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Chapter 1

Introduction

In the last two decades data collection, aided by an increased computational capability, has

considerably increased both dimension and structure of the datasets; given this, statisticians

and economists may today work with time series of remarkable dimension which may come

from different sources. Dealing with such datasets may not be so easy and requires the

development of ad hoc mathematical models.

One of the targets that we need to achieve designing new models is to contrast parameters

proliferation and facilitate models reduction. In order to do that, factor models represent

an effective tool since they are able to synthesise information held in huge datasets in a few

factors.

Among those methods, Dynamic Factor Models (DFM) represent one of the newest tech-

niques in big data management. In particular, using DFM, it is possible to derive a represen-

tation for an infinite panel of time series which is the analogous of the Wold representation

for finite dimensional ones. This is the generalised dynamic factor representation and, be-

tween its properties, has the one of keeping the time series structure of the dataset thus
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Chapter 1. Introduction

generally is finalised to do forecasting or structural analysis, where the object of interest are

the impulse response functions.

Dynamic Factor Models are one of the possible approaches created to extract statistics

out of large datasets, another interesting one surely is the utilisation of Bayesian methods

while frequentist alternatives are extensively used in machine learning.

When we talk of big data we generally refer to situations in which the number of ex-

planatory variables is large compared to the sample size.

When in this situation we could say that the researcher is in a position in which he/she is

trying to estimate too much relatively to the information in her possess. This is not unfea-

sible but will typically lead to a very imprecise inference while it is not even doable, at least

with conventional methods, when the number of explanatory variables exceeds the number

of observations and when a considerable number of these observations are equal to zero. In

mathematics a so composed matrix is said to be sparse.

I am not going in the details of sparsity here, for what interests us we only need to

underline how sparsity requests specific tools to be approached; such tools may be statistical

models in which only a relatively small number of parameters (or predictors) would play

an crucial role in the description of the whole dataset. Machine learning models operate

according to this logic and lasso is a clear example of that.

Lasso is a frequentist model which basically rely on a penalisation algorithm in order to
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Chapter 1. Introduction

regularise ("shrink") coefficients, making it possible to deal with high-dimensional data and

to avoid over-fitting. By contrast this, such as other machine learning techniques, have some

considerable drawbacks: first it is not possible to make any choice over the variables con-

sidered relevant for the model, second the selection procedure depends by some penalisation

parameter which need to be somehow imposed, as a last point it must be noticed how such

selection process would determine, one way or another, some loss of information.

On the other hand Bayesian statistics provided alternative models to handle big data

inconvenient. The intuition that is behind the application of those methods in high dimen-

sional data context is the following: dealing with a big amount of data the researcher may

incur in over-parametrization/over-fitting problems, in such situation the application of a

prior distribution to update the observed data would work out to restrict the parametric

space.

Bayesian methods have been demonstrated effective both in case of models with many ex-

planatory variables and in models with many dependent variables (as in the VAR case).

Analytically speaking the posterior distribution will be obtained by updating observed data

with prior information over the parameter of interest, while controlling the prior variance

will give to researcher some control over the degree of shrinkage or, in other words, will put

some numeric value over the degree of confidence that the researcher has about his beliefs.

If on one hand the Bayesian approach has demonstrated to have some interesting aspects

regarding inference and forecasting performances, on the other hand such approach, and thus

results, is conditional to the accuracy of the prior choice, plus this technique often imply the

utilisation of MCMC processes and other computationally demanding algorithms.
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Chapter 1. Introduction

For an extensive survey over Bayesian econometrics the reader can look at the scientific

production by Mike West and especially, for what concerns the use of Bayesian analysis as

shrinkage method, by Koop and Korobilis (2010).

Since what Dynamic Factor Model return to us is a time series, it is totally admissible to

consider the application of Bayesian techniques in this environment. Several authors have

studied such topic, for a complete excursus the reader can be referred to, among all, Otrok

and Whiteman (1998) and Del Negro and Otrok, passing through Mike West who centred

great part of his scientific production over theoretical and empirical aspects of Bayesian

econometrics.

Dynamic Factor Models estimation developed faster and faster since the pioneering work

of Stock and Watson (1989), in which they used factor analysis to compute coincident indica-

tors for the business cycle and financial variables. Since factor models are used to consistently

estimate common and idiosyncratic components of macroeconomic variables, DFM has been

used to do predictions (see Stock and Watson (2002)) or to compute VARs and impulse

response functions; the study of the link between factor modes and structural VARs has

been deepened by Stock and Watson (2005b) and Forni et al. (2009).

The general idea of DFM is to reduce a large panel of data in two mutually orthogonal

components: the common one, which is strongly correlated with the rest of the panel, and

an idiosyncratic one, which is only mildly cross-correlated.
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Chapter 1. Introduction

All the papers we refer here make use of non-parametric techniques in which factors are

estimated through a procedure that calculate eigenvalues and eigenvectors from a spectral

density matrix, hence essentially realising an approach that is a dynamic version of the prin-

cipal component one.

Forni et al. (2005) implemented a one-sided estimation of the generalised dynamic factor

models in order to improve forecasting performances, the infinite dimensionality has been

introduced in the papers "The Generalized Dynamic Factor Model with infinite dimensional

factor space" by Forni et al. (2015, 2017), while "Generalised Dynamic Factor Models and

Volatilities" by Barigozzi and Hallin (2016, 2017) deepened the study of the volatility gen-

erated by a DFM. This last paper, in particular, applies general autoregressive conditional

heteroscedastic (GARCH) processes in DFM environment and opens the way to new re-

flections about volatility modelling nevertheless, by now, not many researches had been

conducted studies on this topic.

In consideration of this lack, the purpose of my work is to delve into the study of the

idiosyncratic factors generated by a DFM, deepening, in particular, the theme of stochastic

volatility.

With the expression "Stochastic Volatility" (SV hereafter) we refer to the relaxation of

the homoscedasticity assumption over the variance-covariance matrix.

More in detail, while in (G)ARCH models the conditional variance is assumed to be a

deterministic function of past values, in the SV models the volatility is modelled according

to some aleatory process.
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Chapter 1. Introduction

In formulas, the system which describes the ARCH process is the following:


xt = a0 + a1xt−1 + εt

σ2
t = α0 + α1ε

2
t−1 + vt

(1.1)

where vt = ε2t − σ2
t .

Te generalisation of this model ("Generalised-ARCH") impose the introduction of other

variables useful to improve the performances of the model, anyway not changing the sub-

stance of the method.

On the other hand stochastic volatility, in its base version, is grounded over the following

system:


yt = µ+ ht + εt

ht = φht−1 + ηt

(1.2)

where ε and η represent two aleatory processes which distribution should opportunely be

defined. For a more complete and accurate dissertation of this theme the reader may see

Asai et al. (2006) and Chib et al. (2006).

In order to identify the parameters and aleatory distributions, applications of Bayes the-

orem was considered: a first attempt to investigate this topic was made by Uhlig (1997)

and some other followed, anyway no much literature developed from this seminar paper.

Dropping Bayesian techniques, the theme of stochastic volatility is well known in literature,
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Chapter 1. Introduction

especially in the field of finance. Some authors recently proposed a formulation that applies

SV to dynamic factor models; relatively to this topic the most interesting articles are: Koop-

manp et al., Gorodnichenko and Ng (2017) and Meng.

While Bayesian methods was applied to Stochastic Volatility and dynamic factor models

separately, nobody yet seems to have built a model that combine both approaches to deep-

ening the study of volatility. This will be one of the original element proposed in my work

while the adoption of Bayesian non-parametric techniques in this combined environment is,

at the best of my knowledge, another element of innovation in the literature, possibly offering

a new ground for future researches.
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Chapter 2

Generalised Dynamic Factor Model

Volatility is an important issue in economics and financial analysis as higher-order shocks,

especially second-order volatility shocks, can be identified as an important source of business

cycles. Despite that, the interaction mechanism between levels and volatility is not fully un-

derstood yet. Moreover, it is well known that volatility is a manifestation of uncertainty and

that level variables are affected by realised and expected volatility shocks asymmetrically; it

is so central, in order to improve estimations, to separate levels and volatility and to allow

for a non-linear interaction of them.

Recently, several authors investigated the way in which levels and volatility interact in

a dynamic factor models framework, among all must be cited Koopmanp et al., which uses

parametric techniques for DFM estimation, and Gorodnichenko and Ng (2017), which use

non-parametric ones but centring their focus to VAR analysis of macroeconomic data.

Baseline models for the nonparametric analysis of big-data can be recognised in Forni

et al. (2000), where they operate DFM to identify VARs and compute impulse response
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Chapter 2. Generalised Dynamic Factor Model

functions, and in Forni et al. (2003, 2005) in which they estimate the move from a two-sided

to a one-sided estimation of DFM in order to do forecasting. In 2015 an infinite-dimensional

representation have been proposed by Forni et al. (2015) - FHLZ (2015) hereafter - and, on

this base, Barigozzi and Hallin (2016, 2017) worked on volatilities finalising their study ap-

plying Generalised Autoregressive Stochastic Heteroskedastic (GARCH) models and doing

forecasting.

Our approach shares with their the non-parametric and model free method to decom-

pose data in common and idiosyncratic component, nevertheless my focus is in deepening

the study of the volatility components allowing for a time-varying behaviour of their dy-

namics. In particular the representation we work on is one-sided and start from a panel

Yit of observable stationary stochastic processes, with mean 0 and finite variance, in which

we assume that such variables belong to an Hilbert space in L2 for some probability space

(Ω, F, P ). The panel hence is composed by n×T levels of finite realisation and so Y will be:

Y = {Yit | i ∈, t ∈ Z}, where t stands for time and i is the cross-sectional index.

For all n ∈ N we assume that the spectral measure on Yn is absolutely continuous respect

to the Lebesgue measure on [−π, π] , such that the spectral density matrix is ΣY ;n(θ) that

is Hermitian, non-negative definite and has therefore non-negative real eigenvalues for all

θ ∈ [−π, π] . Such assumptions are necessary and sufficient to guarantee a dynamic factor

representation.

We can hence state that Y admits a dynamic factor representation, with q factors, if Yit

decomposes into a "common" component (Xit) and an "idiosyncratic" component (Zit) such

9



Chapter 2. Generalised Dynamic Factor Model

that:

Yit = Xit + Zit =

q∑
k=1

bik(L)ukt + Zit (2.1)

Where ukt is a q-dimensional orthonormal process, which is withe noise with mean zero,

and Zit is zero-mean second order stationary process whose Z ′s are weakly cross-correlated,

while the two processes are mutually orthogonal at any lead and lag.

Other element of (6.48) is bik(L) which is a one-sided filter, where L denote the lag

operator. This filter is defined to be square-summable
∑∞

m=1 b
2
ikm < ∞ for all i ∈ N

and k = 1 . . . q. The one-sided filters, as demonstrated by Forni et al. (2017), can be

obtained without the finite-dimensionality assumption, by adding the condition under which

the common components must have rational spectral density, that is, each filter bif (L) in

(6.48) is a ratio of polynomials in L. Forni et al. (2015, 2017) also prove that for generic

values of parameters cif,k and dif,k, Xit has the fundamental representation:

Xit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt (2.2)

in which ut is fundamental for Xit.

In order to ease the reading, from now on I will light the notation omitting the cross-

section index i.

For each element of the (6.48) a cross-covariance matrices, for example between Yt and

Yt−k, can be estimated; such matrices may be summarised in the form: ΓY ;k(θ) = E[YtY
′

t−k]

10



Chapter 2. Generalised Dynamic Factor Model

The elements of the (6.48) may be rearranged in terms of spectral density and covariance

matrices, this representation is purely illustrative, nevertheless the admissibility of such rep-

resentation is essential for estimation.

ΓY ;k(θ) = ΓX;k(θ) + ΓZ;k(θ) (2.3)

ΣY (θ) = ΣX(θ) + ΣZ(θ) (2.4)

Proceeding in order, it must be reminded that the decomposition of the panel in common

and idiosyncratic components is the baseline concept in Dynamic Factor Models literature;

while most of the representations are based on the assumption that the space spanned by

the stochastic variable Xit - for t given and i ∈ N - is finite-dimensional, Forni et al. (2015)

demonstrate that such an assumption is extremely restrictive and potentially harmful so, as

they do in their paper, I relax this assumption hence founding the estimation on a potentially

infinite number of principal components.

The results obtained by Forni et al. (2015, 2017) rely on the singularity of the vector

Xnt, where singularity is obtained when q is small compared to n. The q factors are the

qth dynamic eigenvectors of the spectral density matrix ΣY ;n(θ): such factors are identified

according to the method proposed by Hallin and Liška (2007) and are assumed to diverge as

n→∞, while the (q + 1)th one is bounded. Hallin and Lippi (2013) provide the conditions

under which this assumption holds for q <∞.

11



Chapter 2. Generalised Dynamic Factor Model

We can thus say that it exists a representation that may be written as a block-diagonal

matrix of one-sided filters An(L) of dimension m(q + 1)×m(q + 1)

An(L) =



A1(L) 0 . . . 0 . . .

0 A2(L) . . . 0 . . .

...
... . . . ...

0 0 . . . Am(L)

...
... . . .


(2.5)

The (q + 1) × (q + 1) blocks of Ai(L) are so that a vector autoregressive representation

can be developed, where the VAR operators Iq+1 − Ai(L) are square summable and fun-

damental. Such VAR representation of Yn is allowed by the presence of a full-rank n × q

matrix of constants Hn where the full-rank condition is, as said, sufficient to guarantee the

fundamentalness.

The VARMA representation will thus have the form:

(I − A(L))Yt = Hut + (I − A(L))Zt = Hut + Ẑt (2.6)

where Ẑt is, by definition, equal to (I − A(L))Zt and idiosyncratic. The equation (6.53)

shows well the filtering role of A(L) matrix, while the common shocks ut are loaded via H

creating what we will call the level-common residuals et.

We have hence decomposed Y in two different components orthogonal to each other, and,

as Barigozzi and Hallin (2016) - BH (2016) hereafter - show in their paper, such components

may generate volatilities whose pattern may be very different from each other and from the

12



2.1. The level-common component

one they show in levels. Over that, is important to notice that there is no reason to think

each component to be affected by the volatility generated from it only. Saying differently:

volatility generated from the common component may influence both common and idiosyn-

cratic ones. The same is true for what concerns the volatility generated by the idiosyncratic

components.

