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Abstract. The classical Dynamic Programming (DP) approach to optimal control problems is
based on the characterization of the value function as the unique viscosity solution of a Hamilton-
Jacobi-Bellman (HJB) equation. The DP scheme for the numerical approximation of viscosity solu-
tions of Bellman equations is typically based on a time discretization which is projected on a fixed
state-space grid. The time discretization can be done by a one-step scheme for the dynamics and the
projection on the grid typically uses a local interpolation. Clearly the use of a grid is a limitation with
respect to possible applications in high-dimensional problems due to the curse of dimensionality.

Here, we present a new approach for finite horizon optimal control problems where the value
function is computed using a DP algorithm with a tree structure algorithm (TSA) constructed by
the time discrete dynamics. In this way there is no need to build a fixed space triangulation and
to project on it. The tree will guarantee a perfect matching with the discrete dynamics and drop
off the cost of the space interpolation allowing for the solution of very high-dimensional problems.
Numerical tests will show the effectiveness of the proposed method.

Key words. dynamic programming, Hamilton-Jacobi-Bellman equation, optimal control, tree
structure

AMS subject classifications. 49L20, 49J15, 49J20, 93B52

1. Introduction. The Dynamic Programming (DP) approach has been intro-
duced and developed by Richard Bellman in the ’50s in a series of pioneering papers
(see e.g. [5]). Since then it has been applied to many problems in deterministic and
stochastic optimal control although its real application has been up to now limited to
low dimensional problems. Via the Dynamic Programming Principle (DPP) one can
obtain a characterization of the value function as the unique viscosity solution of a
nonlinear partial differential equation (the Hamilton-Jacobi-Bellman (HJB) equation)
and then use the value function to get a synthesis of a feedback control law. This is
the major advantage over the approach based on the Pontryagin Maximum Principle
(PMP) [6,28] that gives necessary conditions for the characterization of the open-loop
optimal control and of the corresponding optimal trajectory. As it is well known, the
DP approach suffers from the curse of dimensionality since one has to solve a nonlin-
ear partial differential equation (PDE) whose dimension is the same of the dynamical
system. This has always been the main obstacle to apply that theory to real industrial
applications despite the large number of theoretical results established for many clas-
sical control problems via the DP approach (see e.g. the monographies by Bardi and
Capuzzo-Dolcetta [4] on deterministic control problems and by Fleming and Soner
[17] on stochastic control problems). Even in low dimension this is a challenging
problem since the value function associated to the control problem (i.e. the viscosity
solution of the HJB equation) is known to be only Lipschitz continuous also when
the dynamics and the running costs are regular functions. The numerical analysis of
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low order numerical methods is now rather complete even for a state space in Rd and
several methods have been proposed to solve the HJB equation using a number of
different techniques including finite differences, semi-Lagrangian, finite volumes and
finite elements. We refer the interested reader to the monographies by Sethian [31],
Osher and Fedkiw [26], Falcone and Ferretti [12] for an extensive discussion of some
of these methods and for an extended list of references on numerical methods. All
the above mentioned methods are based on a space discretization which requires the
construction of a space grid (or triangulation). For higher dimensional problems the
method needs a huge amount of memory allocations and makes the problem unfeasi-
ble for a dimension d > 5 on a standard computer. Several efforts have been made to
mitigate the curse of dimensionality. Although a detailed description of these contri-
butions goes beyond the scopes of this paper, we want to mention [14] for a domain
decomposition method with overlapping between the subdomains and [10] for similar
results without overlapping. It is important to note that in these papers the method
is applied to subdomains with a rather simple geometry (see the book by Quarteroni
and Valli [29] for a general introduction to this technique) to pass down conditions
to the boundaries. More recently another way to decompose the problem has been
proposed in [25] who have used a patchy decomposition based on Al’brekht method
(see e.g. [1]). Later in [8] the patchy idea has been implemented taking into account
an approximation of the underlying optimal dynamics to obtain subdomains which
are almost invariant with respect to the optimal dynamics, clearly in this case the
geometry of the subdomains can be rather complex but the transmission conditions
at the internal boundaries can be eliminated saving on the overall complexity of the
algorithm. More recently other decomposition techniques for optimal control prob-
lems and games have been proposed in [15] where the parallel algorithm is based on
the construction of independent sub-domains and in [16] where a parallel version of
the Howards algorithm is proposed and analyzed. In general, domain decomposition
methods reduce a huge problem into subproblems of manageable size and allow to
mitigate the storage limitation distributing the computation over several processors.
However, the approximation schemes used in every subdomain are rather standard.

Another improvement can be obtained using efficient acceleration methods for
the computation of the value function in every subdomain. In the framework of
optimal control problems an efficient acceleration technique based on the coupling
between value and policy iterations has been recently proposed and studied in [2].
The construction of a DP algorithm for time dependent problems has been addressed
in [13] where also a-priori error estimates have been studied. An adaptation of similar
methods for high-dimensional problems has been proposed later in [9].

However, we also mention that high-dimensional problems often imply a huge
amount of data and are too complex to be solved even by a direct approach based
on domain decomposition (this approach is typically feasible below dimension 10). A
reasonable solution to attack high-dimensional problems is to apply first model order
reduction techniques (e.g. Proper Orthogonal Decomposition [33]) to have a low di-
mensional version of the dynamics. Thus, if the reduced system of coordinates for the
dynamics has a low number of dimension (e.g. d ≈ 5) the problem can be solved via
the DP approach. Model reduction techniques are based on orthogonal projections
where the choice of the basis functions is non trivial, e.g. it requires to compute some
reference trajectories corresponding to a priori given control strategies and compute
the basis via an SVD. At the end of this step, the set of controlled trajectories will be
represented as a linear combination of the basis functions. Whenever we are able to
compute accurate projectors we drastically reduce the dimension of the control prob-
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lem, say `� d but we lose the physical meaning of the projected dynamical system.
This makes it difficult to define a reasonable choice of the numerical domain Ω and
the easiest solution is to choose Ω as a rather large box in R`. We refer, among others,
to the pioneer work on the coupling between model reduction and HJB approach [24]
and the recent [3] work which provides a-priori error estimates for the aforementioned
coupling method. We also mention a sparse grid approach in [18] where the authors
apply HJB to the control of the wave equation and a spectral elements approximation
in [23] which allows to solve the HJB equation up to dimension 12.
Despite these efforts and the mathematical elegance of the DP approach, its impact
in industrial applications is limited by this bottleneck and the solution of many op-
timal control problems has been accomplished instead via open-loop control. More
information on the topic can be found in the monographies by Hinze, Pinnau, Ulbrich
Ulbrich [20] and by Tröltzsch [32].

