
 

Experimental Investigation of Superdiffusion via Coherent Disordered Quantum Walks

Andrea Geraldi ,1,* Alessandro Laneve,1 Luis Diego Bonavena,1 Linda Sansoni,1 Jose Ferraz ,2

Andrea Fratalocchi,3 Fabio Sciarrino,1 Álvaro Cuevas,1,4 and Paolo Mataloni1
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Many disordered systems show a superdiffusive dynamics, intermediate between the diffusive one,
typical of a classical stochastic process, and the so-called ballistic behavior, which is generally expected for
the spreading in a quantum process. We have experimentally investigated the superdiffusive behavior of a
quantum walk, whose dynamics can be related to energy transport phenomena, with a resolution which is
high enough to clearly distinguish between different disorder regimes. By our experimental setup, the
region between ballistic and diffusive spreading can be effectively scanned by suitably setting few degrees
of freedom and without applying any decoherence to the quantum walk evolution.
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Introduction.—The study of energy transport phenomena
in heterogeneous systems, like synthetic or biological media,
ranging from tissues to computation nodes, enlightens the
role of quantum coherence [1,2] which is believed to
enhance the rate of these processes [3,4]. In such conditions,
a superdiffusive dynamic settles in the transport or propa-
gation processes. This is the case of heat excitation transport
in particular condensed matter systems such as one dimen-
sional (1D) metal lattices, described by the Luttinger liquids
theory [5]. Studies performed in this context have shown a
violation in the dichotomy between ballistic and diffusive
transport regimes. There are several cases in which super-
diffusion occurs, for example in classical one-dimensional
systems [6], when both disorder and nonlinear effects are
present [7], and even in quantum systems experiencing
many-body localization phase transitions [8].
Quantum walks (QWs) have long been found to effi-

ciently describe coherent energy transport [3,9]. By suit-
ably introducing disorder in a QW, it is possible to modify
its spreading behavior. A paradigmatic example is given by
Anderson localization [10], originally formulated for con-
densed matter systems, and extensively demonstrated in the
case of all-optical systems [11–13]. The theoretical and
experimental studies carried out on this topic have covered
a wide range of phenomena, including “hypertransport” of
light [14,15], and disordered QWs preserving the time
dependence of spreading [16], and decoherence effects
determining the transition from quantum to classical
random walks (CRWs) [15,17]. In these studies the role
of disorder source was played by decoherence or various
types of unitary evolutions. The present work deals with the

description of the transition between quantum and classical
regimes, while the coherence of the evolution is preserved.
This has been done experimentally by implementing
proper configurations of disorder in a discrete quantum
walk (QW).
Theoretical model.—The theoretical description of a

discrete QW is based on a walker, a coin and the operators
acting on them [18,19]. In a 1D QW, the walker is given by
a quantum particle which is in a superposition of the
position states, described by the set of states fjiipg, each of
them corresponding to a particular site of the line. The coin
is represented by any internal binary degree of freedom
of the particle, given by the basis kets fj0ic; j1icg.
The evolution of the quantum particle is controlled by
the coin operator Ĉ, acting on the coin state, and by the shift
operator Ŝ, which moves the walker according to the coin
state. The evolution of the walker is then described by the
repeated action of coin and shift operators on the general
state of the particle jψi ¼ P

i;j Pi;jjiip ⊗ jjic, jψ 0i ¼ Ŝ ·

ðÎ ⊗ ĈÞjψi where the coin operator is expressed as Ĉ¼
ð1= ffiffiffi

2
p Þðj0ich0jcþj0ich1jcþj1ich0jc− j1ich1jcÞ while the

shift operator reads Ŝ ¼ P
i ji − 1iphijp ⊗ j0ich0jcþ

jiþ 1iphijp ⊗ j1ich1jc. These equations describe the evo-
lution of a walker in a completely ordered QW, in which the
coin operator is uniform both in space and time. Other
structures of the coin operator, based on suitable maps of
the QW phases, are possible [20].
Here, by randomly shifting the phase difference imposed

