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Abstract. We introduce a new class of “filtered” schemes for some first order non-linear Hamilton-Jacobi-
Bellman equations. The work follows recent ideas of Froese and Oberman (SIAM J. Numer. Anal., Vol 51, pp.423-
444, 2013). The proposed schemes are not monotone but still satisfy some ε-monotone property. Convergence results
and precise error estimates are given, of the order of

√
∆x where ∆x is the mesh size. The framework allows to

construct finite difference discretizations that are easy to implement, high–order in the domains where the solution
is smooth, and provably convergent, together with error estimates. Numerical tests on several examples are given
to validate the approach, also showing how the filtered technique can be applied to stabilize an otherwise unstable
high–order scheme.

Key words. Hamilton-Jacobi equation, high-order schemes, ε-monotone scheme, viscosity solutions, error
estimates

1. Introduction. In this work, our aim is to develop high–order and convergent schemes for
first order Hamilton-Jacobi (HJ) equations of the following form

∂tv +H(x,∇v) = 0, (t, x) ∈ [0, T ]× Rd (1.1)

v(0, x) = v0(x), x ∈ Rd. (1.2)

Basic assumptions on the Hamiltonian H and the initial data v0 will be introduced in the next
section. It is well known that, in the one dimensional case, there is a strong link between Hamilton-
Jacobi equations and scalar conservation laws. Namely, the viscosity solution of the evolutive HJ
equation is the primitive of the entropy solution of the corresponding hyperbolic conservation law
with the same hamiltonian. There are several schemes developed for hyperbolic conservation law
(see references [15] [16], [7], [13]). Most of the numerical ideas to solve hyperbolic conservation
law can be extended to HJ equations. Well known high–order essentially non-oscillatory (ENO)
scheme have been introduced by A. Harten et al. in [17] for hyperbolic conservation laws, and then
extended to HJ equation by Osher and Shu [20]. ENO schemes have shown to have high–order
accuracy although a precise convergence result is still missing and, for this property, they have
been quite successful in many applications. Despite the fact that there is no convergence proof of
ENO schemes towards the viscosity solution of (1.1) in the general case, convergence results may
hold for related schemes, e.g. MUSCL schemes, as it has been proved by Lions and Souganidis
in [19]. Convergence results of some non monotone scheme have also been shown in particular
cases [5]. Another interesting result has been proved by Fjordholm et al. [11], they have shown
that ENO interpolation is stable but the stability result is not sufficient to conclude total variation
boundedness (TVB) of the ENO reconstruction procedure. In [10], a conjecture related to weak
total variation property for ENO schemes is given. Finally, let us also mention [6], where weighted
essentially non-oscillatory (WENO) schemes have been applied to HJ equations; the convergence
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proof of the scheme relies also on the work of Ferretti [9] where higher than first order schemes are
proposed in a semi-Lagriangian setting, yet with restrictive conditions on the mesh steps.

In this paper we give a very simple way to construct high–order schemes in a convergent
framework. It is known (by Godunov’s theorem) that a monotone scheme can be at most first
order. Therefore it is needed to look for non-monotone schemes. The difficulty is then to combine
non-monotonicity of the scheme and convergence towards the viscosity solution of (1.1), and also
to obtain error estimates. In our approach we will adapt a general idea of Froese and Oberman [12],
that was presented for stationnary second order Hamilton-Jacobi equations and based on the use
of a “filter” function. Here we focus mainly on the case of evolutive first order Hamilton-Jacobi
equation (1.1), and an adaptation to the steady case will be also considered. We will design a
slightly different filter function for which the filtered scheme is still an “ε-monotone” scheme (see
Eq.2.12), but that improves the numerical results. Let us mention also the work [4] for steady
equations where some ε-monotone semi-Lagrangian schemes are studied.

The paper is organized as follows. In Section 2, we present the schemes and give main conver-
gence results. Section 3 is devoted to the numerical tests on several academic examples to illustrate
our approach in one and two-dimensional cases. A test on nonlinear steady equations , as well
an evolutive “obstacle” HJ equation in the form of min(ut + H(x, ux), u − g(x)) = 0 for a given
function g are also included in this section. Finally, Section 4 contains our concluding remarks.

2. Definitions and main results.

2.1. Setting of the problem. Let us denote by | · | the Euclidean norm on Rd (d ≥ 1). The
following classical assumptions will be considered in the sequel of this paper:
(A1) v0 is Lipschitz continuous function i.e. there exist L0 > 0 such that for every x , y ∈ Rd,

|v0(x)− v0(y)| ≤ L0|x− y|. (2.1)

(A2) H : Rd × Rd → Rd satisfies, for some constant C ≥ 0, for all p, q, x, y ∈ Rd:

|H(y, p)−H(x, p)| ≤ C(1 + |p|)|y − x|, (2.2)

and

|H(x, q)−H(x, p)| ≤ C(1 + |x|)|q − p|. (2.3)

Under assumptions (A1) and (A2) there exists a unique viscosity solution for (1.1) (see Ishii
[18]). Furthermore v is locally Lipschitz continuous on [0, T ]× Rd.

For clarity of presentation we focus on the one-dimensional case and consider the following
simplified problem:

vt +H(x, vx) = 0, x ∈ R, t ∈ [0, T ], (2.4)

v(0, x) = v0(x), x ∈ R. (2.5)

2.2. Construction of the filtered scheme. Let τ = ∆t > 0 be a time step (in the form
of τ = T

N for some N ≥ 1), and ∆x > 0 be a space step. A uniform mesh in time is defined by
tn := nτ , n ∈ [0, . . . , N ], and in space by the nodes xj := j∆x, j ∈ Z.