The aim of this paper is to eliminate the space discretization and the construction
of a grid to reduce the memory allocations and improve the applicability of the DP
approach. This can be done for the finite horizon problem via the construction of a
tree-structure that will account for the controlled dynamics. For numerical purposes,
we will assume that the system has a finite number of controls at every time step tn
and, to simplify the presentation, we are keeping this number M constant during the
evolution although the extension to a variable number Mn is straightforward. Under
these hypotheses starting from a point x we can reach M points in the state space
according to the discrete time dynamics. So a single starting point will produce a tree

T of order O(MN+1) points in N time steps and the number of points is exponentially
increasing as expected. Note that we will not compute the value function by the DP
algorithm on that tree: exploiting the Lipschitz continuity of the value function in the
space variable (see Section 2) we are going to prune the tree identifying the nodes that
are ”very close”. The pruning step of the algorithm will be governed by a pruning
parameter εT and at every step many branches will be cut away so the final complexity
will be drastically reduced.
Working on the tree has several advantages:

(i) we do not need to define a priori a numerical domain Ω where we want to
solve the problem, the original tree is constructed by the controlled dynamics;

(ii) we do not need to build a space grid and to make a space interpolation on
the grid nodes, therefore we do not introduce the interpolation error;

(iii) the pruned tree allows to deal with high-dimensional problems.
In conclusion, with respect to the standard space discretization we can drop the
interpolation step that is rather expensive in high-dimension and we do not need
the classical assumptions at the boundary of Ω which classically requires to have an
invariant dynamics or to impose boundary conditions (Dirichlet, Neumann or state
constraint).

Via the tree structure algorithm (TSA) we eliminate these difficulties at least for
the finite horizon problem and we can directly solve the discrete time HJB equation
for d = 1000 without any particular assumption on the structure of the problem as in
model reduction context. This will be shown in Section 5.

The paper is organized as follows: in Section 2 we recall some basic facts about the
time approximation of the finite horizon problem via the DP approach, we introduce
our notation and prove that the discrete time value function is Lipschitz continuous
in space. Section 3 is devoted to present the construction of the tree-structure related
to the controlled dynamics. In Section 4, we present some hints on the actual im-

3



plementation of the method, in particular the pruning technique used to cut off the
branches of the tree in order to reduce the global complexity of the algorithm. Some
numerical tests are presented and analyzed in Section 5. We give our conclusions and
perspectives in Section 6.

2. Finite horizon optimal control problems via dynamic programming
principle. In this section we will summarize the basic results that will constitute the
building blocks for our new algorithm. The essential features will be briefly sketched,
and more details can be found in [4,12] and the references therein. Let us present the
method for the classical finite horizon problem. Let the system be driven by

(2.1)

{
ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ],
y(t) = x ∈ Rd.

We will denote by y : [t, T ] → Rd the solution, by u the control u : [t, T ] → Rm, by
f : Rd × Rm × [t, T ]→ Rd the dynamics and by

U = {u : [t, T ]→ U,measurable}

the set of admissible controls where U ⊂ Rm is a compact set. We assume that there
exists a unique solution for (2.1) for each u ∈ U .

The cost functional for the finite horizon optimal control problem will be given
by

(2.2) Jx,t(u) :=

∫ T

t

L(y(s, u), u(s), s)e−λ(s−t) ds+ g(y(T ))e−λ(T−t),

where L : Rd × Rm × [t, T ]→ R is the running cost, g : Rd → R is the final cost and
λ ≥ 0 is the discount factor.
The goal is to find a state-feedback control law u(t) = Φ(y(t), t), in terms of the state
variable y(t), where Φ is the feedback map. To derive optimality conditions we use
the well-known DPP due to Bellman. We first define the value function for an initial
condition (x, t) ∈ Rd × [t, T ]:

(2.3) v(x, t) := inf
u∈U

Jx,t(u)

which satisfies the DPP, i.e. for every τ ∈ [t, T ] :

(2.4) v(x, t) = inf
u∈U

{∫ τ

t

L(y(s), u(s), s)e−λ(s−t)ds+ v(y(τ), τ)e−λ(τ−t)
}
.

Due to (2.4) we can derive the HJB for every x ∈ Rd, s ∈ [t, T ):

(2.5)

 −∂v
∂s

(x, s) + λv(x, s) + max
u∈U
{−L(x, u, s)−∇v(x, s) · f(x, u, s)} = 0 ,

v(x, T ) = g(x) .

Suppose that the value function is known, by e.g. (2.5), then it is possible to compute
the optimal feedback control as:

(2.6) u∗(t) := arg max
u∈U

{−L(x, u, t)−∇v(x, t) · f(x, u, t)} .
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Equaton (2.5) is a nonlinear PDE of the first order which is hard to solve analitically
although a general theory of weak solutions is available in e.g. [4]. Rather, we
can solve equation (2.5) numerically by means of finite difference or semi-Lagrangian
methods. In the current work we recall the semi-Lagrangian method. One usually
starts the numerical method by discretizing in time the underlying control problem
with a time step ∆t := [(T − t)/N ] where N is the number of temporal time steps and
then projects the semi-discrete scheme on a grid obtaining the fully discrete scheme:

(2.7)


V ni = min

u∈U
[∆t L(xi, u, tn) + e−λ∆tI[V n+1](xi + ∆tf(xi, u, tn))],

n = N − 1, . . . , 0,

V Ni = g(xi) xi ∈ Ω,

where tn = t + n∆t, tN = T , Ω is the numerical domain and xi is an element of its
discretization, V ni := V (xi, tn) and I[·] is an interpolation operator which is necessary
to compute the value of V n at the point xi+∆t f(xi, u, tn) (in general, this point will
not be a node of the grid). The interested reader will find in [13] a detailed presentation
of the scheme and a priori error estimates for its numerical approximation. We note
that it is possible to show that the value function v(x, t) is Lipschitz continuous
on compact sets provided that f, L and g are Lipschitz continuous with constant
Lf , LL, Lg > 0 respectively. It is possible to extend the result for the numerical value
function V (x, t) as explained in the following proposition. The proof follows closely
from the continuous version in [4, Prop. 3.1].

