell system in a bounded
domain with magnetic confinement has been studied in [12].

The main difference between the present paper and [3] lies in the fact
that here the magnetic lines are no more straight lines, which forces us to use
curvilinear coordinates, and consequently to choose a smaller time interval
∆ with respect to [3], for techical reasons which will be clear in the sequel.
For this fact we take less advantage by the time average (in the limit, the
point estimate in time is not good for our purposes), and to compensate it
we need some more refined partitions of the phase-space. For the sake of
concreteness we study the problem with a particular choice of the magnetic
field, but other choices are possible. Moreover a posteriori it will be evident
that the proof applies to a generic region containing the plasma, provided
that the external magnetic field is tangent to the border and singular on it.

The plan of the paper is the following: in Section 2 we define the model
and give the main results, and in Section 3 we give the proofs. The Appendix
is devoted to some technical tools.
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2 Statement of the problem and results

Consider a torus T3 such that x = (x1, x2, x3) ∈ T3 if(
R−

√
x2

1 + x2
2

)2

+ x2
3 = r2, (2.1)

with R > r0 > 0, and r ∈ [0, r0]. In toroidal coordinates the equations are:
x1 = (R+ r cosα) cos θ
x2 = (R+ r cosα) sin θ
x3 = r sinα
0 ≤ α < 2π, 0 ≤ θ < 2π.

(2.2)

We study a charged plasma (with charges of the same sign) initially
strictly contained in T3, and moving via the Vlasov-Poisson equation coupled
with a magnetic external field B(x). Let f(x, v, t) be the charge distribution
(or equivalently mass) of the plasma particles at the phase point (x, v) and
time t. The evolution equations for the plasma are:

∂tf(x, v, t) + v · ∇xf(x, v, t) + (E(x, t) + v ∧B(x)) · ∇vf(x, v, t) = 0

E(x, t) =
1

4π

∫
R3

x− y
|x− y|3

ρ(y, t) dy

ρ(x, t) =
∫

R3

f(x, v, t) dv

f(x, v, 0) = f0(x, v).
(2.3)

We choose the external magnetic field B(x) of the form

B(x) = ∇∧A(x), A(x) =
a(r)

R+ r cosα
êθ, (2.4)

where a(r) is a smooth function for 0 ≤ r < r0, which becomes singular for
r → r0, and êθ is the unit vector tangent to the border of the torus in the
direction of increasing θ (and fixed α).
From (2.2) one obtains

êr = cosα cos θ ĉ1 + cosα sin θ ĉ2 + sinα ĉ3

êθ = − sin θ ĉ1 + cos θ ĉ2

êα = − sinα cos θ ĉ1 − sinα sin θ ĉ2 + cosα ĉ3

(2.5)

where êα is the unit vector defined analogously to êθ (consequently orthog-
onal to êθ), êr = êθ ∧ êα, and ĉ1, ĉ2, ĉ3 are the unit vectors of the cartesian
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axes x1, x2, x3. From (2.4) we have (for the curl in toroidal coordinates see
for instance [1])

B(x) =
a′(r)

R+ r cosα
êα. (2.6)

We will see that the properties assumed for a(r) assure that the plasma
remains confined inside the torus for all positive times.

Equation (2.3) is a conservation equation for the density f along the
characteristics of the system, i.e. the solutions to the following problem:

Ẋ(t) = V (t)

V̇ (t) = E(X(t), t) + V (t) ∧B(X(t))
(X(t′), V (t′)) = (x, v),

(2.7)

where we have used the simplified notation

(X(t), V (t)) = (X(t, t′, x, v), V (t, t′, x, v)) (2.8)

to represent a characteristic at time t passing at time t′ < t through the
point (x, v). Hence we have

‖f(t)‖L∞ = ‖f(0)‖L∞ . (2.9)

Moreover this dynamical system preserves the measure of the phase space
(Liouville’s theorem).