I proceed with estimation following steps in accordance to the standard DFM literature

as described earlier. Running the Hallin-Liška (2007) information criterion we can get indica-

tion about the number of common shocks associated to the number of diverging eigenvalues

of the spectral density matrix.

Barigozzi and Hallin, in the above cited papers published in 2016 and 2017, worked with

a dataset in which N = 90; I, on the other hand, have the availability of a bigger dataset

in which the number of firms is five times as large as their. Despite this fact the results of

Hallin-Liška criterion returns me the same number of common shock (qT = 1), confirming

- as stated by BH - most of the empirical results on financial returns and asset pricing theory.

2.1 The level-common component

In order to estimate Xt we start by estimating the spectral density of Yt by means of a

lag-window estimator. The spectral density matrix is identified by the formula:

Σ̂Y (θ) =
1

2π

T−1∑
k=−T+1

eikθK

(
k

BT

)
Γ̂Y k (2.7)

in which eikθ is the autocovariance generating function, K is a kernel function and BT is a

13



2.1. The level-common component

bandwidth parameter. With the symbol Γ̂Y k we define the kth lag estimated autocovariance

and it is equal to 1
T

∑T
t=|k|+1 TtY

′

t−|k|.

Once estimated the spectral density matrix we determine the number of q level-common

shocks. In order to do that we use the Hallin and Liška (2007) information criterion, which

is a data-driven method for the identification.

The so treated spectral density matrix will be decomposed as follows:

Σ̂X(θ) =

qT∑
k=1

Π̂Y (θ)Λ̂Y (θ)Π̂∗Y (θ) (2.8)

where Λ̂Y (θ) is the q× q matrix which dimensions are determined by the first q eigenval-

ues above calculated. Π̂∗Y (θ) is the n× q matrix with the corresponding eigenvectors on the

column, where the asterisk denotes that the matrix in transposed, complex and conjugate.

The estimate of the covariance matrix may be obtained by Fourier transformation of

Σ̂X(θ). As known the Fourier transformation is used to turn a function of time into its

constituent frequencies and it is invertible, meaning that we can conversely move from time

to frequency domain; the formulas for those conversions are:

Γ̂X =

∫ +π

−π
eikθΣ̂X(θ)dθ (2.9)

Γ̂X =
π

BT

∑
|h|≤BT

eikθhΣ̂X(θh) (2.10)

Since we define n = m(q+ 1) for some m ∈ N , Γ̂X will result as a block-diagonal matrix

14



2.2. The level-idiosyncratic component

of dimension m(q + 1) ×m(q + 1). The estimation of each block enable us to estimate the

coefficients of a VAR of dimension (q + 1) that will be the estimator of the autoregressive

filter appearing in (6.52), which yields to the vector autoregressive representation

Ŷ = (I − Â(L))Y (2.11)

Projecting the Ŷt onto their q largest principal component provide an estimate of the

level-common innovation process, formally eit = {eit | i = (Hnut)i | i ∈ N, t ∈ Z}, that is:

ê = Ĥû. Ĥ is the estimator of the loadings and this may be disentangled from û imposing

the identification constraint ĤĤ ′ = Iq̂.

2.2 The level-idiosyncratic component

The analysis of volatility, typically, is based on the autocovariance structure of some non-

linear transform of innovation processes that (6.49) does not readily offers. Forni and Lippi

(2010), Forni et al. (2015) provided the frame used above to analyse the volatility coming

from the common component, in a similar fashion Barigozzi and Hallin (2016, 2017) centre

their paper on the componentwise residuals coming from the idiosyncratic part. In particu-

lar BH (2016) designed a two-step procedure that firstly decompose (I − A(L))Yt in êt and

(I − A(L))Zt in v̂t, this last one named as level-idiosyncratic residuals, then they proposed

two approaches aimed to compute predictions over the level-common and level-idiosyncratic

elements and to the application of GARCH techniques.

The estimation of the idiosyncratic element follows the level-common one which is, since

15



2.2. The level-idiosyncratic component

Σ̂Y (θ) and Σ̂X(θ) are our estimated spectral density matrix, respectively, for the data and

for the common component, it imply that the one for the idiosyncratic component may be

obtained as:

Σ̂Z(θ) = Σ̂Y (θ)− Σ̂X(θ) (2.12)

Given the autoregressive formulation (6.58), the estimator of Ẑ will be:

Ẑ = (I − Â(L))Ŷ − ê (2.13)

in which v̂t is formally defined as: vit = {υit | i | i ∈ N, t ∈ Z}. Reminding that

Z̃t = (I − A(L))Zt, the process υt thus become:

υt = (1− ci(L))Ẑt (2.14)

The representation (6.61) make use of the AR filters c(L) which, as before, are one-sided,

square summable and such that every root lies outside the unit circle (c(z) = 0). Both id-

iosyncratic processes are zero-mean second-order white noise and not mutually orthogonal,

meaning that at this level some mild cross-correlation among them still remains.

Barigozzi and Hallin (2016, 2017) analyse both eit and υit via general dynamic factor

models, this mean that, as for the baseline representation (6.48), similar assumptions must

take place: in particular the existence of a second-order moment for all i ∈ N as well as

spectral density continuous respect to the Lebesgue measure over [−π, π]. In addition, as

noted by Engle and Marcucci (2006), in order to ease computations, some transformation

must be applied: logarithmic proxy over square residuals would allow to analyse the panels

16



2.2. The level-idiosyncratic component

via an additive factor models instead of imposing some positivity constraint at the moment

of model estimation.

sit = log(e2
it) (2.15)

wit = log(υ2
it) (2.16)

In a similar manner as before, those matrices rely on the assumption of the existence

of the second-order moment [E(sit)
2, E(wit)

2] for all i ∈ N and for all n ∈ N and over the

assumption of a spectral density absolutely continuous with respect to the Lebesgue measure

over [−π, π].

Denoting with ˜ the difference between the sit, wit and their expectation, the generalised

dynamic factor model decomposition will return the following results:

s̃it = χs,it + ξs,it =

q∑
k=1

bs,ik(L)εs,kt + ξs,it (2.17)

w̃it = χw,it + ξw,it =

q∑
k=1

bw,ik(L)εw,kt + ξw,it (2.18)

In this case I will assume the existence of qs ∈ N such that the qths eigenvalue of the

spectral matrix diverges as n→∞, while the qths+1 is bounded.

Analysing the two elements s̃it and w̃it separately would imply some important draw-

17



2.2. The level-idiosyncratic component

backs: first of all must be noted that, even though ξs,it and ξw,it are orthogonal respect to

their common components (respectively to χs,it and χw,it), nothing suggests that they may

be orthogonal to each other or respect to any other component of the original panel Yit. This

lead us to the conclusion that s̃it and w̃it may yield some market driven component and,

more important, that treating the two processes separately some loss of information may

occur.

Hallin and Liška (2011), in order to deal with it, proposed to aggregate the two panels

building a bigger process η = {ηit | i ∈, t ∈ Z} which will have block structure and will live

on the same assumption as before for what concerns spectral representations and eigenvalues

existence.


s̃it = χsη,it + ξsη,it =

∑Q
k=1 d

s
η,ik(L)εsη,kt + ξsη,it

w̃it = χwη,it + ξwη,it =
∑Q

k=1 d
w
η,ik(L)εsη,kt + ξwη,it

(2.19)

where Q ∈ N and such that max(qs, qw) ≤ Q ≤ qs + qw.

In the (2.19) is clearly visible how all the elements, except for the strongly idiosyncratic ones

ξη,it are driven by market volatility shocks ε = {εt = (εit, . . . , εQt)
′ | t ∈ Z}. From here ap-

plying kernel-smoothing techniques we can identify the level-common and level-idiosyncratic

volatilities, results of that will be provided in the dedicated paragraph.
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2.3. The Bayesian nonparametric methods for volatility

2.3 The Bayesian nonparametric methods for volatility

Barigozzi and Hallin, in both their paper of 2016 and 2017, treated the level-common and

the level-idiosyncratic component separately in order to compute predictions or to apply

GARCH techniques. Even though they seem to obtain significant results from their estima-

tion, the fact that the two elements are not orthogonal to each other may suggest other ways

of estimation.

In GARCH models the conditional variance is a deterministic function of model param-

eters and past data, in stark contrast to that stochastic volatility models treat volatility as

a random variable granting more flexibility and a larger space to move for further model

specification.

Dealing with stochastic volatility models some difficulties may arise, in particular the

estimation of the parameters composing the system is not an easy task. In order to accom-

plish to that I make use of Bayesian nonparametric techniques which seems the best and

better performing method to synthesise the information coming from such heterogeneous

data. There are several reasons that pushed me to move in this direction, a surely relevant

one is that binding the analysis to some specific parametric form could be limiting, while

relaxing the parametric assumptions would allow for a grater ductility and, possibly, to a

bigger robustness. As known, nonparametric models rely on distributions moving over an

infinite dimensional space. In this frame the difference between Bayesian and classical non-

parametrics is that, while in the classical approach the infinite-dimensionality is treated as

nuisance - from here the necessity of building procedures able to make inference on the finite

dimensional parameter of interest - the Bayesian approach completes the model with a prior
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on the infinite dimensional parameter, hence developing inferences that account for a full

probabilistic description of all relevant uncertainties.

Nonparametric models involve at least one infinite-dimensional parameter which is usu-

ally a function or a measure: declining those models in a Bayesian manner and considering

the utilisation of mixtures may provide the necessary adaptability to correctly deal with

financial time series.

Another argumentation that moved me to estimate our dataset non-parametrically comes

from Mahieu and Schotman (1998): it is in their opinion that such models are able to capture

features that parametric equivalent models can not fully do. In this sense Dirichlet mixture

models offer a flexible alternative as it can be considered an infinite mixture of model where

the data itself suggest the number of mixing components.

Dirichlet process (DP hereafter) is one of the most used prior in Bayesian nonparamet-

rics. It configures as an extension of the k-dimensional Dirichlet distribution to a stochastic

process and its success is given by the mathematical tractability that eased the derivation

of several variation such as Mixture of DP (DPM) and Hierarchical DP (HPD) among the

others.

Dirichlet process mixture (DPM) consist of an (up to infinite) mixture of normal distri-

butions whose means, covariances, and mixture probabilities are estimated by applying the

relatively uninformative Dirichlet process (DP) prior to the infinite number of unknowns (see

Ferguson (1973) and Lo (1984)). Theoretically speaking, the DP prior essentially shrinks
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the number of unknowns down to just a few important mixture clusters, thus enabling us to

overcome the common nonparametric problem of having more unknowns than observations.

The concept of DP prior hence comes with the Bayesian one. As said before, the focus

of this paper is to study the volatility components allowing for a time-varying behaviour

of them. The models that treat variances in this way are known as Stochastic Volatility

(SV) models; the Bayesian framework, along with DP prior is imposed in order to take

out the necessary relevancies from volatilities. Dealing with Bayesian inference in the SV

models some problem may arise: it is well known, in fact, that the likelihood may often

appear in an intractable form. Recently researchers tried different approaches to overcome

this problem; among all, it must be cited the work by Creel and Kristensen (2015) who

adopted Approximate Bayesian Computation (ABC) algorithm to avoid computing the full

likelihood of all available data. As known, it is not possible to simulate directly from the

posterior distribution unless it is completely parametrised by a finite number of parameter,

hence ABC methods, building likelihoods based on limited information, completely rely on

simulation algorithms, thing that comes with a cost in terms of computation.

Kristensen’s approach offers some interesting points to reflect on, last but not not least their

application to continuous-time processes, nevertheless using a mixture instead of an approx-

imated prior seems to be more adherent to the data and coherent to our aims.

Bayesian nonparametric methods as well are not free from computational costs, neverthe-

less they offer on the plus side the ability to incorporate uncertainty at level of distribution

function, as a consequence algorithms that eventually combine analytic derivation of the dis-

tribution function have been successfully developed in the last three decades. I will provide
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2.3. The Bayesian nonparametric methods for volatility

details about the algorithm I used as soon as models with their components will be illustrated.

Applications of Bayesian techniques to Stochastic Volatility models has been introduced

by Jacquier et al. (2002) while application of nonprametric methods started to appear since

early 2000’s. Some of the most relevant articles are by Neal (2000) and Jensen and Maheu

(2010, 2014) in which the Bayesian frame has been implemented by the adoption of Dirichlet

Process Mixture (DPM).

In this paper I design a Dirichlet Process Mixture with a mass parameter M > 0, that

somehow reports the grade of trust I have in my prior guess, and a centring distribution H

that is equal to H = N(µ0, σ
2
ζ ) in which µ0 and σ2

ζ are the overall parameters representing,

respectively, location and scale, this last one assumed to be constant. Both parameters to-

gether represent my prior assumption about the shape of the normal distribution used.

Formally speaking the DPM is described by:



ζt | µt ∼ N(µt, σ
2
ζ )dGk(µt, σ

2
t )

µt ∼ G

G ∼ DP (MH)

(2.20)

As I will show later, the SV model will be formulated as a log-transformation of a Normal

distribution, in consideration of this, and since the scale parameter is grater that zero, G is

definable as a probability measure on the half-plane.

This normal mixture may be alternatively written in the form firstly introduced by Fer-
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guson (1973) and Lo (1984), as:

fk(y) =

∫
N(ζ | µ, σ2)dGk(µ, σ

2) (2.21)

Gk =
∞∑
i=1

wiδµi, σ
2
i (2.22)

which can represent any continuous distribution in the real line. Here fk states that this

is a k-component mixture model with parameters (M
k
, M
k
, . . . M

k
) which is defined infinite as

k →∞, where k is the number of clusters weighted by wi that represents indeed the mixing

weight which
∑∞

i=1wi = 1.

The other parameter in (2.22) is δx that represents a Dirac measure that places mass one

on any point x.

Combining the likelihood distribution, which is a Gaussian with component parameters

are µ and σζ , with the Dirichlet prior I get:



n−λi
σζ(n−i,j)

exp

[
− 1

2σ2
ζ

(
η̄ − ht − µi

)]
2 6 i 6 kλ

M
σζ(n−i,j)

exp

[
− 1

2σ2
ζ

(
η̄ − ht − µ0

)]
2i = k−λ + 1

(2.23)

The equation (2.23) show indeed the conditional posteriors for the indicators as the infi-

nite limit is reached, in which M is the mass parameter of the Dirichlet process and n−λi is

the number of observation excluding the λ− th one. I choose to write λ in order to keep a

more general notation but, in my model, this is to all intents and purposes a time index.
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The main purpose of stochastic volatility models is to describe the time-varying pattern

of volatility, following the formulation by Taylor (1994, 2007) - implemented by the presence

of a persistence parameter φ - to model the volatility by an AR(1) process:


yt = βe

ht
2 εt

ht+1 = µ+ φ(ht − µ) + σωωt

(2.24)

In this formulation εt and ωt are assumed to be a normally distributed i.i.d. stochastic

processes and ht to be the log of volatility at time t. The persistence parameter is instead

modelled to be −1 < φ < 1 in order to guarantee stationarity and identifiability of µ.