Proposition 2.1. Let us suppose the functions f(·, u, t), L(·, u, t) and g(·) are
Lipschitz continuous uniformly with respect to the other variables. Then, the numerical
value function V n(x) is Lipschitz in x

(2.8)

|V n(x)− V n(y)| ≤


|x− y|

(
LL

Lf−λ (e(T−tn)(Lf−λ) − 1) + Lge
(T−tn)(Lf−λ)

)
,

for Lf > λ,
|x− y|

(
LL(T − tn) + Lge

(T−tn)(Lf−λ)
)
,

for Lf ≤ λ,

∀x, y ∈ Rd and n = 0, . . . , N .

Proof. In the case n = N , we have that V N (x) = g(x), then the estimate follows
directly from the hypothesis on g.
In the case n < N , we fix x, y ∈ Rd and consider the following quantity V n(x)−V n(y):

V n(x)− V n(y) ≤ e−λ∆tV n+1(x+ ∆tf(x, un∗ , tn)) + ∆tL(x, un∗ , tn)

− e−λ∆tV n+1(y + ∆tf(y, un∗ , tn))−∆t L(y, un∗ , tn)

≤ e−λ∆t(V n+1(x+ ∆tf(x, un∗ , tn))− V n+1(y + ∆tf(y, un∗ , tn)))(2.9)

+ ∆t LL|x− y|,

provided that

un∗ = arg min
u∈U

{
e−λ∆tV n+1 (y + ∆tf(y, u, tn)) + ∆tL(y, u, tn)

}
.

To achieve the desired estimate (2.8), we need to iterate (2.9) starting from x and y
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at time tn. Let us first define the whole tree paths {xm}m and {ym}m as

xm := xn + ∆t

m−1∑
j=n

f(xj , uj∗, tj), ym := yn + ∆t

m−1∑
j=n

f(yj , uj∗, tj),

where

uj∗ = arg min
u∈U

{
e−λ∆tV j+1

(
yj + ∆tf(yj , u, tj)

)
+ ∆tL(yj , u, tj)

}
, j = n, . . . ,m− 1.

By the discrete Grönwall’s lemma, it is easy to prove the following estimate for Euler
schemes starting from xn = x and yn = y

(2.10) |xn+k − yn+k| ≤ |xn − yn|ek∆tLf = |x− y|ek∆tLf , k = 0, . . . , N − n.

Then, iterating (2.9) we obtain

V n(x)− V n(y) ≤ ∆t LL

N−n−1∑
k=0

e−λk∆t|xn+k − yn+k|+ e−λ(T−tn)|g(xN )− g(yN )|

≤ ∆t LL

N−n−1∑
k=0

e−λk∆t|xn+k − yn+k|+ Lge
−λ(T−tn)|xN − yN |

≤ |x− y|

∆tLL

N−n−1∑
k=0

ek∆t(Lf−λ) + Lge
(T−tn)(Lf−λ)

 ,(2.11)

where we used (2.10) and the Lipschitz continuity of g.
If Lf > λ, then by (2.11) and the equality (N − n)∆t = T − tn, we get

V n(x)− V n(y) ≤ |x− y|
(

∆tLL
e(T−tn)(Lf−λ) − 1

e∆t(Lf−λ) − 1
+ Lge

(T−tn)(Lf−λ)

)
≤ |x− y|

(
LL

Lf − λ
(e(T−tn)(Lf−λ) − 1) + Lge

(T−tn)(Lf−λ)

)
,

(2.12)

whereas if Lf ≤ λ, noticing that ek∆t(Lf−λ) ≤ 1, we directly obtain

(2.13) V n(x)− V n(y) ≤ |x− y|
(
LL(T − tn) + Lge

(T−tn)(Lf−λ)
)
.

Analogously, it is possible to obtain the same estimate for V n(y)−V n(x) which leads
to the desired result.

In the next section we will take advantage of the estimate (2.9) to guarantee the
feasibility of our proposed method. The numerical approximation of the feedback
control (2.6) follows directly from the SL-scheme (2.7) and reads

un∗ (x) = arg min
u∈U

[∆t L(x, u, tn) + e−λ∆tI[V n+1](x+∆tf(x, u, tn))].
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3. HJB on a tree structure. The DP approach for the numerical approxi-
mation of viscosity solutions of the HJB equation is typically based on a time dis-
cretization which is projected on a fixed state-space grid of the numerical domain.
The choice of the numerical domain is already one bottleneck of the method. In fact,
although the theory is valid in the whole space Rd for computational reasons we need
to restrict to a compact set in Rd which should be large enough to include all the pos-
sible trajectories. That also yields the selection of some boundary conditions which
are not trivial.

In this section we will provide a novel algorithm which does not require a state-
space grid and therefore avoids (i) the choice of the numerical domain, (ii) the com-
putation of polynomial interpolation, (iii) the selection of boundary conditions and
finally (iv) we can solve the problem for larger dimension, such as d� 5 (in Section 5
we provide an example in dimension 1000). Note that dimension 5 was the maximum
dimension for SL-schemes based on a grid on a standard computer (see e.g. [3]).

Construction of the tree data structure. We build the nodes tree T starting
from a given initial condition x and following directly the dynamics in (2.1) discretized
by e.g. Euler method. Since we only discretize in time, we set a temporal step ∆t

which divides the interval [t, T ] into N subintervals. We note that T := ∪Nj=0T j ,
where each T j contains the nodes of the tree correspondent to time tj . The first level
T 0 = {x} is simply given by the initial condition x. To compute the second level,
and the other levels we suppose to discretize the control domain U with step-size ∆u.
We denote that the control set U is a subset in Rm, in particular we will consider
U as a hypercube, discretized in all directions with constant step-size ∆u, obtaining
U∆u = {u1, ..., uM}. To ease the notation in the sequel we continue to denote by U
the discrete set of controls. Then, starting from the initial condition x, we consider
all the nodes obtained following the dynamics (2.1) discretized using e.g. an explicit
Euler scheme with different discrete controls uj ∈ U

ζ1
j = x+ ∆t f(x, uj , t0), j = 1, . . . ,M.

Therefore, we have T 1 = {ζ1
1 , . . . , ζ

1
M}. We note that all the nodes can be character-

ized by their n−th time level, as in the following definition.

Definition 3.1. The general n-th level of the tree will be composed by Mn nodes
denoted by

T n = {ζn−1
i + ∆tf(ζn−1

i , uj , tn−1)}Mj=1 i = 1, . . . ,Mn−1.