A remark, that will play an important role in the sequel, is the conser-
vation of total energy. In fact the magnetic force V (t) ∧ B(X(t)) does not
change the modulus of the velocity, since

d

dt
V 2 = 2V · V̇ = 2V · (E + V ∧B) = 2V · E, (2.10)

and the quantity

E =
1
2

∫
v2f(x, v, t) dxdv +

1
2

∫
ρ(x, t) ρ(y, t)
|x− y|

dxdy (2.11)

is invariant under the evolution (2.7).
We denote by St the support in (x, v) of f(x, v, t) for any t ∈ [0, T ], T > 0
being the positive arbitrarily fixed time, and we set:

P (T ) := P = max

{
sup
t∈[0,T ]

sup
(x,v)∈St

|V (t)|, 1

}
. (2.12)

Our main result is the following:
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Theorem 1. Let T > 0 be arbitrarily fixed and assume that f0 ∈ L∞(R3 ×
R3) is a positive function having compact support on the set

S0 =
{

(x, v) : x ∈ T3, d(x, ∂T3) > δ, |v| ≤ P0

}
, (2.13)

for positive constants P0 > 0, δ ∈ (0, r0), being d(x, ∂T3) the distance of a
point x from the border of the torus. Then there exists a solution to system
(2.7) over the interval [0, T ], which is supported for all times on the set

St =
{

(x, v) : x ∈ T3, d(x, ∂T3) > δ(t), |v| ≤ P (t)
}
,

for a suitable continuos function δ(t) ∈ (0, r0).
Moreover this solution is unique in the class of the characteristics distributed
with f(x, v, t) and supported on St.

We remark that the assumptions on f0 imply that initially the energy is
bounded, and hence

E(t) = E(0) ≤ C. (2.14)

From now on we will indicate by C any positive constant, depending only
on conserved quantities and possibly on T , and changing from line to line.
Some constants will be numbered, in order to quote them in the paper. We
set

‖f0‖L∞ = C1. (2.15)

The fundamental estimate which we need to prove Theorem 1 is stated in
the following Theorem.

Theorem 2. In the hypotheses of Theorem 1 it is:

P (T ) ≤ C.

As it is well known, Theorem 2 implies existence and uniqueness of the
solution to system (2.7) globally in time and similarly to system (2.3) if the
initial datum f0 is assumed to be smooth.

We note that other choices of the magnetic field are possible, for example
it can be taken directed along êθ and singular on the border of the torus. We
have considered the form (2.6) which gives more difficulties in the analysis,
other choices can be studied following the same lines of the present paper.

3 Proofs

We remark that the proof of Theorem 2 would be trivial if we could obtain
an a priori bound on the electric field |E(x, t)| ≤ CPα, with 0 ≤ α < 1.
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Unfortunately we are not able to obtain an estimate so sharp and we are
only able to bound the time average of the electric field, as we will show in
the sequel.

We need to state some preliminary Lemmas whose proofs are postponed
in the Appendix. First of all we state two classical well known estimates,
which we prove for the sake of completeness.

Lemma 1. In the hypotheses of Theorem 1 we have:(∫
ρ(x, t)

5
3dx

) 3
5

≤ C (3.1)

Lemma 2. In the hypotheses of Theorem 1 we have:

sup
t∈[0,T ]

sup
(x,v)
|E(x, t)| ≤ C2P

4
3 . (3.2)

We define now the short time interval ∆ by which we divide the total
time interval [0, T ]. We need to choose a ∆ smaller than in [3], precisely we
put

∆ := min
{

C3

P 2−γ , T

}
(3.3)

where γ ∈ (0, 1
8), and

C3 =
1

4
(

2 + 1
R−r0 + C2

) .
It will be useful to study the evolution of a single characteristic of the

plasma in toroidal coordinates, whence system (2.7) becomes
− α̇2r + r̈ − (R+ r cosα)θ̇2 cosα = Er + a′(r) θ̇

(R+ r cosα)θ̈ + 2 ṙ θ̇ cosα− 2 α̇ θ̇ r sinα = Eθ −
a′(r) ṙ

R+ r cosα
α̈ r + 2 α̇ ṙ + (R+ r cosα)θ̇2 sinα = Eα,

(3.4)

where we have omitted the dependence on t of (r, θ, α), and we denote by
(Er, Eθ, Eα) the components of the electric field in toroidal coordinates.
Note that the components of the velocity in such coordinates are

vr = ṙ, vθ = (R+ r cosα)θ̇, vα = rα̇, (3.5)

and we remark that eq.s (3.4) show that the component vα is not directly
affected by the magnetic field.
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We consider two characteristics, solutions of (3.4),(
r1(t), θ1(t), α1(t); ṙ1(t), θ̇1(t), α̇1(t)