The construction of a filtered scheme needs three ingredients:

• a monotone scheme, denoted SM

• a high–order scheme, denoted SA

• a bounded “filter” function, F : R→ R.
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The high-order scheme need not be convergent nor stable; the letter A stands for “arbitrary order”,
following [12]. For a start, SM will be based on a finite difference scheme. Later on we will also
propose a definition of SM based on a semi-Lagriangian scheme.

Then, the filtered scheme SF is defined as

un+1
j ≡ SF (un)j := SM (un)j + ετF

(
SA(un)j − SM (un)j

ετ

)
, (2.6)

where ε = ετ,∆x > 0 is a parameter satisfying

lim
(τ,∆x)→0

ε = 0. (2.7)

More hints on the choice of ε will be given later on.

The scheme is initialized in the standard way, i.e.

u0
j := v0(xj), ∀j ∈ Z. (2.8)

Now we make precise some requirements on SM , SA and the function F .

Definition of the monotone finite difference scheme SM

Following Crandall and Lions [7], we consider a finite difference scheme written as un+1 = SM (un)
with

SM (un)(x) := un(x)− τ hM (x,D−un(x), D+un(x)), (2.9)

with

D±u(x) := ±u(x±∆x)− u(x)

∆x
,

where hM corresponds to a monotone numerical Hamiltonian that will be made precise below. We
will denote also SM (un)j := SM (un)(xj). Therefore the scheme also reads, for all j ∈ Z, ∀n ≥ 0:

un+1
j := unj − τ hM (xj , D

−unj , D
+unj ), D±unj := ±

unj±1 − unj
∆x

. (2.10)

(A3) Assumptions on SM

We will use the following assumptions throughout this paper:
(i) hM is a Lipschitz continuous function.
(ii) (consistency) ∀x, ∀u, hM (x, u, u) = H(x, u).
(iii) (monotonicity) for any functions u, v,

u ≤ v =⇒ SM (u) ≤ SM (v).

In pratice condition (A3)-(iii) is only required at mesh points and the condition reads

uj ≤ vj , ∀j, ⇒ SM (u)j ≤ SM (v)j , ∀j. (2.11)

At this stage, we notice that under condition (A3) the filtered scheme is “ε-monotone” in the
sense that

uj ≤ vj , ∀j, ⇒ SM (u)j ≤ SM (v)j + ετ, ∀j. (2.12)
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with ε → 0 as (τ,∆x) → 0. This implies the convergence of the scheme by Barles-Souganidis
convergence theorem (see [2, 1]).

Remark 2.1. Under assumption (i), the consistency property (ii) is equivalent to say that,
for any v ∈ C2([0, T ]× R), there exists a constant CM ≥ 0 independant of ∆x such that∣∣∣∣hM (x,D−v(x), D+v(x))−H(x, vx)

∣∣∣∣ ≤ CM∆x‖∂xxv‖∞. (2.13)

The same statement holds true if (2.13) is replaced by the following consistency error estimate:

ESM (v)(t, x) :=

∣∣∣∣v(t+ τ, x)− SM (v(t, .))(x)

τ
−
(
vt(t, x) +H(x, vx(t, x)))

∣∣∣∣
≤ CM

(
τ‖∂ttv‖∞ + ∆x‖∂xxv‖∞

)
. (2.14)

Remark 2.2. Assuming (i), it is easily shown that the monotonicity property (iii) is equivalent
to say that hM = hM (x, u−, u+) satisfies, a.e. (x, u−, u+) ∈ R3:

∂hM

∂u−
≥ 0,

∂hM

∂u+
≤ 0, (2.15)

and the CFL condition

τ

∆x

(
∂hM

∂u−
(x, u−, u+)− ∂hM

∂u+
(x, u−, u+)

)
≤ 1. (2.16)

When using finite difference schemes, it is assumed that the CFL condition (2.16) is satisfied, and
that can be written equivalently in the form

c0
τ

∆x
≤ 1, (2.17)

where c0 is a constant independant of τ and ∆x.
Example 2.1. Let us consider the Lax-Friedrichs numerical Hamiltonian is

hM,LF (x, u−, u+) := H(x,
u− + u+

2
)− c0

2
(u+ − u−)

where c0 > 0 is a constant. The scheme is consistant; it is furthermore monotone under the
conditions maxx,p |∂pH(x, p)| ≤ c0, and c0

τ
∆x ≤ 1.

Definition of the high–order scheme SA: we consider an iterative scheme of “high–order” in the
form un+1 = SA(un), written as

SA(un)(x) = un(x)− τhA(x,Dk,−un(x), . . . , D−un(x), D+un(x), . . . , Dk,+un(x)),

where hA corresponds to a “high-order” numerical Hamiltonian, and D`,±u(x) := ±u(x±`∆x)−u(x)
∆x

for ` = 1, . . . , k. To simplify the notations we may write (2.18) in the more compact form

SA(un)(x) = un(x)− τhA
(
x,D±un(x)) (2.18)

even if there is a dependency on ` in (D`,±un(x))`=1,...,k.

(A4) Assumptions on SA:

4



We will use the following assumptions:
(i) hA is a Lipschitz continuous function.

(ii) (high–order consistency) There exists k ≥ 2, for all ` ∈ [1, . . . , k], for any function v =
v(t, x) of class C`+1, there exists CA,` ≥ 0,

ESA(v)(t, x) :=

∣∣∣∣v(t+ τ, x)− SA(v(t, .))(x)

τ
−
(
vt(t, x) +H(x, vx(t, x)))

∣∣∣∣ (2.19)

≤ CA,`

(
τ `‖∂`+1

t v‖∞ + ∆x`‖∂`+1
x v‖∞

)
. (2.20)

Here v`x denotes the `-th derivative of v w.r.t. x.