We show in the left panel of Figure 1 the structure of the whole tree T . All the nodes
of the tree can be shortly defined as

T := {ζnj }M
n

j=1, n = 0, . . . N,

where the nodes ζni are the result of the dynamics at time tn with the controls
{ujk}

n−1
k=0 :

ζnin = ζn−1
in−1

+ ∆tf(ζn−1
in−1

, ujn−1
, tn−1)

= x+ ∆t

n−1∑
k=0

f(ζkik , ujk , tk),

with ζ0 = x, ik =

⌈
ik+1

M

⌉
and jk ≡ ik+1mod M , where d·e is the ceiling function. We

note that ζki ∈ Rd, i = 1, . . . ,Mk. On the right panel of Figure 1 we show the path to
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reach for instance ζ4
26 if the control set contains only three elements. We, again, would

like to emphasize that the domain is not chosen a priori, but constructed following
the dynamics.

Fig. 1. Example of the tree T (left), path to reach ζ426 starting from the initial condition x with
U = {u1, u2, u3} (right).

In what follows we provide two remarks about the properties of the tree T under
some particular assumptions on the dynamics f .

Remark 3.1. Let us suppose that the dynamics is affine with respect to u and
that u ∈ [umin, umax] ⊂ R, e.g. the following decomposition holds true

f(x, u, t) = f1(x, t)u+ f2(x, t).

Then, all the nodes in T n will lie on the segment with extremal points given by the
controls at the boundary ∂U = {u1 = umin, uM = umax}. Specifically,

if z ∈ T n this implies z ∈ [ζni1 , ζ
n
iM ]

where ζni1 and ζniM are obtained by using the control u1 and uM respectively.

Remark 3.2. Let us suppose that the dynamics is monotone with respect to u ∈
[umin, umax] ⊂ R:

min
ũ∈{umin,umax}

fj(x, ũ, t) ≤ fj(x, u, t) ≤ max
ũ∈{umin,umax}

fj(x, ũ, t),

∀u ∈ [umin, umax], j = 1, . . . , d.

Then the nodes of the tree will belong to a box with vertices given by the coordinates
of the nodes obtained with the extremal controls umin and umax as follows:

min
i∈{i1,iM}

ζn
i
≤ ζni ≤ max

i∈{i1,iM}
ζn
i
, i ∈ {i1, . . . , iM},

where the last inequality holds component-wise.
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Approximation of the value function. The numerical value function V (x, t)
will be computed on the tree nodes in space, whereas in time it will approximated as
a piecewise constant function, i.e.

V (x, t) = V n(x) ∀x, and t ∈ [tn, tn+1),

where tn = t+ n∆t.
We note that we start to approximate the value function once the tree T has

been already built. Then, we will be able to approximate the value function V n(xi +
∆tf(xi, u, tn)) in (2.7) without the use of an interpolation operator on a grid. The
reason is that we build our domain according to all the possible directions of the
dynamics for a discrete set of controls and, as a consequence, all the nodes xi +
∆tf(xi, u, tn) will belong to the grid. It is now straightforward to evaluate the value
function. The TSA defines a grid T n = {ζnj }M

n

j=1 for n = 0, . . . , N , we can approximate
(2.5) as follows:

(3.1)


V n(ζni ) = min

u∈U
{e−λ∆tV n+1(ζni + ∆tf(ζni , u, tn)) + ∆t L(ζni , u, tn)},

ζni ∈ T n , n = N − 1, . . . , 0,

V N (ζNi ) = g(ζNi ),

ζNi ∈ T N .

We note that the minimization is computed by comparison on the discretized set
of controls U . We refer to [7,22] for a more sophisticated approach to compute the
minimum in (2.7).

Remark 3.3. If the dynamics (2.1) is autonomous the evolution of the dynamics
will not depend explicitly on tn and the problem can be simplified since the argument
of the minimization in (3.1) will be

e−λ∆tV n+1(ζ + ∆tf(ζ, u)) + ∆t L(ζ, u, tn).

At the time tn we have n levels of the tree on the left and N − n levels on the right
(till tN ). Since the computation is going backward, to compute the value function at
time tn, we need to do N − n steps in time starting from the final condition at time
T. Once we know V n this information can also be interpreted as a final condition for
the sub-tree ∪nk=0T k and, since the dynamics is autonomous, we can proceed backward
computing V n−1 for the nodes belonging to all the k−th time levels, for k ≤ n − 1.
Indeed the nodes ζ + ∆tf(ζ, u) do not depend explicitly on the time and they can be
involved in the computation of the value function at different time steps (this is not
the case for a non-autonomous dynamics). Thus, we will proceed as follows: first we
impose the final cost g on the whole tree, then we start computing the value function
backward. This procedure leads to a more extensive knowledge of the value function
on the tree.

4. Hints on the algorithm. In this section we will provide further details on
the implementation of the method proposed in Section 3. We will explain how to
reduce the number of tree nodes to make the problem feasible, compute the feedback
control and recall the whole procedure.

Pruning the tree. The proposed method mitigates the curse of dimensionality
and it allows to deal with problems in Rd with d� 5, which is absolutely not feasible
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with the classical approach. However, we still have dimensionality problem related to
the amount of nodes in the tree T . In fact, given M > 1 controls and N time steps,
the cardinality of the tree is

|T | =
N∑
i=0

M i =
MN+1 − 1

M − 1
,

which is infeasible due to the huge amount of memory allocations, if M or N are too
large. Therefore, we suggest to select the nodes of the TSA neglecting those very
close to each other, assuming that the value function will not be completely different
on those nodes, e.g.

ζni ≈ ζnj =⇒ V (ζni ) ≈ V (ζnj ).

This is a realistic assumption since the numerical value function is Lipschitz con-
tinuous as explained in Proposition 2.1. We can introduce the pruning rule.

Definition 4.1 (Pruning rule). Two given nodes ζni and ζn
j can be merged if

(4.1) ‖ζni − ζn
j ‖ ≤ εT , with n = 0, . . . , N,

for a given threshold εT > 0.

Specifically, if during the construction of the tree, a node ζn-1 has as a son a new
node ζnj which verifies (4.1) with a certain ζni , then we will not add the new node to

the tree and we will connect the node ζn-1 with ζni . We cut the node which verifies
the criteria before going on with the construction of the tree, in this way we avoid the
sub-tree coming out from this node, saving a huge amount of memory.