)
, (3.6)

which corresponds in cartesian coordinates to (X(t), V (t)), and(
r2(t), θ2(t), α2(t); ṙ2(t), θ̇2(t), α̇2(t)

)
, (3.7)

corresponding in cartesian coordinates to (Y (t),W (t)).
In the following Lemmas we make the technical assumption that the trajec-
tories occur in the region r > r0

2 , condition which is satisfied in the short
time interval ∆, if initially it is r > r0

2 + P∆ (note that P∆ → 0 if P
diverges). This assumption is not essential, it is done only to avoid the
singularity of the toroidal coordinates for r = 0. Actually for r ≤ r0

2 we
could use cartesian coordinates, since the magnetic field is bounded, and
the analysis follows well known results as [16], [17].
We fix a positive number γ′ > γ. Hence we state:

Lemma 3. Let t′ ∈ [0, T ]. The following hold:

If |r1(t′)α̇1(t′)− r2(t′)α̇2(t′)| ≤ P γ′

then
sup

t∈[t′,t′+∆]
|r1(t)α̇1(t)− r2(t)α̇2(t)| ≤ 2P γ

′
. (3.8)

If |r1(t′)α̇1(t′)− r2(t′)α̇2(t′)| ≥ P γ′

then
inf

t∈[t′,t′+∆]
|r1(t)α̇1(t)− r2(t)α̇2(t)| ≥ 1

2
P γ
′
. (3.9)

Let us put v⊥ =
√
v2
r + v2

θ , denoting the corresponding quantity for the two

characteristics as v⊥i , i = 1, 2.

Lemma 4. Let t′ ∈ [0, T ]. The following hold:
If

|v⊥1 (t′)| ≤
√
P

then
sup

t∈[t′,t′+∆]
|v⊥1 (t)| ≤ 2

√
P . (3.10)

If
|v⊥1 (t′)| ≥

√
P

then

inf
t∈[t′,t′+∆]

|v⊥1 (t)| ≥
√
P

2
. (3.11)
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In the following Lemma it is stated the so-called rectification property
of the characteristics. The proof is quite similar to the one given in Ref.s
[3, 4], suitably adapted to our context.

Lemma 5. Let t′ ∈ [0, T ] and assume that

|v1,α(t′)− v2,α(t′)| ≥ hP γ′ , for some h ≥ 1,

v1,α := r1α̇1, v2,α := r2α̇2.

Then, there exists t0 ∈ [t′, t′ + ∆] such that

|X(t)− Y (t)| ≥ hP
γ′

8
|t− t0|

for all t ∈ [t′, t′ + ∆].

Proof of Theorem 2. We will use in the sequel cartesian coordinates for
volume elements and integrand functions, and toroidal coordinates for the
parametrization of the region of integration.
We partition the interval [0, T ] by N intervals [ti, ti+1] i = 0, ..., N − 1, with
t0 = 0, tN = T and 1

2∆ ≤ ti+1 − ti ≤ ∆. Hence it is:

∫ t

0
E(X(s), s) ds =

N−1∑
i=0

∫ ti+1

ti

E(X(s), s) ds. (3.12)

For a fixed i we consider the time evolution of the system over the time
interval [ti, ti+1]. For any t ∈ [ti, ti+1] we set

(X(t), V (t)) := (X(t, ti, x, v), V (t, ti, x, v))

being
X(ti) = x, V (ti) = v,

which corresponds to the characteristic (3.6), and (Y (t),W (t)), solution to
system (2.7) such that

Y (ti) = y, W (ti) = w,

corresponding to (3.7). Analogously we put

v1,α(ti) = v1,α, v⊥1 (ti) = v⊥1 , v2,α(ti) = v2,α, v⊥2 (ti) = v⊥2 .