by the coin operator, we are able to simulate the super-
diffusive behavior of a quantum walker and to investigate
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the transition from the ballistic regime of an ordered QW to
the diffusive one of a CRW.
The operator describing the phase shift at a certain step n

of the evolution can be written as P̂n ¼
P

i jiiphijp ⊗

ðeiϕi
j0iðnÞj0ich0jc þ eiϕ

i
j1iðnÞj1ich1jcÞ, where ϕi

j0iðnÞðϕi
j1iðnÞÞ

corresponds to the phase shift imposed by the coin operator
in the site i to the state j0icðj1icÞ. We define the degree of
disorder p as the percentage of random phases that the
walker experiences during the evolution. As a consequence,
the case p ¼ 0 corresponds to a standard ordered QW
while for p ¼ 1 the QW becomes completely disordered
(case of a CRW). We call this kind of quantum walk p-
diluted QW, because of the dilution of a given degree of
disorder p during the QW evolution. With no further
assumptions this model describes a completely space-
and time-uncorrelated disorder.
We limit our analysis to the case in which the phases

ϕi
j0iðnÞ and ϕi

j1iðnÞ can only be 0 or π. We are interested to

study how the quantum to classical transition depends on
the parameter p. For a given value of p a number of
different phase maps can be realized, in principle, corre-
sponding to different evolutions of the probability distri-
bution. Thus, the values of the relevant parameters
identifying a given value of p are obtained by averaging
over many different phase map configurations character-
ized by the same degree of disorder.
A useful quantity in the study of the single particle

evolution is the variance of the position probability dis-
tribution, defined as

Var1ðnÞ ¼
Xn
i¼−n

i2PiðnÞ −
�Xn
i¼−n

iPiðnÞ
�
2

; ð1Þ

where PiðnÞ is the probability to find the walker on site i at
step n. We simulated the behavior of the variance for
different values of p up to 20 steps, in the range p ¼ 0 to 1,
with a progressive increment of 0.01. For each value of p
we simulated the evolution of 1000 different phase maps,
then we computed the mean value of the variance. In order
to show how good this model of disorder is to study the
superdiffusion, we computed the standard deviation of the
variance distribution for each value of p. Results of
simulation for 7 and 20 steps are shown in Fig. 1. In both
cases the mean value of variance decreases with increasing
of p, since a constant value around p ∼ 0.40 is approached
for both 7 and 20 steps. This indicates that the output
distribution rapidly merges in a classical one for p > 0.40,
while a genuine superdiffusive behavior occurs between
0 < p ≤ 0.20. Focusing on this region we observe that, for
a given value of Var1ðpÞ, the uncertainty on the corre-
sponding value of p decreases with increasing of n.
A further useful quantity is the similarity which is a

measure of how two distributions G and G0 are similar:
SðG;G0Þ ¼ ½ðPi

ffiffiffiffiffiffiffiffiffiffi
GiG0

i

p Þ2=Pi Gi
P

j G
0
j�. In the graph of

Fig. 2 we show the behavior of the similarity between the
average distribution for a given value of disorder p and the
ordered or disordered distribution at varying of p (respec-
tively, solid and dashed lines). The similarity with the
ordered (disordered) distribution decreases (increases) with
p since the higher the disorder the more destructive
interference tend to reproduce the disordered distribution.

FIG. 1. Simulation of the variance behavior for 7 and 20 steps
as a function of p. The average values of the variance have been
calculated on a sample of 1000 different phase maps for each
value of p. In the vertical axes Var1ðpÞ for 7 and 20 steps have
been normalized to their maximum values. Error bands corre-
spond to the standard deviation of the variance distributions.