The cut of the tree works as follows: during the construction of the n-th level, the
new node will be compared with the previous nodes already computed at the same
level n. If the new node ζnj , whose father is ζn-1, satisfies the condition (4.1) with a
node ζni , the new node will not be added to the tree and the adjacency matrix will be
uploaded, connecting the node ζn-1 to the node ζni . Figure 2 provides a graphic idea
about the application of the pruning criteria. The choice of the tolerance plays an

ζn-1

ζjn

ζin

ε T

ζn-1

ζjn

ζin

ε T

Fig. 2. Pruning technique throughout the construction of the tree it might happen the two nodes
are very close (left) and we link those node in order to prune the tree.

important role: if εT is very small, the algorithm will be very slow, whereas if it is too
large, we will not obtain an accurate approximation. A reasonable choice turns out to
be εT = ∆t2, as shown in Section 5. The interested reader will find a rigorous proof
of this heuristic statement in [30] together with convergence results of the proposed
method.
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Remark 4.1 (Pruning rule in the autonomous case). If the dynamics is au-
tonomous, as explained in Remark 3.3, we can extend the computation of the value
function at time tn even for nodes belonging to the subtree ∪nk=0T k. Therefore, we
can extend the pruning criteria (4.1) as follows. Two given nodes ζni and ζmj can be
merged if

(4.2) ‖ζni − ζmj ‖ ≤ εT , with n,m = 0, . . . , N,

for a given threshold εT > 0.

Remark 4.2 (Efficient Pruning). The computation of the distances among all the
nodes would be very expensive, especially for high dimensional problems. Hence, we
need an efficient algorithm to compute the distances quickly. One possible strategy is
the Principal Analysis Component ([27],[21]). Our aim is to project the data onto a
lower dimensional linear space such that the variance of the projected data is max-
imized. This can be done e.g. computing the Singular Value Decomposition of the
data matrix and taking the first basis. Once we project the data, the distances will be
computed in a lower dimension space and this turns out to accelerate the algorithm.

Feedback reconstruction and closed-loop control. During the computation
of the value function, we store the control indices corresponding to the argmin in
(3.1). Then starting from ζ0

∗ = x, we follow the path of the tree to build the optimal

trajectory {ζn∗ }Nn=0 in the following way

(4.3) u∗n := arg min
u∈U

{
e−λ∆tV n+1(ζn∗ + ∆tf(ζn∗ , u, tn)) + ∆t L(ζn∗ , u, tn)

}
,

ζn+1
∗ ∈ T n+1 s.t. ζn∗ →u∗

n ζn+1
∗ ,

for n = 0, . . . , N − 1, where the symbol→u stands for the connection of two nodes by
the control u. We note that this is possible because in the current work we assume
to consider the same discrete control set U for both HJB equation (3.1) and feedback
reconstruction (4.3).

Algorithm. In what follows we summarize the whole algorithm including the
construction of the tree, the selection of the nodes and, finally, the approximation of
the value function.

Algorithm 1 TSA algorithm with pruning

1: T 0 ← x
2: for n = 1, ..., N do
3: for uj ∈ U , ζn−1 ∈ T n−1 do
4: ζnew = ζn−1 + ∆tf(ζn−1, uj , tn−1)
5: if ‖ζnew − ζ‖ > εT ,∀ζ ∈ T then
6: T n ← ζnew
7: ζn−1 →u ζnew
8: else
9: ζ = argminζ∈T ‖ζnew − ζ‖

10: ζn−1 →u ζ

11: V N (ζ) = g(ζ),∀ζ ∈ T N
12: for n = N − 1, ..., 0 do
13: V n(ζn) = min

ζn+1:ζn→uζn+1
{e−λ∆tV n+1(ζn+1) + ∆t L(ζn, u, tn)}, ζn ∈ T n.

11



As one can see in Algorithm 1, we first start the construction of the tree T from 1
to step 10. We note that the pruning criteria is involved in the steps 5-10 of Algorithm
1. Clearly, a very small tolerance will not allow any selection of the nodes and we will
work with a full tree. Finally, in step 11-12-13 we compute the approximation of the
value function. In the last step, the computation of the value function V n(ζn) can be
extended to the nodes in the tree ∪nk=0T k in the case of autonomous dynamics.

5. Numerical tests. In this section we are going to apply the proposed algo-
rithm to show the effectiveness of the method.

We will present five test cases. In the first we are able to compute the analytical
solution of the HJB equation and, therefore, to compute the error with our method
compared to the classical approach, see e.g. [13]. The second test concerns the
well-known Van der Pol equation and the third is about non-autonomous dynamics.
Finally we present the results for two different linear PDEs which shows the power of
the method even for large-scale problems.

The numerical simulations reported in this paper are performed on a laptop with
1CPU Intel Core i5-3,1 GHz and 8GB RAM. The codes are written in C++.

5.1. Test 1: Comparison with exact solution of the value function. In
the first example we consider the following dynamics in (2.1)

(5.1) f(x, u) =

(
u
x2

1

)
, u ∈ U ≡ [−1, 1],

where x = (x1, x2) ∈ R2. The cost functional in (2.2) is:

(5.2) L(x, u, t) = 0, g(x) = −x2, λ = 0,

where we only consider the terminal cost g. The corresponding HJB equation is

(5.3)

{
−Vt + |Vx1

| − x2
1Vx2

= 0 (x, t) ∈ R2 × [0, T ],

V (x, T ) = g(x) ,

where its unique viscosity solution reads

(5.4) V (x, t) = −x2 − x2
1(T − t)− 1

3
(T − t)3 − |x1|(T − t)2.

Furthermore, we set T = 1. Figure 3 shows the contour lines of the value function
V (x, t) in (5.4) for time instances t = {0, 0.5, 1}.

Fig. 3. Test 1: Contour lines for (5.4) with t = 0 (left), t = 0.5 (middle) and t = 1 (right).

In this example, we compare the classical approach with the TSA algorithm pro-
posed in Algorithm 1 using both strategies: (i) no selection of the nodes and (ii)

12



applying criteria (4.1) to select the nodes as explained in Section 4. To perform a fair
comparison we projected the value function computed with the classical method into
the tree nodes. We note that it will not modify the accuracy of the classical approach
since the interpolation has to be performed also on a structured grid. We compare
the different approximations according to `2−relative error with the exact solution on
the tree nodes

E2(tn) =

√√√√√√
∑

xi∈T n

|v(xi, tn)− V n(xi)|2∑
xi∈T n

|v(xi, tn)|2
,

where v(xi, tn) represents the analytical solution and V n(xi) its numerical approxi-
mation.