Remark 2.3. The high-order consistency implies, for all ` ∈ [1, . . . , k], and for v ∈ C`+1(R),∣∣∣∣hA(x, . . . ,D−v,D+v, . . . )−H(x, vx)

∣∣∣∣ ≤ CA,`‖∂`+1
x v‖∞∆x`.

Example 2.2. (Centered scheme) A typical example with k = 2 is obtained with the centered
TVD (Total Variation Diminishing) approximation in space and the Runge-Kutta 2nd order scheme
in time (or Heun scheme):

S0(un)j := unj − τH(xj ,
unj+1 − unj−1

2∆x
), (2.21a)

and

SA(u) :=
1

2
(u+ S0(S0(u))). (2.21b)

Of course there is no reason for the centered scheme to be stable (as it will be shown in the
numerical section). Using a filter will help stabilize the scheme. A similar example with k = 3
can be obtained with any third order finite difference approximation in space and the TVD-RK3
scheme in time [14].

Definition of the filter function F . We recall that Froese and Oberman’s filter function used in [12]
is:

F̃ (x) = sign(x) max(1− ||x| − 1|, 0) =


x |x| ≤ 1.
0 |x| ≥ 2.
−x+ 2 1 ≤ x ≤ 2.
−x− 2 −2 ≤ x ≤ −1.

In the present work we define a new filter function simply as follows:

F (x) := x1|x|≤1 =

{
x if |x| ≤ 1,
0 otherwise.

(2.22)

The idea of the present filter function is to keep the high–order scheme when |hA − hM | ≤ ε

(because then |SA − SM |/(τε) ≤ 1 and SF = SM + τεF (S
A−SM

τε ) ≡ SA), whereas F = 0 and
SF = SM if that bound is not satisfied, i.e., the scheme is simply given by the monotone scheme
itself. Clearly the main difference is the discontinuity at x = −1, 1.

5



Fig. 2.1. Froese and Oberman’s filter (left), new filter (right)

2.3. Convergence result. The following theorem gives several basic convergence results for
the filtered scheme. Note that the high-order assumption (A4) will not be necessary to get the
error estimates (i)-(ii). It will be only used to get a high-order consistency error estimate in the
regular case (part (iii)). Globally the scheme will have just an O(

√
∆x) rate of convergence for

just Lipschitz continuous solutions because the jumps in the gradient prevent high-order accuracy
on the kinks.

Theorem 2.1. Assume (A1)-(A2), and let v0 be bounded. We assume also that SM satisfies
(A3), and |F | ≤ 1. Let un denote the filtered scheme (2.6). Let vnj := v(tn, xj) where v is the exact
solution of (2.4). Assume

0 < ε ≤ c0
√

∆x (2.23)

for some constant c0 > 0.
(i) The scheme un satisfies the Crandall-Lions estimate

‖un − vn‖∞ ≤ C
√

∆x, ∀ n = 0, ..., N. (2.24)

for some constant C independent of ∆x.
(ii) (First order convergence for classical solutions.) If furthermore the exact solution v belongs

to C2([0, T ]× R), and ε ≤ c0∆x (instead of (2.23)), then, we have

‖un − vn‖∞ ≤ C∆x, n = 0, ..., N, (2.25)

for some constant C independent of ∆x.
(iii) (Local high-order consistency.) Assume that SA is a high–order scheme satisfying (A4) for

some k ≥ 2. Let 1 ≤ ` ≤ k and v be a C`+1 function in a neighborhood of a point (t, x) ∈ (0, T )×R.
Assume that

(CA,1 + CM )

(
‖vtt‖∞ τ + ‖vxx‖∞∆x

)
≤ ε. (2.26)

Then, for sufficiently small tn − t, xj − x, τ , ∆x, it holds

SF (vn)j = SA(vn)j
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and, in particular, a local high-order consistency error for the filtered scheme SF holds:

ESF (vn)j ≡ ESA(vn)j = O(∆x`)

(the consistency error ESA is defined in (2.19)).

Proof. (i) Let wn+1
j = SM (wn)j be defined with the monotone scheme only, with w0

j =

v0(xj) = u0
j . By definitions,

un+1
j − wn+1

j = SM (un)j − SM (wn)j + ετF
(
.)

Hence, by using the monotonicity of SM ,

max
j
|un+1
j − wn+1

j | ≤ max
j
|unj − wnj |+ ετ,

and by recursion, for n ≤ N ,

max
j
|unj − wnj | ≤ εnτ ≤ Tε.

On the other hand, by Crandall and Lions [7], an error estimate holds for the monotone scheme:

max
j
|wnj − vnj | ≤ C

√
∆x,

for some C ≥ 0. By summing up the previous bounds, we deduce

max
j
|unj − vnj | ≤ C

√
∆x+ Tε,

and together with the assumption on ε, it gives the desired result.

(ii) Let Enj :=
vn+1
j − SM (vn)j

τ
. If the solution is C2 regular with bounded second order

derivatives, then the consistency error is bounded by

|Enj | ≤ CM (τ + ∆x). (2.27)

Hence

|un+1
j − vn+1

j | = |SM (un)j − SM (vn)j + τEnj + τεF
(
.)|

≤ ‖un − vn‖∞ + τ‖En‖∞ + τε.

By recursion, for nτ ≤ T ,

‖un − vn‖∞ ≤ ‖u0 − v0‖∞ + T ( max
0≤k≤N−1

‖Ek‖∞ + ε).