Linearising the above written model (2.24) I obtain η̄ in which returns are in logarithmic

form. h and ω are generally unobserved in Stochastic Volatility models, nevertheless I will

make use of DFM results in order to get fully specified time series while estimating SV pa-

rameters as to improve the model forecasting capabilities.


η̄t = ht + ζt

ht+1 = µ+ φ(ht − µ) + σωωt

(2.25)

Since y is a square quantity η̄t may be approximated with η̄t = log(ηt + c) and ζ with

ζt = log(ε2t ), this last one distributed as an F .

The presence of c is justified by A. (1996) which illustrate that in this kind of data η̄t

several times may reach zero, hence taking logs may no longer guarantee the distribution to
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be normal. For this, imposing an offset parameter (c) which act to modify the log transfor-

mation of the variable of interest, will produce a variable with smaller variance and more

robust against non-normality. Fuller in his book states that a small fraction, about 0.02 of

the average value of η would satisfy our needs, Kim et al. (1998) imposed c = 0.001 while

more detailed arguments has been exposed by Sakaria and Griffin (2017) which demonstrated

that in this kind of models for values smaller than 10−9 the sample mean and variance gt

close to their real values.

Delatola and Griffin (2011), instead, imposed different values to c, going from c = 10−7 to

c = 10−3, for their analysis noting that not always smaller is better but sometimes, in order

to improve the predictive performances, higher values of the offset parameter must be chosen.

By modelling the returns as η̄t instead of y we will observe several crossing of the zero

line. This situation has extensively been treated in literature and often approached imposing

an alternative parametrization to (2.25) with the aim of improving MCMC efficiency and

statistics reliability.

Such strategy take place from the Bayesian corollary to the Basu’s theorem on the inde-

pendence of (complete) sufficient and ancillary statistics.

In fact, as perfectly explained by Yu and Meng (2011), the notions of sufficient statis-

tics and ancillary statistics are mathematically equivalent to the centred and non-centred

parametrization respectively. In a data augmentation scheme, as can be considered MCMC,

flanking the two parametrization may boost the convergence of the algorithm while reducing
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the markovian dependence and solving eventual data missing problem.

A centred version of the Stochastic Volatility model I adopt may be:


η̄t = h̄t + ζ̄t

¯ht+1 = φh̄t + σωωt

(2.26)

where ζ̄t = ζt + µ and h̄t = ht − µ, this last one is normally distributed around zero:

h̄t ∼ N (0, σ2
ω/(1− φ2)).

Facing this issue Yu and Meng (2011) propose an algorithm which interweave going back

and forth between the two parametrization at each iteration of the MCMC sampler, another

strategy has been adopted by Delatola and Griffin (2011) which jump from one model to the

other on a probabilistic base according to the formula:

p(zt) = W ∗ centred+ (1−W ) ∗Noncentred (2.27)

where W is the probability the log-returns lay on the zero line.

For the computation of the full conditional posterior, for both parametrization, I will

mix likelihood, which is assumed to be Normal, with priors of different shapes. The priors

in question are: p(φ), p(µ), p(σ2
ω) and p(σ2

ζ ), where the last two are the variance parameters

associated to ω and ζ. Considering that all those priors are independent, Bayes’ rule can be

applied implying that the full posterior may be calculated as:
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p(µ | y, h, φ, σ2
ω) ∝ p(h | µ, φ, σ2

ω)p(µ)

p(σ2
ω | η̄, h, µ, φ) ∝ p(h | µ, φ, σ2

ω)p(σ2
ω)

p(σ2
ζ | η̄, h, µ, φ) ∝ p(h | µ, φ, σ2

η)p(σ
2
ζ )

p(φ | η̄, h, µ, φ, σ2
η) ∝ p(h | µ, φ, σ2

η)p(φ)

Such priors are distributed as: p(µ) ∼ N (αµ, βµ), p(σ2
ω) ∼ IG(ασω , βσζ), p(σ2

ζ ) ∼

IG(ασζ , βσζ) and p(φ)N (αφ, βφ)I(−1,+1)(φ).

Updating each parameter, starting by µ, using the standard Bayesian techniques will

return the full conditional posteriors that follow:

∝

{
σ2
ω

(n−i − 1)(1− φ)2 + (1− φ2)

}{
h1(1− φ2)

σ2
ω

+
(1− φ)

σ2
ω

n−i∑
t=1

(ht+1 − φht)2

}
(2.28)

the full conditional distribution for σ2
ω is:

∝ exp

(
− 1

2

2βσω + (h1 − µ0)2(1− φ2) +
∑n−i

t=1(ht+1 − µ0 − φ(ht − µ0))2

σ2
ω

)(
1

σ2
ω

)(ασω+
n−i
2

)+1
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Which may alternatively written as:

σ2
ω | h1 . . . hn, φ ∼ IG

(
2.5 +

n−i
2
, β∗
)

(2.29)

where β∗ = 0.025 +
(h1−µ0)2(1−φ2)+

∑n−i
t=1 (ht+1−µ0−φ(ht−µ0))2

2
.

Similarly the conditional distribution for σζ may be handled to return:

σ2
ζ ∼ IG

(
n−i + k

2
,
1

2

[ n−i∑
i=1

(η̄i − µc,i)2 +
k∑
i=1

(µi − µ0)2

])
(2.30)

Lastly, the full conditional for φ can be made explicit as:

∝ exp

{
−(η̄i−

(h1 − µ0)(1− φ2)

2σ2
ω

−
∑n−i

i=1(hi+1 − µ0 − φ(ht − µ0))2

2σ2
ω

}
exp
−(φ− αφ)

2β2
φ

I(−1,+1)(φ)

which can be solved into:

φ∗ ∼ N
(∑n−i

i=1(ht+1 − µ0)(ht − µ0)∑n−i
i=1(ht − µ0)

,
σ2
ω∑n−i

i=1(ht − µ0)

)
(2.31)

The above written formulas are valid for the non-centred parametrization, the centred

one works according to the same logic. Solution details for both parts will be provided in

Appendix A.

As known stochastic volatility models rely on likelihoods which integrals are not analyt-

ically tractable, plus Bayesian inference is complicated by the fact that this is a non-linear

state space model and the number of mixtures is unknown.
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Techniques to solve this problem make use of filtering or quasi maximum likelihood meth-

ods, all of those adopting MCMC processes to update the parameters. In particular Jacquier

et al. (2002) proposed a one-at-the-time updating process to revise volatility, nevertheless

incurring in critiques motivated by the highly correlated nature of the samples; Jensen and

Maheu (2010), by their side, proposed an alternative method in which sampling is computed

by blocks demonstrating a better mixing properties.

Among all, I choose to use the algorithm created by Kim et al. (1998) in which the log-

volatilities are simultaneously updated using what, since Carter and Kohn (1994), is called

forward filtering backward smoothing (FFBS) algorithm. In this frame a Gibbs acceptance

sampler is applied to a target distribution respect to an instrumental one.

MCMC applied to this scheme is developed to sample this density without computation

of the likelihood function. The algorithm proceed by sampling each parameter as follows:

• Initialize all parameters:

• Sample h | η̄, µ, φ, σ2
ω, σ

2
ζ ,M, s

• Sample s | η̄, µ, φ, σ2
ω, σ

2
ζ ,M, h

• Sample σ2
ζ , µ,M | η̄, h, φ, σ2

ω, s

• Sample φ, σ2
ω | η̄, µ, σ2

ζ ,M, s, h

In this algorithm, the first three steps are standard and quite straightforward, the last

two, on the other hand, are justified by an attempt of reducing the correlation between the

log-volatility h and the parameters (µ, φ, σ2
ω). For details may be seen Delatola and Griffin
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(2011), Gelfand et al. (1995) and Papaspiliopoulos et al. (2007).
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Chapter 3

Data and estimation results

For doing the estimations I used data from Standard Poor’s 500 (SP500) company value

recorded with daily frequency from the beginning of 2008 to January 23th 2020. The total

sample result of a total of 3144 observations.

Figure 3.1: SP500

On the cross-section side the panel was originally composed by 505 observation never-

theless, since not all time series were complete in the considered period, I did not take into

account those company with missing observations along the time horizon, hence remaining

31



Chapter 3. Data and estimation results

with a total of 446 firms. In the figure (3.1) can clearly be observed how the panel is com-

posed, underlying how data have been taken in log-differences, so the vertical axis rate of

variation is measured.

In order to check the out-of-sample forecasting performance of my method, I decided cut

the last one hundred observation; this is showed in the figure (3.2) in which I only sketched

the SP500 index as provided in the database and where the black vertical line indicate the

moment when the cut occurred.

Figure 3.2: S&P500 aggregate index

I proceeded with estimation following steps in accordance to the standard DFM litera-

ture as described earlier. Running the Hallin and Liška (2007) information criterion I could

get indication about the number of common shocks associated to the number of diverging

eigenvalues of the spectral density matrix.

Barigozzi and Hallin, in the above cited papers published in 2016 and 2017, worked with a

dataset of a cross-section dimension of N = 90; I, instead, have the availability of a bigger

dataset in which the number of firms is five times larger than theirs. Despite of this the
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results coming from Hallin-Liška criterion returns me the same number of common shock

(qT = 1), confirming - as stated by BH - most of the empirical results on financial returns

and asset pricing theory.

Once obtained level-common and level-idiosyncratic volatilities I applied kernel-smoothing

techniques with a bandwidth of 15 working days - 3 calendar weeks - which produced the

figures (3.3) and (3.4) respectively.

Figure 3.3: Level-common volatility

Figure 3.4: Level-idiosyncratic volatility
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Observing those graphs we can clearly see how, in accordance with figure (3.2), the

volatility increases in correspondence of the beginning of the financial crisis, started by the

bankruptcy of Lehman brothers (autumn 2008), in 2011, when the EU member states were

object of a speculative attack which required the intervention by European Central Bank,

while 2016 records reports, with all probability, the effects of brexit referendum. Those

results are perfectly in line with our expectation and confirm the findings in Barigozzi and

Hallin (2016) who pointed out the different behaviour of the two curves according to the

different nature of the shocks.

Level-common and level-idiosyncratic curves obtained from Dynamic Factor Model esti-

mation are used as time series to be inputted in equation (2.26) as measures of volatility.

In this case, in order to have a full specification of the model, only parameters need to be

estimated and this is what I have done adopting a Bayesian methods. Here is another el-

ement of innovation of my approach as, differently from classical models where only σω is

estimated, I can actually input a measure of ω - level-idiosyncratic volatility - hence tuned by

the estimation of the variance parameter. The aleatory element of the SV is generally taken

as a Gaussian white noise: being able to get an accurate representation, as level-idiosyncratic

volatility is, all along with σω have a significant impact on the general estimation output.

Operating this way, it is in fact possible to get a greater adherence to data, in particular,

in periods characterised by higher volatility, hence improving the overall forecasting perfor-

mance.

Looking back to figure (3.1) we can have an idea about how the panel is composed

and about the heterogeneity and the complexity of the dataset; this justify the choice of a
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Bayesian nonparametric approach that have been applied to the whole dataset in a proce-

dure counting ten thousand iteration, in which the first three thousand was discharged.

The algorithm demonstrated to be quite sensitive to the starting values of the parameters

however, once calibrated, it showed good predictive performance. In particular, I argued in

the previous paragraphs about the choice of the offset parameter; since Griffin treated the

dataset in a different manner as I did, it is not straightforward a comparison between our

choices, anyway for my estimation I set it equal to c = 2 as it demonstrated to produce the

best output. Starting values for location and scale parameters of the inverse gamma have

been set equal to 2.5 and 0.025, for σζ a value of 0.5 was imposed while for φ mean and

variance was put equal to 0 and 1 according to theory.

The computation of the whole program resulted to be quite demanding in terms of time.

Once the algorithm came to a solution the posterior median obtained for the persistence

parameter φ is 0.98645, really close to its posterior mean 0.98636, implying an high level of

persistence however not violating the stationarity assumptions. σω posterior median have

been estimated equal to 0.22569 while µ resulted to be equal to 1.526. Once again posterior

means did not fall too far from their median values.

Table (3.1) reported below, displays the full set of estimated values.

Combining estimated parameter with DFM results, and coding a rolling window algo-

rithm, I did forecasting over volatility.

For sake of clarity, I ran the forecasting procedure on a previously averaged the level-common

and level-idiosyncratic volatility curves. Operating this way my results can be matched with
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Parameter Posterior median Description
φ 0.98645 Persistence parameter
σ2
ω 0.22569 Variance of the volatility equation
µ 1.526 Mean of the volatility equation
σ2
ζ 8.5768 Variance of the returns equation

M 0.63801 Mass parameter
k 6 Number of clusters
W 0,0018566 Zero return probability

Table 3.1: Parameter estimated

the S&P500 composite index reported in figure (3.2); I made this choice because I find this

to be an easier way to demonstrate my points, nevertheless the procedure may obviously be

generalised to the multivariate case or some specific firm may be isolated as well.

Figure (3.5) below represents the forecasted volatility, in which it is possible to observe

the evolution of the curve. As usual, the black vertical line separates the in-sample (left-

hand side) forecast to the out-of-the-sample forecast (right-hand side). It is important at

this stage to record a close adherence of this curve with the one described by level-common

volatility reported in figure (3.3).

Figure 3.5: Forecasted volatility
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The transformation of the forecasted log-volatility to returns produces a curve that is

quite similar to the one in panel (3.2); saying differently: comparing the dynamics of S&P

index with one of the generated curve we may recognise the same path made by periods

characterised by a higher volatility and periods in which the market is calmer. Figure (3.6)

reports both forecasted volatility and returns to observe graphically the relation that links

the two curves.

Figure 3.6: Forecasted volatility and returns

Overlapping observed and forecasted shows us the effective match of those curves high-

lighting the point in with they diverge the most. Figure (3.7) does that.