In Figure 4, we show all the nodes of the tree T for the initial condition x =
(−0.5, 0.5), ∆t = 0.05 and different choices of εT = {0,∆t2}. We note that there is a
huge difference between the cardinality of the trees, that is |T | = 2097151 when the
tolerance is not applied whereas we have |T | = 3151 for εT = ∆t2.

-2 -1.5 -1 -0.5 0 0.5
0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 4. Test 1: Tree nodes without tolerance (left) and with tolerance equal to ∆t2 (right) for
x = (−0.5, 0, 5).

In Figure 5, we show the behaviour of the error E2 for two different initial condi-
tions x. We note that its behaviour is very similar using both the classical approach
and the TSA with or without the pruning criteria (4.1) for the nodes. As already
mentioned, we would like to stress that the domain for the solution of the classical
approach is chosen as large as possible to avoid that the boundary conditions are
active, whereas with TSA we do not have this kind of problem, since the domain of
the tree constructed according to the vector field. We note that to compute the value
function in the classical approach we use the following step size: ∆x = ∆t = 0.05.

In Table 1 we show the error decay decreasing the temporal step size ∆t for
x = (−0.5, 0.5) and εT = 0 (i.e no pruning criteria has been applied). We compute
the error as follows:

Err2,2 =

√√√√∆t

N∑
n=0

E2
2 (tn), Err∞,2 = max

n=0,...,N
E2(tn)

and the order

Order2,2 = log2

(
Err2,2(∆t)

Err2,2(∆t/2)

)
, Order∞,2 = log2

(
Err∞,2(∆t)

Err∞,2(∆t/2)

)
.
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Fig. 5. Test 1: Comparison of the different methods with initial datum (−0.5, 0.5) (left) and
with initial datum (1, 1) (right) for each time instance (x-axis).

We note that the order of convergence is linear as the order of the method used
to discretize the dynamics (2.1), e.g. forward Euler scheme. This feature will be
analyzed in a follow-up paper where we would like to provide error estimate for our
proposed algorithm.

∆t |T | CPU Err2,2 Err∞,2 Order2,2 Order∞,2
0.2 63 0.05s 0.090 0.122
0.1 2047 0.35s 0.044 0.062 1.04 0.98

0.05 2097151 1.1s 0.022 0.031 1.02 0.99
Table 1

Test 1: Error analysis and order of convergence of the TSA without pruning rule.

However, the case without selection is quite unfeasible for more than 20 time steps
since it requires to store a huge amount of nodes of order O(M21), whereas with the
selection we can obtain an impressive improvement. The results are shown in Table
2 where we can see, although the pruning of the nodes, we are still able to achieve an
order of convergence close to 1.

∆t |T | CPU Err2,2 Err∞,2 Order2,2 Order∞,2
0.2 42 0.05s 0.091 0.122
0.1 324 0.08s 0.044 0.062 1.05 0.98

0.05 3151 0.1s 0.021 0.031 1.04 0.99
0.025 29248 0.5s 0.011 0.016 1.005 0.994

0.0125 252620 10s 0.005 0.008 1.004 0.997
Table 2

Test 1: Error analysis and order of convergence of the TSA with εT = ∆t2 and T = 1.

The tolerance εT has been set equal to ∆t2 to keep the same order of convergence
of the algorithm as the one without pruning. This is shown in Figure 6, where we
compare the orders of the method with different tolerances. We note that we need to
reduce the tolerance to ∆t2 to ensure linear convergence.

Furthermore, the pruned TSA allows to approximate HJB equation with rather
small ∆t and large horizon, e.g. T = 3 in a fast way, as shown in Table 3 keeping the
order of convergence found in the previous case. Finally, for the sake of completeness
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∆t |T | CPU Err2,2 Err∞,2 Order2,2 Order∞,2
0.2 1420 0.2s 0.124 0.088
0.1 15231 0.11s 0.061 0.045 1.02 0.98

0.05 141142 4s 0.030 0.022 1.03 1.01
0.025 1204637 147s 0.015 0.011 1.009 1.002

0.0125 10037898 7171s 0.007 0.006 1.009 1.004
Table 3

Test 1: Error analysis and order of convergence of the TSA with εT = ∆t2 and T = 3.

0.01250.0250.050.10.2

10-2

10-1

tol= t

tol= t3/2

tol= t7/4

tol= t2

Order 1

0.01250.0250.050.10.2
10-3

10-2

10-1

100
tol= t

tol= t3/2

tol= t7/4

tol= t2

Order 1

Fig. 6. Test 1: Comparison of the error Err2,2 (left) and the error Err∞,2 (right) for the
pruned TSA with different tolerances εT as a function of ∆t

we would like to mention that similar convergence results have been achieved even for
other initial conditions x.

5.2. Test 2: Van der Pol oscillator. In the second test case we consider the
Van der Pol oscillator. The dynamics in (2.1) is given by

(5.5) f(x, u) =

(
x2

ω(1− x2
1)x2 − x1 + u

)
u ∈ U ≡ [−1, 1].

We note that the origin is a repulsive point for the uncontrolled dynamics in (5.5), e.g.
u = 0, if ω ∈ (0, 2]. For this example we consider ω = 0.15 in (5.5). It is well-known
that Van der Pol oscillator is characterized by its cycle limit as shown in Figure 7
with two different initial conditions.

In this example we want to minimize the following cost functional:

(5.6) Jx,t(u) =

∫ T

t

(
δ1‖y(s)‖22 + γ|u(s)|2

)
ds+ δ2‖y(T )‖22,

where δ1, δ2, γ are positive constants.
Case 1. We consider the minimization of the terminal cost in (5.6), e.g. δ1 =

γ = 0 and δ2 = 1. Let us consider x = (−1, 1), ∆t = 0.05 and T = 1. The error is
computed with respect to the classical approach with a fine grid (∆t = ∆x = 0.002).

We will consider Euler scheme with U = {−1, 1} and the tolerance is set equal
to εT = ∆t2 with |T | = 37030. In Figure 8 we compare the contour lines of the
value function computed by the classical approach with a fine grid and the TSA.
We note the approximations show the same behaviour. Furthermore, we mention
that the contour line of the value functions are obtained by using MATLAB function
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Fig. 7. Test 2: Cycle limit for Van der Pol oscillator with initial point (-3,3) (left) and with
initial point (0.1,-0.1) (right)

tricontour, based on a Delaunay’s triangulation of the scattered data. We remark
that we can compute the value function V n(ζ) for ζ ∈ ∪nk=0T k since the dynamics is
autonomous.
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Fig. 8. Test 2: Value function with the classical approach (top) on tree nodes at time t = 0.25
(left), t = 0.5 (middle) and t = 0.75 (right). Value function with the TSA (bottom) on tree nodes
at time t = 0.25 (left), t = 0.5 (middle) and t = 0.75 (right)

The quality of the numerical approximation is confirmed by the error shown in
Figure 9. As we can see, pruning the nodes does not influence the error. For each
time step the error is below to 0.05 which leads to an accurate approximation of the
value function.