Finally by using the assumption on ε, the bound (2.27) and the fact that τ = O(∆x) (using CFL
condition (2.17)), we get the desired result.

(iii) To prove that SF (vn)j = SA(vn)j , one has to check that

|SA(vn)j − SM (vn)j |
ετ

≤ 1

7



as (τ,∆x)→ 0. By using the consistency error definitions,

|SA(vn)j − SM (vn)j |
τ

=

∣∣∣∣vn+1
j − SM (vn)j

τ
+ vt(tn, xj) +H(xj , vx(tn, xj))

−
(
vn+1
j − SA(vn)j

τ
+ vt(tn, xj) +H(xj , vx(tn, xj))

)∣∣∣∣
≤ |ESM (vn)j |+ |ESA(vn)j |
≤ (CA,1 + CM )(τ‖vtt‖∞ + ∆x‖vxx‖∞)

Hence the desired result follows.
Remark 2.4. Other approaches. It is already known from the original work of Osher and

Shu [20] that it is possible to modify an ENO scheme in order to obtain a convergent scheme. For
instance, if D±,Aunj denotes a high–order finite difference derivative estimate (of ENO type), a
projection on the first order finite difference derivative D±unj can be used, up to a controlled error
(see in particular Remark 2.2 of [20]):

instead of D±,Aunj , use P[D±un
j ,M∆x](D

±,Aunj )

where P[a,b](y) is the projection defined by:

P[a,b](y) :=

 y if a− b ≤ y ≤ a+ b
a− b if y ≤ a− b
a+ b if y ≥ a+ b

and M > 0 is some constant greater than the expected value 1
2 |uxx(tn, xj)|. However, we emphasize

that in our approach we do not consider a projection but a perturbation with a filter, which is sligthly
different. Indeed, by using a projection into an interval of the form [a −M∆x, a + M∆x] where
a = D±uni , numerical tests show that we may choose too often one of the extremal values a±M∆x
which is then produces an overall too big error (worse than using the first order finite differences).

Following the present approach, we would rather advice to use,

instead of D±,Aunj , the value P̃[D±un
j ,M∆x](D

±,Aunj )

where P̃[a,b](y) is defined by:

P̃[a,b](y) :=

{
y if a− b ≤ y ≤ a+ b
a if y /∈ [a− b, a+ b]

Remark 2.5. Filtered semi-Lagrangian scheme. Let us consider the case of

H(x, p) := min
b∈B

max
a∈A
{−f(x, a, b).p− `(x, a, b)}, (2.28)

where A ⊂ Rm and B ⊂ Rn are non-empty compact sets (with m,n ≥ 1), f : Rd × A × B → Rd
and ` : Rd ×A×B → R are Lipschitz continuous w.r.t. x: ∃L ≥ 0, ∀(a, b) ∈ A×B, ∀x, y:

max(|f(x, a, b)− f(y, a, b)|, |`(x, a, b)− `(y, a, b)|) ≤ L|x− y|. (2.29)

(We notice that (A2) is satisfied for hamiltonian functions such as (2.28).) Let [u] denote the
P 1-interpolation of u in dimension one on the mesh (xj), i.e.

x ∈ [xj , xj+1] ⇒ [u](x) :=
xj+1 − x

∆x
uj +

x− xj
∆x

uj+1. (2.30)

8



Then a monotone SL scheme can be defined as follows:

SM (un)j := min
a∈A

max
b∈B

(
[un]

(
xj + τf(xj , a, b)

)
+ τ`(xj , a, b)

)
. (2.31)

A filtered scheme based on SL can then be defined by (2.6) and (2.31). Convergence result as well
as error estimates could also be obtained in this framework. (For error estimates for the monotone
SL scheme, we refer to [21, 8].)

2.4. Adding a limiter. The basic filter scheme (2.6) is designed to be of high–order where
the solution is regular and when there is no viscosity aspects. However, for instance in the case
of front propagation, it can be observed that the filter scheme may let small errors occur near
extrema, when two possible directions of propagation occur in the same cell.

This is the case for instance near a minima for an eikonal equation. In order to improve the
scheme near extrema, we propose to introduce a limiter before doing the filtering process. Limiting
correction will be needed only when there is some viscosity aspect (it is not needed for advection).

Let us consider the case of front propagation, i.e., equation of type (2.4), now with

H(x, vx) = max
a∈A

(
f(x, a)vx

)
(2.32)

(i.e., no distributive cost in the Hamiltonian function).
In the one-dimensional case, a viscosity aspect may occur at a minima detected at mesh point

xi if

mina f(xj , a) ≤ 0 and maxa f(xj , a) ≥ 0. (2.33)

In that case, the solution should not go below the local minima around this point, i.e., we want

un+1
j ≥ umin,j := min(unj−1, u

n
j , u

n
j+1), (2.34)

and, in the same way, we want to impose that

un+1
j ≤ umax,j := max(unj−1, u

n
j , u

n
j+1). (2.35)

If we consider the high-order scheme to be of the form un+1
j = unj − τhA(un), then the limiting

process amounts to saying that

hA(un)j ≤ hmaxj :=
unj − umin,j

τ
.

and

hA(un)j ≥ hminj :=
unj − umax,j

τ
.

This amounts to define a limited h̄A such that, if (2.33) holds at mesh point xj , then

h̄A(un)j := min

(
max(hA(un)j , h

min
j ), hmaxj

)
.

and, otherwise,

h̄Aj :≡ hAj .
9



Then the filtering process is the same, using h̄A instead of hA for the definition of the high-order
scheme SF .