By the invariance of f along the motion, the change of variables (ȳ, w̄) =
(Y (t),W (t)) and the Liouville theorem yield:

|E(X(t), t)| ≤
∫

f(ȳ, w̄, t)
|X(t)− ȳ|2

dȳdw̄ =
∫

f(y, w, ti)
|X(t)− Y (t)|2

dydw. (3.13)
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We put

Im =
∫
Sm

f(y, w, ti)
|X(t)− Y (t)|2

dydw m = 1, 2, 3

and
S1 = {(y, w) : |v1,α − v2,α| ≤ P γ

′} (3.14)

S2 = {(y, w) : |v⊥2 | ≤
√
P} (3.15)

S3 = (S1 ∪ S2)c (3.16)

Hence it is:

|E(X(t), t)| ≤
3∑

m=1

Im. (3.17)

Let us start by I1. By (3.8) it follows that if (y, w) ∈ S1 then |v1,α(t)−
v2,α(t)| ≤ 2P γ

′
for any t ∈ [ti, ti+1]. Hence setting S′1 = {(ȳ, w̄) : |v̄2,α −

v1,α(t)| ≤ 2P γ
′} and χ for the characteristic function, by Hölder inequality

and Lemma 1 we obtain:

I1 ≤
∫
S′1

f(ȳ, w̄, t)
|X(t)− ȳ|2

dȳdw̄ ≤∫
|X(t)−ȳ|≤ε

f(ȳ, w̄, t)
|X(t)− ȳ|2

χ(S′1) dȳdw̄ +
∫
|X(t)−ȳ|>ε

ρ(ȳ, t)
|X(t)− ȳ|2

dȳ ≤

C1ε

∫
χ(S′1) dw̄ +

(∫
ρ(ȳ, t)

5
3dȳ

) 3
5

(∫
|X(t)−ȳ|>ε

1
|X(t)− ȳ|5

dȳ

) 2
5

≤

CεP 2+γ′ + Cε−
4
5 .

(3.18)

The minimum in ε of the right hand side is attained for ε = CP−
10
9
− 5

9
γ′ ,

so we get:
I1 ≤ CP

8
9

+ 4
9
γ′ . (3.19)

To perform the integral over the set S2 we observe that by (3.10) if
(y, w) ∈ S2 then for all t ∈ [ti, ti+1] it is |v⊥2 (t)| ≤ 2

√
P , hence by the same

arguments used to obtain (3.19) we have:

I2 ≤ CεP 2 + Cε−
4
5 ≤ CP

8
9 . (3.20)

Now we consider the integral over S3, for which we need to use some ideas
from [4] in the case of infinite mass, in order to deal with the short time
interval ∆. For t ∈ [ti, ti+1] we introduce the sets Ah,k and Bh,k, with
k = 0, 1, 2, ...,m and h = 1, 2, ...,m′, defined in the following way:

Ah,k =
{

(y, w, t) : hP γ
′ ≤ |v1,α − v2,α| ≤ (h+ 1)P γ

′
,

αk+1 < |v⊥2 | ≤ αk, |X(t)− Y (t)| ≤ lh,k
} (3.21)
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Bh,k =
{

(y, w, t) : hP γ
′
< |v1,α − v2,α| ≤ (h+ 1)P γ

′
,

αk+1 < |v⊥2 | ≤ αk, |X(t)− Y (t)| > lh,k
} (3.22)

where

αk =
P

2k
lh,k =

22k

hP 1+η
, (3.23)

with η > γ′ to be fixed later. Since we are in S3, it is immediately seen that

m ≤ 3
4

log2 P m′ ≤ 2P
P γ′
− 1. (3.24)

Consequently we put

I3 ≤
m′∑
h=1

m∑
k=0

(
I ′3(h, k) + I ′′3 (h, k)

)
(3.25)

being

I ′3(h, k) =
∫
Ah,k

f(y, w, ti)
|X(t)− Y (t)|2

dydw (3.26)

and
I ′′3 (h, k) =

∫
Bh,k

f(y, w, ti)
|X(t)− Y (t)|2

dydw. (3.27)

We start by I ′3(h, k). The same arguments used in the proof of Lemma
3 and Lemma 4, given in the Appendix, show that ∀ (y, w, t) ∈ Ah,k and
t ∈ [ti, ti+1] it is:

(h− 1)P γ
′ ≤ |v1,α(t)− v2,α(t)| ≤ (h+ 2)P γ

′
(3.28)

and
αk+1

2
≤ |v⊥2 (t)| ≤ 2αk. (3.29)

Hence, setting

A′h,k =
{

(ȳ, w̄, t) : hP γ
′ ≤ |v1,α(t)− v̄2,α| ≤ (h+ 1)P γ

′
,

αk+1

2
≤ |v̄⊥2 | ≤ 2αk, |X(t)− ȳ| ≤ lh,k

} (3.30)

we have
I ′3(h, k) ≤

∫
A′h,k

f(ȳ, w̄, t)
|X(t)− ȳ|2

dȳdw̄. (3.31)

By the choice of the parameters αk and lh,k made in (3.23) we have:

I ′3(h, k) ≤ CC0 lh,k

∫
A′h,k

dw̄ ≤ C lh,k α2
k

∫
A′h,k

dw̄1 ≤

C lh,k α
2
k P

γ′ ≤ C P 1+γ′−η.

(3.32)
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Hence by (3.24)

m′∑
h=1

m∑
k=0

I ′3(h, k) ≤ C P 1+γ′−η
m∑
k=0

m′∑
h=1

1
h
≤ C P 1+γ′−η log2 P. (3.33)

It remains to consider the set Bh,k, for which we need the rectification
technique and the time average. By Lemma 5 there exists t0 ∈ [ti, ti+1] such
that

|X(t)− Y (t)| ≥ hP
γ′

8
|t− t0|. (3.34)

Let

B′h,k =
{

(y, w) : (y, w, t) ∈ Bh,k for some t ∈ [ti, ti+1]
}
. (3.35)

Then ∫ ti+1

ti

I ′′3 (h, k) dt =
∫ ti+1

ti

dt

∫
Bh,k

f(y, w, ti)
|X(t)− Y (t)|2

dydw ≤∫
B′h,k

f(y, w, ti)
(∫ ti+1

ti

χ(Bh,k)
|X(t)− Y (t)|2

dt

)
dydw.

(3.36)

Putting A = 4lh,k/(hP γ
′
), by (3.34) we have:∫ ti+1

ti

χ(Bh,k)
|X(t)− Y (t)|2

dt ≤
∫
{t:|t−t0|≤A}

χ(Bh,k)
|X(t)− Y (t)|2

dt +∫
{t:|t−t0|>A}

χ(Bh,k)
|X(t)− Y (t)|2

dt ≤∫
{t:|t−t0|≤A}

1
l2h,k

dt+
∫
{t:|t−t0|>A}

64
h2P 2γ′ |t− t0|2

dt ≤

2A
l2h,k

+
C

h2P 2γ′

∫ ∞
A

1
t2
dt =

C

hP γ′ lh,k
.

(3.37)

Thus by (3.36)∫ ti+1

ti

I ′′3 (h, k) dt ≤ C

hP γ′ lh,k

∫
B′h,k

f(y, w, ti) dydw

≤ C

hP γ′ lh,k α
2
k+1

∫
B′h,k

w2f(y, w, ti) dydw,
(3.38)

since, being (y, w) ∈ B′h,k, then |w| ≥ αk+1. Moreover the kinetic energy is
bounded by the conservation of the energy (2.14), hence

m′∑
h=1

m∑
k=0

∫
B′h,k

w2f(y, w, ti) dydw ≤ CE(0), (3.39)
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and
m′∑
h=1

m∑
k=0

∫ ti+1

ti

I ′′3 (h, k) dt ≤ C P−γ′−1+η. (3.40)

By multiplying and dividing by ∆ we have:

m′∑
h=1

m∑
k=0

∫ ti+1

ti

I ′′3 (h, k) dt ≤ C P 1−γ′−γ+η∆, (3.41)

and remembering the constraints η > γ′, γ′ > γ, in order to keep the
exponent of P in (3.41) less than 1 (whose reason will be clear further) it is
sufficient to take

γ′ = 2γ and η ∈ (2γ, 3γ).