Looking at figure (3.7) one thing must be clarified: recalling that my model is designed

by the formula (2.24), differently from the other panels where the value of β have been

taken constant and equal to 1, in this last one, in order to catch the volatility clustering, I

set it equal to 1.1, 2.2 or 0.35 depending by the standard deviation of the whole volatility

time series. More in detail β will be equal to 0.35 if the volatility stays below the standard

deviation, while it will be equal to 1.1 if the volatility overtakes the standard deviation and
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equal to 2.2 if it is greater than two times the standard deviation.

Figure 3.7: Forecasted and observed returns

Analysing the panel it is possible to confirm the model to perform pretty well as it is

demonstrated by the Root Mean Square Error (RMSE) values that it produces.

To assess the forecasting performances of my model I tested it over the full sample, as

to say from the beginning of the series until mid January 2020, obtaining a value slightly

over 2%. Those result are confirmed by checking for the in-sample performance of the model

while the out-of-the-sample forecast perform even batter dropping the RMSE value around

1.5%.

In order to check for the forecasting performance in the period of maximum volatility,

I isolated the period between mid September 2008 and mid July 2009, hence the RMSE

returned a value around 5% confirming a general good performance of my approach however

worsening the outcome. It is so evident that the model seems to perform better in periods

with less volatility, however it is still clear how the choice of β have been demonstrated to be
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crucial, thus a more punctual/flexible approach to its determination should be considered to

gain a better adherence of model to data. This could be material for future works.
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Conclusions

High-dimensional financial data are generally big datasets characterised by heterogeneous

time series. In order to deal with such a complex panels I adopted infinite dimensional

Dynamic Factor Models (DFM), to extract volatilities, and Bayesian non-parametrics tech-

niques to estimate the parameters of a pretty much standard Stochastic Volatility model.

The final goal of my work was to produce a feasible measure of volatility and a good param-

eter estimation in order to get a multiperiod forecast for both volatility and returns.

The Bayesian non-parametric estimation have been developed as an infinite mixture

Dirichlet process and returned parameters values in line with standard financial theory,

while a two-step general Dynamic Factor Model was adopted to extract level-common and

level-idiosyncratic volatility.

The applied exercises worked using S&P500 daily data spanning over 12 years while the

forecasts was computed with a rolling window algorithm which returned values for both

stock market volatility and returns.
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The approach demonstrated to perform pretty well, however a further element of flexibil-

ity was imposed in order to get forecasts more adherent to data. Given the baseline model

described in (2.24) I modelled β to vary with the volatility as to intercept the that phe-

nomenon of volatility clustering that, as in general as in my case, characterise the financial

time series.

The results showed good adherence of the forecasted volatility and forecasted returns

with actual realisations demonstrating good overall performances of my approach. Several

experiments was conducted splitting the samples and running running separated tests: in

any case the model offered good forecasting properties both in-sample and out-of-sample

however suffering periods with a bigger variability. This suggest the adoption of different,

more accurate way to model β opening the for future works.

The general results surely was positive and offer my approach as an effective way to deal

with large, high-frequency datasets.
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Introduction

In the last two decades data collection, aided by an increased computational capability, has

considerably increased both dimension and structure of the datasets; given this, statisticians

and economists may today work with time series of remarkable dimension which may come

from different sources. Dealing with such datasets may not be so easy and requires the

development of ad hoc mathematical models.

One of the targets that we need to achieve designing new models is to contrast parameters

proliferation and facilitate models reduction. In order to do that, factor models represent

an effective tool since they are able to synthesise information held in huge datasets in a few

factors.

Among those methods, Dynamic Factor Models (DFM) represent one of the newest tech-

niques in big data management. In particular, using DFM, it is possible to derive a represen-

tation for an infinite panel of time series which is the analogous of the Wold representation

for finite dimensional ones. This is the generalised dynamic factor representation and, be-
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tween its properties, has the one of keeping the time series structure of the dataset thus

generally is finalised to do forecasting or structural analysis, where the object of interest are

the impulse response functions.

Dynamic Factor Models are one of the possible approaches created to extract statistics

out of large datasets, another interesting one surely is the utilisation of Bayesian methods

while frequentist alternatives are extensively used in machine learning.

When we talk of big data we generally refer to situations in which the number of ex-

planatory variables is large compared to the sample size. When in this situation we could

say that the researcher is in a position in which he/she is trying to estimate too much rela-

tively to the information in his/her possess. This is not unfeasible but will typically lead to

a very imprecise inference while it is not even doable, at least with conventional methods,

when the number of explanatory variables exceeds the number of observations and when a

considerable number of these observations are equal to zero. In mathematics a so composed

matrix is said to be sparse.

I am not going in the details of the sparsity concept here, for what interests us we only

need to underline how sparsity requests specific tools to be approached; such tools may

be statistical models in which only a relatively small number of parameters (or predictors)

would play an crucial role in the description of the whole dataset. Machine learning models

operate according to this logic and lasso (Least Absolute Shrinkage and Selection Operator)

is a clear example of that while other examples may be traced in ridge regressions, support

vector machine and stochastic search models.
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As an example, Lasso is a frequentist model which basically rely on a penalisation al-

gorithm in order to regularise ("shrink") coefficients, making it possible to deal with high-

dimensional data and to avoid over-fitting. By contrast this, just like other machine learning

techniques, have some considerable drawbacks: first it is not possible to make any choice

over the variables considered relevant for the model, second the selection procedure depends

by some penalisation parameter which need to be somehow imposed, as a last point it must

be noticed how such selection process would determine, one way or another, some loss of

information.

Somehow in contrast with the concept of sparsity there is the one of density. Among the

ones that work over density it is possible to enumerate DFM and Bayesian methods which

provide an alternative approach to handle big data inconvenient. The intuition that is behind

the application of those methods in high dimensional data context is the following: deal-

ing with a big amount of data the researcher may incur in over-parametrization/over-fitting

problems, in such situation the application of a prior distribution to update the observed

data would work out to restrict the parametric space.

Bayesian methods have been demonstrated effective both in case of models with many ex-

planatory variables and in models with many dependent variables (as in the VAR case).

Analytically speaking the posterior distribution will be obtained by updating observed data

with prior information over the parameter of interest, while controlling the prior variance

will give to researcher some control over the degree of shrinkage or, in other words, will put

some numeric value over the degree of confidence that the researcher has about his beliefs.
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If on one hand the Bayesian approach has demonstrated to have some interesting aspects

regarding inference and forecasting performances, on the other hand such approach, and thus

results, is conditional to the accuracy of the prior choice, plus this technique often imply the

utilisation of MCMC processes and other computationally demanding algorithms.

Sparsity-based techniques have become widely used in econometrics, for an extensive

survey, with a particular focus on policy evaluation, may be seen Crato and Paruolo (2019),

however the adaptability and the performances demonstrated by density-based approaches

pushed in this direction. For a quick, although intensive, survey over the use of density in

econometrics, with particular reference to Bayesian econometrics, the reader can be referred

to, among all, Otrok and Whiteman (1998), Del Negro and Otrok and in particular to great

part of the scientific production by Mike West, while, for what concerns the use of Bayesian

analysis as shrinkage method Koop and Korobilis (2010) is seminar.

Dynamic Factor Models estimation developed faster and faster since the pioneering work

of Stock and Watson (1989), in which they used factor analysis to compute coincident indica-

tors for the business cycle and financial variables. Since factor models are used to consistently

estimate common and idiosyncratic components of macroeconomic variables, DFM has been

used to do predictions (see Stock and Watson (2002)) or to compute VARs and impulse

response functions; the study of the link between factor modes and structural VARs has

been deepened by Stock and Watson (2005a) and Forni et al. (2009).

The general idea of Dynamic Factor Models is to reduce a large panel of data in two

mutually orthogonal components: the common one, which is strongly correlated with the
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rest of the panel, and an idiosyncratic one, which is only mildly cross-correlated.

Still about DFM, all the papers we refer here make use of non-parametric techniques in

which factors are estimated through a procedure that calculate eigenvalues and eigenvectors

from a spectral density matrix, hence essentially realising an approach that is a dynamic

version of the principal component one.

Forni et al. (2005) implemented a one-sided estimation of the generalised dynamic factor

models in order to improve forecasting performances, the infinite dimensionality, instead,

have been introduced in the papers "The Generalized Dynamic Factor Model with infinite

dimensional factor space" by Forni et al. (2015, 2017), while deepening the study of the

volatility generated by a DFM, Barigozzi and Hallin (2016, 2017) proposed a method to

isolate level-common and level-idiosyncratic volatility and Barigozzi et al. (2019) used the

block structure of factors - as introduced by Hallin and Liška (2011) - to investigate the

interaction those elements.

Talking about modelling in economics, Dynamic Stochastic General Equilibrium (DSGE)

models are an interesting instrument. Such a models basically reproduce an economic system

and thus may be adopted to do policy analysis or forecasting. Once a DSGE is opportunely

linearised, it behave all in all like a VAR. Taking advantage of this (Structural)-VAR have

been pulled over to DSGEs in order to do counterfactual checking and validating this last ones

In the literature there are examples in which factor models are applied all along with

VARs: they are known as Factor Augmented VAR (FAVAR) (see Bernanke et al. (2004) for

an example), however all of those DFM rely over parametric versions, no much have been
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done non-parametrically.

Since my approach rely over non-parametric, infinite-dimension dynamic factor model,

here may already be traced an element of innovation of this work. Further detail of my

contributions will be depicted later on.

The great success of the DSGE models is that they combine the macroeconomic dynamics

of the time series with a rigorous microeconomic foundations. Those characteristics opened

the way to the estimation of as to become an effective tool for Central Banks. Seminar is

the paper by Smets and Wouters (2002) which became the reference model for the European

Central Bank which uses similar fashion models to analyse the economy of the Eurozone as a

whole. Over this baseline, other bigger and more complex models took form, among all must

be cited Adolfson et al. (2007) which enlarged the model accounting for the international

market and introduced Bayesian techniques for parameter estimation.

The international markets are a crucial factor in every economy as they may influence

agents in several ways. Despite the importance of this element the variables composing such

a block have always been taken only theoretically, in other words there is not yet, at the

best of my knowledge, an effective way to bring model to data in this market.

My approach aim for filling this gap by using non-parametric Dynamic Factor Models

techniques. In particular I will put in play an infinite dimensional generalised dynamic factor

representation, firstly introduced by Forni et al. (2015) and Forni et al. (2017), in order to

estimate the rest of the world time series to plug into a small open economy DSGE. In order
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to do that a block-wise representation of the DFM is requested (see Hallin and Liška (2011))

hence the computation of Impulse Response Functions (IRF ) is straightforward.

Since I calibrate the model for the Italian economy, to get a more punctual estimation of

the foreign sector time series dynamic factor models will be an essential tool. In particular

those models allow me to correctly identify the rest of the world respect to Italy instead of

using a general world time series as estimated by official statistics.

The model validation, with particular concerns of the foreign sector, is another target of

my study.

Validation through VAR is typically carried out by comparing the empirical impulse re-

sponse functions with the theoretical ones obtained by DSGE. Fundamentalness is a weak

point of VAR analysis; however the adoption of a Dynamic Factor Models significantly sim-

plify the identification problem, providing a satisfactory solution and offering an additional

support for the adoption of dynamic factor analysis in this framework.
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The model

The crisis of the recent years made clear how business cycle movements no longer abstracts

from international facts; the inclusion, in the most recent models, of international markets

capable to simulate the propagation mechanism of rest of the world dynamics is hence crucial.

For my work I start by the now standard set-up of the large-scale New Keynesian Dy-

namic Stochastic General Equilibrium (DSGE) model characterised by a Small Open Econ-

omy (SOE hereafter) framework, developed by Adolfson et al. (2007) and Christiano et al.

(2011). In this framework the foreign sector is exogenous with respect the domestic economy

and its evolution is described by a Structural Vector AutoRegressive system (SVAR) and,

in order to bring model to data, I will estimate foreign variables through Dynamic Factor

Models (DFM) hence matching the DSGE’s Impulse Response Functions (IRF) and the

DFM’s ones with the aim of validating the theoretical model. IFRs generated by dynamic

factor models enjoy of peculiar properties which encourage the adoption of this tool in this

framework, details of which will be exposed in the apposite chapter.
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Opening the economy we allow households to make savings both in domestic and foreign

bonds while the final goods are produced by specific firms that combine domestic homoge-

neous goods with imported goods. In order to allow for incomplete exchange rate pass-trough

import and export by including price rigidities.

The other main difference in this kind of models are in fiscal and monetary authority

block, which must take into account the foreign variables, and in the presence of a trade

balance sector which describes the net foreign asset position of our economy.

6.1 Households

The economy is populated by a continuum of households indexed by j ∈ (0, 1), which attain

utility from consumption, leisure and money holding. The households possess the economy’s

physical capital and determine the rate at which this stock is accumulated or utilised.

The generic jth preferences are given by:

Ut = Ej
0

∞∑
t=0

βt

[
ζct log

(
Cj,t − bCj,t−1

)
+ Aq

(
Qj,t
ztPt

)1−σq

1− σq
+ ζht AL

(hj,t)
1+σL

1 + σL

]
(6.1)

In the utility function b captures habit in consumption while ζc and ζh are positive

parameters which bring in the function the preference shocks effects and are assumed to be

an AR(1) i.i.d. process, hence having the generic ith form:

ζ it = ρζi ζ̂
i
t−1 + ξζi,t

50



6.1. Households

The last term of the utility accounts for the utility coming from leisure, where σL denote

the inverse Frisch elasticity, while the second element is the real cash balance scaled by a

permanent technology shock zz.

Particular attention must be payed to the first term of (6.1): that is the aggregate con-

sumption Cj,t and, since we are in a open economy, it is given by a Constant Elasticity of

Substitution CES index of imported (Cm
j,t) and domestically produced (Cd

j,t) goods.

Cj,t =
[
(1− ωc)

1
ηc (Cd

j,t)
ηc−1
ηc + ω

1
ηc
c (Cm

j,t)
ηc−1
ηc

] ηc
ηc−1 (6.2)

where ηc is the elasticity of substitution between domestic and foreign goods.

In order to determine the aggregate price level we can maximize (6.2) subject to the

following budged constraint:

P c
t Cj,t = PtC

d
j,t + Pm,c

t Cm
j,t (6.3)

where P c
t , Pt and P

m,c
t are aggregate consumer price index (CPI ), the prices of domesti-

cally produced goods and the prices of imported goods respectively.