For two dimensional equations a similar limiter could be developped in order to make the
scheme more efficient at singular regions. However, for the numerical tests of the next section (in
two dimensions) we will simply limit the scheme by using an equivalent of (2.34)-(2.35). Hence,
instead of the scheme value un+1

ij = SA(un)ij for the high–order scheme, we will update the value
by

un+1
ij = min(max(SA(un)ij , u

min
ij ), umaxij ), (2.36)

where uminij = min(unij , u
n
i±1,j , u

n
i,j±1) and umaxij = max(unij , u

n
i±1,j , u

n
i,j±1).

2.5. How to choose the parameter ε: a simplified approach. The scheme should switch
to high–order scheme when some regularity of the data is detected, and in that case we should
have ∣∣∣∣SA(v)− SM (v)

ετ

∣∣∣∣ =

∣∣∣∣hA(·)− hM (·)
ε

∣∣∣∣ ≤ 1.

In a region where a function v = v(x) is regular enough, by using Taylor expansions, zero order
terms in hA(x,D±v) and hM (x,D±v) vanish (they are both equal to H(x, vx(x))) and it remains
an estimate of order ∆x. More precisely, by using the high–order property (A4) we have

hA(xj , D
±vj) = H(xj , vx(xj)) +O(∆x2).

On the other hand, by using Taylor expansions,

Dv±j = vx(xj)±
1

2
vxx(xj)∆x+O(∆x2),

Hence, denoting hM = hM (x, u−, u+), it holds at points where hM is regular,

hM (xj , Dv
−
j , Dv

+
j ) = H(xj , vx(xj)) +

1

2
vxx(xj)

(
∂hMj
∂u+

−
∂hMj
∂u−

)
+O(∆x2).

Therefore,

|hA(v)− hM (v)| = 1

2
|vxx(xj)|

∣∣∣∣∂hMj∂u+
−
∂hMj
∂u−

∣∣∣∣∆x+O(∆x2).

Hence we will make the choice to take ε roughly such that

1

2
|vxx(xj)|

∣∣∣∣∂hMj∂u+
−
∂hMj
∂u−

∣∣∣∣∆x ≤ ε (2.37)

(where hMj = hM (xj , vx(xj), vx(xj))). Therefore, if at some point xj (2.37) holds, then the scheme

will switch to the high-order scheme. Otherwise, when the expectations from hM and hA are
different enough, the scheme will switch to the monotone scheme.

In conclusion we have upper and lower bound for the switching parameter ε:

• Choose ε ≤ c0
√

∆x for some constant c0 > 0 in order that the convergence and error
estimate result holds (see Theorem 2.1).
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• Choose ε ≥ c1∆x, where c1 is sufficiently large. This constant should be choosen roughly
such that

1

2
‖vxx‖∞

∥∥∥∥∂hM∂u+
(., vx, vx)− ∂hM

∂u−
(., vx, vx)

∥∥∥∥
∞
≤ c1.

where the range of values of vx and vxx can be estimated, in general, from the values of
(v0)x, (v0)xx and the Hamiltonian function H. Then the scheme is expected to switch to
the high-order scheme where the solution is regular.

3. Numerical tests. In this section we present several numerical tests in one and two dimen-
sions. Unless otherwise indicated, the filtered scheme will refer to the scheme where the high-order
Hamiltonian is the centered scheme in space (see Remark 2.2), with Heun (RK2) scheme discretiza-
tion in time (see in particular Eqs. (2.21a)-(2.21b)). Hereafter this scheme will be referred as the
“centered scheme”.

The monotone finite difference scheme and function hM will be made precise for each example.
For the filtered scheme, unless otherwise precised, the switching coefficient ε = 5∆x. will be

used. In practice we have numerically observed that taking ε = c1∆x with c1 sufficiently large does
not much change the numerical results in the following tests. All the tested filtered schemes (apart
from the steady and obstacle equations) enters in the convergence framework of the previous
section, so in particular there is a theoretical convergence of order

√
∆x under the usual CFL

condition.
In the tests, the filtered scheme will be in general compared to a second order ENO scheme

(for precise definition, see Appendix A), as well as the centered (a priori unstable) scheme without
filtering.

In several cases, local error in the L2 norms are computed in some subdomain D, which, at a
given time tn, corresponds to

eL2
loc

:=

( ∑
{i, xi∈D}

|v(tn, xi)− uni |2
)1/2

The first two numerical examples deal with one-dimensional HJ equations, examples 3 and
4 are concerned with two-dimensional HJ equations, and the last three examples will concern a
one-dimensional steady equation and two nonlinear one-dimensional obstacle problems.

Example 1. Eikonal equation. We consider the case of

vt + |vx| = 0, t ∈ (0, T ), x ∈ (−2, 2), (3.1)

v(0, x) = v0(x) := max(0, 1− x2)4, x ∈ (−2, 2). (3.2)

In Table 3.1, we compare the filtered scheme (with ε = 5∆x) with the centered scheme and the
ENO second order scheme, with CFL = 0.37 and terminal time T = 0.3. For the filtered scheme,
the monotone hamiltonian used is hM (x, v−, v+) := max(v−,−v+).

As expected, we observe that the centered scheme alone is unstable. On the other hand, the
filtered and ENO schemes are numerically comparable in that case, and second order convergent
(the results are similar for the L1 and the L∞ errors).