Now we are able to conclude the proof. By (3.17) it is:∫ t

0
|E(X(s), s)|ds ≤

N−1∑
i=0

∫ ti+1

ti

(
3∑

m=1

Im

)
dt (3.42)

and estimates (3.19), (3.20), (3.25), (3.33) and (3.41) give us:∫ ti+1

ti

(
3∑

m=1

Im

)
dt ≤ C∆

[
P

8
9

+ 4
9
γ′ + P

8
9 + P 1+γ′−η log2 P + P 1−γ′−γ+η

]
.

(3.43)

Now, with the choice stated above on the parameters η, γ′, and taking
γ ∈ (0, 1

8), it follows: ∫ ti+1

ti

(
3∑

m=1

Im

)
dt ≤ C∆P q, (3.44)

for some q < 1. In conclusion (3.42), (3.44), and the fact that T ≤ N∆ ≤ 2T ,
imply ∫ t

0
|E(X(s), s)| ds ≤ CTP q, q < 1. (3.45)

Estimate (3.45) allows to conclude the proof. Indeed from (2.10) and (3.45)
it follows:

V 2(t) ≤ V2
0 + 2P

∫ t

0
|E(X(s), s)| ds ≤ V2

0 + CTP 1+q (3.46)

and, by taking the supremum in the left hand side, we obtain

P 2 ≤ V2
0 + CTP 1+q

This implies P (T ) <∞ for any T > 0.
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Proof of Theorem 1. Using the previous result of the boundedness of
P (T ) over an arbitrary time T , by standard methods we can obtain global
existence and uniqueness of the solution to (2.7) (or (3.4)). It remains to
prove the confinement of the plasma inside the torus in the time interval
[0, T ]. We consider the second equation of (3.4),

(R+ r cosα)θ̈ + 2 ṙ θ̇ cosα− 2 α̇ θ̇ r sinα = Eθ −
a′(r) ṙ

R+ r cosα
, (3.47)

which, after multiplying by (R+ r cosα), becomes (remembering (3.5)),

a′(r)ṙ = −(R+r cosα)2θ̈−2vrvθ cosα+2vαvθ sinα+(R+r cosα)Eθ. (3.48)

Integrating in time (3.48), for the left hand side we have∫ t

0
a′(r(s))

dr

ds
ds = a(r(t))− a(r(0)), (3.49)

while for the right hand side we get∫ t

0

(
−(R+ r cosα)2θ̈ − 2vrvθ cosα+ 2vαvθ sinα+ (R+ r cosα)Eθ

)
ds

= −
[
(R+ r cosα)2θ̇

]t
0

+
∫ t

0

(
2θ̇(R+ r cosα)(ṙ cosα− rα̇ sinα)

)
ds

+
∫ t

0
(−2vrvθ cosα+ 2vαvθ sinα+ (R+ r cosα)Eθ) ds. (3.50)

It is easily seen that (3.49) diverges to ∞ for r → r0 (border of the torus),
while (3.50) stays finite since P (T ) and the electric field are bounded, as
seen before.

Appendix

Proof of Lemma 1. One has:

ρ(x, t) =
∫

fdv =
∫
|v|≤a

f dv +
∫
|v|>a

f dv ≤ CC1a
3 +

1
a2

∫
|v|2fdv.

Minimizing on a we get:

ρ(x, t) ≤ C
(∫
|v|2fdv

) 3
5

.

It follows from the conservation of the energy (2.14) that the kinetic energy
is bounded, so that: (∫

(ρ(x, t))
5
3dx

) 3
5

≤ C.

13



Proof of Lemma 2. One has:

|E(x, t)| ≤
∫

ρ(y, t)
|x− y|2

dy =
∫
|x−y|≤ε

ρ(y, t)
|x− y|2

dy +
∫
|x−y|>ε

ρ(y, t)
|x− y|2

dy ≤

C sup
y
ρ(y, t)ε+

(∫
(ρ(y, t))

5
3dy

) 3
5

(∫
|x−y|>ε

1
|x− y|5

dy

) 2
5

≤

C sup
y
ρ(y, t)ε+ Cε−

4
5 ,

by Lemma 1. Minimizing in ε:

|E(x, t)| ≤ C
(

sup
y
ρ(y, t)

) 4
9

.