Solving the first order condition, and after some manipulation, it is possible to define the

demands for domestically produced and imported consumption goods:

Cd
j,t = (1− ωc)

[
Pt
P c
t

]−ηc
Cj,t (6.4)
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Cm
j,t = ωc

[
Pm,c
t

P c
t

]−ηc
Cj,t (6.5)

Here, as in all the formulas below, I define, ω as the generic share of imports and η as

the elasticity of substitution between domestic and imported goods; those parameters may

refer to consumption or investment at the occurrence.

Aggregate consumer price index will thus be:

P c
t =

[
(1− ωc)(P 1−ηc

t ) + ωc(P
m,c
t )1−ηc

] 1
1−ηc (6.6)

Similarly, investment may be defined by a CES which aggregates domestic and imported

components. Before that, recalling how households own physical capital kt and setting an

exogenous capital destruction rate δk, let’s define the law of motion according to which it

accumulates:

kt = (1− δk)kt−1 + Γt

(
1− Sk

( Ik,t
Ik,t−1

))
Ik,t (6.7)

As in Christiano et al. (2005), I assume that in the deterministic steady-state there

are no capital adjustment costs, hence the installation technology is

(
1− Sk

(
Ik,t
Ik,t−1

))
with

(Sk(1) = S ′k(1) = 0) and a function that is concave in the neighbourhood of that deterministic

steady-state S ′′k (1) = 1/kk > 0). Γt is the investment-specific technology shock that follows

an autoregressive process given by:

Γ̂t = ρΓtΓ̂t−1 + ξΓ,t (6.8)
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Remembering the definition of ωi and ηi, we are now ready to specify the CES function

as follows:

Ij,t =
[
(1− ωi)

1
ηi (Idj,t)

ηi−1

ηi + ω
1
ηi
i (Imj,t)

ηi−1

ηi

] ηi
ηi−1 (6.9)

Operating as for the consumption prices, we can maximize (6.9) obtaining the demand

function of domestic and imported investment:

Idj,t = (1− ωi)
[
Pt
P i
t

]ηi
Ij,t (6.10)

Imj,t = ωi

[
Pm,i
t

P i
t

]ηi
Ij,t (6.11)

Thus the aggregate investment price index will be:

P i
t =

[
(1− ωi)(P 1−ηi

t ) + ωi(P
m,i
t )1−ηi

] 1
1−ηi (6.12)

In this model we assume intermediate goods prices to face nominal rigidity defined by

a Calvo (1983) scheme however, since those are generated at firm level, we will expose the

details of this in the next sections.

The households choices the level of Cj,t, Mj,t+1, ∆t, K̄j,t+1, Ij,t, uj,t, Qj,t, B∗j,t+1 and hj,t

that maximise its utility (6.1) facing the following budget constraint:
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

P c
t Cj,t(1 + τ ct ) + P i

t Ij,t +Mj,t+1 + StB
∗
j,t+1 + Pt

(
a(uj,t)K̄j,t + Pk′,t∆t

)
≤

Rt−1(Mj,t −Qj,t) +Qj,t + (1− τ kt )Πt +
(1−τyt )

(1+τwt )
Wj,thj,t

+(1− τ kt )Rk
t uj,tK̄j,t +R∗t−1Φ

(
At−1

zt−1
, φ̃t−1

)
StB

∗
j,t

−τ kt
[
(Rt−1 − 1)(Mj,t −Qj,t) +

(
R∗t−1Φ

(
At−1

zt−1
, φ̃t−1

)
− 1
)
StB

∗
j,t +B∗j,t(St − St−1)

]
+ TRt +Dj,t

(6.13)

The right side of the inequality represents the households disposal assets and the left

side how they use it. Observing this part of the equation it is possible to see how house-

holds use their wealth to buy consumption (P c
t Cj,t), investments (P i

t Ij,t) and financial assets

that they hold in form of cash (Mj,t) and foreign bonds (B∗j,t+1) which is multiplied by the

nominal exchange rate (St) which is given in terms of domestic currency needed to buy a

unit of foreign currency, thus an increase of St imply a depreciation of the exchange rate

and vice versa. The last term express the presence of physical capital and its utilisation cost.

Moving to the right hand side of the (6.13) must be underlined the presence of profits Πt

and Dj,t which is the household’s net cash income from participating in the state contingent

securities at time t. In this framework taxes and (lamp-sum) transfers balance each other:

if this last one is represented by TRt the taxation terms are composed by different elements

as τ c for what concerns consumption and τ k as the taxation to capital-income. τw and τ y

are related to the job market and stand for pay-roll and labour income tax respectively.

The computation of the first order conditions involve the using of the Lagrange multiplier
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(vt), hence need to be observed how, after the combination of the f.o.c. for domestic and

foreign bond holding, is it possible to obtain the modified uncovered interest rate parity

condition which, in its log-linearized form, is equal to:

R̂t − R̂∗t = Et∆Ŝt+1 − âtφ̃a + ˆ̃φt

where it is assumed that the premium on foreign bond holdings follow the function

Φ(at, φ̃t) = exp

(
− φ̃a(at − ā) + φ̃t

)
in which φ̃t is a (zero mean) risk premium shock. The

real net foreign asset position of the domestic economy is defined as:

At =
StB

∗
t+1

Pt
(6.14)

Φ(at, φ̃t) lives on the assumption to be strictly decreasing in at so that domestic house-

holds are charged of a premium on the foreign interest rate if the home country is a net

borrower (B∗t+1 < 0) hence ât enters in the interest rate parity condition because of the

imperfect integration of the international financial markets.

6.2 Firms

The intermediate domestic firms produce a differentiated good which they sell to a final good

producer. In order to put in place production, intermediate producers use capital and labour

inputs and, since this is an open economy setting, intermediate firms may be distinguished

as domestic, importing and exporting.

Importing and exporting firms operates in the world market and buy an homogeneous

55



6.2. Firms

international final goods that are differentiated by brand naming before they sell to domestic

households. Exporting firms operate with a similar scheme buying final domestic goods and

differentiate it before sell it abroad

6.2.1 Final good firms

The final good producer aggregates intermediate goods into an homogeneous final good

according to that Dixit and Stiglitz (1977) aggregator:

Yt =

(∫ 1

0

Y
1

λd,t

i,t di

)λd,t
(6.15)

Domestic-produced goods compete with the imported goods bought by the importing

while the exporting firms place a fraction of the final product abroad.

In the above written formula (6.15) Yi,t denote the intermediate goods, with i ∈ (0, 1)

while λd,t represents the degree of substitutability hence determining the mark-up for the

domestic good market which is assumed to follow a persistent stochastic process:

λd,t = (1− ρλd,t)λd + ρλd,tλd,t−1 + ελd t

where ελd t is an i.i.d. shock.

Te final good producer choose the bundle of goods that minimises the cost of producing

Yt, taking all intermediate goods prices Pi,t, final domestic goods prices Pt and the quantity

of intermediate goods Yi,t as given. The unit price of the unit output is equal to its unit cost
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Pt. The profit maximisation leads to the following first order condition:

Yi,t
Yt

=

(
Pt
Pi,t

) λd,t
λd,t−1

(6.16)

By integrating (6.15) and using (6.16) it is possible to obtain the (6.17) which trace the

relation that link between final and intermediate goods prices.

Pt =

(∫ 1

0

P
1

1−λd,t
i,t di

)1−λd,t
(6.17)

6.2.2 Intermediate firms

All firms combine labour and capital using the same CRTS production function and are

afflicted by the same aggregate technology shock zt which is permanent.

Yi,t =
(
ztHi,t

)1−α
Kα
i,tεt − ztφ (6.18)

It is evident how the function articulates in a Cobb-Doulas fashion in which Ki,t rep-

resents the capital stock which, since we allow for variable capital utilisation, may differ

from physical capital, and Hi,t the labour inputs. The last term to present is εt which is the

neutral and stationary one that follows the following univariate representation.

In order to ensure that profits are zero in steady state, the fixed cost is assumed to grow

at the same rate as consumption, investment, the real wage, and output do in steady state.

If this would not be true it would imply the presence of a monopoly power with a consequent
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increase in profits and the limitation in the movement in and out of the market. The process

for the permanent technology level zt is exogenously given by:

zt
zt−1

= µz,t (6.19)

µz,t = (1− ρµz)µz + ρµzµz,t−1 + εz,t (6.20)

ε̂t = ρεε̂t−1 + εεt (6.21)

where ε̂t = (εt − 1)/1, E(εt) = 1 and εεt ∼ N(0, 1).

The firm choice over factor utilization is made by the cost minimization problem con-

strained by the production function. Each firm must hence choose Ki,t, Hi,t, assuming prices

(Pi,t) as given, according to the following formula:

WtR
f
tHi,t +Rk

tKi,t + λtPi,t

[
Yi,t −

(
z1−α
t Hi,t

)1−α
Kα
i,tεt − zut φ

]
(6.22)

where λt is the Lagrangian operator which may be interpreted as the nominal cost of

producing one additional unit of the domestic good (nominal marginal cost).

The remaining terms take the usual meaning, among those I introduce Rk
f for the gross

nominal rate of interest payed by firms which reflects the assumption according of a fraction

(vt) of the intermediate firm wage financed in advance.
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Rf
t = νtRt−1 + 1− νt

Still talking of wage the (6.22) reports the terms Hi,t representing the labour input with

its relative (aggregate) price Wt to be corresponded. The resulting first order conditions

thus are:

WtR
f
t = (1− α)λtPi,t

[
z1−α
t H−αi,t K

α
i,tεt

]
(6.23)

Rk
t = αλtPi,t

[
z1−α
t H1−α

i,t Kα−1
i,t εt

]
(6.24)

Since the ith firm is a monopolist in the production of ith good - namely monopolist

competitor - it may set its price and it will do it in consideration of a probability ξd of

not being able to reoptimize its price. This setup was firstly proposed by Calvo (1983) and

introduce in the model the so called nominal frictions and obligate the firms to face another

optimization problem:

max
Pnewt

= Et

∞∑
s=0

(βξd)
svt+s

[(
(πtπt+1 . . . πt+s−1)κd(π̄

c
t+1π̄

c
t+2 . . . π̄

c
t+s)

1−κdP new
t

)
Yi,t+s

−MCi,t+s(Yi,t+s + zt+sφ)

]
(6.25)

where (βξd)
svt+s is the stochastic discount factor and MCi,t+s is the firm’s marginal cost
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that comes manipulating (6.23) and (6.24) and has the form:

mct =

(
1

1− α

)1−α(
1

α

)α(
rkt
)α(

w̄tR
f
t

)1−α 1

εt
(6.26)

while, following the same procedure, the equilibrium rental rate of capital will be:

rkt =
α

1− α
w̄tµz,tR

f
t k
−1
t Hj

i,t (6.27)

Despite the (6.25) (and FOCs) must be noticed how (6.26) are no longer in nominal

terms (nor non-stationary), this is because I applied the following transformation before end

to the final solution:

Rk
t =

Rk
t

Pt

w̄t =
Wt

Ptzt

kt+1 =
Kt+1

zt

k̄t+1 =
K̄t+1

zt

the same transformations brought to (6.27).

Combining (6.25) with (6.17) we obtain the average price at period t:

Pt =

[∫ ξd

0

(
Pt−1(πt−1)κd(π̄ct )

κd

) 1
1−λt,d

+

∫ 1

ξd

(
P new
t

) 1
1−λt,d

di

]1−λt,d

=

[
ξd
(
Pt−1(πt−1)κd(π̄ct )

κd
) 1

1−λt,d + (1− ξd)
(
P new
t

) 1
1−λt,d di

]1−λt,d
(6.28)
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which, after some manipulation, once log-linearized brings to:

(π̂t − ˆ̄πct ) =
β

1 + kdβ

(
π̂dt+1 − ρπ ˆ̄πct

)
+

kd
1 + kdβ

(
π̂dt−1 − ˆ̄πct

)
− kdβ(1− ρπ)

1 + kdβ
ˆ̄πct +

(1− ξd)(1− βξd)
ξd(1 + kdβ)

(
m̂ct,d + λ̂t,d

)
(6.29)

which is the Phillips curve.

6.3 Export and import

The structure of import and export is characterised by price frictions and competitive

monopoly. Importers purchase an homogeneous foreign good, which they turn into a special-

ized input and sell to domestic retailers, which retailers are of three types: the first one uses

imports to produce consumption goods, the second one uses imports to produce investment

goods while the last one uses imports as an input into the production of specialized exports.

Exporters, on the other hand, use homogeneous goods derived from imports and homoge-

neous domestically produced goods to realise specialized export goods which are sold abroad

to foreign citizens.

I will get into the details of importers and exporters in the following subsections, however

in this context it is important to underline how pricing frictions and exchange rate play a

crucial role. By the import point of view it is important to model, in line with the empirical

evidences (see Christiano et al. (2011) and Burlon et al. (2018)), the time that exchange rate

shocks take to pass into domestic prices. In this case, in order to complete the overview,
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must be stressed out how imported goods must be combined with domestic inputs and so

the final prices will be a combination of the two factors. It is even important to underline

how consumption does not expand rapidly because of the assumption of habit persistence

in preferences and so do investments because of the assumption that there are adjustment

costs associated with changing the investment flows.

Another important thing to note is that, since part of the import is used in the produc-

tion of goods aimed for export, the responses of expansionary or contractionary monetary

policy, both domestic and foreign, will have effects on the demand of exports and imports

as well, hence dampening the responses of those variables. Under a model perspective it is

therefore better to keep an asymmetrical structure for the import of goods destined to the

export sector; in order to do so, a low price frictions in those goods is supposed.

It is intuitive now how exchange rate would work in a similar manner as prices do. The

real exchange rate is in fact defined as:

xt = St
P ∗t
P c
t

(6.30)

This formula is on one hand being composed by prices (domestic and foreign) and af-

fected by the above exposed rigidities, on the other hand it illustrates the role of the nominal

exchange rate S. Now, since the model features limit nominal exchange rate pass-through,

it is straightforward how a slow response of S lessens the response of exports to monetary

policy shocks.
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The above written formula (6.30) in its log-linear form becomes:

x̂t = Ŝt + P̂ ∗t − P̂ c
t (6.31)

6.3.1 Importing firms

Here now I get into the details of imports. As previously exposed, foreign firms sell a homo-

geneous good to domestic importers which convert the homogeneous good into a specialised

input that monopolistically supply to domestic retailers.

Importing firms are of three types of: the ones that produce goods used in the production

of intermediate goods aimed to consumption, the ones that produce goods used in the pro-

duction of intermediate goods aimed to investment and the ones that produce goods used

in the production of intermediate goods destined to export. Importers buy homogeneous

goods in the world market at price P ∗t and, since they are subject to price frictions à la

Calvo (1983), an incomplete price pass-through arises.