Case 2. We consider the minimization of the cost functional in (5.6) with δ1 =
δ2 = 1 and γ = 0.01. Furthermore we set the same initial condition, discretization
step and tolerance as in the previous case. The contour lines of the value function are
shown in Figure 10.

We note that the results are very similar to the previous case. Our approach
is robust with respect to different cost functionals and initial conditions. The right
panel of Figure 9 shows the error for each time step considering the tree algorithm
with and without nodal selection.

Case 3. In the last case we deal with a two dimensional control space, considering
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Fig. 9. Test 2: Error in time with TSA without pruning and with pruning with tolerance
εT = ∆t2 for Case 1 (left) and Case 2 (right) with respect to a value function computed with the
classical approach with a very fine grid.

Fig. 10. Test 2: Value function with the classical approach (top) on tree nodes at time t = 0.25
(left), t = 0.5 (middle) and t = 0.75 (right). Value function with the TSA (bottom) on tree nodes
at time t = 0.25 (left), t = 0.5 (middle) and t = 0.75 (right)

the parameter ω in (5.5) as a control, e.g. ω ∈ U . Therefore, we consider as control
variables (ω, u) ∈ U × U in (5.5). In the cost functional (5.6) we consider again
δ1 = γ = 0.1 and δ2 = 1, with x = (−0.5, 0.5), ∆t = 0.05 and T = 1. We consider
two different choices for the control set: U = [−2, 0] and U = [−1, 1]. The control set
is discretized with step-size ∆u = 0.2, obtaining altogether 100 discrete controls for
both examples. In Figure 11 we show the results in both situations. We can observe
that the tree has a different shape due to the different control space. Here, we have
set the pruning criteria with εT = ∆t2. Finally, we note that in both situations we
are able to steer the solution to the origin.

5.3. Test 3: Damped harmonic oscillator with sinusoidal driving force.
In this third example we consider a non-autonomous dynamical system: a damped
oscillator driven by a sinusoidal external force. The dynamics in (2.1) is given by

(5.7) f(x, u, t) =

(
x2

−ωx2 − ω2x1 + sin(ωt) + u

)
u ∈ U ≡ [−1, 1].
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Fig. 11. Test 2: Pruned tree with the uncontrolled and controlled dynamics with U = [−2, 0]
(left) and with U = [−1, 1] (right)

for x = (x1, x2) ∈ R2. In this example, we aim to show that our approach works
also with non-autonomous dynamics. In this case we can not compute the value
function V n(ζ) on the sub-tree ∪nk=0T k, but only at the n−th time level T n and we
will apply the pruning rule (4.1). The uncontrolled dynamics (e.g. u = 0) converges
asymptotically to the cycle limit:

x1(t) =
1

ω2
sin(ωt+ π/2), x2(t) =

1

ω
cos(ωt+ π/2) .

We used the same cost functional of the previous case with δ1 = γ = 0.1, δ2 = 1.
The parameters are set as follows: ω = π/2, x = (−0.5, 0.5), U = {−1, 0, 1},∆t =
0.05, T = 1, εT = ∆t2. The cardinality of tree in this case is 32468. In the left
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Controlled with 3 controls

Controlled with 11 controls
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Fig. 12. Test 3: Pruned tree with the uncontrolled and controlled dynamics (left) and compar-
ison of the cost functional on time varying the number of discrete controls (right)

panel of Figure 12 we show the tree nodes and the optimal trajectory computed with
Algorithm 1 and the uncontrolled solution. To show the quality of the controlled
solution we evaluate the cost functional for each time step as shown in the right panel
of Figure 12. As expected the controlled trajectory is always below the uncontrolled
one. In order to further show the effectiveness of the pruning criteria we have increased
the number of controls up to M = 51 and the horizon up to T = 3. Again, this would
not be possible without a pruning criteria due to the dimension of the tree.

5.4. Test 4: Heat equation. The fourth example concerns the control of a
PDE. In the first three examples we showed the accuracy of our method with respect
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to existing methods for low-dimensional problems. In what follows we would like to
give an idea of how the proposed method can work in higher dimension.

We want to study the following heat equation:

(5.8)


yt = σyxx + y0(x)u(t) (x, t) ∈ Ω× [0, T ] ,

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ] ,

y(x, 0) = y0(x) x ∈ Ω ,

where the state lies in an infinite-dimensional Hilbert space (see e.g. [11]). Here,
we consider the term y0(x)u(t) to provide a spatial dependence to the control input.
This is a particular choice, but the algorithm has no restrictions on more general
shape functions. To write equation (5.8) in the form (2.1) we use the centered finite
difference method which leads to the following ODEs system

(5.9) ẏ(t) = Ay(t) +Bu(t),

where the matrix A ∈ Rd×d is the so called stiffness matrix whereas the vector B ∈ Rn
is given by (B)i = y0(xi) for i = 1, . . . , n and xi is the spatial grid with constant step
size ∆x. The cost functional we want to minimize reads:

Jy0,t(u) =

∫ T

t

(
δ1‖y(s)‖22 dx+ γ|u(s)|2

)
ds+ ‖y(T )‖22,

where y(t) is the solution of (5.9), u(t) is taken in the admissible set of controls
U = {u : [0, T ]→ [−1, 1]} and Ω = [0, 1]. We set δ1 = 1 and γ = 0.01.

Smooth initial condition. In the numerical approximation of (5.8) we consider
y0(x) = −x2 + x, ∆x = 10−3, ∆t = 0.05, T = 1 and σ = 0.1. The dimension of
the problem is d = 1000. We use an implicit Euler scheme to integrate the system
(5.9) and guarantee its stability. We note that the use of a one step implicit is
straightforward even if we have introduced an explicit scheme in the previous sections.
We refer to [29] for more details about the method.
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Fig. 13. Test 4 (smooth initial condition): Uncontrolled solution (left), optimal control solution
(middle), time comparison of the cost functional of the uncontrolled solution and controlled solution
(right).