On the other side:

sup
y
ρ(y, t) ≤ sup

y

∫
f(y, w, t)dw ≤ CP 3

so that we have:
|E(x, t)| ≤ CP

4
3 .

Proof of Lemma 3. Considering the third equation of (3.4), we see that
along this direction α the magnetic field is not influential. We then obtain

d

dt
(α̇ r) = −α̇ ṙ −

v2
θ

R+ r cosα
sinα+ Eα, (3.51)

and integrating in time,

vα(t)− vα(t′) =
∫ t

t′

(
−α̇(s) ṙ(s)−

v2
θ(s)

R+ r(s) cosα(s)
sinα(s) + Eα(s)

)
ds.

(3.52)
We have |ṙ| = |vr| ≤ P , |vθ| ≤ P , |Eα| ≤ C2P

4
3 , and for α̇ = 1

rvα if we
restrict to consider a motion occurring in the region 1

2r0 ≤ r ≤ r0 (for
0 ≤ r ≤ 1

2r0 we can switch to cartesian coordinates, since the magnetic field
is bounded), we have |α̇| ≤ 2P . Hence

|vα(t)| ≤ |vα(t′)|+
(

2 +
1

R− r0
+ C2

)
P 2(t− t′), (3.53)

therefore by Lemma 2 and (3.3) we get, for any t ∈ [t′, t′ + ∆]:

|r1(t)α̇1(t)− r2(t)α̇2(t)| = |v1,α(t)− v2,α(t)| ≤

|v1,α(t′)− v2,α(t′)|+ 2
(

2 +
1

R− r0
+ C2

)
P 2∆ ≤

14



P γ
′
+

1
2
P γ ≤ 2P γ

′
.

Analogously we prove the second statement:

|v1,α(t)− v2,α(t)| ≥ |v1,α(t′)− v2,α(t′)| − 1
2C3

P 2∆ ≥

P γ
′ − 1

2
P γ ≥ 1

2
P γ
′
.

Proof of Lemma 4. By (2.10) and the definition of B it is:

d

dt

[
v⊥1 (t)

]2
= 2v⊥1 (t) · E⊥(t), (3.54)

with E⊥ =
√
E2
r + E2

θ . We prove the thesis by contradiction. Assume that

there exists a time interval [t∗, t∗∗] ⊂ [t′, t′ + ∆) such that |v⊥1 (t∗)| =
√
P ,

|v⊥1 (t∗∗)| = 2
√
P and

√
P < |v⊥1 (t)| < 2

√
P ∀t ∈ (t∗, t∗∗). Then from (3.54)

it follows, by Lemma 2 and (3.3):

|v⊥1 (t∗∗)|2 ≤ |v⊥1 (t∗)|2 + 2
∫ t∗∗

t∗
ds |v⊥1 (s)| |E⊥(s)| ≤

P + 4
√
P

∫ t∗∗

t∗
ds |E(s)| ≤

P + 4
√
P∆C2P

4
3 ≤ P + P γ−

1
6 < 2P.

(3.55)

The contradiction proves the thesis. Now we prove (3.11). As before, assume
that there exists a time interval [t∗, t∗∗] ⊂ [t′, t′+∆) such that |v⊥1 (t∗)| =

√
P ,

|v⊥1 (t∗∗)| =
√
P

2 and
√
P

2 < |v⊥1 (t)| <
√
P ∀t ∈ (t∗, t∗∗). Then from (3.54) it

follows, by Lemma 2 and (3.3):

|v⊥1 (t∗∗)|2 ≥ |v⊥1 (t∗)|2 − 2
∫ t∗∗

t∗
ds |v⊥1 (s)| |E⊥(s)| ≥

P − 2
√
P

∫ t∗∗

t∗
ds |E(s)| ≥ P − 1

2
P γ−

1
6 >

P

2
.

(3.56)

Hence also in this case the contradiction proves the thesis.