The demand for imported consumption goods is given by:

Cm
i,t =

(
Pm,c
i,t

Pm,c
t

)− λ
m,c
t

λ
m,c
t −1

Cm
t (6.32)

where Cm
i,t is the output of the ith specialised producer. The formula accounts for two

different prices, both taken as given: Pm,c
i,t which denote the price of the ith intermediate

output, and Pm,c
t which denote the price index of the imported consumption Cm

t . This

last one defined as the final import consumption good, which is a function having a CES
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structure, and composed by a continuum of i differentiated imported consumption goods,

each supplied by a different firm.

Cm
t =

(∫ 1

0

(Cm
i,t)

1

λ
m,c
t di

)λm,ct

(6.33)

Similarly, the final imported investment good is composed by a continuum of differenti-

ated imported investment goods as follows:

Imt =

(∫ 1

0

(Imi,t)
1

λ
m,i
t di

)λm,it

(6.34)

hence the demand for the differentiated imported investment goods will be given by:

Imi,t =

(
Pm,i
i,t

Pm,i
t

)− λ
m,i
t

λ
m,i
t −1

Imt (6.35)

As for the final goods producers, λjt , with j denoting the consumption or investment, is

a time-varying mark-up following an AR(1) process. Once again it take values in the range

1 ≤ λjt <∞ and have the explicit form of:

λm,ct = (1− ρλm,c)λm,c + ρλm,cλ
m,c
t−1 + ελm,c,t (6.36)

λm,it = (1− ρλm,i)λm,i + ρλm,iλ
m,i
t−1 + ελm,c,t (6.37)

As we mentioned, the aggregate price index accounts for nominal rigidities and is identical

for imported consumption goods and investment goods, here denoted by a generic j taking
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values (j = [c, i]):

Pm,j
t =

[∫ 1

0

(
Pm,j
i,t

) 1

1−λm,jt di

]1−λm,jt

=

[
ξm,j

(
Pm,j
t−1 (πm,jt−1)k

m,j

(π̄ct )
1−km,j) 1

1−λm,jt + (1− ξm,j)
(
Pm,j
new,t

) 1

1−λm,jt

]1−λm,jt

(6.38)

Combining of the two demand functions (6.32) and (6.35) in firms’ optimisation problem

and computing the first derivatives with respect to consumption and investment goods, it

is possible to use the result to get the Phillips curve for imported consumption goods and

imported investment goods:

(π̂m,jt − ˆ̄πct ) =
β

1 + κm,jβ

(
π̂m,jt+1 − ρπ ˆ̄πct

)
+

κm,j
1 + km,jβ

(
π̂m,jt−1 − ˆ̄πct

)
− κm,jβ(1− ρπ)

1 + κm,jβ
ˆ̄πct +

(1− ξm,j)(1− βξm,j)
ξm,j(1 + κm,jβ)

(
m̂cm,jt + λ̂m,jt

)
(6.39)

where m̂cm,jt = P̂ ∗t + ŝt− P̂m,j
t and λ̂m,jt is, as always, the mark-up shock. About this last

one must be underlined that there is a close correspondence between substitution elasticity

and mark-up shocks, in particular I want to point out how such a shock can originate either

in households’ willingness to substitute among goods or in importing firms’ price setting

behaviour. For details Adolfson et al. (2007) provide a good technical explanations.
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6.3.2 Exporting firms

The exporting firms buy final domestic goods and resell them in the international market

after having differentiated them by brand naming according to the following demand func-

tion:

Xi,t =

(
P x
i,t

P x
t

)− λxt
λxt −1

Xt (6.40)

where P x
i,t is denominated in foreign currency and, in order to allow for an incomplete

pass-through, I assume it to be sticky.

Te above written formula comes from the optimization of the production function

[∫ 1

0

(
Xi,t

) 1
λxt di

]λxt
where the specialised intermediate goods Xi,t, i ∈ (0, 1) are used to produce Xt.

As for the import sector λxt is a mark-up element following an exogenous autoregressive

process of order one

λxt = (1− ρλx)λx + ρλxλ
x
t−1 + ελx,t (6.41)

Once again with 1 ≤ λxt <∞

In order to illustrate the relation that links exporter demand with the foreign market

let’s see the total demand by for the domestic export:

Xt =

(
P x
t

P ∗t

)−ηf
Y ∗t (6.42)
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Here P x
t is the export price index while asterisks denote the rest of the world variables:

Y ∗t and P ∗t respectively for foreign GDP and foreign currency price of homogeneous goods.

Complete the set of equation the equation for P x
t , which is obtained by the combination

of production and demand function:

P x
t =

[∫ 1

0

(
P x
i,t

) 1
1−λx di

]1−λx

Following the same steps as we did for the import sector we obtain the aggregate export

inflation equation:

(π̂xt − ˆ̄πct ) =
β

1 + κxβ

(
π̂xt+1 − ρπ ˆ̄πct

)
+

κx
1 + κxβ

(
π̂xt−1 − ˆ̄πct

)
− κxβ(1− ρπ)

1 + κxβ
ˆ̄πct +

(1− ξx)(1− βξx)
ξx(1 + κxβ)

(
m̂cxt + λ̂xt

)
(6.43)

where m̂cxt = P̂ ∗t + ŝt − P̂ x
t .

6.4 Wage setting

Households supply specialised labour (hj,t) to firms at a price (wage (Wt)) that may be

updated with a probability ξw according to a Calvo’s scheme - the same used for other

markets exposed in the previous chapters - that is:

Wj,t+1 = (πct )
κw(π̄ct+1)1−κwµz,t+1Wj,t (6.44)
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where, once again, µz,t+1 = zt+1

zt
.

The optimization problem faced by jth household configures by inserting the 6.44 to the

households utility function 6.1 and the first order condition hence become:

∞∑
s=0

(βξw)shj,t+s

[
−ζht+sAL(hj,t+s)

σL+
W new
t

ztPt

zt+svt+sPt+s
λw

(1− τ yt+s)
(1 + τwt+s)

(
P ct+s−1

P ct−1
)κw(π̄ct+1 . . . π̄

c
t+s)

1−κw

P dt+s
P dt

]
= 0

(6.45)

In which must be noticed the presence of ξw.

hj,t in the objective function can be argued in form of the demand function for labour of

the individual household, that is:

hj,t =

(
Wj,t

Wt

) λw
1−λw

Ht (6.46)

where λw is the wage mark-up.

Since specialised labour (hj,t) is supplied by households to domestic firms we need to

clarify firm’s production function. In particular they operate combining supplied labour

with labour contractors into a homogeneous labour service and it happens according to the

following production function:

Ht =

[ ∫ 1

0

(hj,t)
1
λw dj

]λw
(6.47)

68



6.5. Foreign economy

where, as always, 1 ≤ λw <∞

6.5 Foreign economy

My model configures as an small open economy, which means that the economy is influ-

enced by the rest of the world without having being able to alter international variables.

The variables that defines the rest of the world economy are price, interest rate and output

however estimating those variables is not an easy task. Actually World Bank supply world

time series, however throughout the adoption of Dynamic Factor Model - (DFM) - I propose

an alternative way of estimation of those time series, taking advantage of all the features

that characterise this approach.

What I do is to consider, instead of the whole world, only the rest of the world respect

to Italy, hence making the estimation free of this bias and formally more accurate. This

realises in a panel of hundred of time series from which to extract the factors that identify

the variables of interest.

6.5.1 Dynamic Factor Model

The Dynamic Factor Models, in nonparametric form, find their baseline version in Forni

et al. (2000), where they apply DFM to identify VARs and compute impulse response func-

tions, and in Forni et al. (2003, 2005) in which they move from a two-sided to a one-sided

estimation of DFM in order to improve the forecasting performances.
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Forni et al. (2015, 2017) firstly allowed DFM to span the factor space in every possible

dimension, hence proposing an infinite-dimensional representation, which is the one I choose

to work with in this paper. This representation, starting from a panel Yit of observable

stationary stochastic processes, with mean 0 and finite variance, assume that such variables

belong to an Hilbert space in L2 for some probability space (Ω, F, P ). The panel hence is

composed by n×T levels of finite realisation and so Y will be: Y = {Yit | i ∈, t ∈ Z}, where

t stands for time and i is the cross-sectional index.

For all n ∈ N we assume that the spectral measure on Yn is absolutely continuous respect

to the Lebesgue measure on [−π, π] , such that the spectral density matrix is ΣY ;n(θ) that

is Hermitian, non-negative definite and has therefore non-negative real eigenvalues for all

θ ∈ [−π, π] . Such assumptions are necessary and sufficient to guarantee a dynamic factor

representation.

We can hence state that Y admits a dynamic factor representation, with q factors, if Yit

decomposes into a "common" component (Xit) and an "idiosyncratic" component (Zit) such

that:

Yit = Xit + Zit =

q∑
k=1

bik(L)ukt + Zit (6.48)

Where ukt is a q-dimensional orthonormal process, which is withe noise with mean zero,

and Zit is zero-mean second order stationary process whose Z ′s are weakly cross-correlated,

while the two processes are mutually orthogonal at any lead and lag.

Other element of (6.48) is bik(L) which is a one-sided filter, where L denote the lag

operator. This filter is defined to be square-summable
∑∞

m=1 b
2
ikm < ∞ for all i ∈ N
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and k = 1 . . . q. The one-sided filters, as demonstrated by Forni et al. (2017), can be

obtained without the finite-dimensionality assumption, by adding the condition under which

the common components must have rational spectral density, that is, each filter bif (L) in

(6.48) is a ratio of polynomials in L. Forni et al. (2015, 2017) also prove that for generic

values of parameters cif,k and dif,k, Xit has the fundamental representation:

Xit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt (6.49)

in which ut is fundamental for Xit.

In order to ease the reading, from now on I will light the notation omitting the cross-

section index i.

For each element of the (6.48) a cross-covariance matrices, for example between Yt and

Yt−k, can be estimated; such matrices may be summarised in the form: ΓY ;k(θ) = E[YtY
′

t−k]

The elements of the (6.48) may be rearranged in terms of spectral density and covariance

matrices, this representation is purely illustrative, nevertheless the admissibility of such rep-

resentation is essential for estimation.

ΓY ;k(θ) = ΓX;k(θ) + ΓZ;k(θ) (6.50)

ΣY (θ) = ΣX(θ) + ΣZ(θ) (6.51)

Proceeding in order, it must be reminded that the decomposition of the panel in common
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and idiosyncratic components is the baseline concept in Dynamic Factor Models literature;

while most of the representations are based on the assumption that the space spanned by

the stochastic variable Xit - for t given and i ∈ N - is finite-dimensional, Forni et al. (2015)

demonstrate that such an assumption is extremely restrictive and potentially harmful so, as

they do in their paper, I relax this assumption hence founding the estimation on a potentially

infinite number of principal components.

The results obtained by Forni et al. (2015, 2017) rely on the singularity of the vector

Xnt, where singularity is obtained when q is small compared to n. The q factors are the

qth dynamic eigenvectors of the spectral density matrix ΣY ;n(θ): such factors are identified

according to the method proposed by Hallin and Liška (2007) and are assumed to diverge as

n→∞, while the (q + 1)th one is bounded. Hallin and Lippi (2013) provide the conditions

under which this assumption holds for q <∞.

We can thus say that it exists a representation that may be written as a block-diagonal

matrix of one-sided filters An(L) of dimension m(q + 1)×m(q + 1)

An(L) =



A1(L) 0 . . . 0 . . .

0 A2(L) . . . 0 . . .

...
... . . . ...

0 0 . . . Am(L)

...
... . . .


(6.52)

The (q + 1) × (q + 1) blocks of Ai(L) are so that a vector autoregressive representation

can be developed, where the VAR operators Iq+1 − Ai(L) are square summable and fun-
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damental. Such VAR representation of Yn is allowed by the presence of a full-rank n × q

matrix of constants Hn where the full-rank condition is, as said, sufficient to guarantee the

fundamentalness.

(I − A(L))Yt = Hut + (I − A(L))Zt = Hut + Ẑt (6.53)

where Ẑt is, by definition, equal to (I − A(L))Zt and idiosyncratic. The equation (6.53)

shows well the filtering role of A(L) matrix, while the common shocks ut are loaded via H

creating what we will call the level-common residuals et.

We have hence decomposed Y in two different components orthogonal to each other,

and, as Barigozzi and Hallin (2016) show in their paper, such components may generate

volatilities whose pattern may be very different from each other and from the one they show

in levels. Over that, is important to notice that there is no reason to think each compo-

nent to be affected by the volatility generated from it only. Saying differently: volatility

generated from the common component may influence both common and idiosyncratic ones.

The same is true for what concerns the volatility generated by the idiosyncratic components.

6.5.2 The block structure

The interdependency of level-common and level-idiosyncratic component have been intro-

duced by Hallin and Liška (2011). In this paper they propose a block-wise structure of the

dataset and investigate the dynamic interrelations within and between the blocks.
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In particular they show that all the components span the generic Hilbert space H and

thus every single component configures as a partition of it. As long as such decomposition

exist and is unique, it is possible to identify the source of the shocks that drive the whole

panel and their components and, using the same definition as in Barigozzi et al. (2019), it is

even possible to classify those shocks as “global” and “local”, referring as shocks that drive

the intersection between the common spaces and the ones that only pool a part respectively.

The concepts of global and local shocks will not be exploited in this paper, however

those definitions pass trough the identification of the level-common and level-idiosyncratic

components, which will be instrumental for my work. Details and computation procedures

will be exposed in the next paragraphs.

The level-common component

In order to estimate common component Xt, we start by estimating the spectral density

of Yt by means of a lag-window estimator. The spectral density matrix is identified by the

formula:

Σ̂Y (θ) =
1

2π

T−1∑
k=−T+1

eikθK

(
k

BT

)
Γ̂Y k (6.54)

in which eikθ is the autocovariance generating function, K is a kernel function and BT is a

bandwidth parameter. With the symbol Γ̂Y k we define the kth lag estimated autocovariance

and it is equal to 1
T

∑T
t=|k|+1 TtY

′

t−|k|.
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Once estimated the spectral density matrix we determine the number of q level-common

shocks. In order to do that we use the Hallin and Liška (2007) information criterion, which

is a data-driven method for the identification.