Then, in Table 3.2, we consider the same PDE but with the following reversed initial data:

ṽ0(x) := −max(0, 1− x2)4, x ∈ (−2, 2). (3.3)

In that case the centered scheme alone is unbounded. The filtered scheme (with ε = 5∆x) is second
order. However, here, the limiter correction as described in section (2.4) was needed in order to

11



filtered (ε = 5∆x) centered ENO2
M N L2 error order L2 error order L2 error order

40 9 7.51E-03 - 1.18E-01 - 1.64E-02 -
80 17 3.36E-03 1.16 1.14E-01 0.06 4.38E-03 1.91
160 33 8.02E-04 2.07 1.13E-01 0.00 1.19E-03 1.87
320 65 1.80E-04 2.16 1.13E-01 0.00 3.22E-04 1.89
640 130 4.53E-05 1.99 1.13E-01 0.00 8.22E-05 1.97

Table 3.1
(Example 1 with initial data (3.2)) L2 errors for filtered scheme, centered scheme, and ENO second order

scheme

filtered (ε = 5∆x) centered ENO2
M N error order error order error order

40 9 1.27E-02 - 2.03E-02 - 2.60E-02 -
80 17 3.17E-03 2.00 8.96E-03 1.18 8.00E-03 1.70
160 33 7.90E-04 2.01 1.06E-02 -0.24 2.50E-03 1.68
320 65 1.97E-04 2.00 1.26E-01 -3.57 7.80E-04 1.68
640 130 4.92E-05 2.00 1.06E+02 -9.71 2.44E-04 1.67

Table 3.2
(Example 1 with initial data (3.3).) L2 errors for filtered scheme, centered scheme, and ENO second order

scheme.

get second order behavior. We also observe that the filtered scheme gives better results than the
ENO scheme. (We have also numerically tested the ENO scheme with the same limiter correction
but it does not improve the behavior of the ENO scheme alone).

In conclusion, this first example shows firstly, that the filtered scheme can stabilize an otherwise
unstable scheme, and secondly that it can give the desired second order behavior.
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Fig. 3.1. (Example 1) With initial data (3.2) (left), and plots at time T = 0.3 with centered scheme - middle
- and filtered scheme - right, using M = 160 mesh points.

Example 2. Burger’s equation.
In this example an HJ equivalent of the nonlinear Burger’s equation is considered:

vt +
1

2
|vx|2 = 0, t > 0, x ∈ (−2, 2) (3.4a)

v(0, x) = v0(x) := max(0, 1− x2), x ∈ (−2, 2) (3.4b)
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Fig. 3.2. (Example 1) With initial data (3.3) (left), and plots at time T = 0.3 with centered scheme - middle
- and filtered scheme - right, using M = 160 mesh points.

filtered (ε = 5∆x) centered ENO2
M N error order error order error order

40 9 2.06E-02 - 2.07E-02 - 2.55E-02 -
80 17 6.24E-03 1.73 6.24E-03 1.73 8.24E-03 1.63
160 33 1.85E-03 1.76 1.85E-03 1.76 2.81E-03 1.55
320 65 5.51E-04 1.74 5.51E-04 1.74 1.03E-03 1.45
640 130 1.68E-04 1.71 1.68E-04 1.71 3.74E-04 1.47

Table 3.3
(Example 2) L2 errors for filtered scheme, centered scheme, and ENO second order scheme.

with Dirichlet boundary condition on (−2, 2). Exact solution is known.1. In order to test high–
order convergence we have considered the smoother initial data which is the one obtained from
(3.4) at time t0 := 0.1, i.e. :

wt +
1

2
|wx|2 = 0, t > 0, x ∈ (−2, 2). (3.5a)

w(0, x) := v(t0, x), x ∈ (−2, 2), (3.5b)

with exact solution w(t, x) = v(t+ t0, x).

An illustration is given in Fig. 3.3. For the filtered scheme, the monotone hamiltonian used is
hM (x, v−, v+) := 1

2 (v−)2 1v−>0 + 1
2 (v+)2 1v+<0.

Errors are given in Table (3.3), using CFL=0.37 and terminal time T = 0.3.

In conclusion we observe numerically that the filtered scheme keeps the good behavior of the
centered scheme (here stable and almost second order).

Example 3. 2D rotation. We now apply filtered scheme to an advection equation in two

1 It holds

v(t, x) =
(max(0, 1− |x̄|))2

2t
1{t> 1

2
} +

(1− 2t)2 − |x|2

1− 2t
1{1≥|x|≥1−2t}.
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Fig. 3.3. (Example 2) Plots at t = 0 and t = 0.3 with the filtered scheme.

dimensions:

vt − yvx + xvy = 0, (x, y) ∈ Ω, t > 0, (3.6)

v(0, x, y) = v0(x, y) := 0.5− 0.5 max(0,
1− (x− 1)2 − y2

1− r2
0

)4 (3.7)

where Ω := (−A,A)2 (with A = 2.5), r0 = 0.5 and with Dirichlet boundary condition v(t, x) = 0.5,
x ∈ ∂Ω. This initial condition is regular and such that the level set v0(x, y) = 0 corresponds to a
circle centered at (1, 0) and of radius r0.

In this example the monotone numerical Hamiltonian is defined by

hM (u−x , u
+
x , u

−
y , u

+
y ) := max(0, f1(a, x, y))u−x + min(0, f1(a, x, y))u+

x (3.8)

+ max(0, f2(a, x, y))u−y + min(0, f2(a, x, y))u+
y

and the high–order scheme is the centered finite difference scheme in both spacial variables, and
RK2 in time. The filtered scheme is otherwise the same as (2.6). However it is necessary to use a
greater constant c1 is the choice ε = c1∆x in order to get (global) second order errors. We have
used here ε = 20∆x.