FIG. 2. Computational simulations for similarity between
ordered (solid line) and disordered (dashed line) distributions
[respectively, Gðp ¼ 0Þ≡ Gð0Þ and Gðp ¼ 1Þ≡ Gð1Þ] and the
average distribution for a given value p as a function of p. Here,
Sð0; pÞ ½Sð1; pÞ� stands for S½Gð0Þ; GðpÞ� fS½Gð1Þ; GðpÞ�g. In
the inset a zoom on the intersection region is reported. The
crossing point shifts towards lower values of p when the step
number increases. Different colors stand for different step
numbers of the evolution.
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In the inset, the crossing points between the two quantities
identify the transition between quantum and classical
regimes for a given number of step n. It is worth noting
that the transition point decreases with n. This continuous
transition occurs without loosing completely the quantum
features of the evolution and can be interpreted as an
evidence of the fact that the QW modifies its behavior
because of the total amount of disorder experienced along
its spreading.
Experimental implementation.—A 1D quantum walk can

be realized by a network of beam splitters (BSs), each of
them representing a particular site of the line and acting
both as Ĉ and Ŝ operators. Several implementations of
optical QW have been realized, based on bulk optics
schemes, bulk-fiber circuits and femtosecond laser written
photonic circuits [13,21–24]. The bulk optic setup used in
the present work consists of two displaced multipass
Sagnac interferometers (SIs) linked by a common beam
splitter (BS1 in Fig. 3).
Beam displacement is obtained by translating one mirror

of SI1 along the x direction. This particular configuration
allows us to create in the x-y horizontal plane of Fig. 3 a
(quasi-)infinite loop, which is equivalent to a chain of
phase-stable and independently tunable Mach-Zehnder
interferometers [25]. The entire BS network necessary
for a QW is realized by exploiting also the z direction.
On this purpose, suitable beam displacers (BDs) are
inserted along clockwise directions in SI1 and counter-
clockwise ones in SI2 allowing us to increase the number
of x-y planes on which the photons can travel [see
Supplemental Material [26] (SM)]. Phases are independ-
ently addressed in each unit mesh of the QW by using
rotating glass plates (RP). The output modes of each step
can be extracted for measurement by a set of moving

mirrors (MMs), intersecting and extracting from the setup
only the modes at the selected step Nj, without intersecting
the steps N < Nj. The extracted radiation is then coupled
on a single mode fiber and measured (for further details on
the setup see [25] and [27]). A slight modification of the
setup allows us to inject two distinguishable or indistin-
guishable photons through the two different input ports of
BS1. After the extraction of the modes, a further BS (BS2)
allows us to separate photons traveling along the same
mode. Adding a further coupler intercepting the extracted
modes, coincidences between all possible modes at a
given step can be measured and the whole two photon
probability distribution can be experimentally recon-
structed (see SM [26] for further details).
Experimental results.—It is well known that in a super-

diffusive process the spread of the walker position follows a
power law, expressed in our case by Var1ðnÞ ∝ nβ, with n
corresponding to the number of steps and 1 < β < 2 [28].
Here, the case β ¼ 2 (β ¼ 1) is typical of a QW (CRW). We
experimentally implemented five different values of p,
namely 0,0.05,0.10,0.20, and 1. For each value of p > 0we
selected three different phase maps and experimentally
reconstructed the output probability distribution for each
step of the evolution. In Fig. 4 the average variance of the
walker is reported as a function of the step number n.
The experimental setup allows us to start the QW only

from the central position of the 1D lattice and by using

FIG. 3. Sketch of the setup used in the experiment. BS,
beam splitter; BD, beam displacer; RP, rotating glass plates;
MM, moving mirror; SMF, single mode fiber. Each side of
the square SI is 50 cm long. Blue and red beams circulate in
opposite directions and impinge on the BS1 in the same
horizontal point but at different heights along the z direction,
due to the effect of BD.

FIG. 4. Experimental values of the variance as a function of the
number of steps for different values of p (0,0.05,0.1,0.2,1). Dots
correspond to experimental data. For a given value of p, the
dashed line shows the expected average behavior (Exp) of
variance for the three selected phase maps. They were computed
by taking into account the actual optical parameters of the setup.
Dotted lines show the ideal behavior (I) of a perfectly symmetric
BS1 in the two limit cases, namely the ordered and disordered
QW. Note that, up to the third step, the variance is not affected by
the phase thus the red and blue dotted lines are coincident; the
same effect occurs for all the dashed lines.
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any of the two coin modes (input ports of BS1).
Accordingly, we studied the evolution for the input state
jψi ¼ j0ip ⊗ j0ic. Experimental data are in excellent
agreement with the theoretical prediction for the three
chosen phase maps (dashed lines). The whole super-
diffusive region, namely the one between the diffusive
(red lines) and the ballistic (blue lines) behaviors, can be
exploited by varying the values of p. A small amount of
phase instability was present due to the large size of the
apparatus. This effect has been included in the compu-
tation of errors bars. We also show in Fig. 4 the expected
behaviors simulated by considering ideal optical elements
for the two limit cases of ordered and completely
disordered QW (respectively, blue and red dotted lines).
They differ from the experimental data because of the
nonperfectly symmetric behavior of BS1 (see SM for
details [26]) [27].
The actual superdiffusive behavior of the experimental