The so treated spectral density matrix will be decomposed as follows:

Σ̂X(θ) =

qT∑
k=1

Π̂Y (θ)Λ̂Y (θ)Π̂∗Y (θ) (6.55)

where Λ̂Y (θ) is the q× q matrix which dimensions are determined by the first q eigenval-

ues above calculated. Π̂∗Y (θ) is the n× q matrix with the corresponding eigenvectors on the

column, where the asterisk denotes that the matrix in transposed, complex and conjugate.

The estimate of the covariance matrix may be obtained by Fourier transformation of

Σ̂X(θ). As known the Fourier transformation is used to turn a function of time into its

constituent frequencies and it is invertible, meaning that we can conversely move from time

to frequency domain; the formulas for those conversions are:

Γ̂X =

∫ +π

−π
eikθΣ̂X(θ)dθ (6.56)

Γ̂X =
π

BT

∑
|h|≤BT

eikθhΣ̂X(θh) (6.57)

Since we define n = m(q+ 1) for some m ∈ N , Γ̂X will result as a block-diagonal matrix

of dimension m(q + 1) ×m(q + 1). The estimation of each block enable us to estimate the

coefficients of a VAR of dimension (q + 1) that will be the estimator of the autoregressive
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filter appearing in (6.52), which yields to the vector autoregressive representation

Ŷ = (I − Â(L))Y (6.58)

Projecting the Ŷt onto their q largest principal component provide an estimate of the

level-common innovation process, formally eit = {eit | i = (Hnut)i | i ∈ N, t ∈ Z}, that is:

ê = Ĥû. Ĥ is the estimator of the loadings and this may be disentangled from û imposing

the identification constraint ĤĤ ′ = Iq̂.

The level-idiosyncratic component

The analysis of volatility, typically, is based on the autocovariance structure of some non-

linear transform of innovation processes that (6.49) does not readily offers. Forni and Lippi

(2010), Forni et al. (2015) provided the frame used above to analyse the volatility coming

from the common component, in a similar fashion Barigozzi and Hallin (2016, 2017) centre

their paper on the componentwise residuals coming from the idiosyncratic part. In particu-

lar BH (2016) designed a two-step procedure that firstly decompose (I − A(L))Yt in êt and

(I − A(L))Zt in v̂t, this last one named as level-idiosyncratic residuals, then they proposed

two approaches aimed to compute predictions over the level-common and level-idiosyncratic

elements and to the application of GARCH techniques.

The estimation of the idiosyncratic element follows the level-common one which is, since

Σ̂Y (θ) and Σ̂X(θ) are our estimated spectral density matrix, respectively, for the data and

for the common component, it imply that the one for the idiosyncratic component may be
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obtained as:

Σ̂Z(θ) = Σ̂Y (θ)− Σ̂X(θ) (6.59)

Given the autoregressive formulation (6.58), the estimator of Ẑ will be:

Ẑ = (I − Â(L))Ŷ − ê (6.60)

in which v̂t is formally defined as: vit = {υit | i | i ∈ N, t ∈ Z}. Reminding that

Z̃t = (I − A(L))Zt, the process υt thus become:

υt = (1− ci(L))Ẑt (6.61)

The representation (6.61) make use of the AR filters c(L) which, as before, are one-sided,

square summable and such that every root lies outside the unit circle (c(z) = 0). Both id-

iosyncratic processes are zero-mean second-order white noise and not mutually orthogonal,

meaning that at this level some mild cross-correlation among them still remains.

Barigozzi and Hallin (2016, 2017) analyse both eit and υit via general dynamic factor

models, this mean that, as for the baseline representation (6.48), similar assumptions must

take place: in particular the existence of a second-order moment for all i ∈ N as well as

spectral density continuous respect to the Lebesgue measure over [−π, π]. In addition, as

noted by Engle and Marcucci (2006), in order to ease computations, some transformation

must be applied: logarithmic proxy over square residuals would allow to analyse the panels

via an additive factor models instead of imposing some positivity constraint at the moment

of model estimation, moreover some attention mus be payed to the fact that eit and υit

77



6.5. Foreign economy

are the white noise residual obtained from two mutually orthogonal components, then by

construction they are uncorrelated, therefore justifying our definition of

sit = log[(eit + υit)
2]− Elog[(eit + υit)

2] (6.62)

which is an N × T panel of centred volatility proxies.

In a similar manner as before, this matrix rely on the assumption of a spectral density ab-

solutely continuous with respect to the Lebesgue measure over [−π, π], hence the generalised

dynamic factor model decomposition will return the following representation:

sit = χs,it + ξs,it =

q∑
k=1

bs,ik(L)εs,kt + ξs,it (6.63)

In this case I will assume the existence of qs ∈ N such that the qths eigenvalue of the

spectral matrix diverges as n→∞, while the qths+1 is bounded.

sit can be decomposed using GDFM as to obtain a moving average representation for the

common components of the form:

χt = D(L)R−1Rεt

where the matrix R is a square one of dimension Qs × Qs which can be determined

by imposing appropriate exogenous restrictions. Among all possible choices we restrict our

search to orthogonal transformations as is customary in structural VAR models.

With this framework every block may be analysed separately and jointly at the occur-
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rence, as it is possible for the intersection of those blocks; this is the point of disentangling

the panel into level- and volatility-common panels. However in this paper I only rely on

a common representation, hence imposing a structure to the so obtained VAR in order to

maintain a comparability with the theoretical model coming from the DSGE.

According to the above exposed procedures, common and idiosyncratic component may

be extracted out from each block, which may be seen as a partition of the space spanned by

Y where each block is allowed to intersect with the others. The point in which all the three

shocks intersect identify the "global" shock area and indicate an ideal zone in which a shock

occurring in one subpanel is pervasive to the whole economy. Intersections, instead, are the

zones in which partitions overlap. The study of global and local shocks have been the core

of Barigozzi et al. (2019), however the adoption of this representation in conjunction with

DSGE will be left for future works.

6.5.3 Structural VAR (DSGE)

As said, the bock structure is essential to study the international inter-dependence of the

economies or, in other words, the way in which international macroeconomic variables have

effects to each other.

The topic offers many points of interest, however, in order to guarantee a better com-

parability with impulse response functions generated by DSGE, once extracted the series,

another decomposition were imposed, details of which will be provided in the dedicated

chapter.
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6.6. Net Foreign asset

In the model, international variables are exogenous to the ones of the small domestic

economy and their evolution is described by a fourth-order structural VAR, where contem-

poraneous correlations are defined by the structure of the stochastic component matrix B

reported below:

F0 =


1 0 0

0 1 0

b3,1 b3,2 1

 (6.64)

where X∗t = [π∗t ŷ
∗
t R

∗
t ]
′.

The assumptions on the contemporaneous correlations matrix B are consistent with the

hypothesis that output and inflation do not respond contemporaneously to the other shocks

in the system, hence the SVAR system adds three linear stochastic equations - with four lags

each - to the economic and stochastic relations of the domestic economy model.

6.6 Net Foreign asset

The Net Foreign Assets (NFA), in aggregate level, evolve according to the following formula:

StB
∗
t+1 −R∗t−1Φ(at−1, ˜φt−1)StB

∗
t = StP

x
t (Cx

t + Ixt )− STP ∗t (Cm
t + Imt ) (6.65)

I get in the detail of the term R∗t−1Φ(at−1, ˜φt−1), already present in (6.13): this is the
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risk-adjusted gross nominal interest rate over foreign bond holding, where at =
StB∗t+1

Ptzt
is the

stationarized real term definition of NFA. In other words if if B∗t+1 < 0 the domestic economy

is a net borrower and households are charged by a premium on foreign asset while the inverse

is true if B∗t+1 > 0 hence the economy is a net lender. The so defined risk-premium assure

the steady-state of the model to be unique and independent of the initial net foreign asset

and capital stock of the economy.

Scaling the 6.65 by multiplying by 1
Ptzt

and using Cxt
zt

+
Ixt
zt

=

[
Pxt
P ∗t

]−ηf
Y ∗t
z∗t

z∗t
zt
at may be

expressed as:

at = (mcxt )
−1(γx,∗t )−ηfy∗t z̃t

∗ − (γft )−1(cm + imt ) +R∗t−1Φ(at−1, ˜φt−1)
at−1

πtµz,t

St
St−1

(6.66)

which once log-linearized becomes:

ât = −y∗m̂cxt − ηfy∗γ̂
x,∗
t + y∗ŷ∗t + y∗ ˆ̃z∗t

+ γ̂ft (cm + imt )− cm
(
− ηc(1− ωc)(γc,d)−(1−ηc)γ̂mc,dt + ĉt

)
+ im

(
− ηi(1− ωi)(γi,d)−(1−ηi)γ̂mi,dt + ît

)
+

R

πµz
ât−1

(6.67)

6.7 Fiscal and Monetary policy

In this economy spends resources on government consumption of the final domestic good, Gt

and we assume that there is not government debt, hence the resulting fiscal surplus/deficit

plus the seigniorage are assumed to be transferred back to the households TRt in a lump-sum
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fashion.

TRt + PtGt = Rt−1(Mt+1 −Mt) + τ ct P
c
t Ct +

(τ yt + τωt )Wt

1 + τωt
Ht

+ τ kt

[
(Rt−1 − 1)(MtQt) +Rk

t utK̄t +
(
R∗t−1Φ(at−1, φ̃t−1 − 1)

)
StB

∗
t + Πt

]
(6.68)

In order to finance its spending the government collects tax revenues resulting from taxes

on capital income τ kt , labor income τ yt , consumption τ ct , and pay-roll τwt . Following Adolfson

et al. (2007) we define

τt = [τ kt τ yt τ ct τwt Gt]

where Gt is the public expenditure and the fiscal policy follows a Vector Autoregressive

representation given by:

Γ0τ0 = Γ(L)τt−1 + ετ,t (6.69)

with ετ,t ∼ N(0,Στ )

The monetary authority, instead, is supposed to follow a Taylor rule according to which

the Central Bank adjust the short-term interest rate in response to the CPI inflation rate

deviation from a time-varying inflation target π̂ct − ˆ̄πct (omitting indirect taxes (τ ct )), the

output gap (measured as actual minus trend output) and the real exchange rate.

About the response to inflation deviation
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Thus, monetary policy is approximated with the following (log-linearized) instrument

rule:

R̂t = ρRR̂t−1 + (1− ρR)
(
ˆ̄πct + rπ(π̂ct−1− ˆ̄πct ) + ryŷt−1rxx̂t−1

)
+ r∆π∆π̂ct + r∆y∆ŷt + εR,t (6.70)

where εR,t is an uncorrelated monetary policy shock.

6.8 Market clearing conditions

Combining government’s and households’ budget constraints with zero profit condition of

final goods producers and employment agencies yields the aggregate resource constraint:

Cd
t + Idt +Gt + Cx

t + Ixt ≤ YtK̄t

where Yt is defined as we did before: Yt = εtz
1−α
t H1−α

t Kα
t − ztφ− a(ut)K̄t.

Scaling the formula to be real and opportunely substituting the variables with the ones

above defined we get:

(1− ωc)
[
P c
t

Pt

]ηc
ct + (1− ωi)

[
P i
t

Pt

]ηi
it + gt + (1− ωc)

[
P x
t

P ∗t

]−ηf
y∗t
z∗t
zt

≤ εt

(
1

µz,t

)
Kα
t H

1−α
t − φ− a(ut)k̄t

1

µz,t

(6.71)

In (6.71) z∗t represents the technology shock and, as the other variables, have been sta-
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tionarized by scaling with zt getting z̃∗t =
z∗t
zt
. z̃∗t is by definition a stationary shock that

measure the degree of asymmetry in permanent shocks to technological progress between

foreign and domestic economy and, as for the other shocks in the model, once log-linearized

(z̃∗t = 1 in steady state), follows an AR(1) process of the form:

ˆ̄z∗t+1 = ρz̃∗ ˆ̄z
∗
t + εz̃∗,t+1 (6.72)

Money market, on the other hand, clears at the following condition:

νWtHt = µtMt −Qt (6.73)

which, once standardised, becomes:

νω̄tHt =
µtm̄t

πtµz,t
− qt (6.74)
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Data and estimation results

The data have been taken from OECD database, for the period between 1995 and 2019 with

quarterly frequency. Since the theoretical model is calibrated on Italian economy, the rest of

the world time series have been extracted from every country except for Italy; in particular I

used gdp, interest rate and inflation (consumer prices) for every country that could provide

a complete time series for the considered period. Those variables have a size, respectively,

of 71, 132 and 75 time series, summing up to 278 variables in cross-section and a total of

27522 observations once the longitudinal dimension is considered.

As showed by Hallin and Liška (2011), the block structure of DFM is essential if some

dependence between blocks must be accounted. In particular they define the mathematical

background upon which a decomposition in sub-panels may be built. Such decomposition

was further investigated by Barigozzi et al. (2019), who constructed an intersection of the

common spaces of all blocks to allow shocks to be pervasive. Since I work in a structural

VAR environment, I do not need such a decomposition to identify shocks, however I rely

on a block structure of the panel in order to extract the common factors representing the

85



Chapter 7. Data and estimation results

desired series. More importantly, since the rest of the world variables are exogenous in the

model, then I can estimate a VAR for this section alone.

Validation through VAR is typically carried out by comparing the empirical impulse re-

sponse functions (IRF ) with the theoretical ones obtained by DSGE. In order to guarantee

that the information provided by the VAR is sufficient I rely on the concept of fundamen-

talness which says that a VAR is fundamental if and only if it is informationally sufficient

for all the structural shocks1. In other words, the structural representation is fundamental

if all the shocks can be recovered from a VAR.

This gives the intuition of how fundamentalness is a weak point of VAR analysis; however

the adoption of a DFM approach significantly simplify the identification problem, providing

a satisfactory solution (see Forni et al. (2009) and Forni et al. (2000) for further details)

and offering another (theoretical) support for the adoption of dynamic factor analysis in this

framework.

Since fundamentalness of structural shocks can be assumed in the DFM framework, iden-

tification is reduced to the choice of a matrixH such that economically motivated restrictions

on the matrix Bn(L)H are fulfilled.

Identification can be achieved by maximizing or minimizing an objective function involving

Bn(L)H. An alternative is to impose zero restrictions either on the impact effects or the

long-run effects or both.

1See Lippi and Reichlin (1993) to deepen the link between sufficient information and fundamentalness
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Forni et al. (2015, 2017) show that, letting the factor space be of infinite dimensions,

the model return good results, outperforming all the other factor models both doing IRF or

forecasting. As in their experiment, I identify the "structural" shocks and the correspond-

ing impulse–response functions by imposing a Cholesky identification scheme on the first q

variables. The results are reported in the figure 7.1 below.