On the other hand the CFL condition is

µ := c0(
τ

∆x
+

τ

∆y
) ≤ 1, (3.9)

where here c0 = 2.5 (an upper bound for the dynamics in the considered domain Ω). In this test
the CFL number is µ := 0.37.

Results are shown in Table 3.4 for terminal time time T := π/2. Although the centered scheme
is a priori unstable, in this example it is numerically stable and of second order. So we observe
that the filtered scheme keep this good behavior and is also or second order (ENO scheme gives
comparable results here).

Example 4. Eikonal equation. In this example we consider the eikonal equation

vt + |∇v| = 0, (x, y) ∈ Ω, t > 0 (3.10)

in the domain Ω := (−3, 3)2. The initial data is defined by

v0(x, y) = (3.11)

0.5− 0.5 max

(
max(0,

1− (x− 1)2 − y2

1− r20
)4, max(0,

1− (x+ 1)2 − y2

1− r20
)4
)
.
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filtered centered ENO
Mx Ny L2 error order L2 error order L2 error order

20 20 5.05E-01 - 5.05E-01 - 6.99E-01 -
40 40 1.48E-01 1.77 1.48E-01 1.77 4.66E-01 0.58
80 80 3.77E-02 1.98 3.77E-02 1.98 2.04E-01 1.19
160 160 9.40E-03 2.00 9.40E-03 2.00 5.50E-02 1.89
320 320 2.34E-03 2.01 2.34E-03 2.01 1.29E-02 2.10

Table 3.4
(Example 3) Global L2 errors for the filtered scheme, centered and second order ENO schemes (with CFL 0.37).

Fig. 3.4. (Example 3) Filtered scheme, plots at time t = 0 (left) and t = π/2 (rigth) with M = 80 mesh points.

The zero-level set of v0 corresponds to two separates circles or radius r0 and centered in A = (1, 0)
and B = (−1, 0) respectively. Dirchlet boundary conditions are used as the previous example.

The monotone hamiltonian hM used in the filtered scheme is in Lax-Friedrichs form:

hM (x, u−1 , u
+
1 , u

−
2 , u

+
2 ) = H(x,

u−1 + u+
1

2
,
u−2 + u+

2

2
)

−Cx
2

(u+
1 − u

−
1 )− Cy

2
(u+

2 − u
−
2 ), (3.12)

where, here, Cx = Cy = 1. We used the CFL condition µ = 0.37 as in (3.9). Also, the simple
limiter (2.36) was used for the filtered scheme as described in Section 2.4. It is needed in order to
get a good second order behavior at extrema of the numerical solution. The filter coefficient is set
to ε = 20∆x as in the previous example.

Numerical results are given in Table 3.5, showing the global L2 errors for the filtered scheme,
the centered scheme, and a second order ENO scheme, at time t = 0.6. We observe that the
centered scheme has some unstabilities for fine mesh, while the filtered performs as expected.

Example 5 Steady eikonal equation. We consider a steady eikonal equation with Dirichlet
boundary condition, which is taken from Abgrall [1]:

|vx| = f(x) x ∈ (0, 1), (3.13a)

v(0) = v(1) = 0, (3.13b)

where f(x) = 3x2 + a, with a =
1−2x3

0

2x0−1 and x0 =
3√2+2
4 3√2

. Exact solution is known:

v(x) :=

{
x3 + ax x ∈ [0, x0],
1 + a− ax− x3 x ∈ [x0, 1].

(3.14)
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filtered (ε = 20∆x) centered ENO2
Mx Ny L2 error order L2 error order L2 error order

25 25 5.39E-01 - 6.00E-01 - 5.84E-01 -
50 50 1.82E-01 1.57 2.25E-01 1.41 2.11E-01 1.47
100 100 3.72E-02 2.29 8.46E-02 1.41 6.88E-02 1.62
200 200 9.36E-03 1.99 3.53E-02 1.26 2.02E-02 1.76
400 400 2.36E-03 1.99 1.36E-01 -1.95 5.98E-03 1.76

Table 3.5
(Example 4) Global L2 errors for filtered scheme, centered and second order ENO schemes.
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Fig. 3.5. (Example 4) Plots at times t = 0 (top) and t = π/2 (bottom) for the filtered scheme with M = 50
mesh points. The figures to the right represent the 0-level sets.

The steady solution for (3.13) can be considered as the limit lim
t→∞

v(t, x) where v is the solution of

the time marching corresponding form:

vt + |vx| = f(x) x ∈ (0, 1), t > 0, (3.15a)

v(t, 0) = v(t, 1) = 0, t > 0. (3.15b)

In this example the upwind monotone scheme is used:

hM (.)j :=
un+1
j − unj

τ
−max{

unj − unj−1

∆x
,
unj − unj+1

∆x
} − τf(xj),

the high–order scheme will be the centered scheme, and the filtered scheme (2.6) will be used with
ε = 5∆x. The iterations are stopped when the difference between too successive time step is small
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enough or a fixed number of iterations is passed, i.e., in this example,

‖un+1 − un‖L∞ := max
i
|un+1
i − uni | ≤ 10−6 or n ≥ Nmax := 5000. (3.16)

As analyzed in [4] for ε-monotone schemes, for a given mesh step, even if the iterations may not
converge (because of the non monotony of the scheme), it can be shown to be close to a fixed point
after enough iterations.

filtered centered filtered + ENO
M error order error order error order

50 2.16E-03 - NaN - 5.29E-03 -
100 7.14E-04 1.60 NaN - 1.35E-03 1.97
200 2.17E-04 1.72 NaN - 3.42E-04 1.98
400 6.32E-05 1.78 NaN - 8.61E-05 1.99
800 2.17E-05 1.54 NaN - 2.16E-05 2.00

Table 3.6
(Example 5) Global errors for filtered scheme, compared with the centered (unstable) scheme, and a filtered

ENO scheme.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5
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0.5

1

1.5
Exact(red), Scheme(blue)

Fig. 3.6. (Example 5) Filtered scheme for a steady equation, with M = 50 mesh points.