evolutions is shown in Table I, where we report the values
of β obtained by fitting the experimental data (βfit) and
comparing them with the values obtained through theo-
retical simulations (βtheo). The observed discrepancies can
be explained as follows.
(i) The βtheo values have been obtained without consid-

ering the experimental components imperfections, e.g., BS
asymmetry and losses.
(ii) Numerical simulations for p > 0 have been obtained,

as said, by averaging over 1000 disorder configurations,
while three phase maps were used in the experiment. Thus,
we expect the simulation results to be far more accurate,
while the experimental ones are more sensitive to stochastic
deviations.
It is worth noting that, for the ordered case, the values of

βtheo and βfit are lower than the expected value of 2. Indeed
the quadratic growth is an asymptotic behavior, expected to
be achieved for long evolution times. We can conclude that
a superdiffusive behavior, uniquely identified by the con-
dition 1 < β < 2, can be simulated using p-diluted QWs,
making them a useful tool for further investigations on
diffusion processes. We also investigated the case of
indistinguishable photons entering the QW through the
two BS1’s input ports (see Fig. 3). The variance of the
mean position of two indistinguishable walkers, whose
expression is

Var2ðnÞ ¼
Xn
i;j¼−n

�
iþ j
2

�
2

Pi;jðnÞ −
� Xn

i;j¼−n

iþ j
2

Pi;jðnÞ
�

2

ð2Þ

is given in Fig. 5 for p ¼ 0.10. In this case the number of
steps is limited to n ¼ 5 mostly for two reasons: the losses
present in the apparatus, limiting the number of detectable
coincidences, and the growth of the number of modes on
which the photons can travel. Experimental data are in very
good agreement with theoretical simulation taking into
account the real setup parameters. Simulations of the
behavior of Var2 in the ordered and disordered case are
also reported. Error bars are larger than the ones in the
single photon case due to the fact that in this case a little
variation of the phase must be considered twice, because it
is experienced by both photons (see SM [26] for further
details on the two photon case).
Conclusion.—We have experimentally investigated the

superdiffusion process, intermediate between the quantum
and classical transport regimes, by introducing tunable
disorder, through suitable phase map configurations, in a
discrete QW. The intrinsically stable bulk optic system used
in the experiment allows us to operate with any kind of
phase map. By increasing the number of steps exploited by
the optical setup, the subdiffusive regime, localized
between the diffusive and the localized one, can also be
experimentally explored. The p-diluted QW approach
described in this work makes possible to simulate a
decoherent process without altering the coherent evolution

TABLE I. Expected (βtheo) and experimental (βfit) values of the
exponent β for different values of p. The values between 1 and 2
for p > 0 confirm the superdiffusive behavior of the evolution.

p βtheo βfit

0 1.69 1.64� 0.10
0.05 1.540 1.433� 0.067
0.10 1.414 1.277� 0.061
0.20 1.198 1.160� 0.060
1 0.921 0.961� 0.022

FIG. 5. Experimental results for the two photon QW. Dots
represent experimental data, dashed lines indicate the expected
behavior obtained by taking into account the real parameters of
the setup (Exp), dotted lines correspond to the limit cases of the
ideal ordered and disordered two photon QW (I). Note that, up to
the third step, the variance is not affected by the phase thus the red
and blue dotted lines are coincident.
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of the walker. We are currently investigating on the
relationship existing between the two models.
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