Figure 7.1: S-DFM Impulse Response Function

On the other hand, the theoretical model was calibrated for the Italian economy setting

the discount factor parameter β equal to 0.996, the depreciation rate δ = 0.025 and the cap-

ital share in production α = 0.333, this in line with the information provided by Beqiraj and

Tancioni (2014) and Annicchiarico et al. (2013), this last ones even indicate a value of 0.25

for the tax over labour income τ y. The habit parameter b is set equal to 0.7 as suggested by

Smets and Wouters (2007) while the imported share of investment and consumption (ωi, ωc)

was imposed equal to 0.52 and 0.285 respectively, this is to match the ratio of imports over

gdp and investment (gross capital formation) over imports.
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The persistence parameter for the inflation ρπ is 0.975 while the money growth rate is

related to the steady state level of inflation and its hence set equal to 1.01 (per quarter)

and the cash to money ratio parameter Aq was set equal to 0.3776 following the findings of

Adolfson et al. (2007).

Central, for the aims of this work, is the role played by the parameters linked to the for-

eign market. In particular, the elasticity of substitution parameter of domestic and foreign

consumption goods (ηc and ηi) and the elasticity of substitution for investment ηf , which will

all be set equal to 1.5 as done in the papers by Beqiraj and Tancioni (2014) and Christiano

et al. (2011). Belong to this group the indexation parameters κx, κm,i and κm,c, all set equal

to 0.5, and the time varying mark-up parameters λd, λm,c and λm,i all initially fixed at 1.2.

The complete set of parameter values are summarised in the table B.1 in the appendix.

The first thing to notice is an oscillating behaviour of interest rate. In the first place must

be noticed that the interest rate appeared to be most volatile among the estimated series,

the behaviour of the IRF surely is a consequence of the lag structure imposed, that, in order

to keep the comparability with the DSGE, are modelled to be 4. Under a more economic

point of view not surprises the positive response to a shock of both gdp and inflation.

This waving walk of the interest rate have a direct impact over both gdp and inflation

that seem to acquire the same pattern once hit by an unexpected shock in R. To underline

here the negative effect that such a shock has over inflation at the moment that it occurs.
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No surprises for what concern the movement generated by gdp, while to notice a little

lag in the response of gdp when the shock comes from inflation. Figure 7.1 above illustrates

this all.

Applying the same shock to the international sector of the theoretical DSGE model, the

responses to a shock in the rest of the world gdp is reported in the 7.2 below:

Figure 7.2: DSGE response to a shock on international gdp

Here it is possible to observe a pattern similar to the one obtained using estimated data,

however loosing the cyclical behaviour that characterised the empirical analysis.

Way more different is the walk showed by the system once hit by an orthogonal shock

over prices. The model, in fact, offer positive idiosyncratic response, which demonstrate to

be quite persistent, and another positive response by the side of interest rate: this last one

which tend to reabsorb way faster however never really coming back to the steady state.

The behaviour of gdp shows to be pretty different having an initial positive response, then
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evolving on a negative field after nine periods.

Figure 7.3: DSGE response to a shock on international prices

The curves generated from a shock on international prices, reported in figure 7.3, tell us

that international economy responds in a similar manner as it does for a shock in produc-

tion; this mean that we can observe a positive and long lasting response from interest rate,

a more transitory idiosyncratic response and an oscillatory behaviour for what concerns gdp.

A shock to interest rate, instead, have an impact on itself that exhaust in about ten

periods. More ambiguous is the behaviour of inflation and production. Figure 7.4 shows us

that for what regards inflation the curve is pretty close to the steady state, however with an

overall negative magnitude, while gdp tend to convey more in the long period, even thought

an initial positive impact.

Those responses are in line with the theoretical expectation ad certify, with the rest of

the IRFs reported in the appendix, the general good performance of the model.
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Figure 7.4: DSGE response to a shock on international interest rate
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Conclusions

To bring model to data is an essential step in dynamic macroeconomics in order to certify

the consistency of the models. Many models of general equilibrium nowadays are designed as

a small open economy, however the international sector is generally kept purely theoretical,

meaning that, even though some VAR representation is imposed, no data are inserted in

those series.

My task here is thus to bring model to data in this sector and, since the model was

calibrated for the Italian economy, to get a more punctual estimation of the rest of the world

time series by computing those variables using dynamic factor models (hence excluding Italy)

instead of using a general world time series as estimated by official statistics. The model

validation, with particular concerns of the foreign sector, was another target of my study.

For a meaningful validation a necessary condition is that the VAR conveys enough in-

formation to recover the shocks of interest and the related IRF. By inverse is known how

for DSGE models including news or foresight shock, non-fundamentalness is endemic and a
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VAR representation can be used for model validation despite it non-fundamentalness.

I showed how the block structure of DFM, essential to identify the variables and recover

the dependence between blocks, allowing to build a VAR which structural representation

that is fundamental thanks to the properties of dynamic factor models analysis.

Given the properties of DFM and the good performances of infinite-dimensional repre-

sentation, I applied this model in order to extract the variables of interest. After having

identified those time series I computed impulse response functions by imposing a Cholesky

structure over the obtained VAR.

The data analysis demonstrate that the model can reproduce the general dynamics of the

international sector, however the magnitude of the responses have recorded some difference

nevertheless not invalidating the model but suggesting a possible different calibration of the

model.

Dynamic Factor Model even showed to sometimes anticipate responses respect to the

theoretical model this, even in consideration of the similar lag structure imposed, may give

place of a reflection over different specification.

In general the DSGE model demonstrated to performs reasonably well in fitting IRF

derived from rest of the world data, more interestingly the DFM approach - in its non-

parametric infinite-dimensional representation - demonstrated to be an effective tool in this

framework, opening the way for the application in other sectors of those constituting a gen-
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eral equilibrium model.
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Appendix A

The derivation of full conditional

posterior

Non-centred parametrization

Conditional posterior for µ

p(µ | y, h, φ, σ2
ω) ∝ p(h | µ, φ, σ2

ω)p(µ)

∝ p(h1 | µ, h, φ, σ2
ω)

n−i∏
t=1

p(ht+1 | htµ, h, φ, σ2
ω)N (αµ, βµ)

∝ exp

{
− (h1 − µ)2(1− φ2)

2σ2
ω

−
∑n−i

t=1(ht+1 − µ− φ(ht − µ))2(1− φ2)

2σ2
ω

}
exp

{
− (µ− αµ)2

2β2
µ

}
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∝ exp

{
−1

2

[
µ2

(
1− φ2 + (n−i − 1)(1− φ)2

2σ2
ω

+
1

β2
µ

)
−2µ

(
h1(1− φ2) + (1− φ)

∑n−i
t=1(ht+1 − φht)2

2σ2
ω

+
αµ
β2
µ

)]}

Remembering the initial assumption the above written formula simplifies to the following,

still keeping in mind that v(h) = σ2
ω

1−φ2

∝

{
σ2
ω

(n−i − 1)(1− φ)2 + (1− φ2)

}{
h1(1− φ2)

σ2
ω

+
(1− φ)

σ2
ω

n−i∑
t=1

(ht+1 − φht)2

}

Conditional posterior for σ2
ω

p(σ2
ω | η̄, h, µ, φ) ∝ p(h | µ, φ, σ2

ω)p(σ2
ω)

∝ p(h1 | µ, h, φ, σ2
ω)

n−i∏
t=1

p(ht+1 | htµ, h, φ, σ2
ω)IG(ασω , βσω)

Since the Gamma distribution with shape ασω , scale βσω and has support in (0,∞).

Rearranging I get:

∝
(

1

σ2
ω

)n−i
2

exp

{
− (h1 − µ0)2(1− φ2)

2σ2
ω

−
∑n−i

t=1(ht+1 − µ0 − φ(ht − µ0))2

2σ2
ω

}
(βσω)ασω e

−βσω
σ2ω

Γ(ασω)(βσω)ασω+1

where ασω and βσω are the hyperparameters, which are constant and can be specified by

the researcher, hence making the terms (βσω)ασω and Γ(ασω) constant. The expression can

thus be simplified:
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∝ exp

(
− 1

2

2βσω + (h1 − µ0)2(1− φ2) +
∑n−i

t=1(ht+1 − µ0 − φ(ht − µ0))2

σ2
ω

)(
1

σ2
ω

)(ασω+
n−i
2

)+1

Thus the full conditional distribution for σ2
ω is:

σ2
ω | h1 . . . hn, φ ∼ IG

(
2.5 +

n−i
2
, β∗
)

where β∗ = 0.025 +
(h1−µ0)2(1−φ2)+

∑n−i
t=1 (ht+1−µ0−φ(ht−µ0))2

2
.

Conditional posterior for σ2
ζ

p(σ2
ζ | η̄, h, µ, φ) ∝ p(h | µ, φ, σeta2)p(σ2

zeta)

∝ p(h1 | µ, h, φ, σ2
η)

n−i∏
t=1

p(ht+1 | htµ, h, φ, σ2
η)IG(ασζ , βσζ)

Similarly as for σ2
η, the full conditional density is proportional to:

∝ p(h1 | µ, h, φ, σ2
η)

n−i∏
t=1

p(ht+1 | htµ, h, φ, σ2
η)IG(ασζ , βσζ)

Which is a Gamma distribution with shape ασζ and scale βσζ . Once again, rearranging

I get:

∝
(

1

σ2
ζ

)n−i+k
2

exp

{
−
∑n−i

i=1(η̄i − µc,i)2(1− φ2)

2σ2
ζ

−
∑k

i=1(η̄i+1 − µ0 − φ(η̄i − µ0))2

2σ2
ζ

}
(βσζ)

ασζ e

−βσζ
σ2
ζ

Γ(ασζ)(βσζ)
ασζ+1
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Thus the conditional posterior is:

σ2
ζ ∼ IG

(
n−i + k

2
,
1

2

[ n−i∑
i=1

(η̄i − µc,i)2 +
k∑
i=1

(µi − µ0)2

])

Conditional posterior for φ

p(φ | η̄, h, µ, φ, σ2
η) ∝ p(h | µ, φ, σ2

η)p(φ)

∝ p(h1 | µ, h, φ, σ2
η)

n−i∏
t=1

p(ht+1 | htµ, φ, σ2
η)N (αφ, βφ)I(−1,+1)(φ)

∝ exp

{
−(η̄i−

(h1 − µ0)(1− φ2)

2σ2
η

−
∑n−i

i=1(hi+1 − µ0 − φ(ht − µ0))2

2σ2
η

}
exp
−(φ− αφ)

2β2
φ

I(−1,+1)(φ)

∝ exp

{
−1

2

[
φ2

(
(h1 − µ0)

∑n−i
i=1(ht − µ0)

2σ2
η

+
1

β2
φ

)
−2φ

(∑n−i
i=1(ht+1 − µ0)(ht − µ0)

σ2
η

+
αφ
β2
φ

)]}
I(−1,+1)(φ)

Thus:

φ∗ ∼ N[−1,1]

(∑n−i
i=1(ht+1 − µ0)(ht − µ0)∑n−i

i=1(ht − µ0)
,

σ2
η∑n−i

i=1(ht − µ0)

)

Centred parametrization

The conditional posterior for centred parametrization may bee seen as an adjusted version

of the non-centred one, hence I will only give details of the final result of this full conditional
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posterior.

As explained in the text, centred parametrization was introduced in order to improve the

computation when returns show values around zero: while the non-centred parametrization

was designed as a Dirichlet process mixture of Normals, the centred one is a normal distri-

bution around a small chosen number, thus I set µ∗i = µ+ µ0 and h∗t = ht − µ0.

Full conditional posterior for µ0

µ0 ∼ N
(∑k

i=1 µ
∗
i

k)
,
(1− α)σ2

ζ

n2
′

)

Full conditional posterior for σ2
ω

σ2
ω | h1 . . . hn, φ ∼ IG

(
2.5 +

n−i
2
, β∗
)

where β∗ = 0.025 +
h∗21 (1−φ2)+

∑n−i
t=1 (h∗t+1−φht∗)2

2
.

Full conditional posterior for σ2
ζ

σ2
ζ ∼ IG

(
n−i + k

2
,
1

2

[ n−i∑
i=1

(η̄i − µc,i)2 +
k∑
i=1

(µi − µ0)2

])

Conditional posterior for φ

φ∗ ∼ N[−1,1]

(∑n−i
i=1 h

∗
th
∗
t+1∑n−i

i=1 h
∗
t

,
σ2
η∑n−i

i=1 h
∗
t

)
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Calibrated parameters
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Table B.1: Parameters calibrated
Parameter Description Value

µ Money growth rate 1.01
β Discount factor 0.996
δ Depreciation rate 0.025
α Capital share in production 0.333
L Constant in labour disutility function 7.5
σL Labor supply elasticity 1
λw Wage markup 1.05
ωi Imported investment share 0.52
ωc Imported consumption share 0.0285
ρπ̄ Inflation target persistence 0.975
gr G/Y ratio 0.2037
τy Labor income tax 0.1771
τc Value added tax 0.1249
q Cash to money ratio 0.3776
ρτk Persistence parameter 0.9
ρτw Persistence parameter 0.9
ηc Elasticity of substitution 1.5
ν share of wage in advance 1
ξw Calvo parameter 0.69
ξd Calvo parameter 0.891
ξmc Calvo parameter 0.444
ξmi Calvo parameter 0.271
ξx Calvo parameter 0.612
ξe Calvo parameter 0.787
κw Indexation parameter 0.497
κd Indexation parameter 0.217
κmc Indexation parameter 0.5
κmi Indexation parameter 0.5
κx Indexation parameter 0.5
λd Mark-up parameter 1.2
λmc Mark-up parameter 1.2
λmi Mark-up parameter 1.2
b Habit parameter 0.7
ηi Elasticity of substitution 1.5
ηf Elasticity of substitution 1.5
µz Technology growth 1.005
τk Capital income tax 0.135
τw Labour pay-roll tax 0.197
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Impulse response functions

Figure C.1: DSGE response to a foreign gdp shock
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Figure C.2: DSGE response to a foreign inflation shock

Figure C.3: DSGE response to a foreign interest rate shock

111



Chapter C. Impulse response functions

Figure C.4: DSGE response to a transitory technology shock

Figure C.5: DSGE response to a permanent technology shock
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Figure C.6: DSGE response to a consumption preference shock

Figure C.7: DSGE response to a consumption tax shock
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Figure C.8: DSGE response to a government spending shock

Figure C.9: DSGE response to a interest rate shock
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