Proof of Lemma 5. Let t0 ∈ [t′, t′ + ∆] be the time at which∣∣∣∣∫ t

t′
[v1,α(s)− v2,α(s)] ds+ λ(t′)

∣∣∣∣
has the minimum value, where λ(t′) = r1(t′)α1(t′)− r2(t′)α2(t′).
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We put

Γ(t) =
∫ t

t′
[v1,α(s)− v2,α(s)] ds+ λ(t′).

Moreover we define the function

Γ̄(t) = Γ(t0) + Γ̇(t0)(t− t0).

Since the magnetic force does not act on the α-component (in toroidal co-
ordinates) of the velocity, recalling (3.51) it is

d2

dt2
(
Γ(t)− Γ̄(t)

)
= −α̇1(t) ṙ1(t)−

[v1,θ(t)]2 sinα1(t)
R+ r1(t) cosα1(t)

+ Eα(X(t), t) +

α̇2(t) ṙ2(t) +
[v2,θ(t)]2 sinα2(t)
R+ r2(t) cosα2(t)

− Eα(Y (t), t),

Γ(t0) = Γ̄(t0), Γ̇(t0) = ˙̄Γ(t0),
(3.57)

denoting by Eα(X(t), t) the α-component of the electric field acting on the
characteristic 1, and Eα(Y (t), t) the α-component of the electric field acting
on the characteristic 2. From (3.57) it follows,

Γ(t) = Γ̄(t) +∫ t

t0

ds

∫ s

t0

dτ
[
− α̇1(τ) ṙ1(τ)−

[v1,θ(τ)]2 sinα1(τ)
R+ r1(τ) cosα1(τ)

+ Eα(X(τ), τ)

+ α̇2(τ) ṙ2(τ) +
[v2,θ(τ)]2 sinα2(τ)
R+ r2(τ) cosα2(τ)

− Eα(Y (τ), τ)
]

and reasoning as after (3.52) (i.e., supposing r ≥ r0
2 ),∫ t

t0

ds

∫ s

t0

dτ

∣∣∣∣−α̇1(τ) ṙ1(τ)−
[v1,θ(τ)]2 sinα1(τ)
R+ r1(τ) cosα1(τ)

+ Eα(X(τ), τ)

+ α̇2(τ) ṙ2(τ) +
[v2,θ(τ)]2 sinα2(τ)
R+ r2(τ) cosα2(τ)

− Eα(Y (τ), τ)
∣∣∣∣ ≤

1
2C3

P 2 |t− t0|2

2
≤ 1

4C3
P 2|t− t0|∆ ≤

1
4
P γ |t− t0|.

Hence,

|Γ(t)| ≥ |Γ̄(t)| − P γ

4
|t− t0|. (3.58)

Now we have:

|Γ̄(t)|2 = |Γ(t0)|2 + 2Γ(t0)Γ̇(t0)(t− t0) + |Γ̇(t0)|2|t− t0|2.
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We observe that Γ(t0)Γ̇(t0)(t − t0) ≥ 0. Indeed, if t0 ∈ (t′, t′ + ∆) then
Γ̇(t0) = 0 while if t0 = t′ or t0 = t′ + ∆ the product Γ(t0)Γ̇(t0)(t − t0) ≥ 0.
Hence

|Γ̄(t)|2 ≥ |Γ̇(t0)|2|t− t0|2.

By Lemma 3 (adapted to this context with a factor h ≥ 1), since t0 ∈
[t′, t′ + ∆] it is

|Γ̇(t0)| ≥ hP
γ′

2
,

hence

|Γ̄(t)| ≥ hP
γ′

2
|t− t0|,

and since γ′ > γ, by (3.58) we get

|Γ(t)| ≥ hP
γ′

4
|t− t0|. (3.59)

We finally achieve Lemma 5 noting that we can bound∣∣∣∣∫ t

t′
[v1,α(s)− v2,α(s)] ds+ λ(t′)

∣∣∣∣ ≤ 2|X(t)− Y (t)|. (3.60)

In fact the left hand side of (3.60) is the separation along the α-coordinate
(length of arc, if it is identically r1 ≡ r2), and in the worst case (r1 ≡ r2),
since we are looking at small lengths, the double of the chord is greater than
the length of the corresponding arc, for angles smaller than π.
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