The solution of the uncontrolled problem (5.8) with u(t) ≡ 0 is shown in the left
panel of Figure 13. In the middle we show the solution of the controlled problem
where the value function is computed with Algorithm 1 and the control is computed
as explained in (2.6). We note that feedback control was computed with the discrete
control set U = {−1, 0, 1} as for the value function. A refinement for the control set
would require further investigation that we will address in the near future. However,
it is extremely interesting to show that we are able to compute the value function for
(5.8) in dimension 1000. This approach might substitute recent advances where the
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feedback for PDEs was computed by coupling the HJB equation with model order
reduction techniques such as, e.g., Proper Orthogonal Decomposition [24]. Finally in
the right panel of Figure 13 we show the time behaviour of the cost functional for
the uncontrolled and the controlled solution. As expected, the cost functional of the
latter is lower.

Non-smooth initial condition. In this example we consider the following non-
smooth initial y0(x) = χ[0.25,0.75](x), where χω(x) is the characteristic function in the
domain ω, whereas the other parameters are set as in the previous case.

0
0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.21 0

-0.2

0

0

0.2

0.4

0.6

0.8

1

1

x

0.5 0.8
0.6

t

0.4
0.21 0 0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25
Uncontrolled dynamics
Controlled dynamics

Fig. 14. Test 4 (non-smooth initial condition): Uncontrolled solution (left), optimal control
solution (middle), time comparison of the cost functional of the uncontrolled solution and controlled
solution (right).

As one can see from Figure 14, we are able to approximate the control problem
even if the initial condition is non-smooth. We note that, although the simple diffusive
properties of the problem, a model reduction approach will not be able to reconstruct
such initial condition with a few number of basis functions. Therefore it will not
be possible to solve this problem with a classical approach. This again shows the
effectiveness of the method.

5.5. Test 5: Wave equation. In this last example we consider a hyperbolic
PDE, the wave equation which reads:

(5.10)


wtt = cwxx + χω(x)u(t) (x, t) ∈ Ω× [0, T ] ,

w(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ] ,

w(x, 0) = w0(x) , wt(x, 0) = w1(x) x ∈ Ω .

where ω is a subset of Ω. For all initial data (w0, w1) ∈ H1
0 (Ω)×L2(Ω) and every

u(t) ∈ L2(0, T ), there exists a unique solution w ∈ C0(0, T ;H1
0 (Ω))∩C1(0, T ;L2(Ω))∩

C2(0, T ;H−1(Ω)) of the Cauchy problem (5.10). We refer to [11] for more details
about this equation. We can rewrite the wave equation in the following compact form

ẏ(t) = Ay(t) +Bu(t) ,

defining

(5.11) y(t) =

(
w(t)
wt(t)

)
, A =

(
0 I
c ∂2

x 0

)
, Bu(t) =

(
0

χω(x)u(t)

)
.

Again we apply an implicit Euler scheme to avoid narrow CFL conditions. We
want to minimize the following cost functional

Jy0,t(u) =

∫ T

0

(
ϕ(‖y(s)‖22) + γ|u(s)|2

)
ds+ ϕ(‖y(T )‖22) ,

with w0(x) = sin(πx), w1(x) = 0, γ = 0.01, T = 1, c = 0.5, Ω = (0, 1) and ω =
(0.4, 0.6), ∆x = 10−3,∆t = 0.05. We note that the dimension of the semi-discrete
problem is d = 2000.
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Quadratic cost functional. We first consider a standard tracking problem e.g.
ϕ(x) = x in the cost functional. In Figure 15 we show the uncontrolled solution in the
left panel and the controlled solution in the middle. A comparison of the evaluations
of the cost functional is given in the right panel. As expected the controlled solution
is below the uncontrolled one for each time instance. This shows the capability of the
method for high dimensional problem even for hyperbolic equations.

-0.5
0

0

0.5

1

1

x

0.5 0.8

t

0.6
0.4

0.21 0

-0.5
0

0

0.5

1

1

x

0.5 0.8
0.6

t

0.4
0.21 0 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6
Uncontrolled dynamics
Controlled dynamics

Fig. 15. Test 5: Uncontrolled solution (left), optimal control solution (middle), time compari-
son of the cost functional of the uncontrolled solution and controlled solution (right).

Non-quadratic cost functional. Now, we consider a more complicated example
which deals with a non-quadratic cost functional. Let us consider for example the
following cost functional where

ϕ(x) =


sin(π|x|) |x| ≤ 0.5 ,

1 0.5 < |x| ≤ 1 ,

(|x| − 1)2 + 1 |x| > 1 ,

as shown in the left panel of Figure 16. We consider the same parameters as in the
previous case, which lead to the same uncontrolled solution as shown in the left panel
of Figure 15. In the middle of Figure 16 one can see the uncontrolled solution and
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Fig. 16. Test 5 (Non-quadratic cost functional): Graphics of ϕ(x) (left), optimal control so-
lution (middle), time comparison of the cost functional of the uncontrolled solution and controlled
solution (right).

in the right panel a comparison of the evaluation of the cost functional. Again, here
we would like to stress the capability of the method to work with high dimensional
problem and with non-smooth cost functionals.

6. Conclusions and future works. We have proposed a novel method to ap-
proximate time dependent HJB equations via DP scheme on a tree structure. The
proposed algorithm creates the tree structure according to all the possible directions
of the controlled dynamical system for a finite set of controls. This procedure has
several advantages with respect to the DP algorithm based on the classical time and
space discretization. The first advantage is that we do not have to build a space grid
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and a local space interpolation. Furthermore, TSA does not require an a-priori choice
of a numerical domain Ω to set the numerical scheme and, consequently, there is no
need to impose boundary conditions. The construction of the tree is made step-by-
step, via the pruning rule. Thus, the complexity of the problem is drastically reduced
cutting all the branches laying in a small neighbourhood. After pruning the tree the
efficiency of TSA is greatly improved in terms of CPU time. This approach allows
to apply the DP method to high-dimensional problems as it has been shown in the
numerical section for both ODEs and PDEs, in some test problems we solved an op-
timal control problem in dimension 2000.
We note that the method could be easily extended to second order approximation
schemes using e.g. Heun method for the dynamics and it is also possible to reduce
the CPU time via a parallel version of the method. Although the numerical results
are promising, some issues are still open in the analysis of the method. The first is to
derive error estimates in agreement with the order of convergence shown in Table 1.
Furthermore, we would like to extend the method to the control of nonlinear PDEs
coupling TSA with model order reduction methods as discussed in [3] and taking ad-
vantage of the theoretical results found there. These extensions could open the way
to the application of DP techniques for real industrial problems.
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