Example 6 Advection with an obstacle. Here we consider an obstacle problem, which is taken
from [3]:

min(vt + vx, v − g(x)) = 0, t > 0, x ∈ [−1, 1], (3.17)

v0(x) = 0.5 + sin(πx) x ∈ [−1, 1], (3.18)

together with periodic boundary condition. The obstacle function is g(x) := sin(πx). In this case
exact solution is given by:

v(t, x) :=


max(v0(x− at), g(x)) if t < 1

3
max(v0(x− at), g(x),−1x∈ [0.5,1]) if t ∈ [ 1

3 ,
5
6 ],

max(v0(x− at), g(x), 1x∈ [−1,t− 5
6 ]∪[0.5,1]) if t ∈ [ 5

6 , 1],
(3.19)

Results are given in Table 3.7, for terminal time t = 0.5. Errors are computed away from singular
points, i.e., in the region [−1, 1] \

(
∪i=1,3 [si − δ, si + δ]

)
(where s1 = −0.1349733, s2 = 0.5 and

s3 = 2/3 are the three singular points. Filtered scheme is numerically of second order (ENO gives
comparable results here).
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Errors filtered ε = 5∆x centered ENO2
M N error order error order error order

40 20 7.93E-03 2.03 1.63E-02 1.54 2.14E-02 1.59
80 40 1.84E-03 2.10 2.98E-02 -0.87 7.75E-03 1.46
160 80 3.92E-04 2.24 1.46E-02 1.03 1.07E-03 2.86
320 160 9.67E-05 2.02 8.02E-03 0.86 2.72E-04 1.97
640 320 2.40E-05 2.01 4.10E-03 0.97 6.92E-05 1.98

Table 3.7
(Example 6) L∞ errors away from singular points, for filtered scheme, centered scheme, and second order

ENO scheme.
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Fig. 3.7. (Example 6) Plots at T=0(initial data), T=0.3, T=0.5.

Example 7 Eikonal with an obstacle. We consider an Eikonal equation with an obstacle term,
also taken from [3]:

min(vt + |vx|, v − g(x)) = 0, t > 0, x ∈ [−1, 1], (3.20)

v0(x) = 0.5 + sin(πx) x ∈ [−1, 1], (3.21)

with periodic boundary condition on (−1, 1) and g(x) = sin(πx). In this case the exact solution
is given by:

v(t, x) = max(v̄(t, x), g(x)). (3.22)

where v̄ is the solution of the Eikonal equation vt+|vx| = 0. The formula v̄(t, x) = miny∈[x−t,x+t] v0(y)
holds, which simplifies to

v(t, x) :=

 v0(x+ t) if x < −0.5− t
−0.5 if x ∈ [−0.5− t,−0.5 + t],
min(v0(x− t), v0(x+ t)) if x ≥ −0.5 + t,

(3.23)

Results are given in Table 3.8 for terminal time T = 0.2. Plots are also shown in Figure 3.8
for different times (for t ≥ 1

3 solution remains unchanged).

4. Conclusion. We propose a “filtered” scheme which behaves as a high–order scheme when
the solution is smooth and as a low order monotone scheme otherwise. It has a simple presentation
that is easy to implement. Rigorous error bounds hold, of the same order as the Crandall-Lions
estimates in

√
∆x where ∆x is the mesh size. In the case the solution is smooth a high-order

consistency error estimate also holds. We show on several numerical examples the ability of the
scheme to stabilize an otherwise unstable scheme, and also we observe a precision similar to a
second order ENO scheme on basic linear and non linear examples.
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Errors filtered ENO2
M error order error order

40 3.74E-03 - 6.85E-03 -
80 6.26E-04 2.58 2.12E-03 1.69
160 1.13E-04 2.47 6.80E-04 1.64
320 2.26E-05 2.32 2.18E-04 1.64
640 5.50E-06 2.04 6.96E-05 1.65

Table 3.8
Filtered scheme and ENO scheme at time t = 0.2
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Fig. 3.8. (Example 7) Plots at times t = 0, t = 0.2 and t = 0.4. The dark line is the numerical solution,
similar to the exact solution, and the ligth line is the obstacle function.

On going works concern the application of the present approach to some front propagation
equations.

Appendix A. An essentially non-oscillatory (ENO) scheme of second order.
We recall here a simple ENO method of order two based on the work of Osher and Shu [20]

for Hamilton Jacobi equation (the ENO method was designed by Harten et al. [17] for the approx-
imation solution of non-linear conservation law).

Let m be the minmod function defined by

m(a, b) =

 a if |a| ≤ |b|, ab > 0
b if |b| < |b|, ab > 0
0 if ab ≤ 0

(A.1)

(other functions can be considered such as m(a, b) = a if |a| ≤ |b| and m(a, b) = b otherwise). Let
D±uj = ±(uj±1 − uj)/∆x and

D2uj :=
uj+1 − 2uj + uj−1

∆x2 .

Then the right and left ENO approximation of the derivative can be defined by

D̄±uj = D±uj ∓
1

2
∆x m(D2uj , D

2uj±1)

and the ENO (Euler forward) scheme by

S0(u)j := uj − τhM (xj , D̄
−uj , D̄

+uj).

The corresponding RK2 scheme can then be defined by S(u) = 1
2 (u+ S0(S0(u))).
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